Eventsin an
Active Object-Relational Database System

by
Salah-Eddine Machani

Linkoping Studies in Science and Technology
Master’s Thesis No: LiTH-IDA-Ex-9634
September 1996

Abstract

This report presents syntax, semantics and implementation of rule definitions in an Object
Relational Actve Database Management System, AMOS. Botantbased and condition-
based rules are considered.wdwger, the main focus is on therent component of rules. The
definition, the deletion, and the management of rnats are ivesticated. Eents can be sim-

ple or composite and might be specified as updates on storedveddemnctions. The rules

are implemented based on the concept of function monitoriegte are compiled to aeé
functions and an incremental change monitoring technique is used to detect changes.

Résumeé

Ce rapport présente une syrdade définition de régles aas ainsi que sa sémantique et son
implementation dans un Systéeme de Gestion de Bases de DonnéesOiiét Relationnel,

AMOS. Les regles sont soit a base d’événements ou a base de conditions. Cependant, un plus
grand intérét est porté sur la partie événement des regles. La définition, la détection et la ges-
tion des événements sont discutés en details. Les événemergatp&Eue simples ou com-

poseés et pewnt étre spécifies comme des mises a jours sur des functions de bases ou sur des
fonctions dewées. Limplementation des regles est basée sur le concept de gestion de fonc-
tions; les événements sont compilés en fonctionsesctt une technique de monitoring du
changement incrementale est utilisée pour la détection des changements.

This work has been done as a collaboration between the University of Versailles and
Linkdping University as a part of ERASMUS program of the ACT-NET research network on
active databases group and patrtially financed by the University of Pierre et Marie Curie
(Paris 6).

Laboratoire PRISM - Université de Versailles Department of Computer and Information Science
45, avenue des Etats-Unis Linkdping Uniersity

78035 Versailles Cedex S-584 83 Linkoping
France Sweden

Contents

Summaryin French 5

Preface 11
CHAPTER 1 Introduction 13
1.1 Object elational model 13
1.2 Active Databases14
1.3 AMOS System15
1.4 Motivation and Summary of Contitibns 19
1.5 Related Wk 20
CHAPTER 2 The AMOS Data Modebs
2.1 Data model 25
2.2 Rule languge 28
2.2.1 Rule definition 28
2.2.2 Rule deletion 30
2.2.3 Rule activation and deactivation 30
2.3 Example 30
CHAPTER 3 Event Specification Langga 33

3.1 Simple eents 34

3.2 Compositevents 37

3.3 Condition specification 38
3.4 Action specification 39

Events in an Object Relational Database System

Contents

CHAPTER 4 Event Monitoring 41

4.1 Delta elations 41

4.2 Stoed functions 42

4.3 Derived functions 45

4.4 Event functions 47
4.4.1 Simpleents 48
4.4.2 Compositevents 52
4.4.3 CA-rules 53

CHAPTER 5 Implementation issues55

5.1 Rule Pocessing Algorithm 55
5.2 Ceation of a rule 56
5.2.1 Delta elations 56
5.2.2 Event functions 57
5.2.3 Condition functions 57
5.2.4 Action pocedue 58
5.3 Popagation network 58
5.4 Activation/Deactivation of a rule60
5.5 Data modification 62
5.6 Chek phase 62
5.6.1 Popagation Algorithm 63
5.6.2 Rule trigering and conflictesolution 66
5.6.3 Condition ealuation and rule xecution 66
5.6.4 Brmination 67

CHAPTER 6 Conclusions and FuterWwork 69

References 73

iv Events in an Object Relational Database System

Summary in French

Ce rapport présente un e de recherche d'une durée de 6 mofeatié

dans le Laboratoire de Génie Systémes de Bases de Données (EDSLab
Engineering Database System Ladtory) a I'Université de Linkdping en
Suéde. Ce trail a été réalisé dans le cadre deigences nécessaires pour
I'obtention du Dipléme d’Etudes Approfondies en Méthodes Informatiques
Appliguées aux systéemes Industrielles (DEA MISI) au laboratoire de
Recherche en Informatique, PRiSEII'Université de ¥rsailles- France.

Le travail consiste dans un premier temps a définir une sym@iviale et

sa sémantique pour la spécification des refglesiement-Condition-Action
(regles ECA) dans un Systéeme de Gestion de Base de Données (SGBD)
Active Objet relationnel, nommé AMOS[FRS93] et dans un deuxieme temps
d’'implémenter des algorithmesfiebices pour la gestion et la detection des
événements spécifiés et l@uation des conditions.

AMOS (Active Mediators Object system) [FRS93] est un prototype de
recherche, classé dans la catégorie des SGHEXs elationnels(OR). Son

1. Pour plus d’information sur EDSLab, utilisez 'URL:
http://wwwida.liu.se/labs/edslab

2. Pour plus d’'information sur PRiSM, utilisez 'URL:
http://www.prism.uvsq.fr

Events in an Object Relational Database System 5

architecture permet de localiseherchercombiney et contréler des don-
nées dans les systéemes d'informatisecaplusieurs stations connectées
entre elles en utilisant des réseaux de communication rapides. Cette archi-
tecture utilise I'approche des médiateurs qui introduisent ueani de
logiciel intermédiaire entre les bases de données et leur utilisation dans des
applications et par des utilisateurs. Ces médiateurs sont actifs puisqu’ils
supportent lesakilités des bases de donnéesvastiUn prototype d’AMOS

a été deeloppé a partir de laevsion WS-Iris @ mémoire principale de
IRIS[FA+89]. Lelement central d’AMOS est AMOSQL, un language de
requétes objet-relationnel quifief une interice de requétes declavatper-
mettant de définjirchager et manipuler la base de données. AMOSQL est
dérivé de OSQL[lyn91] qui est un larage fonctionnel, ayant ces racines
dans APLEX[Shi81]. Le language de requéte AMOSQL est en plus influ-
encé par les &irts de standarisation comme SQL3[Mel95] et OQL[Cat94].
Comme dans OSQL, les requétes AMOSQL sont compilées a des plans
d’exécution dans un larege logigue OO appellé Object-Log[LR92].
AMOSQL étend OSQL principalementex des régles avés et un sys-

teme plus riche en types et en fonctionalités de base de données multi-
ples[FaR97].

Dans sa premiereevsion le langge de regles dans AMOS ne supporte que
des régles de type CA¢ndition-Action) ou les événements entrainés sont
calculés a partir des Conditions par le compilateur de regles. Ces régles sont
déclenchées implicitement quand des données sont modifiées et les nouv-
elles données satisfont la Condition de la regle. Ce type de régles est géné-
ralement considéré plus déclaratif et peut &@ldment programmé. La
spécification des événements déclencheurs de régles comme une partie de la
définition des régles permet de spécifier des actioféretites quand une
condition donnée est satide, dépendament de I'événement setile
L'intégration des événements dans AMOS a été I'objet daitrparesenté

dans ce rapport. Cette intégration nécessite la définition d’'unadande
spécification de regles conforme aux fonctions d’AMOSQL et I'utilisation
des méthodes ffaces pour la détection des événements dilli@tion des
conditions. Une nowlle syntag permettant de définir des régles ECA
(Evenement-Condition-Action) a été ainsi implémentée. La sémantique de
cette syntag est “Quand I'Evénement spécifié dans la défintion de la regle
est detecté, @ue la Condition. Si la Condition est vraigeute I'Action”.

Cette synta@ permet en outre de définir unariation de type de régles.
L'omission de la partie Condition définit une regle de tfvenement-

Action (regles EA), dans cette classe de régles, la Condition est considérée
coome étant toujours vraie et I'Action esgeutée suite a la détection de

Events in an Object Relational Database System

Summary in French

I'événement. lomission de la partie EBnement crée une regle de type CA,
celle-ci a la méme sémantique que les regles CA damrsden précédente
d’AMOS.

Le modele de données d’AMOS est un modeéle objet relationnel. Dans ce
modele tout est objet, y compris llemctions lestypeset lesrégles Ainsi

les régles pewant étre créées et supprimées comme tout autre objet. Deux
autres commandes sont utilisées pourvactou desaoter une regle. Les
événements peant étre simples ou composés et seuls les événements liés a
I'exécution des opérations de mise-a-jour sont considérées. Les événements
utilisateurs et les événements temporels seront considérés dans un futur tra-
vail. Un événement dans AMOS peut étre défini comme “Un changement
d’état de la base de données a un instant donné” (I'instant de I'occurence de
I'événement est enrigistré pouaciliter I'intégration des événements tem-
porels). Les types d’événements pris en compte sont la création ou la sup-
pression d'un objet, linsertion d'unealeur dans une fonction, la
suppression d’'unealeur d'une fonction, la mise a jour de laleur d’'une
fonction, et les combinaisons logiques des ces événements. Uneesyntax
conviviale a été définie pouxprimer ces types d’événements. Les événe-
ments composés sont définis par les formes logiques de conjonction
(l'ordre des événements n’est pas pris en compte) et de disjonction dans ce
premier temps.’Inclusion de la forme de négon et 'ordonnancement des
événements seront a considérer dans waitratur.

Les régles ECA ingrées dans AMOS sont basées sur le concept de gestion
de fonctions. lEvénement spécifié est transfomé en une fonction
AMOSQL qui peut contenir des conjonctions et des disjonctions dans le cas
des événements composées. La partie Condition est compilée en une
requéte AMOSQL qui peut contenir a son tour des conjonctions, des dis-
jonctions ou des négjons. La condition est vraie si le résultat de la requéte
est non vide. 1Action est transfomée en une procédure AMOSQL qui peut
contenir n'importe quellexpression AMOSQL saufommit Les données
peuwent étre passées de I'événement a la condition et de la condition a
'action de chaque régle par l'utilisation deariables de requéttes par-
tagées. lexécution de ldonction événemengnvoie les données entrainées.
Ces données seront passées fariation conditioncomme parametres en
arguments, ainsi la requéte de la condition ne sera appliquée que sur
I'ensemble des données modifiées. Ceci donne ualeadion correcte et
efficace de la condition.

La fonction événement est définie en termedigta-relations.Ces derni-

eres sont générée par le compilateur de regles pour chaque fonction de base
ou dérvée réferenecée dans la définition de I'événement. Ces delta-relations

Events in an Object Relational Database System 7

enrigistrent toutes les mises-a-jourteefuées sur les fonctions de base au
cours de la transaction. Au momentahmmit une procedure basée sur la
méthode de I'ézluation incrémentale estvimguée pour propager les
changementsers les delta-relations attuées aux fonctions deées.

Un réseau de propation a été modelisé pour permettre une prapag

plus eficaces des changements. Ce réseau est maintenu aprés chague acti
tion ou désactation d'une regle en l'insérant ou la supprimant du réseau
respectrtement. [algorithme de propagfion est basé sur la méthode
breadth-fist Les regles déclenchées aprés la détection des événements sont
insérées dans une chaine triée. Le triage des régles dans cette chaine est
basé sur brdre de prioritéattribué par I'utilisateur a chaque regle weti

Ainsi quand une régle est selectionée pouraliéation de la condition, elle

est sélectionnée de sorte qu’'aucune autre regle dans la chaine n’ait un ordre
de priorité plus grand.’Action étant une procédure AMOSQL, soxéeu-

tion peut souleer de nougaux événements et le declenchement de nouv-
elles regles ou la méme regle. Ceci peut causer une boucle infinie du
processus. Une limite f&x contraignant le nombre de fois qu'une régle
puisse étrex@cutée est mise au point pour resoudre ce probléme de termi-
naison.

Ce rapport est constitué de deux parties principales. La premiére partie
présente la syntaxde définition des régles ECA dans AMOS et sa séman-
tique avec un plus grand interrét sur le composant Evénement de ces regles.
La deuxieme partie discute de Egdn permettant de detecter I'occurence
des événements en utilisant la technique dealt&@tion Incremen-
tale[Sk694, SR96, FSR93].

Chapitre 1 introduit le modele objet-relationnel et le concept des systemes
de gestion de base de donnéesvestill donne aussi une vue génerale sur
l'architecture du systeme AMOS et son lagg de régles. Et enfin ce chapi-
tre résume les mattions qui nous ont amenés a grer les régles ECA
dans AMOS et le trail effectué dans ce sens.

Chapitre 2définit le modele de données d’AMOS et sgtersion &ec un
langage de regles permettant de spécifier et de gérer des regles de type ECA.

Chapitre 3présente le laragie de spécification des événements. Un ensem-
ble d’exemples est donné pour illustrer lesféliénts types d'événements
qui peuent étre spécifiés.

Chapitre 4 introduit la méthode de I'@uation Incrementale et le concept

Events in an Object Relational Database System

Summary in French

des delta-relations et montre comment les fonctions générées a partir des
événements spécifiées dans les définitions de régles sont définies en terme
de ces delta-relations.

Chapitre 5 disctute I'algorithme de processus de régle et souligne I'algo-
rithme utilisé pour implémenter la méthode dedléation incrémentale .

Chapitre 6 conclut &ec un résumé des principaux aspects de laealieuv
syntaxe de définition de régles aets dans AMOS et donne des perspec-
tives pour desxtensions de cette syn&xlans le futur

Eventsin an Object Relational Database System 9

10

Events in an Object Relational Database System

Preface

This report presents a significanbrk done on @ending the rule language

of an Object Relational Database Management System (ORDBMS), called
AMOS[FRS93] with rules hang ECA (Event-Condition-Action) rule
semantics. The report isvitled into twp main parts. The first part describes

a syntax for rule definitions and discusses its semantics with the focus on the
event component. The second panesticates the detection and the man-
agement of simple and compositeets using incrementav&uation tech-
niques.

Outline

Chapter 1 introduces the object-relational model and thevaatiatabase
management systems. It alseeg an werview of the AMOS architecture.
This chapter also gés a summary of theosk done in intgrating ECA
rules in AMOS and the mafitions for this wrk. Related wrk is discussed
at the end.

Chapter 2 defines the data model of AMOS and presents tivesyatax for
defining ECA rules and its semantics. A data base sampheis gi the end
to be referenced in the follang chapters in illustrate examples.

Chapter 3 focuses on thevent specification language. It presents thiedif
ent types of eents that can be specified. A set xdmples are presented for
illustration.

Chapter 4 introduces the delta relations approach and the increnvetabe
tion techniques and siws hav delta relations can be used to detect and
record data modifications of stored relations and blsanges to stored rela-
tions are propaged to derxied relations using the incrementahkation
method. It then illustrates withk@mples hw the eent components in the
rule definitions are compiled to aeti functions and he changes to these
functions are monitored.

Eventsin an Object Relational Database System 11

Chapter 5 explains some implementation aspects of rule management at the
phases: rule creation, rule aetiion and deactation, eent detection and

rule triggering, and rulexecution at the check phase. It alsovstidhe rule
processing algorithm, the data structures of the peatfmaygnetvork, and

the propagtion algorithm.

Chapter 6 concludes with a summary of the main aspects of thvesgiatax
and its semantics and presents some issues for futuke w

Context

The work presented in this report has been carried on during a period of
about 6 months at the Laboratory of Engineering Database Systems
EDSLal at Linkdping Unversity, Sweden and submitted to the Research
Laboratory in Computer Science, PR3l the Unversity of \ersailles,
France as a partial fulfilment of the requirements for the Diploma of
Advanced Studies (DEA in the French system is a 1 year preparatory course
for a PhD) in the field of Industrial Applications of Computer Science.

Acknowledgements

| would like to thank my advisprProfessor dre Risch, for giing me
the opportunity to carry out thisork and for his support and higoellent
supervision. | wuld also lile to thank Martin Skéld for pwiding me with
rich ideas from his)gerience in the field and for helping me to gahiliar
with the AMOS system. Manthanks also for all EDSLab members for
their fruitful discussions and suggestions

| am grateful to Anne Eskilsson for piding excellent administratie
service.

Last, hut not least, | we special thanks to my professors Elisabeth
Metais and Mokrane Boughoub for their support and for helping me and
encouraging me to join EDSLab

Salah-Eddine Machani
Link6ping, September 1996

1. For more information about EDSLab use URL: http://wigha.liu.se/labs/edslab
2. For additional information about PRiSM use URL: http://wpsism.uvsg.fr

Events in an Object Relational Database System

CHAPTER 1 Introduction

1.1 Object relational model

The DBMS markt is still led by the relational database management sys-
tems (RDBMS), havever the limitations of these systems when it comes to
data modelling has led to thevddéopment of ne database technology based

on object oriented techniques and broughtynmasearchers and industrials

to investicate on these techniques.

Object-oriented databases impeorelational systems by fefing comple
structures, object identitinheritance between classes, axigesibility. The

first genemtion OODBMS also usually includes basic databaselifies

such as a simple query language, access techniques such as hashing and clus-
tering, transaction management, and concuyetantrol and reoeery.
However, they are incompatible with RDBMSs and do not includeesal
RDBMS features such as a complete decleajuery language, meta data
management, wes, and authorisation. Their ahtage is a seamless inte-
gration with their corresponding OO programming language. Products origi-
nating from the first generation OODBMS approach are Gemstone, 02,
Objectvity, ObjectStore, ONDS, and ¥rsant.

Systems called theecond gneation OODBMSs &olved from the classical
relational database community and were also inspired by OO ideas. The
attempt to meet the needs required by hges of database applications, as
for instance from the scientific and engineering area, has resulted in an

Events in an Object Relational Database System

Introduction

extension of relational database technology with OO capabilities. Examples
of these capabilities include object identitybject structure, composite
objects, type constructors, encapsulation, inheritance, andx@@s&sns

for relational query languages such as SQL-3[Mel95]. These DBMSs are
called Object Relational Database Management systems (ORD-
BMs)[SM96]. Examples of this type of product are Odapterstra, and
UniSQL. The research prototype AMOS, that is used in tbikws based

on this approach.

1.2 Active Databases

Traditional database management systems arevpaskata is created,
retrieved, modified, and deleted only in response to operations issued by
users or application programs. W applications recognize the need for
having a database system capable of reacting automatically in response to
specific situations (to certaivents occurring or to certain conditions being
satisfied). Such systems are claimed to beecti

Active database betiaur is characterised by the definition of a set of ECA
rules (Eent-Condition-Action) as part of the database, which describe
actions to be tan upon encountering ameat in a particular database state.
These rules are then associated with objects, making them regsptmsi
variety of eents. Eents range from data modificationeats (e.g., insert,
delete, or update on a particular table in a relational database or a creation,
deletion, modification of a particular object or a methodation in an
object-oriented database) to temporedrés (e.g., 1 Sep. at 12:00eey day

at 12:00, from 18:00:00very 5 minutes) to application-definedeats (e.g.,
userlogin, mail reception). When thevent is detected the reknt rules

fire. Firing of a rule impliesvaluating a, possibly complecondition on the
database, and carrying out the corresponding action. Conditions might be
specified as database predicates, restricted predicates, database queries or
application procedures. Actions may refer to a transaction (e.g., to abort it)
and thg may afect the database itself by performing some data modifica-
tion operations or some data retdeoperations. An aste database system
derives its paver from the ariety of /ents it can respond to, Weefficiently

the condition isealuated and the kind of actions it can perform in response.
Although the general and preferred form ofwetiules are ECA rules, other
variations of actie rules may occur: the omission of the condition part leads
to an Eent-Action rule (EA-rule) where the Condition is considered to be
always true, and the omission of theest part leads to a Condition-Action

rule (CA-rule) in which case the compiler or the ADBMS itself generate the

14

Events in an Object Relational Database System

event definition.

Events are one of the most essential issues in an ADBMS, and thus their
definition, their detection and their internal representatioe haceved a

big attention recently[CK+94, GJS92].

1.3 AMOS System

AMOS (Active Mediators Object System) is &bject-Relational Active
Database Management System. It addresses support for future engineering
information systems where autonomous, heterogeneous, aud data-
bases and other sofane are distribted wer fast computer netwks. In

such an evironment actie mediators simplify the communication between
individual programs (usually being run orkstation) and the data sources
from which information is retrieed. The purpose of these aetimediators

is to locate, transform, combine, query and monitor the desired information,
and therefore retain #téility and corvenience for the user inew lage
federations of databases and other systems. This approach is called acti
mediators, since it includes adidatabaseatilities.

The AMOS architecture isuilt around a main memory based platform for
intercommunicating information bases. Each AMOS esehas full DBMS
facilities, such as a local database, a data dictipaaguery processoa
transaction manageand a communication manager

A central component of AMOS is an object-relational query language,
AMOSQL, with object oriented abstractions and declegatjueries. The
data model of AMOS and AMOSQL is strongly influenced by the func-
tional data model OOBPLEX[Day89] and by the data model of
Iris[FA+89] and OSQL[lyn91]. The Iris data model has three basic con-
structs; objects, types and functions. The data model of AM@Bds that

of Iris by introducing rules. Rules monitor changes to functions and changes
to functions can trigger rules. Functions in AMOS can be storededenr
foreign. Stored functions represent data storedaats fin the database
(stored functions are internally represented as relationsvedefiinctions

are AMOSQL queries (wes) and defined in terms of other AMOSQL
functions. Breign functions are programs written in a foreign language (C
or Lisp). Stored and deed functions in AMOS are updatable functions
and changes to these functions are monitored. Changes to foreign functions
are not monitored, tlyeare supposed to be non updatable functions.(see sec-
tion 2.1).

The AMOS lernel consists of seral subsystems that are responsible for
different tasks. The main subsystems are illustrated in Figure 2.1 and

Eventsin an Object Relational Database System 15

Introduction

include:

The external interface handles synchronous requests thought a clieneserv
interface for loosely coupled applications and throughs#path inteece
for tightly-coupled applications.

The command interpreter scans and parses AMOSQIxpeessions and
sends request to thevéds belav.

The schema manager handles all schema operations such as creating or
deleting types, i.e. object classes, and type instances including functions and
rules.

The rule processor handles issues such as creation, deletionyadictn,
deactvation, triggering andx@cution of database rules[Sk694, SRIB
event manager is integrated with the rule processdrdispatcheseents to

the rule processoEwvents can come either from thgternal interce or
from interceptedeents in the lwer levels such as schema updates or data-
base updates.

The foreign data source (DS) interface of AMOS admits inggation of for-
eign data structures and operatoelgn operators are defined and imple-
mented as multi-directional foreign functions witlvedoading on all
arguments[LR92, FR96]

The query optimizer is responsible for transforming ad hoc queries, update
statements, functions, and procedures into tractatdeudon plans using
guery optimization and compilation techniques[LR92, FR96, Flo96].

The execution plan interpreter handles the processing anceution of opti-
mized epressions that are represented in the intermediate ObjectLog lan-
guage[LR92].

The logical object manager manages all operations to objects in the data-
base schema such as object creation, deletion and updates of object
attributes including updating, inserting, and deleting data in stored func-
tions. The lgel also manages OIDs (Object Identifiers) of the objects. An
update operation causes the creation ofvantethat is intercepted and sent

to the @ent manager

The physical object manager includes parts for managing allystical oper-

16

Events in an Object Relational Database System

ations on user objects (i.e. instances of-gpecified types), system objects
(strings, intgers, reals, lists, arraysestors, atoms, hash tables, etc.) and
event objects (objects representing database transactions). Examples of
operations are allocation, deallocation, and access operataeigyri-func-

tions can manipulate the ydical object managere.g. to allocate and
update usedefined internal storage structures.

The memory manager manages all the memory operations that automati-
cally allocates and deallocates memamd reclaims memory byaghage
collection.

The disk manager in AMOS is more primitre in comparison to disk-based
DBMSs since AMOS presupposes that the database resides in main-mem-
ory. It mainly handles flushing of database images between main-memory
and disk for initiation, connection, onsag of databases.

The transaction manager controls all transactions the database dgping a
log of all database operations so that transactions can be undone or redone
to guarantee database consisyenc

The recovery manager is responsible for automatically maintaining persist-
eng of a database that igmosed to transactions[Kar95].

The architecture of AMOS permitgtensions to be made on the threels
of extensibility as identified in [CH90]: thBata storage and access, the
Query language, and theQuery processing.

Eventsin an Object Relational Database System 17

Introduction

External Interface

Embedded AmosSQL Fast-path Amos IF

T

~ /
~ /

Command Interpreter

T
|
Schema Rule

manager processor
T

l \

Query optimizer

—

—

) \

Foreign
DS

Execution plan IP

Array pac.
r— — — "
L — — — 4

[\

Logical object manager \
| \

Physical object manager Transaction

User manager

obj. mgr.
System Event Recovery
obj. mgr. obj. mgr. manager

Memory manager Disk manager

Figure 2.1: AMOS Architecture

18

Events in an Object Relational Database System

1.4 Motivation and Summary of Contributions

The first \ersion of the rule system of AMOS supported onlyGbadition-
Action (CA) model by defining each rule as a pair <condition, action>,
where the Condition is a declaretiAMOSQL queryand the Action is an
AMOSQL database procedure statement. Meas ivolved are calculated
from the condition. Wh the CA model the rule is triggered implicitly
wheneer data is updated so thatandata satisfies the rutetondition.
Including a triggeringwent as part of the rule language of AMOS emk
possible to specify dérent actions when a\gn condition is satisfied,
depending on whichvent occurred. & example, one might wish to react
to violations of a referential inggity constraint in dierent ways, depend-
ing on whether the violation came about becausaveobgect was added or
because an old oneaw remwed. This kind of operation-specific befaur
is not possible with Condition-Action rules. Significanbriv is done on
integrating such a bekiour in the rule system of AMOS. A wesyntax
allowing specification of triggeringvents in the rule definition has been
implemented and an Ewt Specification Language is defined. Thengs
handled sodr are: the creation of awebject, the deletion of an object, the
insertion of a wlue into a bagalued function, the deletion of alue from a
bag-walued function, and the update of a function. &ant is specified by
its type and the wolved object. Egnts can be simple or composite. Com-
posite @ents are defined agsent xpressions, containing logical operators
and eents (simple or other compositeeats).
The intgrated ECA rules are based on the concept of function monitoring;
the event component as well as the condition component are compiled to
AMOSQL functions. Only stored and dezd functions can be referenced
in the eent specification. &reign functions are assumed to be pashinc-
tions, i.e. functions that mer change. The Action component is compiled to
an AMOSQL procedure. Ewnts are parameterized and data are passed from
the event to the condition and from the condition to the action by using
shared queryariables.
The processing of a rule can bgided into four phases:

1. Ewvent detection and Change maintenance

2. Rule triggering and Conflict resolution

3. Condition galuation

4. Action eecution
Event detection consists of detectingemts that can &dct ary actvated
rules and is performed continuously during ongoing transactions. These
events consist of changes to stored functions. A mechanismilistd

Eventsin an Object Relational Database System 19

Introduction

record these changes and prageghem to the fdcted dewed functions
using A-relations and the incrementafaduation method. Rules are trig-
gered wheneer their specifiedwents are detected and then inserted in a
sorted queue for conditiorvauation. Tiggered rules are sorted based on
priority numbers assigned to rule instances awaibbn time. Conditions

are @aluated only for the updated data. During actigacation further
events might be generated causing all the phases to be repeated until no
events are detected.

The e/ent function is defined in terms délta relations. These are gener-
ated by the rule compiler for each stored orfifunction referenced in

the event definition. Updates to stored functions are captured during the
ongoing transaction by their corresponding delta relation and atgzhtp

the afected dewed functions incrementally through a depengematwork

at thecommit. The propagtion of changes is done through the reknin a
breadth-first, bottom-up manner and is based on incremevdahlagon
technique. Intermediate results are materialized/éidathe recomputation

of derived functions during the rule processing since these might be refer-
enced by more than one triggered rule.

Updates to tuples are handled directly instead of modelling them as dele-
tions folloved by insertions, this alles us to capture and thfence
between the threevents addition, reme, and the update. Theatuation

of the condition and thexecution of the action are delayed till the end of
the transaction, i.e. deferred coupling mode. The fiettedf data modifica-

tion operations during the transaction is considered and a calculus is defined
to record only logical\ents in the delta relations.

1.5 Reated Work

In the preious work dealing with intgrating actve rules in AMOS only
CA-rules were considered. Thevalved Ewents were calculated from the
condition by the rule compileThe condition is an AMOSQL query and the
Action can be anprocedure statementxaept commit. Data can be passed
from the Condition to the Action of each rule by using shaseihbles.

Rules are furthermore parameterized and can beatadideactiated for
different agument patterns. The semantics associated with this syntax is as
follows: If an @ent in the database changes the trudluer for some
instance of the condition to true, the rule is nedrlas triggered for that
instance. If something happens later in the transaction which causes the
Condition to becomeafse agin, the rule is no longer triggered.

The condition can specifiedver stored and destd functions only The

20

Events in an Object Relational Database System

events that trigger these conditions are the function updetgs and add-

ing or remeing tuples to/from bagalued functions.

The implemented rule processing of AMOS uses the database monitor
method [Ris89] to detect changes onsttior stored attrilites of database
objects, hwever in [SR96] a more &€ient technique for monitoring
changes to rule conditions is proposed. This technique consists of generat-
ing several partially diferentiated relations that detect changes to aelbri
function given changes to one of the functions it is ¢tifrom. Then to
efficiently compute the changes of a rule condition based on changes of sub-
conditions, the partially diérentiated relations are computed by an incre-
mental aluation technique. A breadth-first, bottom-up praig algo-

rithm is also introduced to fafiently propagte both insertions and
deletions without unnecessary materialization or computation.

The Event-Condition-Action (ECA) rule paradigm is widely accepted for
active database systems, and itvpdes the flgibility required by most
applications. All actie database systems that support ECA ruleggepas
basic featuresvents that correspond to data modification operatians;
ditions that correspond to querieses the database, aratdtions that are
database operations.

HIPAC[CW96, HW93] is an acte object-oriented database management
system. Lile AMOS it etends a basic object-oriented database manage-
ment system with ECA rules based on the semantic modleLBX[Shi81]
extended with the object-oriented features of GE®DEX[Day89]. Rules

in HIPAC, like all other forms of data, are treated as entities. There is a rule
entity type, and\ery rule is an instance of this type. Special functions are
defined @er the rule type to fire, enable, or disable rules amg dither enti-

ties, rules can be created, modified or deleted.

In HIPAC events like rules are first-class entities; yhare instances of the
type e/ent. The gent type has tarsubtypes: primitie-event and composite-
event. The primitve events are of three types: data-manipulaticens,
time-events and xernal-eents. HIRC is an OODBMS, hence, all data
manipulation occurs through thgegution of functions on entitieso Tause
rules to be triggered when some data manipulation functioxeisuted, a
data-manipulationyent associated with the function has to be defined.
Events can be defined for the generic data manipulation operations create,
delete, and modifyas well as for type-specific operationsyieer, updates

of derived functions (vies) are not handled. Also, HAE allovs opera-
tions for manipulating collections of entities. Compositends are defined

by three parameterized types: disjunction, sequence, and closure.

Eventsin an Object Relational Database System 21

Introduction

Data manipulationents in HiIRC correspond to thexecution of func-

tions. Three basic techniques for detecting data manipulatemtsehsae

been deeloped and incorporated into the AP prototypes: the Hardwired,

the Wrappebased and the System-supported[CW96]. Concerning condi-
tions which are pure queries and may refer to the parameters captured at the
event occurrence, HRC uses three dérent techniques to suit the require-
ments of theirealuations: signal-dven evaluation, materialization of inter-
mediate results, multiple condition optimization and incremerigdlation.

The incrementalwvaluation is used in conjunction with the materialization

of incremental results.

Starlurst [CW96, HW93] is anx¢ension of the Statlyst relational DBMS

at the IBM Almaden Research Cent€he Starbrst rule language is #e

ble and general, with a well defined semantics based on arbitrary database
state transitions. Commands arevided for rule processing within transac-
tions in addition to automatic rule processing at the end of each transaction.
The event clause in the rule definition syntax specifies one or nvergs

ary of which will trigger the rule. An Eant is a relational data modification
operation. The Condition is arSQL select statement and is true if the
select statement produces one or more tuples. And the Action may be an
database operation, including SQL data manipulation commands, data defi-
nition commands and the rollback.

The possible triggeringvents in Starbrst correspond to the three standard
relational data modification operations: inserted, deleted and updated. The
updated triggeringwvent may specify a list of columns, so that the rule is
triggered only when of those columns is updated; specifying updates with-
out a column list indicates that the rule is triggered by updates/toan

umn.

Starhurst supports transition tables which correspond to/stelations.
Views are specified as SQL select statements. Eashivieomputed once

and stored as a database table (i.e. the igienaterialized). A set of rules is
generated automatically by the compiler from the materialized dédini-

tion. These rules are triggered by modifications to the base tables; their
actions incrementally modify the materializedwiaccording to the base
table modifications.

The Ariel[CW96, HW93] rule language is a production rule language with
enhancements for defining rules with conditions that can contain relational
selections and joins, as well as specifications/ehis and transitions. Lék

in our rule language, only data modification typewaras are considered in
Ariel, however compositeents are not handled.

22

Events in an Object Relational Database System

A-RDL[CW96] usesA-relations to record the netfeft of data modifica-
tions in a similar \y to our approach. Updates to functions are handled

directly and a calculus is defined to compute and record the feet ef
changes in the delta relations.

Eventsin an Object Relational Database System 23

Introduction

24

Events in an Object Relational Database System

CHAPTER 2 -I-heAMOS
Data Modd

2.1 Data M odel

The data model of AMOS and AMOSQL is strongly influenced by the func-
tional data model OOBPLEX [Day89] and by the data model of
Iris[FA+89] and OSQL[lyn91]. The Iris data model has three basic model-
ling constructspbjects, types and functions and &erything in the model is

an object including types and functions. The AMOS data modiehds that

of Iris by introducingrules, a richer type system and multidatabaaeili
ties[Fah94, BR97]. Further more AMOSQL is influenced by the standardi-
sation eforts such as SQL3[Mel95] and OQL[Cat94]. Rules are also objects
and of type ‘rule’. The relationship between objects, types, functions and
rules in AMOS can be seen in figure 2.1.

Objects are used to model entities in the domain of intefigpes are used to
classify objects and act as containers for their instancespjeet classes.
All objects are instances of some typgpds themsebs are of type ‘type’.
Objects can be created or deleted using the AMOSQL comneareds e
ordel et e respectiely.

Eventsin an Object Relational Database System 25

The AMOS Data Model

defined
__ over
participate

belong to

constrain

Figure 2.1: The AMOS data model

Functions are of type ‘function’ and are constrained to accept only objects
that are instances of the declareduanent type of ansubtype thereof.
They are used to model properties of objects and relationships between
objects. Functions can be stored, ekl or foreign. A stored function rep-
resents data stored aacfs in the database. The corresponding mapping
between gguments and results are internally stored in a table, i.e. relation.
Stored functions can wahys be updated using the AMOSQL function
update statementset, add, or remove[KF+95]. A derived function is
defined by a single AMOSQL query (simpdelect statement). AMOS
defines a deved function f to be updatable if it is degd from a single
updatable function g in such awthat the ggument and result parameters

26

Events in an Object Relational Database System

of f partition all the aguments and results of g and such that no selection is
involved in the deviation[KF+95]. Foreign functions written in some proce-
dural language(C or Lisp) are currently considered asvea$snctions
which means functions thatver change, such asiili in arithmetic func-
tions, boolean functions, and aggaite functions.

AMOS supports alsdatabase procedures which are defined by a program
written in a procedural subset of AMOSQL that mayehaide dkcts, and
overloaded functions which are functions defined ofedkht types with
identical names. Each specific implementation ofv@rloaded function is
called aresolvent. When a function call is made to anedoaded function,
the appropriate implementation, i.e. resolly is selected based on the
actual agument typesearly binding). Amos supports alskate binding of
overloaded functions where theesloaded resolution is done at run time
instead of at compile time. (Examples ekdoaded functions are\@n in
section 2.3)

Rules are used to define constraints and are first-class objectsntieit
their operations from thabject class. A rule can be created and deleteal lik
other objectscr eat e rul e anddel et e rul e commands are used for
this purpose.

Two other operations are added to rubest i vat e rul e anddeacti -
vate rul e to enable and disable a rule respedyi Rules monitor
changes to functions and changes to functions can trigger rules. All the
events that rules can trigger on are modelled as changedusvof func-
tions. Ewent functions, i.e functions that represent internanés, are
defined wer stored and desd functions, changes to these functions can
affect the rule condition and trigger the rule.

Besides,objects, types, functions andrules, AMOS defines a set of other
important types. Figure 2.2 balshavs the AMOS type hierargh

Eventsin an Object Relational Database System 27

The AMOS Data Model

object

monitor amos index user sag@ context ru‘e cursor literal functiontype

| type j
monitor object relation user
instance type
monitor

activation timeval time data multiset tuple charstring boolean number

bag vector list integer real
bag bag
integer real

Figure 2.2: AMOS type hierargh

Note that AMOS supports timestamps and defines three data types for refer-
encing timeTimeval is a type for specifying absolute time points &nak
anddate are types for relate time points.

2.2 Rule language

2.2.1 Rule definition

Integrating eent specification in AMOSQL consists in defining avrsyn-

tax for rule definitions. This syntax should be conform to that of AMOSQL
functions and should pvale usersdcilities to specify the triggeringrents

of the rule and also the possibility to define CA-rules bglewting the
event component of the definition.

In AMOS, rule processing iswoked automatically at the end of each user
transaction (just before tleemmit) that triggers one or more rules. In addi-
tions, users can woke rule processing within transactions by issuing the
AMOSQL Check command. Hence, the minimum rule processing granular-
ity in AMOS is a single database operation command and the maximum
granularity is the entire transaction.

28

Events in an Object Relational Database System

The implemented syntax for rule definitions is as feio

create rule rule_name parameter_specification As
[For_each_clause]
[On event_specification]
[When predicate_expression]
Do procedure-expression

Theon clause of the rule alles specification of the Ewnt that will trigger

the rule

The when clause specifies the Condition that should be dwdace the
rule is triggered.

Thedo clause allws specification of the Action txecute when the rule is
triggered and the condition is true.

In theFor_each_clause, the rules local \ariables are declared.

This rule is an eent-based rule or what is commonly callegent-Condi-
tion-Action rule (ECA-rule). The meaning of such a rule is: “when aeng¢
occurs, check the condition and if it holdseeute the action”.

If the event part is included, the condition part might be omitted, we then
refer to arEvent-Action rule (EA-rule). In this case, lgever, the condition

is considered to bewahys true and the action isexuted directly when the
rule is triggered.

In some cases it may be useful to alithe compiler to generate theeat
definition. In this case, thesent part is omitted and the user only specifies
the condition and the action, and the system determinesahtseutomat-
ically. We then say we la a condition-based rule orGondition-Action
rule (CA-rule).

Remark: either thevent part can be omitted or the condition paut tot
both in the definition of the rule.

The event_specification is the definition of the rule triggeringyent, it
can be a simplevent or a compositevent. A compositevent is a logical
combination of simplewents or other compositevents. A simple eent
corresponds to a data modification operation and is specified byaht e
type and the modified object.(see chapter 4).

The predicate_expression is an AMOSQL querylt can contain an
boolean gpression, including conjunction, disjunction andjaten. Fur-
thermore, this query may refer to stored functions as well as tedaemes.
If the query is non-empty then the condition is satisfied.

Eventsin an Object Relational Database System 29

The AMOS Data Model

The procedure_expression in the rule action clause is WAMOSQL
procedure statement@ptcommit.

2.2.2 Ruled€etion

To delete a rule, we use the falimg syntax:

delete rule rule name;

2.2.3 Rule activation and deactivation

Two operations are used to enable or disable a rule

activate rule rule_name parameter-list [priority 01112131415]
and

deactivate rule rule_name parameter-list

respectiely.

These commands allocertain rules to be “turnedfbtemporarily for the
specified parameter list, so that the rules remain in the systeard not
eligible to be triggered oxecuted.

Priorities are used for defining conflict resolution between rules that are
triggered simultaneously; the dedt priority is O, if the priority is not spec-
ified.

2.3 Example

The follonving example will be used later to illustrate rule definition and
event specifications. ¥ consider a simple database schema consisting of
four objects types:

Address(street, postcode, city)

Department (name, addnanager)

Employee (name, adddept, income, tas, grossincome, netincome)
Manager (name, addiept., income, tas, bonus, grossincome, netincome)

30

Events in an Object Relational Database System

Employees are defined to V&@a name, an income, an address and a depart-
ment. The netincome is defined based oagdar both emplgees and man-
agers, bt with bonus for managers beforedaxDepartments are defined to
have a name, an address and a managex manager of an empke is
derived by finding the manager of the department to which the gawis
associated.

The AMOSQL schema is defined by:

create type address properties (street charstring,
postcode charstring,
city charstring);

create type department properties

(name charstring, addr address);
create type employee properties

(income number, taxes number);
create type manager subtype of employee;
create function name(employee) -> bag of charstring as stored;
create function addr(employee) -> bag of address as stored;
create function dept(employee) -> bag of department as stored;
create function bonus(manager) -> integer as stored;
create function grossincome(employee e) -> number as

select income(e);
create function grossincome(manager m) -> number as

select income(m) + bonus(m);
create function netincome(employee €) -> number as

select employee.grossincome -> number(e) * taxes(e);
create function netincome(manager m) -> number as

select grossincome(m) * taxes(m);
create function mgr (department) -> manager;
create function mgr(employee e) -> manager as

select mgr(dept(e));

Note: The ramples a&@ somwhat unealistic, lut they serve to illusiate
important aspects of rule definition anxkeution.

The functiongrossincome, netincome, mgr, addr are werloaded on

the typesemployee, manager anddepartment, employee. For function

calls grossincome(m), mgr(dept(e)) this is resoled at compile time, i.e.

early binding;by the system using the locanable declarationgn some

cases, the system cannot deduce what function to choose then the a ‘dot
notation’, e.g.employee.grossincome->number(e), wWhich specifies the
types of the @uments and of the results can be used to aid the compiler to

Events in an Object Relational Database System 31

The AMOS Data Model

choose the correct function at compile time.

In cases when the compiler cannot deduce the mplit will produce a
query plan that does run-time type checking to choose the correct function
i.e. late binding. This would be the case iietincome was not @erloaded
andgrossincome was specified without the ‘dot notation’.

Basically functions can be singlalued ormulti-valued (bag \alued). The
later is indicated by theetword ‘bag of’ in the result declaration. In our
example, the functionaame, dept andaddr are multi-alued functions
and hence, an emplee can h&e more than one name, more than one
department and more than one address. But at most he \caortig one
income and one tas \alue since the corresponding functidngome and
taxes respectiely, are defined as singletued functions (by dafilt, if the
‘bag of” keyword is not indicated in the result declaration the function can
take only a single alue result).

Values can be added or revad to/from a bag-alued result updatable func-
tion by using the update statemeadsl andremove respectiely.

Theset statement is used to update tladue of an updatable function. The
result of updating a function\{en if it is a bag result function) by the com-
mandset is alvays a single alue result. Internallythe set command is
modelled as reme followed by an add. Applying aet on a bag result
function, will first remee all the old alues in the bag and then add the/ ne
value.

32

Events in an Object Relational Database System

CHAPTER 3

Event
Specification
Languae

Events are one of the essential issues in an ADBMS, and an ADBMS has to
provide means for definingvent types[DGA96]. Thus the definition, the
detection and the management wémts hae receved attention by man
researchers and some div Specification Languages viea been pro-
posed[GD93, CK+94, GJS92, CD91].dmis can be of dédrent types: Data
modification eents, data retnal events, time eents and usedefined
events. Only data modificatiorvents are considered in the current imple-
mentation of rules in AMOS. The creation and the deletion of an object, the
insertion of a wlue into a multi-alued (bag result) function, the deletion of a
value from a multi-alued function, the update of a function as well as the
execution of rule actions, generate data modificatients. Hovever, tem-

poral esents which is an important class ekats will be considered in the
future extension of the rule language; the time points at whieim&s are sig-
nalled are captured and recorded as a part ofvéet @ccurrence tatili-

tate this &tension. Hence arvent in AMOS can be defined af‘database
transition at a gien time”. Eents that are generated by commands issued
either by interactie transactions or by transactions that are part of applica-
tion programs connecting the database system are seesteamkeeents.
Events that are generated by rukeeution are considered as internzdms.

1. In AMOS, transaction time is used by timestamps

Events in an Object Relational Database System 33

Event Specification Langua ge

3.1 Simple events

The eent can be andata modification operation caused by an AMOSQL
command. The folling types of simplewents can be specified after the
on clause:

. Updated (function_name(variable_name))
. Added (function_name(variable_name))

. Removed (function_name(variable_name))
. Created (variable_name)

. Deleted (variable_name)

where the type of theaviable name is declared in theer_each_clause
or in thearguments list of the rule definition (see section 2.2).

The updated triggering &ent is signalled whener the specified function
is altered by the AMOSQL function update commaset, which sets the
function to a n& value[KF+95].

The added triggering &ent signalled whener a tuple is added to the
result of an updatable bag result function by the AMOSQL command
add[KF+95].

Theremoved triggering @ent corresponds to the deletion of a tuple from
the result of an updatable bag result function by the commemsbve
[KF+95].

The created triggering @ent corresponds to wncreation of a ne
instance of an object class using the AMOSQL comnmaedte[KF+95].
This includes the creation of a uskafined object, a function, a rule a type
or ary other AMOSQL object (see section 2.1).

Thedeleted triggering @ent corresponds to the deletion of an object and is
raised whenger the AMOSQLdelete command is xecuted. A syntax is
defined to specify thisvent and theent manager detects its occurrence.
However, the rule processor does not support references to deleted objects
so far, due to the internal implementation of tdelete command in
AMOS. A special treatment is needed by the system when objects are
deleted so that thevent can be raised and the actiomauted before the
object is plysically deleted. W are verking on this.

34

Events in an Object Relational Database System

The updated, theadded and theremoved triggering &ents are repre-
sented on functions which can be either stored oveleri

e An example of a rule where the updated triggeringnt is specified on a
stored function is:

Create rule rulel (department d) as
For each employee e
On updated (income(e))
When dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.1: updated eent specification on a stored function

where the specified functiancome in the @ent clause is a stored function.
The rule is triggered whener the income of an emplee is updated.

e An example of a rule where theent is specified on a deed function is:

Create rule rule2(department d) as
For each employee e
On updated(netincomef(e))
When dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.2: updated eent specification on dered function

Here the updatedvent is specified on the deed functionnet i ncone
which is a deried from the stored functions income ancegfsection 3.3).

e Theadded andremoved triggering &ents are specified on updatable
bag result functions. Here is an illustratingmple:

Create rule rule3(department d) as
For each employee e
On added(addr(e))
When dept(e) =d
Do /*Action*/;
Example 3.3: Specifying theadded triggering eent
The specified function addr is an updatable bag result function. An

Eventsin an Object Relational Database System 35

Event Specification Langua ge

employee can hee more than one address. The rule is triggered whkene
an address is added to the bag of addresses waginplyee.

If the removed triggering &ent is specified instead of the addedrg in
rule3, the rule will be triggered whewer an address is rewed from the
employee’s bag of addresses.

e Thecreated triggering &ent is specified on object instances of\aegi
type. Lets look at this rule definition:

Create rule rule4(department d) as
For each employee e
On created(e)
when dept(e) = d
Do /*Action*/;

Example 3.4: Created triggering @ent specified on an object type

The rulerule4 is triggered whener an object of type emplee is created
and the condition isvaluated to true if the meemplog/ee is set to belong to
the department passedrtal e4 during rule actiation.

e Notice that rules in AMOS can be parameterized as it is illustrated in the
previous xamples. In some cases we magnivto trigger our rule on
updates of specific object instances; this can be done by passing the object
in the agument list when the rule is agted. If sgeral objects should be
monitored the rule must be agtted for each object.

Here is an illustratingx@ample:

Create rule ruleb (employee e€)
On updated(incomef(e))
When employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.5: event specification on a function for a specific object
Thefor_each_clause is omitted in this rule since the freanable in the
event clause is declared in thggament list of the rule.

If we want to trigger this rule on updates on the income of an geplo
named employeel, we actvate the rule by this statement:

activate rule (:employeel);

Events in an Object Relational Database System

The eent's specification ariable “e” will be bound to the alue
:employeel and only updates on the income of emgpl:employeel
triggers the rule (if it is not astted for other empiaes as well).

3.2 Composite events

Composite eents are allwed by combining single (primit€) events or
other compositewvents. AMOSQL is etended with anxgression language
for denoting these compositeents using the logical operato@R and
AND. Let’s consider tw events E1 and E2.

e The disjunction E1 OR E2 is awemt that is signalled whewer E1 is
signalled or E2 is signalled, the parameters of E1 OR E2 are the union of the
parameters of E1 and the parameters of B2l e6 below illustrates this:

Create rule rule6(department d) as
For each employee e
On updated(income(e)) OR updated(taxes(e))
When dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.6: A composite gent with the OR operator

This rule is triggered if the income of an enyde has changed or the ¢ax
are changed or both the income and thedate changed.

e The conjunction E1 AND E2 is awent that is signalled whewer E1 is
signalled and E2 is signalled, no matter which oras whe first (time
sequence ofwents is not considered), the parameters of E1 ANDVERAte
are bound to the concatenation of the parameters of E1 anaiE&am-
ple, the ruler ul e7 in example 3.7 is triggered whevexy a change is
detected on the address of an erypéoand on his t&s during the transac-
tion.

Eventsin an Object Relational Database System 37

Event Specification Langua ge

Create rule rule7 (department d) as
For each employee e
On updated(addr(e)) AND updated(dept(e))
When dept(e) = d and
city(employee.addr->address(e)) 1=1 city(addr(d))
Do /*Action*/;

Example 3.7: A composite event with the AND operator

e More compl& composite eents might be specified, in which case the left
and the right parenthesis are used, i.e. ‘(‘ and §t.éample:

On (updated(income(e)) OR updated(taxes(e)))
AND (added(dept(e)) OR added(addr(e)))

Note that the parenthesessbahe priority @er theAND operator which in
turn has the priority\@r the OR operatoyif we specify the compositerent
abore without the parentheses for instance, we will get:

On updated(income(e)) OR updated(taxes(e)) AND added(dept(e)) OR
added(addr(e))

This event has a completely €#rent semantics as the originakat and it
is interpreted by the system as:

On updated(income(e))
OR (updated(taxes(e)) AND added(dept(e)))
OR added(addr(e))

3.3 Condition Specification

The rule condition specified in the when clause is an AMOSQL glitean
contain ag boolean rpression, including conjunction, disjunction and

negation. Further more, this query may refer to stored functions as well as to

derived ones.
If the query is non-empty then the condition is satisfied. (sem@es in
sections 3.2 and 3.4)

1. In AMOSQL ‘=" means not equal

38

Events in an Object Relational Database System

3.4 Action specification

The procedure_expression in the rule action clause can beyan
AMOSQL procedure statementaptcommit. Examples of rule actions
are:

Create rule rule8 (department d) as
For each employee e
On updated(income(e))
when dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e))
Do set income(e) = income(mgr(e));

Example 3.9 Action specification as AMSOQL statement.

In rule rule8, the action is specified as a simple AMOSQL statement that
sets the income of an empée to that of his manager

Create rule rule9 (department d) as
For each employee e
On updated(income(e))
When dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e))
Do SetIncome(e, income(mgr(e)));

Example 3.9 Action specification as a foreign function.

In rule9 SetIncome(employee e, number inc) may be a database proce-
dure that sets the income of the enypl® e to the specifiecale inc.

The Action is gecuted only wer the emplgees whose incomes &
changed and caused the violation of the condition, i.e. set-oriexaed-e
tion is supported[WF90], the action igeeuted on the set of tuples for
which the condition is true.

Eventsin an Object Relational Database System 39

Event Specification Langua ge

40

Events in an Object Relational Database System

CHAPTER 4 Evmt
Monitoring

4.1 Deltardations

In AMOS stored functions are represented as tables(relations). In [SR96],
A-sets are introduced as containers of logical changes to updated relations
and are modelled as a pair of pagtchanges, i.e. set of added tuples to the
relations, and rgative changes, i.e. set of rewaal tuples from the relations.
Updates to tuples are modelled as deletionsvi@tbby insertions. In our
caseA-sets are redefined and used to materializevetkrielations (see sec-

tion 1.2) and record and maintain changes to functions. Updates to tuples are
handled directly instead of modeling them to deletions and insertions.

We define thé\-set of a stored or a desxéd relation R by:

AR = <R _added, R_removed, R_updated>

where, for some gen transaction Radded contains at a point in time all
tuples that are added to R as a result of the festtedf the transaction up to
that point. Similarly Rremoved contains all tuples that are deleted from R,
and R updated contains all tuples of R that are updated (boti vedues and
old values are recorded).

Eventsin an Object Relational Database System 41

Event Monitoring

4.2 Stored functions

The update operation of stored functions in AMOS is internally modelled as
a delete of the old tuples folled by the addition of the netuple. This is
handled as one operation in the current implementation. Both thalakl v

of the updated function and itswealue are recorded in the corresponding
delta-set. Doing this, we can reference th& value as well as the oldiue

of the updated function in the rule Condition or in the Action and also be
able to reset the function to its oldlue if the nev one violates the defined
constraint in the Condition part.

Let's tale an @ample to illustrate he changes to stored functions are mon-
itored using the redefingttset. W& consider changes to the stored function
dept in the database sample in section 2.4. dépt function is defined
as a bag result function so we assume that an gagltan be in more than
one department and initially the department of an eyaglael is :tgs.
where :el and ¢ are tvo AMOSQL \ariables of types empjee and
department, respeetly, defined by the statements:

create department(name) instances :toys(“toys_department”);
create employee(name, dept) instances :el(“employeel”, :toys);

We suppose shoes and:cloths are two other object instances of type
department defined in the same manner aswabo
When we do the update:

set dept(:el) = :shoes;

at a gven time t1 during the ongoing transactiono twperations are gener-
ated internally first the tuple <:el, :¥s> is remwed from the relation
dept and second the tuple <:el, :shoes> is addedety the gent man-
ager maps the twoperations to one data modification operationvene
and records both the old and thevnelue of the functionlept by assert-
ing the tuple <t1, :e1, :shoes,y$> into the delta relatiodlept_updated.

If we update the department of :el by the AMOSQL statements:

remove dept(:el) = :toys; /* at time t1*/
add dept(:el) = :shoes; /*at time t2 where t1 < t2*/

this yields the same result as before i.e. :el is in :shoes department in both
cases; hwever this modification is modelled asdwdifferent e@ents. The

42

Events in an Object Relational Database System

first event is captured by the delta relatidapt_removed by asserting

the tuple <t1, :el, ;&> to it and the secondent is captured by the delta
relationdept_added by asserting the tuple <t2, :el, :shoes>.

Changes to a base relation R during the transaction are immediately cap-
tured and recorded by tie-relations Radded, R_removed or R_updated
depending if the change is an insert, a delete or an update of a tuple in the
relation R respeactely. Howvever, the net dect of changes is immediately
considered. dble 4.1 taks the rample of the department of an emye

:el and shws hav the net dkcts of the data modification operations on the
relationdept are recorded in the delta relations during the ongoing transac-
tion.

The time alue at which thevent happens is recorded in the delta relations
as well, asplained in the pnaous chapter this helps for futuretensions

of the @ent specification language to include tempovahs.

Table 1: Database modification operations and their effects on delta

relations
ificati content of the
Databz_ise modification) Effects on delta relationg
operations relatior?
Att1P: <el, tys> is <:toys> <tl, :el, :tgs> is in
added to dept dept_added
Att2: <el, tgs> is <>C <tl, :el, :tgs> is not in
removed from dept dept_added
At tl: <:iel, :tgs>is <:toys> <tl, :el, :tgs> is in
added to dept dept_added
At t2: <:el, :shoes>is | <:toys, <t2, :el, :shoes> is in
added to dept :shoes> dept_added
At t3: dept(:el) is <tl, :el, :tgs> is not in
updated to :cloths | <:cloths> dept_added
<t2, :el, :shoes> is not in
dept_added
<t3, :el, :cloths, :shoesp
is in dept_updated

Eventsin an Object Relational Database System 43

Event Monitoring

Table 1: Database modification operations and their effects on delta

relations
Database modification | content of the .
i) Effects on delta relations
operations relatiorf
At tl: dept(:el) is <:shoes> <t1, :el, :shoes, y8> is
updated to :shoes in dept_updated
Att2: <:el, :shoes>is | <> <tl, :el, :shoes, y8> is
removed from dept not in dept_updated
<t2, :el, :shoes> is in
dept_remued>
At t1: dept(:el) is <:cloths> <tl, :el, :cloths, :tgs> is
updated to :cloths in dept_updated
At t2: dept(:el) is <:shoes> <tl, :el, :cloths, :tgs> is
updated to :shoes not in dept_updated
<t1, :el, :shoes, ¥8 > is
in dept_updated

a. content of dept(:el) in ouxample

b. tl1 represents the time at which the operation is issued. So are t2 and t3
where t1<t2<t3

c. empty bag

Formally if we consider a relation R, a tupleahd we represent the delta
relation R_added b+R, the remwed delta relation R_rermed byA-R
and the updated delta relation R_updatedR then:

1. If T is added to R at time t1 and rerad from R at time t2 where t1 <
t2, the net déct is no modification: T is asserted ifi@R at t1 lut then
retracted at t2.

2. If Tis remeed from R at t1 and added at t2, the nitatfis no mod-
ification: T is first asserted #-R at t1 lut then retracted after the adding
operation at t2.

3. If T is updated at t1 then remea from R at t2 where t1 > t2, the net
effect is the remaing operation. T is first asserted Aa+R at t1 lit then
retracted from it and assertedArR at t2 as a result of the rewiog opera-
tion.

4. 1f T is added to R at t1 and updated at t2 where t1 < t2, thefexttief
the updated tuple. T is first assertedAirR at t1 lnt then retracted and

44

Events in an Object Relational Database System

asserted iA-+R at t2.
5. If T is updated at t1 and updated a second time at t2 then théenet ef
is the last updated. The updatedalue of T Tnaw1l, is asserted inth-/+R
at t1 hut at t2 Tnav1 is retracted frond-/+ and the ne value of T Tnewn2,
is asserted instead.

This is summarized in table 2 belo

Table 2: the net effect of database
modification operations

t1 t2 net efect
- + 1]

+ - 1]

+ -+ -+

-+ - -

-[+ -/+ -/+

4.3 Derived functions

Derived functions (vie/s) are not updatable functions. These functions are
defined in terms of stored functions.dews in our system as seen in the pre-
vious chaptercan be specified as updates of base (stored) functions as well
as of dewed functions. An eent is raised whewer a tuple is added,
removed or updated in the specified function. A dedifunction is typically
recomputed \eery time it is referenced. This, Wever, can be ery costly
since a devied function can sparver lage portions of the database.

The materialisation of desd functions is a technique to increase the per-
formances of monitoring deed functions with respect to processor
time[GM95]. Since in our system, deed functions as well as base func-
tions may be referenced by feifent rule gents at rule processing, then it
may be beneficial to materialize and cache changes to these functions.

A materialized viw is just as a cache, it gets dirty whesrethe underlying
base functions are modified. Updating a materialized Wig recomputing

Eventsin an Object Relational Database System 45

Event Monitoring

it from scratch is in most casessteful. Computing only the changes in a
view to incrementally modify its materialization is much cheaper
Incremental ealuation[SR96, HD91, GD93] is a technique that computes
changes to deréd functions by considering changes to base functions
instead of computing them in full. This technique is used in our system in
conjunction with the materialisation of incremental results to monitor
changes to rulevents. When anvent is specified as an update of a\cti
function, the compiler generates Delta relations to the specifiedederi
function as well as to all the underlying functions. desendency network

is derived from one or more rulevents. This netark takes as input, data-
base modifications on stored functions and prafexgthe changes to
derived functions that arefetted. Figure 4.1 sk a dependegymetwork

for the dewved functionemployee.netincome->number.

Aemployee.netincome->number

Aemployee.grossincomenumbe

Aemployee.income->number

Aemployee.bonus->number
Aemplo/ee.taxs->numbe

Figure 4.1: dependendetwork

In the netverk of figure 4.1, all the dependencies of the function netincome
are modelled as subnodes, changesyaméathese base functions willfa€t

the upper nodes. A propatipn algorithms is used to projzg changes
through the netark from the bottom to the faicted nodes in the uppewrie

els using breadth-first, bottom-up proptign. This algorithm is based on
incremental ealuation techniques (see section 5.3).

Events in an Object Relational Database System

4.4 Event Functions

Events are detected based on the data changes stored in a temporary mem-
ory during the ongoing transaction. As seenvabd-relations are main-
tained for all stored or deed relations that are referenced in thent
definition. The system generates at compile tiaent functions for each
specified rule eent. These functions are defined in terms of the delta rela-
tions of the specified functions. Figure 4.2 betbmpletes the dependgnc
network in figure 4.1, by adding thevent function node. During the ongo-

ing transaction, updates to stored functions are recorded in their correspond-
ing A-relations. At the check phase, these changes are mitepatiirough

the netverk to the dexied functions and are recorded in their corresponding
A-relations. The alues of Eent functions are then deed from the refer-
encedA-relations.

Aevent-function

Aemployee.netincome->number

Aemployee.grossincomenumbe

Aemplo/ee.ncome->numbe Aemplo/ee.taes->number
Aemployee.bonus->number

Figure 4.2: dependepdNetwork of an Eent function

In the following, we will see he the Eent functions are desd from the
Event definition and he they are defined in terms of tlerelations of the
specified functions.

Eventsin an Object Relational Database System 47

Event Monitoring

4.4.1 Smple events

e Let's consider the folleing rule:

Create rule no_high(department d) as
For each employee e
On updated (income(e))
When dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e))
Do set employee.grossincome->number(e) = grossincome(mgr(e));

The Eent as defined in rukeo_high is compiled into a function ¥ample

4.1) represented as an AMOSQL functienf_no_high, that returns only

the emplgees whose incomes are updated since it uses in its definition the
A-relationincome_updated generated for thincome function at com-

pile time and which contains only the updated tuples.

create function evt_no_high()->employee e as
select e for each number n, timeval t
where timeval.employee.income_updated->number(e)@t = n;

Example 4.1: The generatedvent function for a simple updatedest.

Notice the specification of the parameter declaratiomeval in the
evt_no_high function. This is defined in AMOS adianestamp and repre-
sents in the function the transaction time at which the income ofea gi
employee is updated. The timal as &plained in chapter 4 is recorded in
the delta relationncome_updated with the parameters of the raised
event. Notice also that the delta relation income_updated is defined as an
AMOSQL function with two agument typedsimeval andemployee and

the result typeaumber. The notation ‘@’ means ‘at’ and it is just another
way of specifying parameters in a function call when we deal with the type
timeval.

timeval.employee.income_updated->number(e)@t = n in the where
clause can be replaced by the common function call syntax for all
AMOSQL typestimeval.employee.income_updated->numberf(t, €) = n.

The condition is compiled into a condition function and it looks: lik

create function cnd_no_high(department d, employee e)-> employee
as select e where dept(e)= d and
employee.netincome->number(e) >
neticome(mgr(e));

48

Events in an Object Relational Database System

The functioncnd_no_hi gh is evaluated with all the parameters to the
rule instantiated, in this case with the department d instantiated, and all the
returned changed data from theeet functionevt no_hi gh, therefore

the condition is waluated only on those data thawv&éeen updated and
caused the rule to trigger

The AMOSQL action procedure generated for the action in the rule
no_hi gh looks like:

create function act_no_high(employee e)-> boolean as
set employee.grossincome->number(e) =
grossincome(mgr(e));

The functionact _no_hi gh is executed ®er the returned parameters
from the condition function, i.e. the subset of the data whectiywthe con-
dition predicates. Semantically it can be seen as:

for each department d
where d = no_high_activations()
call act_no_high(cnd_no_high(d, evt_no_high()));

whereno_high_activation is a function that returns all thegaments
for which the no_high rule is aetted, i.e. set-oriented rulexexu-
tion[CW96].

The general xpressions of the generated functions for thiediht clauses
of the rule, theeent, the condition and the action clause can be represented
as:

evt_rule_name(l<rule_arg>1) -> evt_res
cnd_rule_name(| <rule_arg>,| <evt_res>) -> cnd_res
act_rule_name(|<rule_arg>,| <cnd_res>)

e Let's look at some diérent illustrating gamples which she the gener-
ated monitoring functions for each type afests and the corresponding
condition functions:

Create rule rulel() as
For each employee e
On updated(mgr(e))
When netincome(mgr(e)) < 20000
Do /*Action*/;

Eventsin an Object Relational Database System 49

Event Monitoring

The Ewent inrulel is specified on the degd functionmgr having the sig-
natureemployee.mgr->manager and which is devied from the base func-
tion department.mgr->manager (See section 2.3).

The generated Ewnt function for this rule will look li&:

Create function evt_rulel() -> employee e as
select e for each manager m, timeval t
where timeval.employee. mgr_updated->manager(e)@t =m;

and the condition function as:

create function cnd_rulel(employee e) -> employee as select e where
employee.netincome->number(e) > netincome(mgr(e));

e Create rule rule2(department d, employee €)
On updated (income(e))
When dept(e) =d
Do /*Action*/;

In rule2, the type of the freeaviable ‘e’ in the Eent definition is specified
in the agument list of the rule. The generateceRtfunction for this rule is:

create function evt_rule2(employee e) -> employee as
select e for each number n, timeval t
where timeval.employee.income_updated->number(e)@t = n;

This event function taks the specified parameter as gjuarent and returns
it if it is found in the specified delta relation.
The condition function looks lé

create function cnd_rule2(department d, employee e) -> employee as
select e where dept(e) = d;

e The added andr enpved triggering @ents are specified on bag result
functions. Lets consider agn the ruler ul e3 in example 3.3 where the
added triggering eent is specified on the functierldr of an emplyee.
The generated Ewnt function will be as is sk belav:

create function evt_rule3 (employee e) -> employee as
select e for each timeval t, address a
where timeval.employee.addr_added->address(e)@t=a;

50

Events in an Object Relational Database System

and the condition function is:

create function cnd_rule3(department d, employee €) -> employee as
select e where dept(e) = d;

The event functionevt _r ul e3 returns all the emplees whose addresses
have been updated by adding awaddress.

e A creation of an object is seen as an insertion to tiiieib AMOSQL
functionAl | obj ect s that returns all the objects in the system. The create
object @ent is mapped to aindded event to the system functioN | ob-

j ects. The object creation is in thesknel of the system and therefore
Al | obj ect s is a foreign function.

Let's consider the ruleul e4 in example 4.4 agin. The triggering \&nt

for this rule is defined as:

On created(e), where e is anobject of type emplgee.

Creating an object instance of type enyple is mapped to an insertion of an
object of type emplgee to the relatiodl | obj ect s. Hence, the gener-
ated eent function will look lile:

Create function evt_rule4() -> employee e as
select e for each timeval t
where timeval.allobjects_added->object()@t=e;

A A-relation is generated to the functidhl obj ect s when theCr e-

at ed triggering @ent is specified in gnactivated rule. ThisA-relation
maintains all the created objects of appes during the ongoing transaction
and is cleared after thwmmit or thecheck as the otheA-relations.

The condition function is:

Create function cnd_rule4(department d, employee e) -> employee as
select e where dep(e) = d;

The e/ent functionevt_rule4 is specified in terms of the generated delta
relation by the rule compileallobjects_added. It returns all the objects
of type emplgee that hee been created during the current transaction
(since the lastommit or check). At the monitoring check time we can
detect if a n& emplg/ee has been added to thetemt of the type

Eventsin an Object Relational Database System 51

Event Monitoring

employee and pass it as a parameter to the condition function. The Condi-
tion function @aluates the condition predicates for the department instanti-
ated in the rule gument list and returns the added ergpito the Action
function.

4.4.2 Composite events

Composite eents are logical combinations of simple or other composite
events. The generated functions for this classsefits may contain in their
definitions conjunctions and/or disjunctions of the referedceslations.

e Let's consider agjn, rule6 in Example 3.6. Thevent in this rule is
defined as:
On updated(income(e)) or updated(taxes(e))

This event is defined as a disjunction ofawingle gents: the updated trig-
gering @ent on the stored function income and the updatedteon the
stored function add. Hence, the generatezhefunction for this eent will
contain in its definition a disjunction between th&-relation

i ncome_updat ed and theA-relationaddr _updat ed. This is shan
below:

Create function evt_rule6() -> employee e as
select e for each timeval t1, timevalt2, number nl, number n2
where employee.income_updated->number(e)@t1=nl
or timeval.employee.taxes_updated->number(e)@t2=n2;

The condition function will look lik:

Create function cnd_rule6(department d, employee €) -> employee as
select e
where dept(e) = d

and employee.netincome->number(e) > income(mgr(e));

The Eent function returns all the emplkees whose incomes or &sxhae
been changed.

e In the rule rule7 inxample 4.7. Thewent is defined as a conjunction of
simple @ents as bele:

On updated(addr(e)) and updated(taxes(e))

52

Events in an Object Relational Database System

For this rule the Esnt function will contain in its definition the logical oper-
ator ‘and’ between the updatéd-relations generated for the referenced
functions t axes andaddr. The returned parameters from this function
will be the intersection of the set of emypdes whose tas hae changed
and the set of the emplees whose addressessdideen changed as well
during the transaction.

The generatedvent function is shen belav:

Create function evt_rul7() -> employee e as
select e for each timeval t1, timevalt2, number n, address a
where employee.taxes_updated->number(e)@tl=n
and timeval.employee.addr_updated->address(e)@t2=a

443 CA-rules

Let's consider the follwing rule:

Create rule ruleCA(department d) as
For each employee e
When dept(e) = d and
employee.income->number(e) > 10000
Do set income(e) = 10000;

At compile time an Eent definition is generated for the rule from the Con-
dition. This Eent is specified as a disjunction of updates on all the refer-
enced relations in the Condition. Then aerg function is created which
contain in its definition a disjunction of all the updatedelations gener-
ated for the referenced functions in thvera definition.

The condition references owfunctionsi ncone andaddr , the triggering
event can be specified as:

on updat ed(i ncone(e)) or updated(dept(e))

Therefore, the generated ént function for the this rule will be:

create function evt_ruleCA(department d) -> employee e as
select e for each employee e, timeval t1, timeval t2, number n
where timeval.employee.dept(e)->department@tl = d
or employee.income_updated->number(e)@t2 = n;

Eventsin an Object Relational Database System 53

Event Monitoring

The condition is compiled into a condition function represented as:

create function cnd_ruleCA(department d, employee e) -> employee
as select e
where dept(e) = d and
employee.income->number(e) > 10000;

and the action into the action function act_ruleCAnghbelav:

create function act_ruleCA(employee €)->boolean e as
set employee.income->number(e) = 10000;

With these three generated functions, the rule will be processed just as an
ECA-rule, the eent function is first xecuted. The returned parameters are
passed to the Condition function. If the Condition functionvausated to

true after that then the action procedure veled.

Events in an Object Relational Database System

CHAPTER 5 | mplementation
|ssues

5.1 Rule Processing Algorithm

Rule processing in AMOS isvnked automatically at the end of each user
transaction (just before tleemmit) that triggers one or more rules or within
transactions by issuing the AMOSQCheck command. Hence, the mini-
mum rule processing granularity in AMOS is a single database operation
command and the maximum granularity is the entire transaction.

During rule processing, the first time a triggered rulexéxzeted it considers

all modifications made by rules. If the rule is triggered additional times, it
considers all modifications since the last timedswheckd (because thte-

sets are cleared after each check phase).

The basic rule processing algorithm in AMOS is described asv&illo

1. detect events

2. mark triggered rules (put the rules in a sorted queue)

3. pick the rule haing the highest priority

4. evaluate the rules condition

5. act (if the condition is true,>@cute the action)

6. repeat from 1 until no more rules in queue and no
more n&v events are raised

Algorithm 1: Rule processing algorithm

Eventsin an Object Relational Database System 55

Implementation Issues

Events are detected based on the data changes and are stored in a temporary
memory (theA-sets) during the ongoing transaction.eBwfunctions are
generated for each specifiageat at rule compilation antd-sets are created

for each referenced stored or @ed function by thewent function. During

the ongoing transaction, updates of stored functions are recorded ihthese
sets. At check time, changes on stored functions are mtguhthrough a
network to derved functions and thenvent functions are maekl as
changed if the are afected.

A subset of rules are triggered and put in a sorted queue based on numeric
priorities. Rules are assigned ordering priorities from 0 to 5, hence, when a
triggered rule is selected for conditiovatuation and possiblexecution; it

is selected such that no other triggered rule has a higher priority

In addition to the automatic rule processing at the transaction commit (E-C
deferred mode)) rule processing ivdked within transactions when the
user issues th€heck command. The Check commandiokes the same

rule processing algorithm that isvoked at transaction end. gedless of
whether a rule isx@cuted in response to one of these commands or in
response to end-of-transaction rule processing, the semantics is the same:
The rule considers the entire set of the recorded modifications sinas it w
last considered within the transaction, or since the start of the transaction if
it has not yet been considered.

If a rollback is &ecuted in a rule action, then rule processing terminates and
the transaction is aborted (the added tuples tAibets are remed).

5.2 Creation of arule

5.2.1 Deltarelations

At rule creationA-sets are created for the specified stored functions in the
event part of the rule definition.
Let's tale an @ample of a simplewent;

On updated(income(e))
In this event the AMOSQL functiorincome is specified, so at compile
time, aA-set is generated for the functiomcome. This A-set contains
three components:ncone_added that holds all the added tuples to the
relationi ncone, i nconme_r enoved contains all the remad tuples
from the relation incomendi nconme_updat ed which maintain the set
of the updated tuple3his can be represented as:

56

Events in an Object Relational Database System

Aincome = < income_added, income_removed, inocme_updated>

In case devied functions are specifiedy-sets are generated for these
derived functions and all the underlying stored ordatifunctions.
Let’s consider thisvent:

On updated (netincone(e))
In this event the detied functionnet i ncone is specified. Thaet i n-
cone function uses in its definition the dezd functiongr ossi ncone
and the stored functiomaxes. The dewed function grossincome is
defined on the stored functiomcome (see section 2.3), théisets are cre-
ated for all the imolved functionsj ncone, taxes, grossincone
andnet i ncome, and are inserted into a propdign netvork.

5.2.2 Event functions

The e/ent part in the rule definition is compiled to a function that uses in its
definition the generatettrelations for the imolved functions in the specifi-
cation of the eent as gplained abwe. Thesé\-relations are containers of

the changed data, theeturn all the modified data. Hence, the definition of
the event function om\-relations instead of the complete functions ensures a
correct and an &€ient execution.

In the case of CA-rules, where only the condition and the action are speci-
fied by the usethe compiler creates-relations for all the wolved dernved

and stored functions in the definition of the condition and generateeah e
function in terms of thes@&-relations (see section 4.3).

5.2.3 Condition functions

Condition functions are generated as well to the condition part of the rule.
These are ordinary AMOSQL functions. A condition functionetakts
parameters from the gument list of the rule and the returned parameters
from the @ent function. This means that the condition functiorxecated

only over the modified objects. The returned objects are a subset of the
instantiated objects in thegament list that the condition references (shared
with the Exent part). In the case of an EA-rule all the passed parameters are
returned since the condition doesaobntain ag predicate ¥pression and
returns all the passed parameters..

Eventsin an Object Relational Database System 57

Implementation Issues

5.2.4 Action procedures

An action procedure is generated for the action part of the rule. Theafree v
iables in the Action are calculated at compile time and specifiechas ar
ment in the action function. Theles of these guments might be passed
from the rule actiation aguments and in the most general case are instanti-
ated to the returnedalues from the condition function (shareariables
with the Condition part). In case the Action does not contajrfrae \aria-

ble (rollback for instance), a dummyaviable is passed from the condition
to the action function to ensure the correctness of the xation and its
semantics.

5.3 Propagation networ k

The propagtion netvark contains information needed to proagchanges
affecting actvated rules. Since the promdmpn is done in a breadth-first,
bottom-up manner the netvk can be modelled as a sequential list, starting
with the lavest level and meing upward. Each leel consist of the list of
network nodes

EachA- relation afecting actvated rules is associated with one (and only
one) node consisting of (see figure 5.1 lo

-A change flag, chg-flg, marking the node as changed

-A counter cnt, that states homary times the node is propaigd during
the check phase

-TheA-set of the relation

-The relation

-A list of affects nodes, a-list, that ardeafted by changes to this node

-A list of depends on nodes, d-list,

chg-flg| cnt| A-set| relation | a-list | d-list

Figure 5.1: The netark node data structure

The number of leels needed in a netrk depends on ho relations are
expanded.

Events in an Object Relational Database System

Nodes associated to stored relations are inserted in the botteimthese
associated to thevent functions of the aethted rules are inserted in the top
level and the devied functions nodes are inserted in the intermediatdsle
For late binding gtra levels are inserted in such aythat the stored rela-
tions nodes arewhys inserted in the bottomviel and the nodes associated
with event functions are stored in the topde Figure 5.2 shes hav nodes
are connected in a 4ve netvork:

Level 3

cnt |Aa/t-fun| evt-fun| a—Iist| d-Iist| Elz

Level 2
cnt |Anetinc| netinc | a—Iist| d-Iist|

hg-flg|

Level 1
cnt |Agrsinc| grsinc | a—Iist| d-Iist|

=

Level O
%g-flg| cnt |Ataxes | taxes | a-Iist| d-Iist| ﬁ
I
hg-f|g| cnt |Aincom4 incomel a-Iist| d-Iist| DZ

Figure 5.2: The nodes for the propéign netverk for
the &ent "on updated(netincome(e))”

Eventsin an Object Relational Database System 59

Implementation Issues

5.4 Activation/Deactivation of arule

At rule actation, the rule actation is inserted into a propatipn netvork.

This is done by inserting the dependenetwork of a rules esent function.
Depending on the definition of specified functions in the sude2nt, a rule
might need more iels than the initial netark contains, therefore, the
topology structure of the nebnk is modified; lgels are added or rewed

(see table 3 belg) to fit all the nodes andekp the dependencelationship
between the structured functions. The nodes of the stored functions are
always stored in the bottomviel of the netwrk and the nodes correspond-

ing to the gent functions are in the top of the netl.

TABLE 3. Insertion of an event function nodeinto a propagation
networ k

The dependency
Beforethe network to be
insertion inserted After theinsertion

S o § @

§0 | &0

60

Events in an Object Relational Database System

The algorithm for inserting A-relations into the network is as follow:

Insert(AP):
If AP is not already inserted into the network then
get node_of(AP);
if Dp is empty, where Ap is the set of relations that
P depends on,
then /*P is a base relation*/
Insert_in_level (node_of(AP), 0);
else
for each AQ where Q in Dp do
Insert(AQ);
Insert node_of(AQ) into the
depends-on list node_of(AP).d-list;
Insert node_of(AP) into the affects list
node_of(AQ).a-list;
Insert_in_level(node_of(AP),
max(for each AQ where Q Dp:
level_of(node_of(AQ))) +1);

At rule deactivation, the rule and its activation is removed from the network.
The topology of the network is restructured too whenever arule is removed
from it. Table 4 below gives a ssimple example where a an event function
node is removed from the network and one level in the resulted network is
removed since it is no more needed.

TABLE 4. Deletion of an event function node from the propagation
networ k

Beforethe deletion After thedeletion

< &

Eventsin an Object Relational Database System 61

Implementation Issues

The algorithm for remdng A-relations from the netork is:

Remove(AP):
if AP is present in the network then
if the affects list node_of(AP).a-list is empty then
for each AQ where Q Ap
remove (node_of(AQ) from
the depends-on list
node_of(AP).d-list;
remove (node_of(AP) from the
affects list node_of(AQ).a-list;
if node_of(AQ).a-list is empty then
Remove(AQ);
Remove_from_level (node_of(AP),
level_of(node_of(AP)));

5.5 Data modification

When a base relation is updated, the hgple is recorded in thi-set with

the time alue at which it is held. If a tuple is added to a relation then the
tuple is asserted in tileadded component of the relatiArset. If the tuple

is remaed from the relation then this tuple is asserted inAttiemoved
component of thé-set and if the tuple is updated then it is asserted in the
A-updated part of the relatidiset. Havever the net-déct of changes dur-

ing a transaction are considered right after the update operations and before
these changes are recorded into the delta relations.

5.6 Check phase

The rule processing is done in three phase:

1. Changes are propatgd through the netwk of actvated rules from the
base relations to the deeid relations. Thevent function nodes fdcted by
these changes are madkas changed.

2. All the actvated rules whose nodes are neatlas changed during the
propagtion are mankd as triggered and are sorted in a triggered rules
gueue based on priority numbers.

3. The triggered rules are pa&dk up from the queue and fired one after
another The condition is\eluated by ¥ecuting the condition function. If a

62

Events in an Object Relational Database System

non empty result is returned then the actiorxeceted.

The &ecution of an action may triggerweules or cause old triggered
rules to be no more triggered, hence the processing algorithnxésueed
after each rulexecution and the queue of triggered rules is updated in each

cycle.

The check phase algorithm looks as fato

Check():
propagate();
while more rules in the queue or new triggered rules
execute event function for each node marked as
changed in the top of the network;
insert the rule with its activation and the returned
result from the event function in the sorted trig-
gered rules queue;
Trigger_rules();

Trigger_rules():
get the rule with the highest priority in the queue;
execute the rule Condition;
if a non-empty result is returned execute the Action;

5.6.1 Propagation Algorithm

In the check phase the prodéign algorithm propaaes all the non-empty
A-sets in a breadth first manner from bottom to the top, as illustrated in fig-
ure 5.3. Since the nebtrk is constructed in such aaw that the change
dependencies of one node, i.e. fheelations it depends on; are calculated

in the netvark levels belav, a breadth-first propagjon ensures that all the
underlying nodes for aggn node are cheeH if changed before this node

is reached and henceyachange to a node in the netk is detected and
propagted to all the &tcted nodes &tiently.

The propagtion is done in te steps. In the first step all théested nodes

by changes on stored relations, i.e. nodes in the bottom of therkpbse
marked as changed by setting the chg-flg to true.

In the second step changes are prapsd) to all the nodes matt as
changed in the first step from the bottom nodes to the upper nodes in a
breadth-first manneA compute algorithm is woked for each reached node

to maintain changes on the corresponding relationsetd, this algorithm
assumes that the desd functions hee the same parameters as the func-

Eventsin an Object Relational Database System 63

Implementation Issues

tions the depend on, which is rather restricted. Changes to other kinds of
derived functions are not monitored s feven though in the first step of

our algorithm, changes to these functions can be detected and the corre-
sponding eents can be raise. As axaenple of such functions we consider

an e/ent that is defined on a dezd function which returns all the emplo

ees in a gien department whose netincomes are higher than the netincome
of their manageiThis function can be defined in AMOSQL as:

create function high_incomes (department d) -> employee as
select e for each employee e
where dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e));

The functionhigh_incomes is a dened function and is defined in terms of
the stored functioamployee.dept->department and the devied functions
employee.netincome->number, manager.netincome->number and
employee.mgr->manager. All these underlying functions talas agument
parameters of typesmployee or manager (see section 2.3)However,
high_incomes takes as aument a parameter of typé&epartment.
Changes to anof the underlying functions ohigh_incomes can be
detected, computed and recorded in the corresponding delta relations ho
ever, these changes can not be prated to the functiomigh_incomes

itself; our algorithm as implemented currently can not find out thahied
department. Dferent solutions might be figured out to handle this type of
derived functions and an fefient algorithm that computes changes tg an
derived function gien changes to one of the stored function it depends on is
needed. In [Sk694, SR96], such an algorithm is introduced and used to
propagte changes partially and incrementally from base relations to the
rule conditions. A similar approach might be used to prafaghanges to
events functions defined on more complderived functions in a future
work.

Events in an Object Relational Database System

AV
Egdri(\algd functions /R \ \/% /R\)
B qy/0\ N W/ W/
Stored functioré (5 b Cg Q é/ %})

Event functions C{ ()
nodes (

nodes

—» control flov
—®» data flov

Figure 5.3: Propagion by breadth-first algorithm

The propagtion algorithm looks as fole:

propagate():
for each layer | in the network starting from level O
mark-level-changed(l);
for each layer | in the network starting from level 1
propagate-layer(l);

mark-level-changed (1):
for each node n in the layer |
mark-node-changed(n);

propagate-layer (l):
for each node n in the layer |
propagate-changes(n);

mark-node-changed(n):
if chg-flg(n) = true then
for each above-node in node.a-list do
set chg-flg = true;

Eventsin an Object Relational Database System 65

Implementation Issues

propagate-changes(n):
if node chg-flg(n) = true then
compute-deltas for n;

compute-deltas(n):
for each delta-set in node.d-list of n
execute node.relation with the delta-set parameters;

5.6.2 Rule triggering and conflict esolution

At propagtion phase of the nebsk, the reached rulevent nodes are
marked as changed. All the corresponding rules to these nodes are inserted
in a triggered rules queue. The queue is modelled as a list of triggers. A trig-
ger is defined as a list containing the triggered rule object, a bag okthte e
function parameters, its returned results, and the priority number of the rule.
This can be represented as:

Trigger: (rule-object,
<event-function-parameters, event-function-results>,
priority number)

where theevent-function-parameters list may contain the rule agttion
if the rule aguments are referenced in the definition of tene

Rule instances are assigned priority numbers by the user at tvetiati
time or the dedult priority numberO, by the system. Before inserting a trig-
ger in the queue, its position with respect to the alreaidyirg triggers in
the queue is computed. This depends on its priority number

5.6.3 Condition evaluation and rule execution

Once a rule is pulled from the queue, its condition functioxéswed for
the instantiated rule gument list at actation and the returned parameters
from the @ent function. If the condition function returns a non empty result
then the action procedure iseguted for the returned results from the condi-
tion function.

66

Events in an Object Relational Database System

5.6.4 Termination

The rule processing algorithm as simoabwe is iteratve. The loop contin-

ues until there are no more triggered ruleswveler, the execution of some

rule actions can produceents that trigger other rules or trigger the same
rule agiin and then it is possible for rules to trigger each other indefinitely
Several ways hae been proposed to handle termination [Bou94, CW96]. In
the current implementation of the rule processing algorithm an upper limit
on hav mary times a rule can beecuted during rule processing is estab-
lished. If this limit is reached, rule processing terminates abnornTélig

upper limit is established as a system parameter and can be set by the user
at the check time. The deflt value is 20.

Note: all the algorithms presented in this chapter are implemented in
AMOSQL-Lisp[FKR95], the internal Lisp interpreter of AMOS,

Eventsin an Object Relational Database System 67

Implementation Issues

68

Events in an Object Relational Database System

CHAPTER 6 CO”C' US OnS
and Future
Wbrk

This report presents a significantension of an early @ark done on inte-
grating actie rules in the Object relational Database Management System,
AMOS. The atension consists in ingeating Exent Specifications in the rule
language of AMOS. A nee syntax for rule definition has been implemented
and the definition, detection and managemenvents are imesticated. The
Event specification language considers only database modificagotseso

far. These consist of the creation and the deletion of an object, the insertion
of a \alue to a function, the deletion of alwe from a bagalued function

and the modification of a functiomle. Eents might be specified as simple
events or compositevents. The compositevents are combinations of sim-

ple or other compositevents. The conjunction form and the disjunction
form are used to define compositeeets. The rule syntax alle to define

both ECA and CA rules. ECA rules are triggered based on detecting and cap-
turing the specifiedwents during a transaction. CA rules are compiled to
ECA rules after calculating theviolved events from the Condition by the

rule compiler and generating the triggerivgat expression.

Rules are based on the concept of function monitoring. All the changes of
the system that the rules are to monitor are introduced as changes to func-
tions. Exents might be specified on both stored andsddrfunctions and are
compiled to actie functions defined in terms of the relationgttepend on.

To eficiently monitor changes on thevemts functions, the rule compiler
generates delta relations that capture changes teedefiinctions gien

Eventsin an Object Relational Database System 69

Conclusions and Future Work

changes to one of the functions it is ded from. The changes are com-
puted by incrementalealuation techniques using a proptign netvork.
The main contribtions of this verk can be summarized in the fallmg:

1. Introducing ECA rules paradigm in a functional OO model, AMOSQL.

2. Defining an Egnt Specification Language for defining simple or compos-
ite events.

3. Introducing Eent functions that represent the internal implementation of
the specifiedeents.

4. Mapping changes to stored functions to tables, i.e delta relations; and
recording all data modification of these functions in their corresponding
tables.

5. Monitoring changes tovent functions defined in terms of dexd func-
tions uses an incrementaladuation technique, where delta relations are
generated for daréd functions and changes are pragad in a breadth-
first manner to these relations wheere the underlying functions ha
changed through a propatipn netvork.

6. Handling object creation awemts on system functions and mapping
these functions to delta relations that record the created objects.

7. Compiling rules of type CA to ECA rules by calculating thelved
events and generating the monitoringeBv/functions.

There are a number of remaining issues, both practical and theoretical, that
need to be addressed to e a completevent specification language in
AMOS:

1. The incremental valuation technique presented here needs to be
extended to include comptederived functions. The actual implementation
supports only a specific class of ded functions where the deed func-
tions are constrained to Vethe same gument list as the functions the
depend on. &tial differentiation technique as described in [SR96] can be
used to deal with more general and complerved functions.

2. A more diicient way of handling rules of type CA is by monitoring
changes to the rule condition rather than generatingvant expression
from the condition and processing the rule as an ECA rule. Significakt w
on Condition monitoring using partial téfentiation is done in [SR96,
Sk694], a similar approach can be greged with our approach to handle
CA rules.

3. Contats or rule sets v@ been introduced in [SRF95] and ionated in

the old rule system of AMOS. A similar mechanism is needed fmaz-

ing and structuring ECA rules into sets that can beateti and deactited

70

Events in an Object Relational Database System

dynamically The system monitors only thoseeats that déct rules of acti-
vated sets.

4. Only data modificationsvents are supported sarf temporal eents can
also be included. Thextension of the current system to include temporal
events is studied, the time of theeat occurrence is captured and recorded
in the delta relations. Keever a specification language for temponzres

is needed and mothe incremental change monitoring techniques relate to
time events must also bevasticated further

5. Events are currently specified only on stored andvdédrfunctions. Br-

eign functions are assumed to be not updatable in AM®&&b¢ for the
system functiorallobjects). However, in some applications foreign data
sources need to be monitored. Such data might originate frgsicphsen-
sors, &ternal pieces of softare or as in the case of the stogklenge, a
transaction system with itsmm database.dfeign data sources can be pre-
sented in the database as ifytlage local data and the database should sup-
port access, monitoring and updates in a transparent maBunglr data
sources might be represented in AMOS as foreign functions and a further
investication is addressed to seenhdelta relations can be usedi@éntly

to capture changes on these functions and trigger rules.

6. Composite eents can bextended to include the gation operator and
operators such as ‘before’ and ‘after’ for instance to specify sequenced con-
junctive ezents mainly when timevents are considered.

7. The rules in the current implementation are only defertgdptmediate
rules are needed, especially when introducktgraeal asynchronousents

and time gents.

Eventsin an Object Relational Database System 71

Conclusions and Future Work

72

Events in an Object Relational Database System

References

[Bou94]

[Cato4]

[CDY1]

[CHOO]

[CK+94]

[CW96]

[Day89]

[DGA96]

Bouzeghoub M., Active Database Desig€omet Seminar, 1994.

Cattel R.G.G.: The Object Database StandatODMG-93, Release 1.2,
Morgan Kaufmann Publishers, Inc., 1994.

Chakravarthy S., Mishra D.: An Event Specification Langge (Snoop)
For Active Databases and its Detectid$f-CIS Technical Report TR-
91-23, September 91.

Cary M., Haas L.: Extensible Database Magement SystemS|GMOD
Record, v.19 n.4, December 1990, p.54-60

Chakravarthy S.,Krishnapsad V., Anwar E., Kim S.K.: Composite Events
for Active Databases: Semantics, Cotdéeand DetectiorProceedings of
the 20th VLDB conference, Santiago, Chile, 1994.

Ceri S., Widom J.: Active Database systemdorgan Kaufmann Publish-
ers, INC 1996

Dayal U.: Queries and Mws in an Object-Oriented Data Modéd¥ro-
ceedings of the 2nd International Workshop on database Programming
Languages, Glenden Beach, Oregon, USA, June 1989.

Dittrich K., Gatziu S., Geppert A.: The Active Database Magament
System Manifesto: A Rulebase of ADBMS&t&es ACT-NET Consor-
tium, 1996.

Events in an Object Relational Database System 73

[Faho4]

[FaR97]

[FA+89]

[FKRO5]

[Flo96]

[FR96]

[FRS93]

[FSRO3]

[GD93]

[GJS92]

Fahl G..:Object Wews of Relational Data in Multidatabase Systems,
Licentiate Thesis LiU-8k-Lic 1994:32, Linkdping Unersity
Linkdping, June 1994,

Fahl G., Risch T Query pocessing ver object viers of elational
data,to appear in VLDB journal 1997.

Fishman D.H., Anneelink J., Chav E., Connors T Davis J. W, Hasan
W., Hoch C. G., ¥nt W, Leichner S., ingbaek R Mahbod B., Neimat
M.A., Rish T, Shan M.C., Wkinson W. K.: Overviev of the Iris
DBMS in Kim W., Lochorsky F. H.: Object-Oriented Concepts, Data-
bases, and Application®A\CM Press, Addison-¥slg,, 1989, p.219-
250.

Flodin S., Karlsson J. S., Risch Bkold M., Werner M..:AMOS.v1 Sys-
tem Manual EDSLab internal report, 1995

Flodin S.: Efficient Mangement of Object-Oriented Queries with
Invertible Late Bound Functionslicentiate Thesis LiU-@k-Lic
1996:03, Linkdping Uniersity, Linkdping, February1996.

Flodin S., Risch T Processing Object-Oriented Queries withértible
Late Bound FunctionsProceedings of the 1995 Conference amyV
Large Databases, September 1996, p. 335-344.

Fahl G., Risch T Skold M.:AMOS - An Achitecture for Active Media-
tors, NGITS'93, Haif, Israel, June 1993.

Fabret F, Simon E., Rgnier M.: An Adaptive Algorithm for Inemen-
tal Evaluation of poduction Rules in DatabaseBroceedings of the
19th VLDB Conference, Dublin, Ireland 1993.

Gatziu S., Dittrich K. R.Events in an Active Object-Oriented Database
SystemProceedings of the 1st Intl.dfkshop on Rules in Database
systems, Edinlrgh, August 93.

Gehani N.H., Jaagdish H.V, Shmueli O.Composite Events Specifica-
tion in Active Databases: Model Implementati®noceedings of the
18th VLDB Conference, &couer, British Columbia, Canada, 1992.

74 Events in an Object Relational Database System

[GMO95]

[HD91]

[HW93]

[Kar95]

[KF+95]

[LR92]

[Lyn91]

[Mel95]

[Ris89]

[Shig1]

[Sk694]

Gupta A., Mumick I. S.Maintenance of Materializedi&vs Pioblems,
Tedhniques, and Application8ulletin of the Echnical committee on
Data Engineering,®. 18 No. 2, IEEE Computer Sociefiune 1995.

Harrison J. V| Dietrich S.W Condition Monitoring in an Active
Deductive DatabaseASU Technical report, TR-91-022, Department of
Computer Science Engineering, Arizona, Statevehsity Tempe, AZ.
USA

Hanson E., Whdom J.:An Overviev of Poduction Rules in Database
SystemsThe knavledge Engineering Réw, vol. 8 no. 2, pages 121-
143, June 1993.

Karlsson J.S.An Implementation ofr@nsaction Lgging and Receery

in a Main Memory Resident Database systdfaster Thesis LiTH-
IDA-Ex-94-04, Department of Computer and Information Science,
Link6ping uniersity Linkdping, June 1994,

Karlsson J., Flodin S., Orsborn K., Risch Bkéld T, Werner M.:
AMOS.v1 Uses Guide EDSLab internal report, 1995

Litwin W., Risch T: Main Memory Oriented Optimization of OO Que-
ries Using Vped Datalg with Foreign Pedicates IEEE Transactions
on Knavledge and Data Engineeringdwn.6, December 1992, p.517-
528.

Lyngbaek P OSQL: A Languge for Object Database${PL-DTD-91-
4, Hewlett-Packard Compan January 1991.

Melton J.: ANSI SQL Bpers SC21 N9467, ANSI SC21 Secretariat,
New York, U.S.A., 1995.

Risch T: Monitoring Database Objects, &t. VLDB conf. Amsterdam
1989.

Shipman D.W The functional Data Model and Data Langea
DAPLEX ACM TODS, v 6, n. 1, March 1981, p.140-173.

Skéld M.,: Active Rules based on Object Relational Quertefficient
Chang Monitoring Bdniques Licentiate thesis No. 452, Dept. of
Computer and information Science, Link6ping mbity, 1994.,

Events in an Object Relational Database System 75

[SM96] Stonebrakr M., Moore D.:Object-Relational DBMSs: The xteGreat
Wave Morgan Kaufmann Publishers, Inc., 1996.

[SR96] Skold M., Risch TUsing Rartial Differencing for Eficient Monitoring
of Defered Complg Rule ConditionsProceedings of the 12th Interna-
tional Conference on Data Engineering (ICDE’96)wWN@rleans, Loui-
siana, February 26 - March 1, 1996, 392-401.

[SRF95] Skold M., Risch T, Falkenroth E.:.Rule Contgts in Active Databases -
A mebanism for dynamic Rule @uping Proc. RIDS'95, athens,
Greece, 1995.

[WF90] Widom J., Finlkelstein S. J.Set-Oriented Ryduction Rules in Relational
Database SystemBroc. of 1990, EM-SIGMOD Conference, p. 259-
270.

76 Events in an Object Relational Database System

