
Events in an
Active Object-Relational Database System

by

Salah-Eddine Machani

Linköping Studies in Science and Technology
Master’s Thesis No: LiTH-IDA-Ex-9634

September 1996

Abstract

This report presents syntax, semantics and implementation of rule definitions in an Object
Relational Active Database Management System, AMOS. Both, event-based and condition-
based rules are considered. However, the main focus is on the event component of rules. The
definition, the deletion, and the management of rule events are investigated. Events can be sim-
ple or composite and might be specified as updates on stored or derived functions. The rules
are implemented based on the concept of function monitoring; events are compiled to active
functions and an incremental change monitoring technique is used to detect changes.

Résumé

Ce rapport présente une syntaxe de définition de règles actives ainsi que sa sémantique et son
implementation dans un Système de Gestion de Bases de Données Active Objet Relationnel,
AMOS. Les règles sont soit à base d’événements ou à base de conditions. Cependant, un plus
grand intérêt est porté sur la partie événement des règles. La définition, la détection et la ges-
tion des événements sont discutés en details. Les événements peuvent être simples ou com-
posés et peuvent être spécifiés comme des mises à jours sur des functions de bases ou sur des
fonctions derivées. L’implementation des règles est basée sur le concept de gestion de fonc-
tions; les événements sont compilés en fonctions actives et une technique de monitoring du
changement incrementale est utilisée pour la détection des changements.

This work has been done as a collaboration between the University of Versailles and
Linköping University as a part of ERASMUS program of the ACT-NET research network on
active databases group and partially financed by the University of Pierre et Marie Curie
(Paris 6).

Laboratoire PRiSM - Université de Versailles
45, avenue des Etats-Unis
78035 Versailles Cedex

France

Department of Computer and Information Science
Linköping University
S-584 83 Linköping

Sweden

Events in an Object Relational Database System iii

Summary in French 5

Preface 11

CHAPTER 1 Introduction 13

1.1 Object relational model 13
1.2 Active Databases14
1.3 AMOS System15
1.4 Motivation and Summary of Contributions 19
1.5 Related Work 20

CHAPTER 2 The AMOS Data Model25

2.1 Data model 25
2.2 Rule language 28

2.2.1 Rule definition 28
2.2.2 Rule deletion 30
2.2.3 Rule activation and deactivation 30

2.3 Example 30

CHAPTER 3 Event Specification Language 33
3.1 Simple events 34
3.2 Composite events 37
3.3 Condition specification38
3.4 Action specification 39

Contents

Contents

iv Events in an Object Relational Database System

CHAPTER 4 Event Monitoring 41
4.1 Delta relations 41
4.2 Stored functions 42
4.3 Derived functions 45
4.4 Event functions 47

4.4.1 Simple events 48
4.4.2 Composite events 52
4.4.3 CA-rules 53

CHAPTER 5 Implementation issues55
5.1 Rule Processing Algorithm 55
5.2 Creation of a rule 56

5.2.1 Delta relations 56
5.2.2 Event functions 57
5.2.3 Condition functions 57
5.2.4 Action procedure 58

5.3 Propagation network 58
5.4 Activation/Deactivation of a rule60
5.5 Data modification 62
5.6 Check phase 62

5.6.1 Propagation Algorithm 63
5.6.2 Rule triggering and conflict resolution 66
5.6.3 Condition evaluation and rule execution 66
5.6.4 Termination 67

CHAPTER 6 Conclusions and Future Work 69

References 73

Events in an Object Relational Database System 5

Summary in French

Ce rapport présente un travail de recherche d’une durée de 6 mois effectué
dans le Laboratoire de Génie Systèmes de Bases de Données (EDSLab1,
Engineering Database System Laboratory) à l’Université de Linköping en
Suède. Ce travail a été réalisé dans le cadre des exigences nécessaires pour
l’obtention du Diplôme d’Etudes Approfondies en Méthodes Informatiques
Appliquées aux systèmes Industrielles (DEA MISI) au laboratoire de
Recherche en Informatique, PRiSM2 à l’Université de Versailles- France.

Le travail consiste dans un premier temps à définir une syntaxe conviviale et
sa sémantique pour la spécification des règlesEvénement-Condition-Action
(règles ECA) dans un Système de Gestion de Base de Données (SGBD)
Active Objet relationnel, nommé AMOS[FRS93] et dans un deuxieme temps
d’implémenter des algorithmes efficaces pour la gestion et la detection des
événements spécifiés et l’évaluation des conditions.
AMOS (Active Mediators Object system) [FRS93] est un prototype de
recherche, classé dans la catégorie des SGBDObjets relationnels (OR). Son

1. Pour plus d’information sur EDSLab, utilisez l’URL:

http://www.ida.liu.se/labs/edslab

2. Pour plus d’information sur PRiSM, utilisez l’URL:

http://www.prism.uvsq.fr

6 Events in an Object Relational Database System

architecture permet de localiser, chercher, combiner, et contrôler des don-
nées dans les systèmes d’information avec plusieurs stations connectées
entre elles en utilisant des réseaux de communication rapides. Cette archi-
tecture utilise l’approche des médiateurs qui introduisent un niveau de
logiciel intermédiaire entre les bases de données et leur utilisation dans des
applications et par des utilisateurs. Ces médiateurs sont actifs puisqu’ils
supportent les facilités des bases de données actives. Un prototype d’AMOS
a été developpé a partir de la version WS-Iris à mémoire principale de
IRIS[FA+89]. L’element central d’AMOS est AMOSQL, un language de
requêtes objet-relationnel qui offre une interface de requêtes declarative per-
mettant de définir, charger et manipuler la base de données. AMOSQL est
dérivé de OSQL[Lyn91] qui est un langage fonctionnel, ayant ces racines
dans DAPLEX[Shi81]. Le language de requête AMOSQL est en plus influ-
encé par les efforts de standarisation comme SQL3[Mel95] et OQL[Cat94].
Comme dans OSQL, les requêtes AMOSQL sont compilées á des plans
d’exécution dans un langage logique OO appellé Object-Log[LR92].
AMOSQL étend OSQL principalement avec des règles actives et un sys-
tème plus riche en types et en fonctionalités de base de données multi-
ples[FaR97].

Dans sa premiere version le langage de règles dans AMOS ne supporte que
des règles de type CA (Condition-Action) où les événements entraînés sont
calculés à partir des Conditions par le compilateur de règles. Ces règles sont
déclenchées implicitement quand des données sont modifiées et les nouv-
elles données satisfont la Condition de la règle. Ce type de règles est géné-
ralement considéré plus déclaratif et peut être facilement programmé. La
spécification des événements déclencheurs de règles comme une partie de la
définition des règles permet de spécifier des actions différentes quand une
condition donnée est satisfaite, dépendament de l’événement soulevé.
L’intégration des événements dans AMOS a été l’objet du travail presenté
dans ce rapport. Cette intégration nécessite la définition d’un langage de
spécification de règles conforme aux fonctions d’AMOSQL et l’utilisation
des méthodes efficaces pour la détection des événements et l’évaluation des
conditions. Une nouvelle syntaxe permettant de définir des règles ECA
(Evenement-Condition-Action) a été ainsi implémentée. La sémantique de
cette syntaxe est “Quand l’Evénement spécifié dans la défintion de la règle
est detecté, évalue la Condition. Si la Condition est vraie exécute l’Action”.
Cette syntaxe permet en outre de définir une variation de type de règles.
L’omission de la partie Condition définit une règle de typeEvenement-
Action (règles EA), dans cette classe de règles, la Condition est considérée
coome étant toujours vraie et l’Action est exécutée suite à la détection de

Summary in French

Events in an Object Relational Database System 7

l’événement. L’omission de la partie Evenement crée une règle de type CA,
celle-ci a la même sémantique que les règles CA dans la version précédente
d’AMOS.

Le modèle de données d’AMOS est un modèle objet relationnel. Dans ce
modèle tout est objet, y compris lesfonctions, lestypes et lesrègles. Ainsi
les règles peuvent être créées et supprimées comme tout autre objet. Deux
autres commandes sont utilisées pour activer ou desactiver une règle. Les
événements peuvent être simples ou composés et seuls les événements liés à
l’exécution des opérations de mise-à-jour sont considérées. Les événements
utilisateurs et les événements temporels seront considérés dans un futur tra-
vail. Un événement dans AMOS peut être défini comme “Un changement
d’état de la base de données à un instant donné” (l’instant de l’occurence de
l’événement est enrigistré pour faciliter l’intégration des événements tem-
porels). Les types d’événements pris en compte sont la création ou la sup-
pression d’un objet, l’insertion d’une valeur dans une fonction, la
suppression d’une valeur d’une fonction, la mise à jour de la valeur d’une
fonction, et les combinaisons logiques des ces événements. Une syntaxe
conviviale a été définie pour exprimer ces types d’événements. Les événe-
ments composés sont définis par les formes logiques de conjonction
(l’ordre des événements n’est pas pris en compte) et de disjonction dans ce
premier temps. L’inclusion de la forme de négation et l’ordonnancement des
événements seront a considérer dans un travail futur.
Les règles ECA integrées dans AMOS sont basées sur le concept de gestion
de fonctions. L’Evénement spécifié est transfomé en une fonction
AMOSQL qui peut contenir des conjonctions et des disjonctions dans le cas
des événements composées. La partie Condition est compilée en une
requête AMOSQL qui peut contenir à son tour des conjonctions, des dis-
jonctions ou des négations. La condition est vraie si le résultat de la requête
est non vide. L’Action est transfomée en une procédure AMOSQL qui peut
contenir n’importe quelle expression AMOSQL saufcommit. Les données
peuvent être passées de l’événement à la condition et de la condition à
l’action de chaque règle par l’utilisation des variables de requêttes par-
tagées. L’exécution de lafonction événementrenvoie les données entraînées.
Ces données seront passées à lafonction condition comme parametres en
arguments, ainsi la requête de la condition ne sera appliquée que sur
l’ensemble des données modifiées. Ceci donne une évaluation correcte et
efficace de la condition.
La fonction événement est définie en terme desdelta-relations.Ces derni-
eres sont générée par le compilateur de règles pour chaque fonction de base
ou dérivée réferenecée dans la définition de l’événement. Ces delta-relations

8 Events in an Object Relational Database System

enrigistrent toutes les mises-à-jours effectuées sur les fonctions de base au
cours de la transaction. Au moment ducommit, une procedure basée sur la
méthode de l’évaluation incrémentale est invoquée pour propager les
changements vers les delta-relations attribuées aux fonctions derivées.
Un réseau de propagation a été modèlisé pour permettre une propagation
plus efficaces des changements. Ce réseau est maintenu après chaque activa-
tion ou désactivation d’une règle en l’insérant ou la supprimant du réseau
respectivement. L’algorithme de propagation est basé sur la méthode
breadth-first. Les règles déclenchées après la détection des événements sont
insérées dans une chaîne triée. Le triage des règles dans cette chaîne est
basé sur l’ordre de priorité attribué par l’utilisateur à chaque règle active.
Ainsi quand une règle est selectionée pour l’évaluation de la condition, elle
est sélectionnée de sorte qu’aucune autre règle dans la chaîne n’ait un ordre
de priorité plus grand. L’Action étant une procédure AMOSQL, son exécu-
tion peut soulever de nouveaux événements et le declenchement de nouv-
elles règles ou la même règle. Ceci peut causer une boucle infinie du
processus. Une limite fixe contraignant le nombre de fois qu’une règle
puisse être exécutée est mise au point pour resoudre ce problème de termi-
naison.

Ce rapport est constitué de deux parties principales. La première partie
présente la syntaxe de définition des règles ECA dans AMOS et sa séman-
tique avec un plus grand interrêt sur le composant Evénement de ces règles.
La deuxième partie discute de la façon permettant de detecter l’occurence
des événements en utilisant la technique de l’évaluation Incremen-
tale[Skö94, SR96, FSR93].

Chapitre 1 introduit le modèle objet-relationnel et le concept des systèmes
de gestion de base de donnèes actives. Il donne aussi une vue génerale sur
l’architecture du système AMOS et son langage de règles. Et enfin ce chapi-
tre résume les motivations qui nous ont amenés à integrer les règles ECA
dans AMOS et le travail effectué dans ce sens.

Chapitre 2 définit le modèle de données d’AMOS et son extension avec un
langage de règles permettant de spécifier et de gérer des règles de type ECA.

Chapitre 3 présente le langage de spécification des événements. Un ensem-
ble d’exemples est donné pour illustrer les différents types d’événements
qui peuvent être spécifiés.

Chapitre 4 introduit la méthode de l’évaluation Incrementale et le concept

Summary in French

Events in an Object Relational Database System 9

des delta-relations et montre comment les fonctions générées à partir des
événements spécifiées dans les définitions de règles sont définies en terme
de ces delta-relations.

Chapitre 5 disctute l’algorithme de processus de règle et souligne l’algo-
rithme utilisé pour implémenter la méthode de l’évaluation incrémentale .

Chapitre 6 conclut avec un résumé des principaux aspects de la nouvelle
syntaxe de définition de règles actives dans AMOS et donne des perspec-
tives pour des extensions de cette syntaxe dans le futur.

10 Events in an Object Relational Database System

Events in an Object Relational Database System 11

Preface

This report presents a significant work done on extending the rule language
of an Object Relational Database Management System (ORDBMS), called
AMOS[FRS93] with rules having ECA (Event-Condition-Action) rule
semantics. The report is divided into two main parts. The first part describes
a syntax for rule definitions and discusses its semantics with the focus on the
event component. The second part investigates the detection and the man-
agement of simple and composite events using incremental evaluation tech-
niques.

Outline

Chapter 1 introduces the object-relational model and the active database
management systems. It also gives an overview of the AMOS architecture.
This chapter also gives a summary of the work done in integrating ECA
rules in AMOS and the motivations for this work. Related work is discussed
at the end.

Chapter 2 defines the data model of AMOS and presents the new syntax for
defining ECA rules and its semantics. A data base sample is given at the end
to be referenced in the following chapters in illustrative examples.

Chapter 3 focuses on the event specification language. It presents the differ-
ent types of events that can be specified. A set of examples are presented for
illustration.

Chapter 4 introduces the delta relations approach and the incremetal evalua-
tion techniques and shows how delta relations can be used to detect and
record data modifications of stored relations and how changes to stored rela-
tions are propagated to derived relations using the incremental evaluation
method. It then illustrates with examples how the event components in the
rule definitions are compiled to active functions and how changes to these
functions are monitored.

12 Events in an Object Relational Database System

Chapter 5 explains some implementation aspects of rule management at the
phases: rule creation, rule activation and deactivation, event detection and
rule triggering, and rule execution at the check phase. It also shows the rule
processing algorithm, the data structures of the propagation network, and
the propagation algorithm.

Chapter 6 concludes with a summary of the main aspects of the new syntax
and its semantics and presents some issues for future work.

Context

The work presented in this report has been carried on during a period of
about 6 months at the Laboratory of Engineering Database Systems
EDSLab1 at Linköping University, Sweden and submitted to the Research
Laboratory in Computer Science, PRiSM2 in the University of Versailles,
France as a partial fulfilment of the requirements for the Diploma of
Advanced Studies (DEA in the French system is a 1 year preparatory course
for a PhD) in the field of Industrial Applications of Computer Science.

Acknowledgements

I would like to thank my advisor, Professor Tore Risch, for giving me
the opportunity to carry out this work and for his support and his excellent
supervision. I would also like to thank Martin Sköld for providing me with
rich ideas from his experience in the field and for helping me to get familiar
with the AMOS system. Many thanks also for all EDSLab members for
their fruitful discussions and suggestions

I am grateful to Anne Eskilsson for providing excellent administrative
service.

Last, but not least, I owe special thanks to my professors Elisabeth
Metais and Mokrane Bouzeghoub for their support and for helping me and
encouraging me to join EDSLab.

Salah-Eddine Machani
Linköping, September 1996

1. For more information about EDSLab use URL: http://www.ida.liu.se/labs/edslab

2. For additional information about PRiSM use URL: http://www.prism.uvsq.fr

Events in an Object Relational Database System

CHAPTER 1 Introduction

1.1 Object relational model

The DBMS market is still led by the relational database management sys-
tems (RDBMS), however the limitations of these systems when it comes to
data modelling has led to the development of new database technology based
on object oriented techniques and brought many researchers and industrials
to investigate on these techniques.
Object-oriented databases improve relational systems by offering complex
structures, object identity, inheritance between classes, and extensibility. The
first generation OODBMS also usually includes basic database facilities
such as a simple query language, access techniques such as hashing and clus-
tering, transaction management, and concurrency control and recovery.
However, they are incompatible with RDBMSs and do not include several
RDBMS features such as a complete declarative query language, meta data
management, views, and authorisation. Their advantage is a seamless inte-
gration with their corresponding OO programming language. Products origi-
nating from the first generation OODBMS approach are Gemstone, O2,
Objectivity, ObjectStore, ONTOS, and Versant.
Systems called thesecond generation OODBMSs evolved from the classical
relational database community and were also inspired by OO ideas. The
attempt to meet the needs required by new types of database applications, as
for instance from the scientific and engineering area, has resulted in an

Introduction

14 Events in an Object Relational Database System

extension of relational database technology with OO capabilities. Examples
of these capabilities include object identity, object structure, composite
objects, type constructors, encapsulation, inheritance, and OO extensions
for relational query languages such as SQL-3[Mel95]. These DBMSs are
called Object Relational Database Management systems (ORD-
BMs)[SM96]. Examples of this type of product are Odapter, Illustra, and
UniSQL. The research prototype AMOS, that is used in this work, is based
on this approach.

1.2 Active Databases

Traditional database management systems are passive: data is created,
retrieved, modified, and deleted only in response to operations issued by
users or application programs. Newer applications recognize the need for
having a database system capable of reacting automatically in response to
specific situations (to certain events occurring or to certain conditions being
satisfied). Such systems are claimed to be active.
Active database behaviour is characterised by the definition of a set of ECA
rules (Event-Condition-Action) as part of the database, which describe
actions to be taken upon encountering an event in a particular database state.
These rules are then associated with objects, making them responsive to a
variety of events. Events range from data modification events (e.g., insert,
delete, or update on a particular table in a relational database or a creation,
deletion, modification of a particular object or a method invocation in an
object-oriented database) to temporal events (e.g., 1 Sep. at 12:00, every day
at 12:00, from 18:00:00 every 5 minutes) to application-defined events (e.g.,
user-login, mail reception). When the event is detected the relevant rules
fire. Firing of a rule implies evaluating a, possibly complex, condition on the
database, and carrying out the corresponding action. Conditions might be
specified as database predicates, restricted predicates, database queries or
application procedures. Actions may refer to a transaction (e.g., to abort it)
and they may affect the database itself by performing some data modifica-
tion operations or some data retrieval operations. An active database system
derives its power from the variety of events it can respond to, how efficiently
the condition is evaluated and the kind of actions it can perform in response.
Although the general and preferred form of active rules are ECA rules, other
variations of active rules may occur: the omission of the condition part leads
to an Event-Action rule (EA-rule) where the Condition is considered to be
always true, and the omission of the event part leads to a Condition-Action
rule (CA-rule) in which case the compiler or the ADBMS itself generate the

Events in an Object Relational Database System 15

event definition.
Events are one of the most essential issues in an ADBMS, and thus their
definition, their detection and their internal representation have received a
big attention recently[CK+94, GJS92].

1.3 AMOS System

AMOS (Active Mediators Object System) is anObject-Relational Active
Database Management System. It addresses support for future engineering
information systems where autonomous, heterogeneous, and active data-
bases and other software are distributed over fast computer networks. In
such an environment active mediators simplify the communication between
individual programs (usually being run on workstation) and the data sources
from which information is retrieved. The purpose of these active mediators
is to locate, transform, combine, query and monitor the desired information,
and therefore retain flexibility and convenience for the user in very large
federations of databases and other systems. This approach is called active
mediators, since it includes active database facilities.
The AMOS architecture is built around a main memory based platform for
intercommunicating information bases. Each AMOS server has full DBMS
facilities, such as a local database, a data dictionary, a query processor, a
transaction manager, and a communication manager.
A central component of AMOS is an object-relational query language,
AMOSQL, with object oriented abstractions and declarative queries. The
data model of AMOS and AMOSQL is strongly influenced by the func-
tional data model OODAPLEX[Day89] and by the data model of
Iris[FA+89] and OSQL[Lyn91]. The Iris data model has three basic con-
structs; objects, types and functions. The data model of AMOS extends that
of Iris by introducing rules. Rules monitor changes to functions and changes
to functions can trigger rules. Functions in AMOS can be stored, derived or
foreign. Stored functions represent data stored as facts in the database
(stored functions are internally represented as relations). Derived functions
are AMOSQL queries (views) and defined in terms of other AMOSQL
functions. Foreign functions are programs written in a foreign language (C
or Lisp). Stored and derived functions in AMOS are updatable functions
and changes to these functions are monitored. Changes to foreign functions
are not monitored, they are supposed to be non updatable functions.(see sec-
tion 2.1).
The AMOS kernel consists of several subsystems that are responsible for
different tasks. The main subsystems are illustrated in Figure 2.1 and

Introduction

16 Events in an Object Relational Database System

include:

The external interface handles synchronous requests thought a client-server
interface for loosely coupled applications and through a fast-path interface
for tightly-coupled applications.

The command interpreter scans and parses AMOSQL expressions and
sends request to the levels below.

The schema manager handles all schema operations such as creating or
deleting types, i.e. object classes, and type instances including functions and
rules.

The rule processor handles issues such as creation, deletion, activation,
deactivation, triggering and execution of database rules[Skö94, SR96]. The
event manager is integrated with the rule processor. It dispatches events to
the rule processor. Events can come either from the external interface or
from intercepted events in the lower levels such as schema updates or data-
base updates.

The foreign data source (DS) interface of AMOS admits integration of for-
eign data structures and operators. Foreign operators are defined and imple-
mented as multi-directional foreign functions with overloading on all
arguments[LR92, FR96]

The query optimizer is responsible for transforming ad hoc queries, update
statements, functions, and procedures into tractable execution plans using
query optimization and compilation techniques[LR92, FR96, Flo96].

The execution plan interpreter handles the processing and execution of opti-
mized expressions that are represented in the intermediate ObjectLog lan-
guage[LR92].

The logical object manager manages all operations to objects in the data-
base schema such as object creation, deletion and updates of object
attributes including updating, inserting, and deleting data in stored func-
tions. The level also manages OIDs (Object Identifiers) of the objects. An
update operation causes the creation of an event that is intercepted and sent
to the event manager.

The physical object manager includes parts for managing all physical oper-

Events in an Object Relational Database System 17

ations on user objects (i.e. instances of user-specified types), system objects
(strings, integers, reals, lists, arrays, vectors, atoms, hash tables, etc.) and
event objects (objects representing database transactions). Examples of
operations are allocation, deallocation, and access operations. Foreign func-
tions can manipulate the physical object manager, e.g. to allocate and
update user-defined internal storage structures.

The memory manager manages all the memory operations that automati-
cally allocates and deallocates memory, and reclaims memory by garbage
collection.

The disk manager in AMOS is more primitive in comparison to disk-based
DBMSs since AMOS presupposes that the database resides in main-mem-
ory. It mainly handles flushing of database images between main-memory
and disk for initiation, connection, or saving of databases.

The transaction manager controls all transactions the database by keeping a
log of all database operations so that transactions can be undone or redone
to guarantee database consistency.

The recovery manager is responsible for automatically maintaining persist-
ency of a database that is exposed to transactions[Kar95].

The architecture of AMOS permits extensions to be made on the three levels
of extensibility as identified in [CH90]: theData storage and access, the
Query language, and theQuery processing.

Introduction

18 Events in an Object Relational Database System

Memory manager

TransactionPhysical object manager

manager

Recovery
manager

Fast-path Amos IF

Schema
manager

Disk manager

Logical object manager

Rule
processor

Command Interpreter

Query optimizer

Execution plan IP

User
obj. mgr.

System
obj. mgr.

Event
obj. mgr.

Foreign
DS

A
rr

ay
 p

ac
.

External Interface

Embedded AmosSQL

Figure 2.1: AMOS Architecture

Events in an Object Relational Database System 19

1.4 Motivation and Summary of Contributions

The first version of the rule system of AMOS supported only theCondition-
Action (CA) model by defining each rule as a pair <condition, action>,
where the Condition is a declarative AMOSQL query, and the Action is any
AMOSQL database procedure statement. The events involved are calculated
from the condition. With the CA model the rule is triggered implicitly
whenever data is updated so that new data satisfies the rule’s condition.
Including a triggering event as part of the rule language of AMOS makes it
possible to specify different actions when a given condition is satisfied,
depending on which event occurred. For example, one might wish to react
to violations of a referential integrity constraint in different ways, depend-
ing on whether the violation came about because a new object was added or
because an old one was removed. This kind of operation-specific behaviour
is not possible with Condition-Action rules. Significant work is done on
integrating such a behaviour in the rule system of AMOS. A new syntax
allowing specification of triggering events in the rule definition has been
implemented and an Event Specification Language is defined. The events
handled so far are: the creation of a new object, the deletion of an object, the
insertion of a value into a bag-valued function, the deletion of a value from a
bag-valued function, and the update of a function. An event is specified by
its type and the involved object. Events can be simple or composite. Com-
posite events are defined as event expressions, containing logical operators
and events (simple or other composite events).
The integrated ECA rules are based on the concept of function monitoring;
the event component as well as the condition component are compiled to
AMOSQL functions. Only stored and derived functions can be referenced
in the event specification. Foreign functions are assumed to be passive func-
tions, i.e. functions that never change. The Action component is compiled to
an AMOSQL procedure. Events are parameterized and data are passed from
the event to the condition and from the condition to the action by using
shared query variables.
The processing of a rule can be divided into four phases:

1. Event detection and Change maintenance
2. Rule triggering and Conflict resolution
3. Condition evaluation
4. Action execution

Event detection consists of detecting events that can affect any activated
rules and is performed continuously during ongoing transactions. These
events consist of changes to stored functions. A mechanism is built to

Introduction

20 Events in an Object Relational Database System

record these changes and propagate them to the affected derived functions
using ∆-relations and the incremental evaluation method. Rules are trig-
gered whenever their specified events are detected and then inserted in a
sorted queue for condition evaluation. Triggered rules are sorted based on
priority numbers assigned to rule instances at activation time. Conditions
are evaluated only for the updated data. During action execution further
events might be generated causing all the phases to be repeated until no
events are detected.
The event function is defined in terms ofdelta relations. These are gener-
ated by the rule compiler for each stored or derived function referenced in
the event definition. Updates to stored functions are captured during the
ongoing transaction by their corresponding delta relation and propagated to
the affected derived functions incrementally through a dependency network
at thecommit. The propagation of changes is done through the network in a
breadth-first, bottom-up manner and is based on incremental evaluation
technique. Intermediate results are materialized to avoid the recomputation
of derived functions during the rule processing since these might be refer-
enced by more than one triggered rule.
Updates to tuples are handled directly instead of modelling them as dele-
tions followed by insertions, this allows us to capture and difference
between the three events addition, remove, and the update. The evaluation
of the condition and the execution of the action are delayed till the end of
the transaction, i.e. deferred coupling mode. The net effect of data modifica-
tion operations during the transaction is considered and a calculus is defined
to record only logical events in the delta relations.

1.5 Related Work

In the previous work dealing with integrating active rules in AMOS only
CA-rules were considered. The involved Events were calculated from the
condition by the rule compiler. The condition is an AMOSQL query and the
Action can be any procedure statement, except commit. Data can be passed
from the Condition to the Action of each rule by using shared variables.
Rules are furthermore parameterized and can be activated/deactivated for
different argument patterns. The semantics associated with this syntax is as
follows: If an event in the database changes the truth value for some
instance of the condition to true, the rule is marked as triggered for that
instance. If something happens later in the transaction which causes the
Condition to become false again, the rule is no longer triggered.
The condition can specified over stored and derived functions only. The

Events in an Object Relational Database System 21

events that trigger these conditions are the function update events, and add-
ing or removing tuples to/from bag-valued functions.
The implemented rule processing of AMOS uses the database monitor
method [Ris89] to detect changes on derived or stored attributes of database
objects, however in [SR96] a more efficient technique for monitoring
changes to rule conditions is proposed. This technique consists of generat-
ing several partially differentiated relations that detect changes to a derived
function given changes to one of the functions it is derived from. Then to
efficiently compute the changes of a rule condition based on changes of sub-
conditions, the partially differentiated relations are computed by an incre-
mental evaluation technique. A breadth-first, bottom-up propagation algo-
rithm is also introduced to efficiently propagate both insertions and
deletions without unnecessary materialization or computation.

The Event-Condition-Action (ECA) rule paradigm is widely accepted for
active database systems, and it provides the flexibility required by most
applications. All active database systems that support ECA rules provide, as
basic features,events that correspond to data modification operations,con-
ditions that correspond to queries over the database, andactions that are
database operations.

HiPAC[CW96, HW93] is an active object-oriented database management
system. Like AMOS it extends a basic object-oriented database manage-
ment system with ECA rules based on the semantic model DAPLEX[Shi81]
extended with the object-oriented features of OODAPLEX[Day89]. Rules
in HiPAC, like all other forms of data, are treated as entities. There is a rule
entity type, and every rule is an instance of this type. Special functions are
defined over the rule type to fire, enable, or disable rules and like, other enti-
ties, rules can be created, modified or deleted.
In HiPAC events like rules are first-class entities; they are instances of the
type event. The event type has two subtypes: primitive-event and composite-
event. The primitive events are of three types: data-manipulation-events,
time-events and external-events. HiPAC is an OODBMS, hence, all data
manipulation occurs through the execution of functions on entities. To cause
rules to be triggered when some data manipulation function is executed, a
data-manipulation-event associated with the function has to be defined.
Events can be defined for the generic data manipulation operations create,
delete, and modify, as well as for type-specific operations; however, updates
of derived functions (views) are not handled. Also, HiPAC allows opera-
tions for manipulating collections of entities. Composite events are defined
by three parameterized types: disjunction, sequence, and closure.

Introduction

22 Events in an Object Relational Database System

Data manipulation events in HiPAC correspond to the execution of func-
tions. Three basic techniques for detecting data manipulation events have
been developed and incorporated into the HiPAC prototypes: the Hardwired,
the Wrapper-based and the System-supported[CW96]. Concerning condi-
tions which are pure queries and may refer to the parameters captured at the
event occurrence, HiPAC uses three different techniques to suit the require-
ments of their evaluations: signal-driven evaluation, materialization of inter-
mediate results, multiple condition optimization and incremental evaluation.
The incremental evaluation is used in conjunction with the materialization
of incremental results.

Starburst [CW96, HW93] is an extension of the Starburst relational DBMS
at the IBM Almaden Research Center. The Starburst rule language is flexi-
ble and general, with a well defined semantics based on arbitrary database
state transitions. Commands are provided for rule processing within transac-
tions in addition to automatic rule processing at the end of each transaction.
The event clause in the rule definition syntax specifies one or more events,
any of which will trigger the rule. An Event is a relational data modification
operation. The Condition is any SQL select statement and is true if the
select statement produces one or more tuples. And the Action may be any
database operation, including SQL data manipulation commands, data defi-
nition commands and the rollback.
The possible triggering events in Starburst correspond to the three standard
relational data modification operations: inserted, deleted and updated. The
updated triggering event may specify a list of columns, so that the rule is
triggered only when of those columns is updated; specifying updates with-
out a column list indicates that the rule is triggered by updates to any col-
umn.
Starburst supports transition tables which correspond to our∆−relations.
Views are specified as SQL select statements. Each view is computed once
and stored as a database table (i.e. the view is materialized). A set of rules is
generated automatically by the compiler from the materialized view defini-
tion. These rules are triggered by modifications to the base tables; their
actions incrementally modify the materialized view according to the base
table modifications.

The Ariel[CW96, HW93] rule language is a production rule language with
enhancements for defining rules with conditions that can contain relational
selections and joins, as well as specifications of events and transitions. Like
in our rule language, only data modification type of events are considered in
Ariel, however composite events are not handled.

Events in an Object Relational Database System 23

A-RDL[CW96] uses∆−relations to record the net effect of data modifica-
tions in a similar way to our approach. Updates to functions are handled
directly and a calculus is defined to compute and record the net effect of
changes in the delta relations.

Introduction

24 Events in an Object Relational Database System

Events in an Object Relational Database System 25

CHAPTER 2 The AMOS
Data Model

2.1 Data Model

The data model of AMOS and AMOSQL is strongly influenced by the func-
tional data model OODAPLEX [Day89] and by the data model of
Iris[FA+89] and OSQL[Lyn91]. The Iris data model has three basic model-
ling constructs;objects, types and functions and everything in the model is
an object including types and functions. The AMOS data model extends that
of Iris by introducingrules, a richer type system and multidatabase facili-
ties[Fah94, FaR97]. Further more AMOSQL is influenced by the standardi-
sation efforts such as SQL3[Mel95] and OQL[Cat94]. Rules are also objects
and of type ‘rule’. The relationship between objects, types, functions and
rules in AMOS can be seen in figure 2.1.

Objects are used to model entities in the domain of interest.Types are used to
classify objects and act as containers for their instances, i.e.object classes.
All objects are instances of some type. Types themselves are of type ‘type’.
Objects can be created or deleted using the AMOSQL commandscreate
or delete respectively.

The AMOS Data Model

26 Events in an Object Relational Database System

Functions are of type ‘function’ and are constrained to accept only objects
that are instances of the declared argument type of any subtype thereof.
They are used to model properties of objects and relationships between
objects. Functions can be stored, derived or foreign. A stored function rep-
resents data stored as facts in the database. The corresponding mapping
between arguments and results are internally stored in a table, i.e. relation.
Stored functions can always be updated using the AMOSQL function
update statementsset, add, or remove[KF+95]. A derived function is
defined by a single AMOSQL query (simpleselect statement). AMOS
defines a derived function f to be updatable if it is derived from a single
updatable function g in such a way that the argument and result parameters

objects

functions types

rules

defined over
constrain

classify

belong to

constrain

defined

operate

participatemonitor

trigger

 on

 in

over

operate on

participate
 in

IRIS data model

Figure 2.1: The AMOS data model

Events in an Object Relational Database System 27

of f partition all the arguments and results of g and such that no selection is
involved in the derivation[KF+95]. Foreign functions written in some proce-
dural language(C or Lisp) are currently considered as passive functions
which means functions that never change, such as built in arithmetic func-
tions, boolean functions, and aggregate functions.
AMOS supports also database procedures which are defined by a program
written in a procedural subset of AMOSQL that may have side effects, and
overloaded functions which are functions defined on different types with
identical names. Each specific implementation of an overloaded function is
called aresolvent. When a function call is made to an overloaded function,
the appropriate implementation, i.e. resolvent, is selected based on the
actual argument types (early binding). Amos supports also late binding of
overloaded functions where the overloaded resolution is done at run time
instead of at compile time. (Examples of overloaded functions are given in
section 2.3)
Rules are used to define constraints and are first-class objects; they inherit
their operations from theobject class. A rule can be created and deleted like
other objects.create rule anddelete rule commands are used for
this purpose.
Two other operations are added to rules:activate rule anddeacti-
vate rule to enable and disable a rule respectively. Rules monitor
changes to functions and changes to functions can trigger rules. All the
events that rules can trigger on are modelled as changes to values of func-
tions. Event functions, i.e functions that represent internal events, are
defined over stored and derived functions, changes to these functions can
affect the rule condition and trigger the rule.
Besides,objects, types, functions and rules, AMOS defines a set of other
important types. Figure 2.2 below shows the AMOS type hierarchy:

The AMOS Data Model

28 Events in an Object Relational Database System

Note that AMOS supports timestamps and defines three data types for refer-
encing time.Timeval is a type for specifying absolute time points andtime
anddate are types for relative time points.

2.2 Rule language

2.2.1 Rule definition

Integrating event specification in AMOSQL consists in defining a new syn-
tax for rule definitions. This syntax should be conform to that of AMOSQL
functions and should provide users facilities to specify the triggering events
of the rule and also the possibility to define CA-rules by neglecting the
event component of the definition.
In AMOS, rule processing is invoked automatically at the end of each user
transaction (just before thecommit) that triggers one or more rules. In addi-
tions, users can invoke rule processing within transactions by issuing the
AMOSQL Check command. Hence, the minimum rule processing granular-
ity in AMOS is a single database operation command and the maximum
granularity is the entire transaction.

object

monitor

monitor

monitor

amos index user saga context rule cursor literal functiontype

timeval timedata multiset tuple charstring boolean number

integer realbag vector list

bag bag

relation user

type
object

instance

activation

 type

integer real

Figure 2.2: AMOS type hierarchy

Events in an Object Relational Database System 29

The implemented syntax for rule definitions is as follows:

create rule rule_name parameter_specification As
[For_each_clause]
[On event_specification]
[When predicate_expression]
Do procedure-expression

Theon clause of the rule allows specification of the Event that will trigger
the rule.
The when clause specifies the Condition that should be checked once the
rule is triggered.
The do clause allows specification of the Action to execute when the rule is
triggered and the condition is true.
In theFor_each_clause, the rule’s local variables are declared.

This rule is an event-based rule or what is commonly calledEvent-Condi-
tion-Action rule (ECA-rule). The meaning of such a rule is: “when an event
occurs, check the condition and if it holds, execute the action”.
If the event part is included, the condition part might be omitted, we then
refer to anEvent-Action rule (EA-rule). In this case, however, the condition
is considered to be always true and the action is executed directly when the
rule is triggered.
In some cases it may be useful to allow the compiler to generate the event
definition. In this case, the event part is omitted and the user only specifies
the condition and the action, and the system determines the events automat-
ically. We then say we have a condition-based rule or a Condition-Action
rule (CA-rule).
Remark: either the event part can be omitted or the condition part but not
both in the definition of the rule.

The event_specification is the definition of the rule triggering event, it
can be a simple event or a composite event. A composite event is a logical
combination of simple events or other composite events. A simple event
corresponds to a data modification operation and is specified by the event
type and the modified object.(see chapter 4).

The predicate_expression is an AMOSQL query. It can contain any
boolean expression, including conjunction, disjunction and negation. Fur-
thermore, this query may refer to stored functions as well as to derived ones.
If the query is non-empty then the condition is satisfied.

The AMOS Data Model

30 Events in an Object Relational Database System

The procedure_expression in the rule action clause is any AMOSQL
procedure statement, exceptcommit.

2.2.2 Rule deletion

To delete a rule, we use the following syntax:

delete rule rule_name;

2.2.3 Rule activation and deactivation

Two operations are used to enable or disable a rule

activate rule rule_name parameter-list [priority 0|1|2|3|4|5]

and

deactivate rule rule_name parameter-list

respectively.

These commands allow certain rules to be “turned off” temporarily for the
specified parameter list, so that the rules remain in the system but are not
eligible to be triggered or executed.
Priorities are used for defining conflict resolution between rules that are
triggered simultaneously; the default priority is 0, if the priority is not spec-
ified.

2.3 Example

The following example will be used later to illustrate rule definition and
event specifications. We consider a simple database schema consisting of
four objects types:

Address(street, postcode, city)
Department (name, addr, manager)
Employee (name, addr, dept, income, taxes, grossincome, netincome)
Manager (name, addr, dept., income, taxes, bonus, grossincome, netincome)

Events in an Object Relational Database System 31

Employees are defined to have a name, an income, an address and a depart-
ment. The netincome is defined based on taxes for both employees and man-
agers, but with bonus for managers before taxes. Departments are defined to
have a name, an address and a manager. The manager of an employee is
derived by finding the manager of the department to which the employee is
associated.

The AMOSQL schema is defined by:

create type address properties (street charstring,
postcode charstring,
city charstring);

create type department properties
(name charstring, addr address);

create type employee properties
(income number, taxes number);

create type manager subtype of employee;
create function name(employee) -> bag of charstring as stored;
create function addr(employee) -> bag of address as stored;
create function dept(employee) -> bag of department as stored;
create function bonus(manager) -> integer as stored;
create function grossincome(employee e) -> number as

select income(e);
create function grossincome(manager m) -> number as

select income(m) + bonus(m);
create function netincome(employee e) -> number as

select employee.grossincome -> number(e) * taxes(e);
create function netincome(manager m) -> number as

select grossincome(m) * taxes(m);
create function mgr (department) -> manager;
create function mgr(employee e) -> manager as

select mgr(dept(e));

Note: The examples are somewhat unrealistic, but they serve to illustrate
important aspects of rule definition and execution.

The functionsgrossincome, netincome, mgr, addr are overloaded on
the typesemployee, manager anddepartment, employee. For function
calls grossincome(m), mgr(dept(e)) this is resolved at compile time, i.e.
early binding;by the system using the local variable declarations. In some
cases, the system cannot deduce what function to choose then the a ‘dot
notation’, e.g. employee.grossincome->number(e), which specifies the
types of the arguments and of the results can be used to aid the compiler to

The AMOS Data Model

32 Events in an Object Relational Database System

choose the correct function at compile time.
In cases when the compiler cannot deduce the resolvent, it will produce a
query plan that does run-time type checking to choose the correct function
i.e. late binding. This would be the case ifnetincome was not overloaded
andgrossincome was specified without the ‘dot notation’.
Basically functions can be single valued ormulti-valued (bag valued). The
later is indicated by the keyword ‘bag of’ in the result declaration. In our
example, the functionsname, dept andaddr are multi-valued functions
and hence, an employee can have more than one name, more than one
department and more than one address. But at most he can have only one
income and one taxes value since the corresponding functions income and
taxes respectively, are defined as single-valued functions (by default, if the
‘bag of’ keyword is not indicated in the result declaration the function can
take only a single value result).
Values can be added or removed to/from a bag-valued result updatable func-
tion by using the update statementsadd andremove respectively.
Theset statement is used to update the value of an updatable function. The
result of updating a function (even if it is a bag result function) by the com-
mandset is always a single value result. Internally, the set command is
modelled as remove followed by an add. Applying aset on a bag result
function, will first remove all the old values in the bag and then add the new
value.

Events in an Object Relational Database System 33

CHAPTER 3 Event
Specification
Language

Events are one of the essential issues in an ADBMS, and an ADBMS has to
provide means for defining event types[DGA96]. Thus the definition, the
detection and the management of events have received attention by many
researchers and some Event Specification Languages have been pro-
posed[GD93, CK+94, GJS92, CD91]. Events can be of different types: Data
modification events, data retrieval events, time events and user-defined
events. Only data modification events are considered in the current imple-
mentation of rules in AMOS. The creation and the deletion of an object, the
insertion of a value into a multi-valued (bag result) function, the deletion of a
value from a multi-valued function, the update of a function as well as the
execution of rule actions, generate data modification events. However, tem-
poral events which is an important class of events will be considered in the
future extension of the rule language; the time points at which events are sig-
nalled are captured and recorded as a part of the event occurrence to facili-
tate this extension. Hence an event in AMOS1 can be defined as “A database
transition at a given time”. Events that are generated by commands issued
either by interactive transactions or by transactions that are part of applica-
tion programs connecting the database system are seen as external events.
Events that are generated by rule execution are considered as internal events.

1. In AMOS, transaction time is used by timestamps

Event Specification Langua ge

34 Events in an Object Relational Database System

3.1 Simple events

The event can be any data modification operation caused by an AMOSQL
command. The following types of simple events can be specified after the
on clause:

. Updated (function_name(variable_name))

. Added (function_name(variable_name))

. Removed (function_name(variable_name))

. Created (variable_name)

. Deleted (variable_name)

where the type of the variable name is declared in thefor_each_clause
or in thearguments list of the rule definition (see section 2.2).

Theupdated triggering event is signalled whenever the specified function
is altered by the AMOSQL function update commandset, which sets the
function to a new value[KF+95].

The added triggering event signalled whenever a tuple is added to the
result of an updatable bag result function by the AMOSQL command
add[KF+95].

Theremoved triggering event corresponds to the deletion of a tuple from
the result of an updatable bag result function by the commandremove
[KF+95].

The created triggering event corresponds to any creation of a new
instance of an object class using the AMOSQL commandcreate[KF+95].
This includes the creation of a user-defined object, a function, a rule a type
or any other AMOSQL object (see section 2.1).

Thedeleted triggering event corresponds to the deletion of an object and is
raised whenever the AMOSQLdelete command is executed. A syntax is
defined to specify this event and the event manager detects its occurrence.
However, the rule processor does not support references to deleted objects
so far, due to the internal implementation of thedelete command in
AMOS. A special treatment is needed by the system when objects are
deleted so that the event can be raised and the action executed before the
object is physically deleted. We are working on this.

Events in an Object Relational Database System 35

The updated, theadded and theremoved triggering events are repre-
sented on functions which can be either stored or derived.

● An example of a rule where the updated triggering event is specified on a
stored function is:

Create rule rule1 (department d) as
For each employee e
On updated (income(e))
When dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.1: updated event specification on a stored function

where the specified functionincome in the event clause is a stored function.
The rule is triggered whenever the income of an employee is updated.

● An example of a rule where the event is specified on a derived function is:

Create rule rule2(department d) as
For each employee e
On updated(netincome(e))
When dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.2: updated event specification on derived function

Here the updated event is specified on the derived functionnetincome
which is a derived from the stored functions income and taxes (section 3.3).

● Theadded andremoved triggering events are specified on updatable
bag result functions. Here is an illustrating example:

Create rule rule3(department d) as
For each employee e
On added(addr(e))
When dept(e) = d
Do /*Action*/;

Example 3.3: Specifying theadded triggering event
The specified function addr is an updatable bag result function. An

Event Specification Langua ge

36 Events in an Object Relational Database System

employee can have more than one address. The rule is triggered whenever
an address is added to the bag of addresses of a given employee.
If the removed triggering event is specified instead of the added event in
rule3, the rule will be triggered whenever an address is removed from the
employee’s bag of addresses.

● Thecreated triggering event is specified on object instances of a given
type. Let’s look at this rule definition:

Create rule rule4(department d) as
For each employee e
On created(e)
when dept(e) = d
Do /*Action*/;

Example 3.4: Created triggering event specified on an object type

The rulerule4 is triggered whenever an object of type employee is created
and the condition is evaluated to true if the new employee is set to belong to
the department passed torule4 during rule activation.

● Notice that rules in AMOS can be parameterized as it is illustrated in the
previous examples. In some cases we may want to trigger our rule on
updates of specific object instances; this can be done by passing the object
in the argument list when the rule is activated. If several objects should be
monitored the rule must be activated for each object.
Here is an illustrating example:

Create rule rule5 (employee e)
On updated(income(e))
When employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.5: event specification on a function for a specific object

Thefor_each_clause is omitted in this rule since the free variable in the
event clause is declared in the argument list of the rule.
If we want to trigger this rule on updates on the income of an employee
named :employee1, we activate the rule by this statement:

activate rule (:employee1);

Events in an Object Relational Database System 37

The event’s specification variable “e” will be bound to the value
:employee1 and only updates on the income of employee :employee1
triggers the rule (if it is not activated for other employees as well).

3.2 Composite events

Composite events are allowed by combining single (primitive) events or
other composite events. AMOSQL is extended with an expression language
for denoting these composite events using the logical operators OR and
AND. Let’s consider two events E1 and E2.

● The disjunction E1 OR E2 is an event that is signalled whenever E1 is
signalled or E2 is signalled, the parameters of E1 OR E2 are the union of the
parameters of E1 and the parameters of E2. Rule6 below illustrates this:

Create rule rule6(department d) as
For each employee e
On updated(income(e)) OR updated(taxes(e))
When dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
Do /*Action*/;

Example 3.6: A composite event with the OR operator

This rule is triggered if the income of an employee has changed or the taxes
are changed or both the income and the taxes are changed.

● The conjunction E1 AND E2 is an event that is signalled whenever E1 is
signalled and E2 is signalled, no matter which one was the first (time
sequence of events is not considered), the parameters of E1 AND E2 event
are bound to the concatenation of the parameters of E1 and E2. For exam-
ple, the rulerule7 in example 3.7 is triggered whenever a change is
detected on the address of an employee and on his taxes during the transac-
tion.

Event Specification Langua ge

38 Events in an Object Relational Database System

Create rule rule7 (department d) as
For each employee e
On updated(addr(e)) AND updated(dept(e))
When dept(e) = d and

city(employee.addr->address(e)) !=1 city(addr(d))
Do /*Action*/;

Example 3.7: A composite event with the AND operator

● More complex composite events might be specified, in which case the left
and the right parenthesis are used, i.e. ‘(‘ and ‘)’. For example:

On (updated(income(e)) OR updated(taxes(e)))
AND (added(dept(e)) OR added(addr(e)))

Note that the parentheses have the priority over theAND operator which in
turn has the priority over the OR operator, if we specify the composite event
above without the parentheses for instance, we will get:

On updated(income(e)) OR updated(taxes(e)) AND added(dept(e)) OR
added(addr(e))

This event has a completely different semantics as the original event and it
is interpreted by the system as:

On updated(income(e))
OR (updated(taxes(e)) AND added(dept(e)))
OR added(addr(e))

3.3 Condition Specification

The rule condition specified in the when clause is an AMOSQL query. It can
contain any boolean expression, including conjunction, disjunction and
negation. Further more, this query may refer to stored functions as well as to
derived ones.
If the query is non-empty then the condition is satisfied. (see examples in
sections 3.2 and 3.4)

1. In AMOSQL ‘!=’ means not equal

Events in an Object Relational Database System 39

3.4 Action specification

The procedure_expression in the rule action clause can be any
AMOSQL procedure statement, exceptcommit. Examples of rule actions
are:

Create rule rule8 (department d) as
For each employee e
On updated(income(e))
when dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
Do set income(e) = income(mgr(e));

Example 3.9: Action specification as AMSOQL statement.

In rule rule8, the action is specified as a simple AMOSQL statement that
sets the income of an employee to that of his manager.

Create rule rule9 (department d) as
For each employee e
On updated(income(e))
When dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
Do SetIncome(e, income(mgr(e)));

Example 3.9: Action specification as a foreign function.

In rule9 SetIncome(employee e, number inc) may be a database proce-
dure that sets the income of the employee e to the specified value inc.
The Action is executed only over the employees whose incomes have
changed and caused the violation of the condition, i.e. set-oriented execu-
tion is supported[WF90], the action is executed on the set of tuples for
which the condition is true.

Event Specification Langua ge

40 Events in an Object Relational Database System

Events in an Object Relational Database System 41

CHAPTER 4 Event
Monitoring

4.1 Delta relations

In AMOS stored functions are represented as tables(relations). In [SR96],
∆−sets are introduced as containers of logical changes to updated relations
and are modelled as a pair of positive changes, i.e. set of added tuples to the
relations, and negative changes, i.e. set of removed tuples from the relations.
Updates to tuples are modelled as deletions followed by insertions. In our
case,∆-sets are redefined and used to materialize derived relations (see sec-
tion 1.2) and record and maintain changes to functions. Updates to tuples are
handled directly instead of modeling them to deletions and insertions.
We define the∆-set of a stored or a derived relation R by:

∆R = <R_added, R_removed, R_updated>

where, for some given transaction R_added contains at a point in time all
tuples that are added to R as a result of the net effect of the transaction up to
that point. Similarly R_removed contains all tuples that are deleted from R,
and R_updated contains all tuples of R that are updated (both new values and
old values are recorded).

Event Monitoring

42 Events in an Object Relational Database System

4.2 Stored functions

The update operation of stored functions in AMOS is internally modelled as
a delete of the old tuples followed by the addition of the new tuple. This is
handled as one operation in the current implementation. Both the old value
of the updated function and its new value are recorded in the corresponding
delta-set. Doing this, we can reference the new value as well as the old value
of the updated function in the rule Condition or in the Action and also be
able to reset the function to its old value if the new one violates the defined
constraint in the Condition part.

Let’s take an example to illustrate how changes to stored functions are mon-
itored using the redefined∆-set. We consider changes to the stored function
dept in the database sample in section 2.4. Thedept function is defined
as a bag result function so we assume that an employee can be in more than
one department and initially the department of an employee :e1 is :toys.
where :e1 and :toys are two AMOSQL variables of types employee and
department, respectively, defined by the statements:

create department(name) instances :toys(“toys_department”);
create employee(name, dept) instances :e1(“employee1”, :toys);

We suppose :shoes and :cloths are two other object instances of type
department defined in the same manner as above.
When we do the update:

set dept(:e1) = :shoes;

at a given time t1 during the ongoing transaction, two operations are gener-
ated internally, first the tuple <:e1, :toys> is removed from the relation
dept and second the tuple <:e1, :shoes> is added. However the event man-
ager maps the two operations to one data modification operation or event
and records both the old and the new value of the functiondept by assert-
ing the tuple <t1, :e1, :shoes, :toys> into the delta relationdept_updated.
If we update the department of :e1 by the AMOSQL statements:

remove dept(:e1) = :toys; /* at time t1*/
add dept(:e1) = :shoes; /*at time t2 where t1 < t2*/

this yields the same result as before i.e. :e1 is in :shoes department in both
cases; however this modification is modelled as two different events. The

Events in an Object Relational Database System 43

first event is captured by the delta relationdept_removed by asserting
the tuple <t1, :e1, :toys> to it and the second event is captured by the delta
relationdept_added by asserting the tuple <t2, :e1, :shoes>.
Changes to a base relation R during the transaction are immediately cap-
tured and recorded by the∆−relations R_added, R_removed or R_updated
depending if the change is an insert, a delete or an update of a tuple in the
relation R respectively. However, the net effect of changes is immediately
considered. Table 4.1 takes the example of the department of an employee
:e1 and shows how the net effects of the data modification operations on the
relationdept are recorded in the delta relations during the ongoing transac-
tion.
The time value at which the event happens is recorded in the delta relations
as well, as explained in the previous chapter this helps for future extensions
of the event specification language to include temporal events.

Table 1: Database modification operations and their effects on delta
relations

Database modification
operations

content of the

relationa
Effects on delta relations

At t1b: <:e1, :toys> is
added to dept

At t2: <:e1, :toys> is
removed from dept

<:toys>

<>c

<t1, :e1, :toys> is in
dept_added

<t1, :e1, :toys> is not in
dept_added

At t1: <:e1, :toys> is
added to dept

At t2: <:e1, :shoes> is
added to dept

At t3: dept(:e1) is
updated to :cloths

<:toys>

<:toys,
:shoes>

<:cloths>

<t1, :e1, :toys> is in
dept_added

<t2, :e1, :shoes> is in
dept_added

<t1, :e1, :toys> is not in
dept_added

<t2, :e1, :shoes> is not in
dept_added

<t3, :e1, :cloths, :shoes>
is in dept_updated

Event Monitoring

44 Events in an Object Relational Database System

Formally if we consider a relation R, a tuple T, and we represent the delta
relation R_added by∆+R, the removed delta relation R_removed by∆-R
and the updated delta relation R_updated by∆-+R then:

1. If T is added to R at time t1 and removed from R at time t2 where t1 <
t2, the net effect is no modification: T is asserted into∆+R at t1 but then
retracted at t2.

2. If T is removed from R at t1 and added at t2, the net effect is no mod-
ification: T is first asserted to∆-R at t1 but then retracted after the adding
operation at t2.

3. If T is updated at t1 then removed from R at t2 where t1 > t2, the net
effect is the removing operation. T is first asserted in∆-+R at t1 but then
retracted from it and asserted in∆-R at t2 as a result of the removing opera-
tion.

4. If T is added to R at t1 and updated at t2 where t1 < t2, the net effect is
the updated tuple. T is first asserted in∆+R at t1 but then retracted and

a. content of dept(:e1) in our example
b. t1 represents the time at which the operation is issued. So are t2 and t3

where t1<t2<t3
c. empty bag

At t1: dept(:e1) is
updated to :shoes

At t2: <:e1, :shoes> is
removed from dept

<:shoes>

<>

<t1, :e1, :shoes, :toys> is
in dept_updated

<t1, :e1, :shoes, :toys> is
not in dept_updated

<t2, :e1, :shoes> is in
dept_removed>

At t1: dept(:e1) is
updated to :cloths

At t2: dept(:e1) is
updated to :shoes

<:cloths>

<:shoes>

<t1, :e1, :cloths, :toys> is
in dept_updated

<t1, :e1, :cloths, :toys> is
not in dept_updated

<t1, :e1, :shoes, :toys > is
in dept_updated

Table 1: Database modification operations and their effects on delta
relations

Database modification
operations

content of the

relationa
Effects on delta relations

Events in an Object Relational Database System 45

asserted in∆-+R at t2.
5. If T is updated at t1 and updated a second time at t2 then the net effect

is the last updated T. The updated value of T, Tnew1, is asserted into∆-/+R
at t1 but at t2 Tnew1 is retracted from∆−/+ and the new value of T, Tnew2,
is asserted instead.

This is summarized in table 2 below:

4.3 Derived functions

Derived functions (views) are not updatable functions. These functions are
defined in terms of stored functions. Events in our system as seen in the pre-
vious chapter, can be specified as updates of base (stored) functions as well
as of derived functions. An event is raised whenever a tuple is added,
removed or updated in the specified function. A derived function is typically
recomputed every time it is referenced. This, however, can be very costly,
since a derived function can span over large portions of the database.
The materialisation of derived functions is a technique to increase the per-
formances of monitoring derived functions with respect to processor
time[GM95]. Since in our system, derived functions as well as base func-
tions may be referenced by different rule events at rule processing, then it
may be beneficial to materialize and cache changes to these functions.
A materialized view is just as a cache, it gets dirty whenever the underlying
base functions are modified. Updating a materialized view by recomputing

Table 2: the net effect of database
modification operations

t1 t2 net effect

- + Ø

+ - Ø

+ -/+ -/+

-/+ - -

-/+ -/+ -/+

Event Monitoring

46 Events in an Object Relational Database System

it from scratch is in most cases wasteful. Computing only the changes in a
view to incrementally modify its materialization is much cheaper.
Incremental evaluation[SR96, HD91, GD93] is a technique that computes
changes to derived functions by considering changes to base functions
instead of computing them in full. This technique is used in our system in
conjunction with the materialisation of incremental results to monitor
changes to rule events. When an event is specified as an update of a derived
function, the compiler generates Delta relations to the specified derived
function as well as to all the underlying functions. Adependency network
is derived from one or more rule events. This network takes as input, data-
base modifications on stored functions and propagates the changes to
derived functions that are affected. Figure 4.1 shows a dependency network
for the derived functionemployee.netincome->number.

In the network of figure 4.1, all the dependencies of the function netincome
are modelled as subnodes, changes to any of these base functions will affect
the upper nodes. A propagation algorithms is used to propagate changes
through the network from the bottom to the affected nodes in the upper lev-
els using breadth-first, bottom-up propagation. This algorithm is based on
incremental evaluation techniques (see section 5.3).

∆employee.netincome->number

∆employee.income->number

∆employee.bonus->number
∆employee.taxes->number

∆employee.grossincome->number

Figure 4.1: dependency Network

Events in an Object Relational Database System 47

4.4 Event Functions

Events are detected based on the data changes stored in a temporary mem-
ory during the ongoing transaction. As seen above, ∆-relations are main-
tained for all stored or derived relations that are referenced in the event
definition. The system generates at compile timeEvent functions for each
specified rule event. These functions are defined in terms of the delta rela-
tions of the specified functions. Figure 4.2 below completes the dependency
network in figure 4.1, by adding the event function node. During the ongo-
ing transaction, updates to stored functions are recorded in their correspond-
ing ∆-relations. At the check phase, these changes are propagated through
the network to the derived functions and are recorded in their corresponding
∆-relations. The values of Event functions are then derived from the refer-
enced∆-relations.

In the following, we will see how the Event functions are derived from the
Event definition and how they are defined in terms of the∆-relations of the
specified functions.

∆employee.netincome->number

∆employee.ncome->number
∆employee.bonus->number

∆employee.taxes->number

∆employee.grossincome->number

Figure 4.2: dependency Network of an Event function

∆event-function

Event Monitoring

48 Events in an Object Relational Database System

4.4.1 Simple events

● Let’s consider the following rule:

Create rule no_high(department d) as
For each employee e
On updated (income(e))
When dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
Do set employee.grossincome->number(e) = grossincome(mgr(e));

The Event as defined in ruleno_high is compiled into a function (example
4.1) represented as an AMOSQL function,evt_no_high, that returns only
the employees whose incomes are updated since it uses in its definition the
∆-relationincome_updated generated for the income function at com-
pile time and which contains only the updated tuples.

create function evt_no_high()->employee e as
select e for each number n, timeval t
where timeval.employee.income_updated->number(e)@t = n;

Example 4.1: The generated event function for a simple updated event.

Notice the specification of the parameter declarationtimeval in the
evt_no_high function. This is defined in AMOS as atimestamp and repre-
sents in the function the transaction time at which the income of a given
employee is updated. The timeval as explained in chapter 4 is recorded in
the delta relationincome_updated with the parameters of the raised
event. Notice also that the delta relation income_updated is defined as an
AMOSQL function with two argument typestimeval andemployee and
the result typenumber. The notation ‘@’ means ‘at’ and it is just another
way of specifying parameters in a function call when we deal with the type
timeval.
timeval.employee.income_updated->number(e)@t = n in the where
clause can be replaced by the common function call syntax for all
AMOSQL typestimeval.employee.income_updated->number(t, e) = n.
 The condition is compiled into a condition function and it looks like:

create function cnd_no_high(department d, employee e)-> employee
as select e where dept(e)= d and
employee.netincome->number(e) >

neticome(mgr(e));

Events in an Object Relational Database System 49

The functioncnd_no_high is evaluated with all the parameters to the
rule instantiated, in this case with the department d instantiated, and all the
returned changed data from the event functionevt_no_high, therefore
the condition is evaluated only on those data that have been updated and
caused the rule to trigger.

The AMOSQL action procedure generated for the action in the rule
no_high looks like:

create function act_no_high(employee e)-> boolean as
set employee.grossincome->number(e) =

grossincome(mgr(e));

The functionact_no_high is executed over the returned parameters
from the condition function, i.e. the subset of the data which verify the con-
dition predicates. Semantically it can be seen as:

for each department d
where d = no_high_activations()

call act_no_high(cnd_no_high(d, evt_no_high()));

whereno_high_activation is a function that returns all the arguments
for which the no_high rule is activated, i.e. set-oriented rule execu-
tion[CW96].

The general expressions of the generated functions for the different clauses
of the rule, the event, the condition and the action clause can be represented
as:

evt_rule_name(|<rule_arg>|) -> evt_res
cnd_rule_name(|<rule_arg>,| <evt_res>) -> cnd_res
act_rule_name(|<rule_arg>,| <cnd_res>)

● Let’s look at some different illustrating examples which show the gener-
ated monitoring functions for each type of events and the corresponding
condition functions:

Create rule rule1() as
For each employee e
On updated(mgr(e))
When netincome(mgr(e)) < 20000
Do /*Action*/;

Event Monitoring

50 Events in an Object Relational Database System

The Event inrule1 is specified on the derived functionmgr having the sig-
natureemployee.mgr->manager and which is derived from the base func-
tion department.mgr->manager (see section 2.3).

The generated Event function for this rule will look like:

Create function evt_rule1() -> employee e as
select e for each manager m, timeval t
where timeval.employee.mgr_updated->manager(e)@t =m;

and the condition function as:

create function cnd_rule1(employee e) -> employee as select e where
employee.netincome->number(e) > netincome(mgr(e));

● Create rule rule2(department d, employee e)
On updated (income(e))
When dept(e) = d
Do /*Action*/;

In rule2, the type of the free variable ‘e’ in the Event definition is specified
in the argument list of the rule. The generated Event function for this rule is:

create function evt_rule2(employee e) -> employee as
select e for each number n, timeval t
where timeval.employee.income_updated->number(e)@t = n;

This event function takes the specified parameter as an argument and returns
it if it is found in the specified delta relation.
The condition function looks like:

create function cnd_rule2(department d, employee e) -> employee as
select e where dept(e) = d;

● The added andremoved triggering events are specified on bag result
functions. Let’s consider again the rulerule3 in example 3.3 where the
added triggering event is specified on the functionaddr of an employee.
The generated Event function will be as is shown below:

create function evt_rule3 (employee e) -> employee as
select e for each timeval t, address a
where timeval.employee.addr_added->address(e)@t=a;

Events in an Object Relational Database System 51

and the condition function is:

create function cnd_rule3(department d, employee e) -> employee as
select e where dept(e) = d;

The event functionevt_rule3 returns all the employees whose addresses
have been updated by adding a new address.

● A creation of an object is seen as an insertion to the built-in AMOSQL
functionAllobjects that returns all the objects in the system. The create
object event is mapped to anadded event to the system functionAllob-
jects. The object creation is in the kernel of the system and therefore
Allobjects is a foreign function.
Let’s consider the rulerule4 in example 4.4 again. The triggering event
for this rule is defined as:
On created(e), where e is any object of type employee.

Creating an object instance of type employee is mapped to an insertion of an
object of type employee to the relationAllobjects. Hence, the gener-
ated event function will look like:

Create function evt_rule4() -> employee e as
select e for each timeval t
where timeval.allobjects_added->object()@t=e;

A ∆-relation is generated to the functionAllobjects when theCre-
ated triggering event is specified in any activated rule. This∆-relation
maintains all the created objects of any types during the ongoing transaction
and is cleared after thecommit or thecheck as the other∆-relations.

The condition function is:

Create function cnd_rule4(department d, employee e) -> employee as
select e where dep(e) = d;

The event functionevt_rule4 is specified in terms of the generated delta
relation by the rule compilerallobjects_added. It returns all the objects
of type employee that have been created during the current transaction
(since the lastcommit or check). At the monitoring check time we can
detect if a new employee has been added to the extent of the type

Event Monitoring

52 Events in an Object Relational Database System

employee and pass it as a parameter to the condition function. The Condi-
tion function evaluates the condition predicates for the department instanti-
ated in the rule argument list and returns the added employee to the Action
function.

4.4.2 Composite events

Composite events are logical combinations of simple or other composite
events. The generated functions for this class of events may contain in their
definitions conjunctions and/or disjunctions of the referenced∆-relations.

● Let’s consider again, rule6 in Example 3.6. The event in this rule is
defined as:

On updated(income(e)) or updated(taxes(e))

This event is defined as a disjunction of two single events: the updated trig-
gering event on the stored function income and the updated event on the
stored function add. Hence, the generated event function for this event will
contain in its definition a disjunction between the∆-relation
income_updated and the∆-relationaddr_updated. This is shown
below:

Create function evt_rule6() -> employee e as
 select e for each timeval t1, timevalt2, number n1, number n2
where employee.income_updated->number(e)@t1= n1
or timeval.employee.taxes_updated->number(e)@t2=n2;

The condition function will look like:

Create function cnd_rule6(department d, employee e) -> employee as
select e
where dept(e) = d
and employee.netincome->number(e) > income(mgr(e));

The Event function returns all the employees whose incomes or taxes have
been changed.

● In the rule rule7 in example 4.7. The event is defined as a conjunction of
simple events as below:

On updated(addr(e)) and updated(taxes(e))

Events in an Object Relational Database System 53

For this rule the Event function will contain in its definition the logical oper-
ator ‘and’ between the updated∆−relations generated for the referenced
functions taxes andaddr. The returned parameters from this function
will be the intersection of the set of employees whose taxes have changed
and the set of the employees whose addresses have been changed as well
during the transaction.
The generated event function is shown below:

Create function evt_rul7() -> employee e as
select e for each timeval t1, timevalt2, number n, address a
where employee.taxes_updated->number(e)@t1= n
and timeval.employee.addr_updated->address(e)@t2=a

4.4.3 CA-rules

Let’s consider the following rule:

Create rule ruleCA(department d) as
For each employee e
When dept(e) = d and

employee.income->number(e) > 10000
Do set income(e) = 10000;

At compile time an Event definition is generated for the rule from the Con-
dition. This Event is specified as a disjunction of updates on all the refer-
enced relations in the Condition. Then an event function is created which
contain in its definition a disjunction of all the updated∆-relations gener-
ated for the referenced functions in the event definition.
The condition references two functionsincome andaddr, the triggering
event can be specified as:
on updated(income(e)) or updated(dept(e))
Therefore, the generated Event function for the this rule will be:

create function evt_ruleCA(department d) -> employee e as
select e for each employee e, timeval t1, timeval t2, number n
 where timeval.employee.dept(e)->department@t1 = d
or employee.income_updated->number(e)@t2 = n;

Event Monitoring

54 Events in an Object Relational Database System

The condition is compiled into a condition function represented as:

create function cnd_ruleCA(department d, employee e) -> employee
as select e
where dept(e) = d and
employee.income->number(e) > 10000;

and the action into the action function act_ruleCA shown below:

create function act_ruleCA(employee e)->boolean e as
set employee.income->number(e) = 10000;

With these three generated functions, the rule will be processed just as an
ECA-rule, the event function is first executed. The returned parameters are
passed to the Condition function. If the Condition function is evaluated to
true after that then the action procedure is invoked.

Events in an Object Relational Database System 55

CHAPTER 5 Implementation
 Issues

5.1 Rule Processing Algorithm

Rule processing in AMOS is invoked automatically at the end of each user
transaction (just before thecommit) that triggers one or more rules or within
transactions by issuing the AMOSQLCheck command. Hence, the mini-
mum rule processing granularity in AMOS is a single database operation
command and the maximum granularity is the entire transaction.
During rule processing, the first time a triggered rule is executed it considers
all modifications made by rules. If the rule is triggered additional times, it
considers all modifications since the last time it was checked (because the∆−
sets are cleared after each check phase).
The basic rule processing algorithm in AMOS is described as follows:

1. detect events
2. mark triggered rules (put the rules in a sorted queue)
3. pick the rule having the highest priority
4. evaluate the rule’s condition
5. act (if the condition is true, execute the action)
6. repeat from 1 until no more rules in queue and no

more new events are raised

Algorithm 1: Rule processing algorithm

Implementation Issues

56 Events in an Object Relational Database System

Events are detected based on the data changes and are stored in a temporary
memory (the∆−sets) during the ongoing transaction. Event functions are
generated for each specified event at rule compilation and∆-sets are created
for each referenced stored or derived function by the event function. During
the ongoing transaction, updates of stored functions are recorded in these∆-
sets. At check time, changes on stored functions are propagated through a
network to derived functions and then event functions are marked as
changed if they are affected.
A subset of rules are triggered and put in a sorted queue based on numeric
priorities. Rules are assigned ordering priorities from 0 to 5, hence, when a
triggered rule is selected for condition evaluation and possible execution; it
is selected such that no other triggered rule has a higher priority.

In addition to the automatic rule processing at the transaction commit (E-C
deferred mode)) rule processing is invoked within transactions when the
user issues theCheck command. The Check command invokes the same
rule processing algorithm that is invoked at transaction end. Regardless of
whether a rule is executed in response to one of these commands or in
response to end-of-transaction rule processing, the semantics is the same:
The rule considers the entire set of the recorded modifications since it was
last considered within the transaction, or since the start of the transaction if
it has not yet been considered.
If a rollback is executed in a rule action, then rule processing terminates and
the transaction is aborted (the added tuples to the∆-sets are removed).

5.2 Creation of a rule

5.2.1 Delta relations

At rule creation,∆-sets are created for the specified stored functions in the
event part of the rule definition.
Let’s take an example of a simple event:

On updated(income(e))
In this event the AMOSQL functionincome is specified, so at compile
time, a∆-set is generated for the functionincome. This ∆-set contains
three components:income_added that holds all the added tuples to the
relation income, income_removed contains all the removed tuples
from the relation income,andincome_updated which maintain the set
of the updated tuples. This can be represented as:

Events in an Object Relational Database System 57

∆income = < income_added, income_removed, inocme_updated>

In case derived functions are specified, ∆-sets are generated for these
derived functions and all the underlying stored or derived functions.
Let’s consider this event:

On updated (netincome(e))
In this event the derived functionnetincome is specified. Thenetin-
come function uses in its definition the derived functiongrossincome
and the stored functiontaxes. The derived function grossincome is
defined on the stored functionincome (see section 2.3), then∆-sets are cre-
ated for all the involved functions,income, taxes, grossincome
andnetincome, and are inserted into a propagation network.

5.2.2 Event functions

The event part in the rule definition is compiled to a function that uses in its
definition the generated∆-relations for the involved functions in the specifi-
cation of the event as explained above. These∆-relations are containers of
the changed data, they return all the modified data. Hence, the definition of
the event function on∆-relations instead of the complete functions ensures a
correct and an efficient execution.
In the case of CA-rules, where only the condition and the action are speci-
fied by the user, the compiler creates∆-relations for all the involved derived
and stored functions in the definition of the condition and generate an event
function in terms of these∆-relations (see section 4.3).

5.2.3 Condition functions

Condition functions are generated as well to the condition part of the rule.
These are ordinary AMOSQL functions. A condition function takes its
parameters from the argument list of the rule and the returned parameters
from the event function. This means that the condition function is executed
only over the modified objects. The returned objects are a subset of the
instantiated objects in the argument list that the condition references (shared
with the Event part). In the case of an EA-rule all the passed parameters are
returned since the condition doesn’t contain any predicate expression and
returns all the passed parameters..

Implementation Issues

58 Events in an Object Relational Database System

5.2.4 Action procedures

An action procedure is generated for the action part of the rule. The free var-
iables in the Action are calculated at compile time and specified as argu-
ment in the action function. The values of these arguments might be passed
from the rule activation arguments and in the most general case are instanti-
ated to the returned values from the condition function (shared variables
with the Condition part). In case the Action does not contain any free varia-
ble (rollback for instance), a dummy variable is passed from the condition
to the action function to ensure the correctness of the rule execution and its
semantics.

5.3 Propagation network

The propagation network contains information needed to propagate changes
affecting activated rules. Since the propagation is done in a breadth-first,
bottom-up manner the network can be modelled as a sequential list, starting
with the lowest level and moving upward. Each level consist of the list of
network nodes
Each∆-relation affecting activated rules is associated with one (and only
one) node consisting of (see figure 5.1 below):
-A change flag, chg-flg, marking the node as changed
-A counter, cnt, that states how many times the node is propagated during
the check phase
-The∆-set of the relation
-The relation
-A list of affects nodes, a-list, that are affected by changes to this node
-A list of depends on nodes, d-list,

The number of levels needed in a network depends on how relations are
expanded.

chg-flg cnt ∆-set relation a-list d-list

Figure 5.1: The network node data structure

Events in an Object Relational Database System 59

Nodes associated to stored relations are inserted in the bottom level, those
associated to the event functions of the activated rules are inserted in the top
level and the derived functions nodes are inserted in the intermediate levels.
For late binding extra levels are inserted in such a way that the stored rela-
tions nodes are always inserted in the bottom level and the nodes associated
with event functions are stored in the top level. Figure 5.2 shows how nodes
are connected in a 4 level network:

chg-flg cnt ∆netinc netinc a-list d-list

Figure 5.2: The nodes for the propagation network for

Level 2

 the event ”on updated(netincome(e))”

chg-flg cnt ∆grsinc grsinc a-list d-list

Level 1

chg-flg cnt ∆taxes taxes a-list d-list

Level 0

chg-flg cnt ∆income income a-list d-list

chg-flg cnt ∆evt-fun evt-fun a-list d-list

Level 3

Implementation Issues

60 Events in an Object Relational Database System

5.4 Activation/Deactivation of a rule

At rule activation, the rule activation is inserted into a propagation network.
This is done by inserting the dependency network of a rule’s event function.
Depending on the definition of specified functions in the rule’s event, a rule
might need more levels than the initial network contains, therefore, the
topology structure of the network is modified; levels are added or removed
(see table 3 below) to fit all the nodes and keep the dependency relationship
between the structured functions. The nodes of the stored functions are
always stored in the bottom level of the network and the nodes correspond-
ing to the event functions are in the top of the network.

TABLE 3. Insertion of an event function node into a propagation
network

Before the
insertion

The dependency
network to be
inserted After the insertion

Events in an Object Relational Database System 61

The algorithm for inserting ∆-relations into the network is as follow:

Insert(∆P):
If ∆P is not already inserted into the network then
get node_of(∆P);
if Dp is empty, where ∆p is the set of relations that

P depends on,
then /*P is a base relation*/

Insert_in_level (node_of(∆P), 0);
else

for each ∆Q where Q in Dp do
Insert(∆Q);
Insert node_of(∆Q) into the

depends-on list node_of(∆P).d-list;
Insert node_of(∆P) into the affects list

node_of(∆Q).a-list;
Insert_in_level(node_of(∆P),

max(for each ∆Q where Q Dp:
level_of(node_of(∆Q))) +1);

At rule deactivation, the rule and its activation is removed from the network.
The topology of the network is restructured too whenever a rule is removed
from it. Table 4 below gives a simple example where a an event function
node is removed from the network and one level in the resulted network is
removed since it is no more needed.

TABLE 4. Deletion of an event function node from the propagation
network

Before the deletion After the deletion

Implementation Issues

62 Events in an Object Relational Database System

The algorithm for removing ∆-relations from the network is:

Remove(∆P):
if ∆P is present in the network then

if the affects list node_of(∆P).a-list is empty then
for each ∆Q where Q ∆p

remove (node_of(∆Q) from
the depends-on list

node_of(∆P).d-list;
remove (node_of(∆P) from the

affects list node_of(∆Q).a-list;
if node_of(∆Q).a-list is empty then

Remove(∆Q);
Remove_from_level (node_of(∆P),

level_of(node_of(∆P)));

5.5 Data modification

When a base relation is updated, the new tuple is recorded in the∆-set with
the time value at which it is held. If a tuple is added to a relation then the
tuple is asserted in the∆-added component of the relation∆-set. If the tuple
is removed from the relation then this tuple is asserted in the∆-removed
component of the∆-set and if the tuple is updated then it is asserted in the
∆-updated part of the relation∆-set. However the net-effect of changes dur-
ing a transaction are considered right after the update operations and before
these changes are recorded into the delta relations.

5.6 Check phase

The rule processing is done in three phase:
1. Changes are propagated through the network of activated rules from the
base relations to the derived relations. The event function nodes affected by
these changes are marked as changed.
2. All the activated rules whose nodes are marked as changed during the
propagation are marked as triggered and are sorted in a triggered rules
queue based on priority numbers.
3. The triggered rules are picked up from the queue and fired one after
another. The condition is evaluated by executing the condition function. If a

Events in an Object Relational Database System 63

non empty result is returned then the action is executed.
The execution of an action may trigger new rules or cause old triggered
rules to be no more triggered, hence the processing algorithm is reexecuted
after each rule execution and the queue of triggered rules is updated in each
cycle.

The check phase algorithm looks as follows:

Check():
propagate();
while more rules in the queue or new triggered rules

execute event function for each node marked as
changed in the top of the network;

insert the rule with its activation and the returned
result from the event function in the sorted trig-
gered rules queue;

Trigger_rules();

Trigger_rules():
get the rule with the highest priority in the queue;
execute the rule Condition;
if a non-empty result is returned execute the Action;

5.6.1 Propagation Algorithm

In the check phase the propagation algorithm propagates all the non-empty
∆-sets in a breadth first manner from bottom to the top, as illustrated in fig-
ure 5.3. Since the network is constructed in such a way that the change
dependencies of one node, i.e. the∆-relations it depends on; are calculated
in the network levels below, a breadth-first propagation ensures that all the
underlying nodes for a given node are checked if changed before this node
is reached and hence any change to a node in the network is detected and
propagated to all the affected nodes efficiently.
The propagation is done in two steps. In the first step all the affected nodes
by changes on stored relations, i.e. nodes in the bottom of the network; are
marked as changed by setting the chg-flg to true.
In the second step changes are propagated to all the nodes marked as
changed in the first step from the bottom nodes to the upper nodes in a
breadth-first manner. A compute algorithm is invoked for each reached node
to maintain changes on the corresponding relations. However, this algorithm
assumes that the derived functions have the same parameters as the func-

Implementation Issues

64 Events in an Object Relational Database System

tions they depend on, which is rather restricted. Changes to other kinds of
derived functions are not monitored so far. even though in the first step of
our algorithm, changes to these functions can be detected and the corre-
sponding events can be raise. As an example of such functions we consider
an event that is defined on a derived function which returns all the employ-
ees in a given department whose netincomes are higher than the netincome
of their manager. This function can be defined in AMOSQL as:

create function high_incomes (department d) -> employee as
select e for each employee e
where dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e));

The functionhigh_incomes is a derived function and is defined in terms of
the stored functionemployee.dept->department and the derived functions
employee.netincome->number, manager.netincome->number and
employee.mgr->manager. All these underlying functions take as argument
parameters of typesemployee or manager (see section 2.3). However,
high_incomes takes as argument a parameter of typedepartment.
Changes to any of the underlying functions ofhigh_incomes can be
detected, computed and recorded in the corresponding delta relations how-
ever, these changes can not be propagated to the functionhigh_incomes
itself; our algorithm as implemented currently can not find out the involved
department. Different solutions might be figured out to handle this type of
derived functions and an efficient algorithm that computes changes to any
derived function given changes to one of the stored function it depends on is
needed. In [Skö94, SR96], such an algorithm is introduced and used to
propagate changes partially and incrementally from base relations to the
rule conditions. A similar approach might be used to propagate changes to
events functions defined on more complex derived functions in a future
work.

Events in an Object Relational Database System 65

The propagation algorithm looks as follow:

propagate():
for each layer l in the network starting from level 0
mark-level-changed(l);
for each layer l in the network starting from level 1
propagate-layer(l);

mark-level-changed (l):
for each node n in the layer l
mark-node-changed(n);

propagate-layer (l):
for each node n in the layer l
propagate-changes(n);

mark-node-changed(n):
if chg-flg(n) = true then

for each above-node in node.a-list do
set chg-flg = true;

Figure 5.3: Propagation by breadth-first algorithm

control flow

data flow

Derived functions
nodes

Event functions
nodes

Stored functions
nodes

Implementation Issues

66 Events in an Object Relational Database System

propagate-changes(n):
if node chg-flg(n) = true then

compute-deltas for n;

compute-deltas(n):
for each delta-set in node.d-list of n

execute node.relation with the delta-set parameters;

5.6.2 Rule triggering and conflict resolution

At propagation phase of the network, the reached rule event nodes are
marked as changed. All the corresponding rules to these nodes are inserted
in a triggered rules queue. The queue is modelled as a list of triggers. A trig-
ger is defined as a list containing the triggered rule object, a bag of the event
function parameters, its returned results, and the priority number of the rule.
This can be represented as:

Trigger: (rule-object,
<event-function-parameters, event-function-results>,
priority number)

where theevent-function-parameters list may contain the rule activation
if the rule arguments are referenced in the definition of the event.

Rule instances are assigned priority numbers by the user at the activation
time or the default priority number, 0, by the system. Before inserting a trig-
ger in the queue, its position with respect to the already existing triggers in
the queue is computed. This depends on its priority number.

5.6.3 Condition evaluation and rule execution

Once a rule is pulled from the queue, its condition function is executed for
the instantiated rule argument list at activation and the returned parameters
from the event function. If the condition function returns a non empty result
then the action procedure is executed for the returned results from the condi-
tion function.

Events in an Object Relational Database System 67

5.6.4 Termination

The rule processing algorithm as shown above is iterative. The loop contin-
ues until there are no more triggered rules. However, the execution of some
rule actions can produce events that trigger other rules or trigger the same
rule again and then it is possible for rules to trigger each other indefinitely.
Several ways have been proposed to handle termination [Bou94, CW96]. In
the current implementation of the rule processing algorithm an upper limit
on how many times a rule can be executed during rule processing is estab-
lished. If this limit is reached, rule processing terminates abnormally. This
upper limit is established as a system parameter and can be set by the user
at the check time. The default value is 20.

Note: all the algorithms presented in this chapter are implemented in
AMOSQL-Lisp[FKR95], the internal Lisp interpreter of AMOS.

Implementation Issues

68 Events in an Object Relational Database System

Events in an Object Relational Database System 69

CHAPTER 6 Conclusions
and Future
Work

This report presents a significant extension of an early work done on inte-
grating active rules in the Object relational Database Management System,
AMOS. The extension consists in integrating Event Specifications in the rule
language of AMOS. A new syntax for rule definition has been implemented
and the definition, detection and management of events are investigated. The
Event specification language considers only database modification events so
far. These consist of the creation and the deletion of an object, the insertion
of a value to a function, the deletion of a value from a bag-valued function
and the modification of a function value. Events might be specified as simple
events or composite events. The composite events are combinations of sim-
ple or other composite events. The conjunction form and the disjunction
form are used to define composite events. The rule syntax allows to define
both ECA and CA rules. ECA rules are triggered based on detecting and cap-
turing the specified events during a transaction. CA rules are compiled to
ECA rules after calculating the involved events from the Condition by the
rule compiler and generating the triggering event expression.
Rules are based on the concept of function monitoring. All the changes of
the system that the rules are to monitor are introduced as changes to func-
tions. Events might be specified on both stored and derived functions and are
compiled to active functions defined in terms of the relations they depend on.
To efficiently monitor changes on the events functions, the rule compiler
generates delta relations that capture changes to derived functions given

Conclusions and Future Work

70 Events in an Object Relational Database System

changes to one of the functions it is derived from. The changes are com-
puted by incremental evaluation techniques using a propagation network.
The main contributions of this work can be summarized in the following:

1. Introducing ECA rules paradigm in a functional OO model, AMOSQL.
2. Defining an Event Specification Language for defining simple or compos-
ite events.
3. Introducing Event functions that represent the internal implementation of
the specified events.
4. Mapping changes to stored functions to tables, i.e delta relations; and
recording all data modification of these functions in their corresponding
tables.
5. Monitoring changes to event functions defined in terms of derived func-
tions uses an incremental evaluation technique, where delta relations are
generated for derived functions and changes are propagated in a breadth-
first manner to these relations whenever the underlying functions have
changed through a propagation network.
6. Handling object creation as events on system functions and mapping
these functions to delta relations that record the created objects.
7. Compiling rules of type CA to ECA rules by calculating the involved
events and generating the monitoring Event functions.

There are a number of remaining issues, both practical and theoretical, that
need to be addressed to provide a complete event specification language in
AMOS:

1. The incremental evaluation technique presented here needs to be
extended to include complex derived functions. The actual implementation
supports only a specific class of derived functions where the derived func-
tions are constrained to have the same argument list as the functions they
depend on. Partial differentiation technique as described in [SR96] can be
used to deal with more general and complex derived functions.
2. A more efficient way of handling rules of type CA is by monitoring
changes to the rule condition rather than generating an event expression
from the condition and processing the rule as an ECA rule. Significant work
on Condition monitoring using partial differentiation is done in [SR96,
Skö94], a similar approach can be integrated with our approach to handle
CA rules.
3. Contexts or rule sets have been introduced in [SRF95] and integrated in
the old rule system of AMOS. A similar mechanism is needed for organiz-
ing and structuring ECA rules into sets that can be activated and deactivated

Events in an Object Relational Database System 71

dynamically. The system monitors only those events that affect rules of acti-
vated sets.
4. Only data modifications events are supported so far; temporal events can
also be included. The extension of the current system to include temporal
events is studied, the time of the event occurrence is captured and recorded
in the delta relations. However a specification language for temporal events
is needed and how the incremental change monitoring techniques relate to
time events must also be investigated further.
5. Events are currently specified only on stored and derived functions. For-
eign functions are assumed to be not updatable in AMOS (except for the
system functionallobjects). However, in some applications foreign data
sources need to be monitored. Such data might originate from physical sen-
sors, external pieces of software or as in the case of the stock exchange, a
transaction system with its own database. Foreign data sources can be pre-
sented in the database as if they are local data and the database should sup-
port access, monitoring and updates in a transparent manner. Such data
sources might be represented in AMOS as foreign functions and a further
investigation is addressed to see how delta relations can be used efficiently
to capture changes on these functions and trigger rules.
6. Composite events can be extended to include the negation operator and
operators such as ‘before’ and ‘after’ for instance to specify sequenced con-
junctive events mainly when time events are considered.
7. The rules in the current implementation are only deferred, but immediate
rules are needed, especially when introducing external asynchronous events
and time events.

Conclusions and Future Work

72 Events in an Object Relational Database System

Events in an Object Relational Database System 73

References

[Bou94] Bouzeghoub M., Active Database Design, Comet Seminar, 1994.

[Cat94] Cattel R.G.G.: The Object Database Standard: ODMG-93, Release 1.2,
Morgan Kaufmann Publishers, Inc., 1994.

[CD91] Chakravarthy S., Mishra D.: An Event Specification Language (Snoop)
For Active Databases and its Detection. UF-CIS Technical Report TR-
91-23, September 91.

[CH90] Cary M., Haas L.: Extensible Database Management Systems, SIGMOD
Record, v.19 n.4, December 1990, p.54-60

[CK+94] Chakravarthy S.,Krishnapsad V., Anwar E., Kim S.K.: Composite Events
for Active Databases: Semantics, Contexts and Detection, Proceedings of
the 20th VLDB conference, Santiago, Chile, 1994.

[CW96] Ceri S., Widom J.: Active Database systems, Morgan Kaufmann Publish-
ers, INC 1996

[Day89] Dayal U.: Queries and Views in an Object-Oriented Data Model, Pro-
ceedings of the 2nd International Workshop on database Programming
Languages, Glenden Beach, Oregon, USA, June 1989.

[DGA96] Dittrich K., Gatziu S., Geppert A.: The Active Database Management
System Manifesto: A Rulebase of ADBMS Features, ACT-NET Consor-
tium, 1996.

74 Events in an Object Relational Database System

[Fah94] Fahl G..:Object Views of Relational Data in Multidatabase Systems,
Licentiate Thesis LiU-Tek-Lic 1994:32, Linköping University,
Linköping, June 1994.

[FaR97] Fahl G., Risch T.: Query processing over object views of relational
data,to appear in VLDB journal 1997.

[FA+89] Fishman D.H., Annevelink J., Chow E., Connors T., Davis J. W., Hasan
W., Hoch C. G., Kent W., Leichner S., Lyngbaek P., Mahbod B., Neimat
M.A., Rish T., Shan M.C., Wilkinson W. K.: Overview of the Iris
DBMS, in Kim W., Lochovsky F. H.: Object-Oriented Concepts, Data-
bases, and Applications, ACM Press, Addison-Wesley, 1989, p.219-
250.

[FKR95] Flodin S., Karlsson J. S., Risch T., Sköld M., Werner M.:AMOS.v1 Sys-
tem Manual, EDSLab internal report, 1995

[Flo96] Flodin S.: Efficient Management of Object-Oriented Queries with
Invertible Late Bound Functions, Licentiate Thesis LiU-Tek-Lic
1996:03, Linköping University, Linköping, February, 1996.

[FR96] Flodin S., Risch T.: Processing Object-Oriented Queries with Invertible
Late Bound Functions, Proceedings of the 1995 Conference on Very
Large Databases, September 1996, p. 335-344.

[FRS93] Fahl G., Risch T., Sköld M.:AMOS - An Architecture for Active Media-
tors, NGITS’93, Haifa, Israel, June 1993.

[FSR93] Fabret F., Simon E., Regnier M.:An Adaptive Algorithm for Incremen-
tal Evaluation of production Rules in Databases, Proceedings of the
19th VLDB Conference, Dublin, Ireland 1993.

[GD93] Gatziu S., Dittrich K. R.:Events in an Active Object-Oriented Database
System, Proceedings of the 1st Intl. Workshop on Rules in Database
systems, Edinburgh, August 93.

[GJS92] Gehani N.H., Jagadish H.V., Shmueli O.:Composite Events Specifica-
tion in Active Databases: Model Implementation, Proceedings of the
18th VLDB Conference, Vancouver, British Columbia, Canada, 1992.

Events in an Object Relational Database System 75

[GM95] Gupta A., Mumick I. S.:Maintenance of Materialized Views Problems,
Techniques, and Applications, Bulletin of the Technical committee on
Data Engineering, Vol. 18 No. 2, IEEE Computer Society, June 1995.

[HD91] Harrison J. V., Dietrich S.W.: Condition Monitoring in an Active
Deductive Database, ASU Technical report, TR-91-022, Department of
Computer Science Engineering, Arizona, State University, Tempe, AZ.
USA

[HW93] Hanson E., Windom J.:An Overview of Production Rules in Database
Systems, The knowledge Engineering Review, vol. 8 no. 2, pages 121-
143, June 1993.

[Kar95] Karlsson J.S.:An Implementation of Transaction Logging and Recovery
in a Main Memory Resident Database system, Master Thesis LiTH-
IDA-Ex-94-04, Department of Computer and Information Science,
Linköping university, Linköping, June 1994.

[KF+95] Karlsson J., Flodin S., Orsborn K., Risch T., Sköld T., Werner M.:
AMOS.v1 User’s Guide, EDSLab internal report, 1995

[LR92] Litwin W., Risch T.: Main Memory Oriented Optimization of OO Que-
ries Using Typed Datalog with Foreign Predicates, IEEE Transactions
on Knowledge and Data Engineering, v.4 n.6, December 1992, p.517-
528.

[Lyn91] Lyngbaek P.: OSQL: A Language for Object Databases,HPL-DTD-91-
4, Hewlett-Packard Company, January 1991.

[Mel95] Melton J.: ANSI SQL Papers SC21 N9467, ANSI SC21 Secretariat,
New York, U.S.A., 1995.

[Ris89] Risch T.: Monitoring Database Objects, Proc. VLDB conf. Amsterdam
1989.

[Shi81] Shipman D.W.: The functional Data Model and Data Language
DAPLEX, ACM TODS, v. 6, n. 1, March 1981, p.140-173.

[Skö94] Sköld M.,: Active Rules based on Object Relational Queries -Efficient
Change Monitoring Techniques, Licentiate thesis No. 452, Dept. of
Computer and information Science, Linköping University, 1994.,

76 Events in an Object Relational Database System

[SM96] Stonebraker M., Moore D.:Object-Relational DBMSs: The next Great
Wave, Morgan Kaufmann Publishers, Inc., 1996.

[SR96] Sköld M., Risch T: Using Partial Differencing for Efficient Monitoring
of Deferred Complex Rule Conditions, Proceedings of the 12th Interna-
tional Conference on Data Engineering (ICDE’96), New Orleans, Loui-
siana, February 26 - March 1, 1996, 392-401.

[SRF95] Sköld M., Risch T., Falkenroth E.:Rule Contexts in Active Databases -
A mechanism for dynamic Rule Grouping, Proc. RIDS’95, athens,
Greece, 1995.

[WF90] Widom J., Finkelstein S. J.:Set-Oriented Production Rules in Relational
Database Systems, Proc. of 1990, ACM-SIGMOD Conference, p. 259-
270.

