
 1

Uppsala Master’s Thesis in

Computer Science 312
2007-08-17

ISSN 1100-1836

Archiving Relational Databases using

a Semantic Web Representation

Santosh Kumar Reddy Maddula

Information Technology

Computer Science Department

Uppsala University

Box 337

S-751 05 Uppsala

Sweden

Supervisor: Silvia Stefanova

Examiner: Tore Risch

 2

Abstract

A database independent migration tool is developed for long term archival of relational

databases. The approach is to represent both schema and data of an existing relational

database in an RDF-Schema based representation. RDF-Schema is a semantic web standard

for representing any kind of data and meta-data. The system, SARD, can automatically

convert data from an existing relational database into an RDF-Schema based flat file

representation through its Relational RDF-archiver module. Later SARD can recreate the

archived data in another relational database by a Relational RDF-loader module. Standard

relational database interfaces, the query language SQL, and RDf_Schema are used to make

the migration DBMS independent. A proof-of-concept implementation shows the viability of

the approach for simple relational databases.

 3

Table of Contents

1 Introduction

2 Background

 2.1 Semantic Web and RDF

2.2 Amos II

2.3 SWARD

3 The SARD system

 3.1 Usage Example

 3.2 Implementation

 3.2.1 The RDF-Archiver

 3.2.2 The RDF-Loader

4 Conclusion and Future Work

 4

1 Introduction
Relational databases are extensively used for storing information. In many cases long time

archival and restoring the data in relational databases is of prime importance. Each DBMS

vendor provides tools for archival and restoration of the vendor’s relational databases.

However, these tools are only standardized for migrating relational data between different

versions of the database of the same vendor. This is problematic when migrating data of a

relational database from one vendor's database to another vendor. Changing DBMS vendor

requires unloading the data into a sequential file and then reloaded the file into a new

database. This requires that the sequential unload format is DBMS vendor independent and

such a standard for archiving relational databases is not defined. Furthermore, for long term

storage of relational databases beyond the lifetime of a DBMS product it is desired to have the

archived data stored in a database independent format.

One of the goals with the semantic web initiative is to provide schema descriptions, called

ontologies, for different kinds of web resources. Metadata and ontologies play major roles for

retrieving and combining information from different sources. RDF and RDF-Schema are the

W3C standards for describing the information used in the semantic web. RDF allows

annotation of web resources (e.g. URLs) with properties and property values. While RDF

allows to associate any property with any web resources, the extended language RDF-Schema

[1] is used to define schemas of web resources. With RDF-Schema standardized properties,

i.e. ontologies, are defined for different application domain. They are similar to relational

database schemas.

The purpose of this project is to implement a system, SARD (Semantic Web Archival of

Relational Databases), to demonstrate semantic web based archiving and loading of relational

databases. SARD can archive the data of a relational database into a standardized sequential

file and later load back the archived data into another relational database. The following is

developed:

1. An RDF schema representation is defined that can represent both schema and

contents of a relational database.

2. An RDF-archiver module is developed that generates the RDF-schema representation

of a given relational database.

 5

3. An RDF-loader module reloads an archived relational database to recreate the original

relational database.

The implementation of SARD utilizes the SWARD system [13]. SWARD allows the user to

view the contents of a relational database as RDF-Schema, given specification of mappings

between the database schema and the RDF-Schema ontology. The RDF-archiver uses

SWARD for extracting all data stored in the relational database as a query to SWARD’s RDF

view of the relational database. The query extracts all data according to a SARD ontology.

The RDF-loader uses the RDFAmos system [2] to parse an RDF-Schema document and then

apply database operations on the parsed RDF statements. The RDF loader calls SQL

statements that recreates the relational database schema and populates the new database.

This project is proof of concept only and is developed for only very simple relational

databases. The system can archive tables having only the basic data types VARCHAR,

INTEGER, DATE, and FLOAT. Other database features such as compound keys, foreign

keys, triggers, constraints, advanced datatypes, etc. are not handled.

 6

2 Background
SARD is based on the following technologies: relational databases, RDF, SWARD, and

Amos II. The concepts of relational databases are assumed known to the reader and are

described in many text books, e.g. [14].

2.1 Semantic Web and RDF

In a relational database the description of tables is provided by the schema. Similarly semantic

web [3] representations can be used to describe the schema of web resources. The semantic

web is a way of representing World Wide Web information, in which the information is

expressed not only for interfacing users as with HTML, but also in a form so that that is

understandable and used by programmers and programs.

RDF [4] is the basic language for describing web contents used in the semantic web. Any

expression in RDF is represented as a collection of RDF triples [4], also called RDF

statements. A set of such triples is called an RDF graph. An RDF triple contains three

components:

• The subject is used to identify the entity described by the statement. For example, if

we consider an RDF statement that states that the document in

http://www.example.org/index has a language whose value is English then the subject

of the statement is http://www.example.org/index.

• The predicate identifies the property of the subject described by the statement. The

predicate for the example statement is a property describing languages of subjects. It is

identified, e.g., by the URL http://www.purl.org/Language, defined in the Dublin

Core ontology [5].

• The object identifies the value of the property. The object for the above statement is

the string (literal) “English”.

In all RDF triples the subject must be a URI or a blank node. A URI reference is a Unicode

string with an optional fragment identifier at the end. If we consider the URI

http://www.example.org/schemas/vechicles#motorvehicle, #motorvehicle is the optional

fragment. A blank node represents an anonymous internal URI. The predicate must be a URI

often defined in some ontology. The object can be a URI, a blank node, or a literal. Literals

 7

are used to define constant values. There are two kinds of literals: a plain literal is a string and

a typed literal is a string with an associated data type URI. In this work we consider plain

literals only. An RDF triple can be illustrated by a node and directed-arc diagram, in which

each triple is represented as a node-arc-node link (Figure 2.1.1).

Figure 2.1.1: RDF Triple

For example, the triple in Fig.2.1.2 represent the RDF statement

“http://www.example.org/index has a property language whose value is English”.

Figure 2.1.2: RDF Statement

The extended language RDF-Schema (RDFS) [1] also provides a class system. RDF-Schema

is used to define standardized properties for different application domains, analogous to

relational database schemas. The classes defined for a specific application is called a schema

or an ontology. Different RDF-Schemas have been developed for different kinds of web

 Subject

 Object

Predicate

http://www.purl.org/Language

http://www.example.org/index

English

 8

documents, the most well known is Dublin Core [5], Open Directory [6], and RSS [7]. In this

project we investigate how RDF-Schema can be used as a sequential text format for

representing both schemas and contents of relational databases. This would allow RDF-

Schema to be used for long term archiving of relational databases.

A class in RDF-schema has similar meaning as a class in object-oriented programming

languages such as Java. Using RDF classes we can represent any kind of object such as

places, movie types, and so on. The specification of the class c of a subject s is done by a

triple <s, rdf:Class,c>1 stating that the class of s is the URI c. Each class c can have an

number of allowed properties pi defined by triples <c, rdfs:Property, pi >2. Figure 2.1.4

illustrates how classes and properties are defined corresponding to the schema of the

relational table AUTHORS relational Table in Figure: 2.1.3(b). The relational tables in Figure

2.1.3 (a) and (b) are used as to illustrate SARD.

SERVICENR EID NAME

1 ABC1234H Issuing a birth certificate

2 ABC1234H Online payment

Figure: 2.1.3 (a): The RELATEDSERVICES table

SURNAME NAME AUTHOR_ID

BARISH GREG 1

BUDD TIMOTHY 2

Figure:2.1.3(b): The AUTHORS table

1 rdf: is an XML Qualified Name (QName) used to represent name space URI: http://www.w3.org/1999/02/22-
rdf-syntax-ns#
2 rdfs: is a QName used to represent name space URI: http://www.w3.org/2000/01/rdf-schema#

 9

Figure 2.1.4: AUTHORS meta-data

The triple format of the above schema example is shown in Figure: 2.1.5. In RDF-Schema a

class is any resource having an rdf:type property whose value is the resource rdf:Class. So

here the class Authors is defined by an RDF URI reference sard:Authors, where namespace

sard: is defined as http://user.it.uu.se/~udbl/sard/exampleDB.

sard:Authors. rdf:type rdfs:Class

sard:Authors. rdfs:Property sard:SURNAME .

sard:Authors. rdfs:Property sard: AUTHOR_ID

http://user.it.uu.se/
~udbl/sard/exampl
eDB#NAME

http://user.it.uu.se/~udbl/sard/exa
mpleDB

http://user.it.uu.s
e/~udbl/sard/exa
mpleDB#AUTH
OR ID

http://user.it.uu.se/~udbl/sard/e
xampleDB#AUTHORS

http://www.w3.org/2000/01/rdf-
schema#Property

http://www.w3.org/2000/01/
rdf-schema#Property

http://www.w3.org/2000/0
1/rdf-schema#Class

http://user.it.uu.se/
~udbl/sard/exampl
eDB#SURNAME

http://www.w3.org/2000/0
1/rdf-schema#Property

 10

sard:Authors. rdfs:Property sard:NAME.

Figure: 2.1.5: Triples describing AUTHORS table

RDF statements are usually represented in an XML-format. Figure: 2.1.6 shows the

RDF/XML format [8] of the above example.

<rdf:RDF xml:lang='en'

xml:base='http://user.it.uu.se/~udbl/sard/exampleDB1#'

xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

xmlns:xsd='http://www.w3.org/2001/XMLSchema'

xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#'>

<rdf:Description ID='AUTHORS'>

<rdf:type resource='http://www.w3.org/2000/01/rdf-schema#Class'/>

</rdf:Description>

<rdf:Description ID='SURNAME'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#AUTHORS'/>

<rdfs:range rdf:resource='xsd:string'/>

</rdf:Description>

<rdf:Description ID='NAME'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#AUTHORS'/>

<rdfs:range rdf:resource='xsd:string'/>

</rdf:Description>

<rdf:Description ID='AUTHOR_ID'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#AUTHORS'/>

<rdfs:range rdf:resource='xsd:integer'/>

</rdf:Description>

</rdf:RDF>

Figure: 2.1.6 RDF/XML representation of RDF-Schema

 11

SARD uses RDF-schema to represent both the schema and the contents of a relational

database in RDF/XML format.

2.2 Amos II
Amos II [10] is a main-memory DBMS having a functional query language, AMOSQL.

SARD and SWARD are built on top of Amos II. Amos II allows wrapping external data

sources, e.g. relational databases, so they can be queried with AMOSQL. SARD and SWARD

uses a general wrapper of relational databases to archive and reload the contents of relational

databases. The relational wrapper streams data though Amos II, rather than loading it into the

database in Amos II, which makes the system work for relational databases of any size.

SARD is implemented as Amos II interface functions that archive and reload the relational

databases.

The basic concepts of the Amos II data model are objects, types and functions:

 Objects represent all entities that are stored in an Amos II database. Every object is an

instance of a type. Literal objects are self identifying and instances of built in data types like

Charstring, Integer, Boolean, or Real. Objects that are not treated as literal objects are called

as surrogate objects that have unique object identifiers.

Types are used to structure and group objects. A type hierarchy relates sub- and super-types.

Functions are used for representing attributes of objects, to make relationship between

objects, and to do operations on objects. The signature of a function consists of its name and

the types of its arguments and results, e.g.:

header(Charstring namespace, Charstring dbname) -> Charstring

There are four kinds of functions:

1. A stored function represents object properties explicitly stored in a table inside Amos

II. For example, in SARD a stored function header represents the header of the

archive RDF files given the namespace for SARD (sard:) and the name of the

relational database to archive:

create function header(Charstring namespace, Charstring dbname)

 -> Charstring as stored.

 12

2. A derived function is defined by a query statement similar to relational database

views. For example,

create function table_name_down(JDBC jd) -> Charstring

 as select tname

 from Charstring tname, Charstring catalog, Charstring schema,

 Charstring owner, Charstring relationalname

 where tables(jd) = <tname,catalog,schema,owner,relationalname>

 and c4=tables

SARD uses this derived function to retrieve the names of the tables in a relational

database.

3. A foreign function is defined in a programming language, e.g. JAVA, C/C++ or Lisp.

Foreign functions are used internally by SWARD to access relational databases.

4. A procedure is a function with side effects. SARD uses stored procedures to

implement side effect actions, such writing and reading RDF files.

2.3 SWARD

The SWARD (Semantic Web Abridged Relational Databases) [13] system provides RDF

views of data stored in an existing relational database. SWARD allows querying a relational

database in terms of some RDF ontology. It extracts data from a relational database as a single

relation of triples, called the Universal Property View, UPV. The UPV is defined as a union of

a schema view and a content view, where the former represents the relational schema and the

latter its contents. SWARD generates the UPV automatically for a user specified relational

database and ontology. The user must specify the property mappings that map the names for

table columns to RDFS properties and class mappings that map table names to RDFS classes.

To explain the SWARD system we use the example database that contains two tables named

RELATEDSERVICES and AUTHORS in Figure 2.1.3(a) and Figure: 2.1.3(b).

SWARD uses following Amos II procedures to generate the UPV of a database automatically:

• ExportRDB(Charstring UPV)-> Boolean

 13

The argument of the above procedures is the chosen name of the UPV. In SARD the UPV

name is always the same, “myUPV”. However, in order to export the relational database

SWARD requires to specify property and class mapping tables for mapping column and table

names to the used ontology. In SARD these tables are generated automatically by the RDF-

archiver by iterating through all the tables in the relational database to archive and construct a

URI for each table by appending each table name with the namespace sard: . sard: is defined

as the URI http://user.it.uu.se/~udbl/sard/exampleDB. The class mapping table for the

example database is shown in Table 2.2.1.

Table ClassID

RELATEDSERVICES sard:/RELATEDSERVICES

AUTHORS sard:/AUTHORS

Table 2.2.1: Class mapping table

The system iterates through all columns in the all tables of the relational database to unload

and generates a URI by concatenating the table name and column name to the namespace

:sard. The column mapping table for the example database is illustrated by the following

Table 2.2.2.

Table Column PropID

RELATEDSERVICES NAME sard:/RELATEDSERVICES#NAME

RELATEDSERVICES SERVICENR sard:/RELATEDSERVICES#SERVICENR

RELATEDSERVICES EID sard: /RELATEDSERVICES#EID

AUTHORS SURNAME sard:/AUTHORS#SURNAME

AUTHORS NAME sard: /AUTHORS#NAME

AUTHORS AUTHOR_ID sard: /AUTHORS#AUTHOR_ID

Table 2.2.2: column mapping table

 14

3. The SARD system

This chapter explains how SARD works with a simple usage example, followed by a

description of its architecture.

3.1 Simple Usage Example

Two user interface procedures are defined to archive a relational database and later reload an

archived database:

• SARDUnload(Charstring jdbc_id, /* JDBC URL */
 Charstring driver, /* JDBC driver */
 Charstring user, /* RDB user name */
 Charstring passw, /* RDB password */
 Charstring dbname) /* Source DB name */
) -> Charstring

• SARDLoad(Charstring jdbc_id, /* JDBC URL */

 Charstring driver, /* JDBC driver */
 Charstring user, /* RDB user name */
 Charstring passw, /* RDB password */
 Charstring dbname) /* Source DB name */

) -> Charstring

The arguments used in the above functions are the JDBC connection identifier for the

relational database, the JDBC driver name, the relational database user name, the user

password, and the name of the relational database we want to archive and load back.

Next we show how our simple example database in Figure 2.1.3 is archived and loaded back

using SARD.

Archiving:

First the user sets the variable :jdbc to the identifier of the JDBC connection for the relational

database (Firebird, http://www.firebirdsql.org/).

 set :jdbc = "jdbc:interbase://localhost/C:/Program/Firebird/bin/reloadDB.gdb";

The database is archived under the name exampleDB by calling:

 15

 SARDUnload(:jdbc, “interbase.interclient.driver”, “SYSDBA”, “masterkey”,

”exampleDB”);

SARDUnload returns “Archival successful” if we are succeeding to generate the RDF files.

Two RDF files are generated: one for the database schema and one for the contents. The

generated RDF files are shown in the Figure: 3.3.1 and Figure: 3.3.2.

Loading:

In order to reload an archived database the user first has to create a new empty relational

database (not described here) and then run SARD to reload the archived RDF files into the

new database.

The user binds a variable :jdbc to the JDBC identifier of the empty relational database:

 set :jdbc = "jdbc:interbase://localhost/C:/Program/Firebird/bin/reloadDB.gdb";

Then SARDLoad is called to create the relational database schema and populate the database:

 SARDLoad(:jdbc, “interbase.interclient.driver”, “SYSDBA”, “masterkey”, ”exampleDB”);

The output of the above function is the string “Tables are updated” if we succeed to reload the

database using archived RDF files.

/* generated RDF schema is stored in a RDF file “exampleDB_schema.rdf”*/

<rdf:RDF xml:lang='en'

xml:base='http://user.it.uu.se/~udbl/sard/exampleDB#'

xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

xmlns:xsd='http://www.w3.org/2001/XMLSchema'

xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#'>

<rdf:Description ID='AUTHORS'>

<rdf:type resource='http://www.w3.org/2000/01/rdf-schema#Class'/>

</rdf:Description>

<rdf:Description ID='SURNAME'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

 16

<rdfs:domain rdf:resource='#AUTHORS'/>

<rdfs:range rdf:resource='xsd:string'/>

</rdf:Description>

<rdf:Description ID='NAME'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#AUTHORS'/>

<rdfs:range rdf:resource='xsd:string'/>

</rdf:Description>

<rdf:Description ID='AUTHOR_ID'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#AUTHORS'/>

<rdfs:range rdf:resource='xsd:integer'/>

</rdf:Description>

<rdf:Description ID='RELATEDSERVICES'>

<rdf:type resource='http://www.w3.org/2000/01/rdf-schema#Class'/>

</rdf:Description>

<rdf:Description ID='NAME'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#RELATEDSERVICES'/>

<rdfs:range rdf:resource='xsd:string'/>

</rdf:Description>

<rdf:Description ID='SERVICENR'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#RELATEDSERVICES'/>

<rdfs:range rdf:resource='xsd:integer'/>

</rdf:Description>

<rdf:Description ID='EID'>

<rdf:type resource='http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>

<rdfs:domain rdf:resource='#RELATEDSERVICES'/>

<rdfs:range rdf:resource='xsd:string'/>

</rdf:Description>

</rdf:RDF>

 17

Figure 3.1.1: RDF Schema representation of example database

/* generated RDF data is stored in a RDF file “exampleDB_data.rdf”*/

<rdf:RDF xml:lang='en'

 xmlns:dbs='http://user.it.uu.se/~udbl/sard/exampleDB#'

 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

 xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#'>

<dbs:AUTHORS about='http://user.it.uu.se/~udbl/sard/exampleDB1/AUTHORS#AUTHOR_ID/1'>

<dbs:SURNAME>BARISH</dbs:SURNAME>

<dbs:NAME>GREG</dbs:NAME>

<dbs:AUTHOR_ID>1</dbs:AUTHOR_ID>

</dbs:AUTHORS>

<dbs:AUTHORS about='http://user.it.uu.se/~udbl/sard/exampleDB1/AUTHORS#AUTHOR_ID/2'>

<dbs:SURNAME>BUDD</dbs:SURNAME>

<dbs:NAME>TIMOTHY</dbs:NAME>

<dbs:AUTHOR_ID>2</dbs:AUTHOR_ID>

</dbs:AUTHORS>

<dbs:RELATEDSERVICES

about='http://user.it.uu.se/~udbl/sard/exampleDB/RELATEDSERVICES#SERVICENR/1'>

<dbs:NAME>Issuing a birth certificate</dbs: NAME>

<dbs:SERVICENR>1</dbs:SERVICENR>

<dbs:EID>ABC1234H</dbs:EID>

</dbs:RELATEDSERVICES>

<dbs:RELATEDSERVICES

about='http://user.it.uu.se/~udbl/sard/exampleDB/RELATEDSERVICES#SERVICENR/2'>

<dbs: NAME>Online payment</dbs: NAME>

<dbs:SERVICENR>2</dbs:SERVICENR>

<dbs:EID>ABC1234H</dbs:EID>

</dbs:RELATEDSERVICES>

</rdf:RDF>

Figure: 3.1.2: RDF representation of example database contents

.

 18

3.2 Implementation

Figure 3.2: SARD System architecture

Destination
Database

Source
Database

Archive RDF-files
(ARF)

RDF-archiver

RDF-Loader

SARD

 19

The modules of the SARD system are.

• The RDF-archiver exports the relational database schema and contents as RDF

statements stored in two separate archive RDF files called the schema file and the

contents file, respectively.

• The RDF-loader loads back the archived relational database by reading the archive

RDF files. First the schema file is loaded to define the relational schema; then the

contents file is loaded to populate the database.

3.2.1 The RDF-archiver

Figure 3.3.1 illustrates the implementation of the RDF-archiver:

 20

Figure 3.3.1: The RDF-archiver

Source
Database

Generate SWARD
mapping tables

Generate SWARD
UPV

Schema
Generator

Content
Generator

Schema
Archival

Content
Archival

 21

The schema and content files are generated as follows:

Generating SWARD mapping tables:

A connection is made to the source database and then the class mapping table and property

mapping table are automatically generated by calling the following Amos II functions:

• table_map(Charstring upv)-> Charstring (For class mappings)

• column_map(Charstring upv)-> Charstring (For property mappings)

These two functions take an UPV name as the argument. The table_map function iterates

through all the tables in the relational database to construct the URIs of the tables and the

columns. Similarly column_map function generates the property mapping table by mapping

through all columns of all tables in the relational database.

The UPV is automatically generated by SWARD by calling ExportRDB when the mapping

tables are generated by SARD.

Generating schema and contents files:

For writing the RDF files representing the schema and contents of the relational database

SARD uses the following functions:

• allclassXML(JDBC jd, Charsting dbname, Charstring upv)-> Bag of Charstring

 (For Schema)

• allXMLclass(JDBC jd, Charstring dbname)-> Bag of Charstring

 (For Contents)

Both functions take a JDBC connection object jd and the name of the relational database

dbname as arguments. A JDBC connection object is an Amos II object representing a

connection to an relational database. The argument upv is the UPV name which is always the

string “myUPV”. The written RDF Schema and contents files are named by concatenating

the name of the relational database with the “_schema.rdf” and “_data.rdf”, respectively. For

example if the name of the database is the “exampleDB” then the file names are:

• “exampleDB_schema.rdf” (For Schema)

• “exampleDB_data.rdf” (For Contents)

 22

When generating the RDF schema file we allow only a small set of data types of the relational

database. Table: 3.3.3 lists the data types which can be handled by SARD.

Data type Mapping Name

Integer xsd:integer

Float xsd:float

Varchar xsd:string

Date xsd:date

Table 3.3.3: Column data types supported

3.2.2 The RDF-loader

The RDF-loader reads back the archived relational database into the new database from the

archived RDF files. It is illustrated by Figure: 3.3.2.

 23

Figure 3.3.2: The RDF-loader

The RDF-loader uses internally the RDFAmos wrapper to extract the database information

from the archived RDF files in the submodule RDF-streamer. RDFAmos uses Jena [15] to

parse a RDF/XML file to generate a stream of RDF triple representated in Amos II. In the

RDF-loader RDFAmos parses the unloaded schema and contents files. The following

RDFAmos function parses an RDF file:

• parseRDF(Charstring file) -> < Charstring sub, Charstring pred, Charstring obj,

Integer int >

Archived
schema file

Archived
contents file

RDF-loader

Destination database

RDF-streamer

 24

The RDF-loader uses following functions to generate the schema and contents of the

relational database from the archived RDF files

• generate_table_query(JDBC jd, Charstring contentfile, Charstring schemafile,

Charstring tname, Charstring namespace) -> Charstring

• updatetable(JDBC jd, Charstring contentfile, Charstring schemafile, Charstring

tname, Charstring namespace) -> Charstring

These two functions takes a JDBC connection identifier, the RDF data file name, the RDF

schema file name, table name and name space of SARD (sard:) as arguments. First function

used to generate the required tables from the xml files and then creates the tables in the new

database, the second function used to insert the values in the created tables.

SARDunload calls the above functions.

Table 3.3.4 describes internal functions used by SARD.

Function Task

parseRDF(Charstring file) ->

<Charstring sub, Charstring pred, Charstring obj,

Integer int>

To generate the triples from an

RDF/XML file. Implemented by

RDFAmos wrapper.

get_colinfo(Charstring schemafile, Charstring

namespace, Charstring tname) -> <Charstring type,

Charstring column>

To get a column name and its type for

a specific table.

get_pkey(Charstring contentfile, Charstring

schemafile,Charstring namespace,Charstring tname,

Charstring namespace) -> Charstring column

To get the primary key of the table

generate_create_table_query(JDBC jd,Charstring

schemafile, Charstring contentfile, Charstring tname,

Charstring namespace) -> Charstring

To generate the SQL statement for

creating a table

updatetable(JDBC jd,Charstring schemafile ,

Charstring contentfile,Charstring tname, Charstring

namespace) -> Charstring

To insert the values in the table

sqlu(JDBC jd,Charstring query) -> Integer int To update the SQL query in Amos II.

Table 3.3.4: Internal functions called and their tasks

 25

4. Conclusion and Future work

We have developed a system SARD that automatically archives the data in simple relational

databases into an RDF/XML-based relational database representation. SARD can later reload

archived data to reconstruct the relational database. Both the relational database sceham and

the contents of the relational tables can be archived and reloaded.

The system is a very simple proof-of-concept implementation and needs to be generalized in

many ways, e.g.:

• This system currently works only for only Firebird databases and should work for any

relational database. One problem here is how to handle non-standard SQL features.

• SARD can handle only non-compound primary keys which should be generalized.

• The supported set of data types of the columns is very limited and should be extended.

• Complete handling of all or most relational database features should be supported.

• The system performance should be improved to provide scalable archival and loading

of large relational databases.

 26

References:

[1]. Dan Brickely, R.V.Guha : RDF Vocabulary Description Language 1.0: RDF Schema

http://www.w3.org/TR/rdf-schema/

[2]. P.Gray, L.Kerschberg, P.King, and A.Poulovassillis: Functional Queries to Wrapped

Educational Semantic Web Meta-data, in Functional Aproach to Data Management –

Modeling, Analyzing and Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4,

2003.

http://user.it.uu.se/~torer/publ/semfdm.pdf

[3]. W3C: Semantic Web Activity

http://www.w3.org/2001/sw/

[4]. G.Klyne and J:J. carroll: Resource Description Framework (RDF): Concepts and Abstract

Syntax, W3C Working Draft,

http://www.w3.org/TR/rdf-concepts/, 2004

[5]. Dublin Core Metadata Initiative:

http://dublincore.org/

[6]. Open Directory Project:

http://www.dmoz.org/

[7]. RDF Site Summary (RSS) 1.0:

http://web.resource.org/rss/1.0/

[8]. F.Manola, E.Miller: RDF Primer, W3C Working Draft.

http://www.w3.org/TR/rdf-primer/

[9]. SWARD – Semantic Web Abridged relational Databases.

http://user.it.uu.se/~udbl/sward/

 27

[10]. T. Risch, V.Josifovski,T.Katchaounov: Functional Data Integration in a Distributed

Mediator System in P.Gray, L.Kerschberg, P.King, and A.Poulovassillis (:eds): Functional

Aproach to Data Management – Modeling, Analyzing and Integrating Heterogeneous Data,

Springer, ISBN 3-540-00375-4, 2003.

http://user.it.uu.se/~torer/publ/FunMedPaper.pdf

[11]. D.Elin and T.Risch: Amos II Java Interfaces

http://user.it.uu.se/~torer/publ/javaapi.pdf

[12]. T.Risch: Amos II External Interfaces, UDBL Technical Report

http://user.it.uu.se/~torer/publ/external.pdf

[13] J.Petrini and T.Risch: Scalable Queries to RDF Views of Relational Databases

http://user.it.uu.se/~udbl/sward/SWARD.pdf

[14] Ramez Elmasri and Shamkant B.Navathe: Fundamentals of Database systems, 5th

Edition, Addison-Wessely, 2007.

[15] Jena – A Semantic Web Framework for Java http://jena.sourceforge.net/

