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Abstract
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This Thesis addresses how Semantic Web representations, in particular RDF, can enable flexible
and scalable preservation, recreation, and querying of databases.

An approach has been developed for selective scalable long-term archival of relational
databases (RDBs) as RDF, implemented in the SAQ (Semantic Archive and Query) system.
The archival of user-specified parts of a RDB is specified using an extension of SPARQL, A-
SPARQL. SAQ automatically generates an RDF view of an RDB, the RD-view. The result of
an archival query is RDF triples stored in: i)a data archive file containing the preserved RDB
content, and ii)a schema archive file containing sufficient meta-data to reconstruct the archived
database. To achieve scalable data preservation SAQ uses special query rewriting optimizations
for the archival queries. It was experimentally shown that they improve query execution time
compared with naïve processing. The performance of SAQ was compared with that of other
systems supporting SPARQL queries to views of existing RDBs.

To reconstruct an RDF-archived RDB an approach was developed and implemented in the
reloader module of SAQ. When an archived RDB is to be reconstructed, the reloader first
reads the schema archive file and executes a schema reconstruction algorithm to automatically
construct the RDB schema. The thus created RDB is populated by reading the data archive
and converting the read data into relational attribute values. For scalable reconstruction of RDF
archived data we have developed the Triple Bulk Load (TBL) approach where the relational
data is reconstructed by using the bulk load facility of the RDBMS. Our experiments show that
the TBL approach is substantially faster than the naïve Insert Attribute Value (IAV) approach,
despite the added sorting and post-processing.

To view and query the semi-structured data Topic Maps as RDF the prototype system, TM-
Viewer was implemented. A declarative RDF view of Topic Maps, the TM-view is automatically
generated by the TM-viewer using a developed conceptual schema for the Topic Maps data
model. To achieve efficient query processing of SPARQL queries to the TM-view query rewrite
transformations were developed and evaluated. It was shown that they significantly improve
the query processing time.
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1 Introduction  

The importance of digital preservation research has been growing for the 
past ten-fifteen years. Many papers and books [1][28][77] describing prob-
lems, tools, and techniques for digital preservation, have been written, and 
standards providing preservation models have been published [57][67]. 
However, most of the work focuses on preservation of file-based digital ob-
jects like documents, images, and web pages [1]. Much less work has fo-
cused on the preservation of structured data, i.e. databases and scientific 
data, where there is a recognized need to preserve scientific data 
[1][27][48][51][68]. Furthermore, preserving scientific data together with 
scientific publications would contribute to documenting the origin and line-
age of scientific achievements [27]. For this a concept of ‘Scientific Publica-
tion Packages (SPPs)’ was introduced in [27]. The SPPs were described as 
composite digital objects linking experimental raw data, associated with 
metadata, ‘derived information’, and knowledge, including associated publi-
cations.  

Scientific data, i.e. experimental and observational data, as well as data 
generated by instruments and sensors, reside in large datasets that are often 
stored in databases. During the research process the scientists need to select 
subsets of these databases to be analyzed and processed in order to create a 
scientific model. Once the model is validated the research results are docu-
mented and published. By preserving the selected subsets of both data and 
publications within one digital object, future reuse, verification, and heritage 
[77] of the published scientific results can be guaranteed.  

Selective data preservation is needed also for example in cases of medical 
data preservation where, in order to protect the privacy of patients, sensitive 
data like zip code, dates of birth, salaries, etc. should be excluded from ar-
chiving [40]. Other examples are when selecting representative geospatial 
data for preservation [43] or preserving web resources based on some criteria 
[28]. 

For long-term preservation of data, it is desirable for the contents of a da-
tabase to be saved in a neutral format, so that it can be reconstructed and 
used after a very long time using current technologies for data representa-
tion, which are continuously evolving. Furthermore, preserved representa-
tions must include sufficient meta-data to retrieve, explain, reproduce, and 
disseminate the experiments.  
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The Semantic Web is a universal medium for data, information, and 
knowledge exchange. It uses standard formats like RDF (Resource Descrip-
tion Framework) [16][17], RDFS (RDF-Schema) [11] and OWL (Web On-
tology Language) [13] to enable integration and combination of data from 
different sources. RDF is a simple metadata model where all data is repre-
sented as triples, while RDFS is a set of classes with certain properties to 
represent RDF data. SPARQL [66] is the standard query language for query-
ing RDF triples data.  

XML (Extensible Markup Language) [76] is another data representation 
standard where data is encoded in a text format that is both human-readable 
and machine-readable. It is simple and general, and therefore it is also used 
for data exchange.  

Both XML and RDF along with RDFS are neutral data formats that do 
not rely on current DBMS technology and provide hardware and software 
independence. This makes both of them suitable for long-term preservation 
of databases. However, RDF has the following advantages compared to 
XML: 

• RDF provides URIs, which are universal global unique identifiers 
that allow identifiers from one database or table to be linked with 
identifiers from other data.  

• Data can be represented as XML in many different ways described 
by a DTD (Document Type Definition) grammar or XML schema 
data types [32] while RDFS provides standard meta-data represen-
tation for describing semantics of data, including relational data-
bases [21].  

• RDF facilitates interoperation because its data model can be ex-
tended to address sophisticated ontologies [60].  

• Representing relational data as RDF allows migration from RDBs 
to RDF repositories which are gaining increasing popularity com-
pared to XML native repositories [2][4]49[64][79].    

RDF based neutral formats seem promising as a database technology-
independent format for long-term preservation of data, which provides stan-
dard meta-data representation for all kinds of data, including relational data-
bases. 

This Thesis addresses how Semantic Web representations, in particular 
RDF, can enable flexible and scalable preservation, reconstruction, and que-
rying of databases. The following overall research questions are studied: 

1. How can different kinds of databases be preserved in terms of RDF 
views of the databases? In particular: 
a. How should structured data, in particular relational databases 

be represented as RDF views? 
b. How should semi-structured data, in particular Topic Maps be 

represented as RDF views? 
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2. How can queries to RDF views enable flexible preservation of da-
tabase contents? 

3. How should such archival queries to RDF views be optimized? 
a. What kinds of novel query processing strategies are useful for 

scalable relational database preservation by archival queries? 
b. What kinds of query processing strategies are useful for Topic    

Map queries? 
4. How can relational databases be scalably reconstructed from ar-

chived RDF representations? 
 
To answer the above research question two prototype systems have been 

developed and evaluated: 
I SAQ (Semantic Archive and Query) – a system for long-term pres-

ervation, querying and reconstruction of structured data, i.e. 
relational databases in terms of RDF. 

II Topic Map Viewer (TM-Viewer) – a system for view and querying 
semi-structured data, i.e. Topic Maps data in terms of RDFS. 

The following sections present an overview of the prototype systems and 
how they answer the research questions.  
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2 Motivating Example 

This chapter presents a motivating example for selective preservation and 
reconstruction of a relational database as RDF. 

 Figure 2.1 shows an example of a small relational database Ebird for 
storing bird watching data from Avian Knowledge Network [3]. It contains 
four tables occurrence, taxon, event, and location, storing data about an oc-
currence of a bird at some event and location. The primary keys of the tables 
are the following: oid is the primary key in occurrence, tid is the primary 
key in taxonomy, eid is the primary key in event, and lid is the primary in 
location. The attributes taxon and event in occurrence are foreign keys refer-
encing tables taxonomy and event respectively. Likewise, the attribute loca-
tion in table event is a foreign key referencing table location. 

A SAQ user preserves taxonomy data about the bird Parula_americana 
and data about all locations where this bird has been seen executing the fol-
lowing A-SPARQL query to the RDF view named <Ebird> representing the 
RDB Ebird:   
 
 
 
 
 
 
 

Table occurrence                                       Table location 
oid recordedBy event taxon  lid country stateProvince 
1 Obs6453 1 63  2 USA Florida 
2 Obs6453 1 65  3 USA New York 
3 Obs1000 2 63     

 
Table taxonomy                                        Table event 
tid name genus  eid eventDate location 
63 Parula_americana Parula  1 2003-06-07 2 
65 Parula_superciliosa Parula  2 2003-10-08 3 

 
Figure 2.1. Ebird database 
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ARCHIVE AS ‘data.nt’, ‘schema.nt’ 
FROM <Ebird> 
TRIPLES  
{?subject1 ?property1  ?value1        } 
WHERE  
{?subject1 rdf:type   ebird:taxonomy . 
 ?subject1  ebird:taxonomy_name  “Parula_americana”} 
   UNION 
TRIPLES 
{?subject2 ?property2  ?value2      } 
WHERE  
{?subject2 rdf:type  ebird:location . 
 ?subject3 rdf:type  ebird:event . 
 ?subject3 ebird:event_location ?subject2 . 
 ?subject4 rdf:type  ebird:occurrence . 
 ?subject4 ebird:occurrence_event  ?subject3 . 
 ?subject4 ebird:occurrence_taxon  ?subject5 . 
 ?subject5 rdf:type  ebird:taxonomy . 
 ?subject5 ebird:taxonomy_name “Parula_americana”} 
 
The execution of the above archival query produces two N-Triples [46] 

files:  
1) The data archive file, ‘data.nt’, containing the archived bird taxon-

omy and locations data.  
2) The schema archive file, ‘schema.nt’, containing the schema infor-

mation required for reconstructing the parts of the RDB schema de-
scribing the archived data.  

<ebird:taxonomy> 
<ebird:taxonomy> 
<ebird:location> 
<ebird:location> 
<ebird:taxonomy_tid> 
<ebird:taxonomy_tid> 
<ebird:taxonomy_tid> 
<ebird:taxonomy_tid> 
<ebird:taxonomy> 
:_taxonomy_PrK . 
:_taxonomy_PrK . 
<ebird:taxonomy_genus> 
<ebird:taxonomy_genus> 
<ebird:taxonomy_genus> 
<ebird:taxonomy_genus> 
 

<rdf:type> 
<saq:TName> 
<rdf:type> 
<saq:TName> 
<rdf:type> 
<saq:AName> 
<rdfs:domain> 
<rdfs:range> 
<saq:Primary_key> 
<rdf:type> 
<rdf:_1> 
<rdf:type> 
<saq:AName> 
<rdfs:domain> 
<rdfs:range> 

<rdfs:Class> . 
“taxonomy” . 
<rdfs:Class> . 
“location” 
<rdf:Property>  . 
“tid” . 
<ebird:taxonomy> . 
<xsd:integer> . 
:_taxonomy_PrK . 
<rdf:Seq> . 
<ebird:taxonomy_tid> . 
 <rdf:Property> . 
“genus” . 
<ebird:taxonomy>  . 
<xsd:String> . 

Figure 2.2. Data archive ‘schema.nt’ 
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Part of the ‘schema.nt’ is shown in Figure 2.2, while ‘data.nt’ is shown in 
Figure 2.3. The namespace ebird in both ‘schema.nt’ and ‘data.nt’ is used as 
a prefix for an ontology describing the archived RDB Ebird. When the ar-
chived database is re-created as a relational database the schema archive 
‘schema.nt’ is first read and the RDB schema of the reconstructed RDB, 
named r_Ebird in Figure 2.4 is created. It contains only the parts of the ta-
bles of the RDB in Figure 2.1 archived by the archival query. Then the RDB 
is populated by reading the data archive ‘data.nt’. 

 
 

<ebird:taxonomy/63> 
<ebird:taxonomy/63> 
<ebird:taxonomy/63> 
<ebird:taxonomy/63> 
<ebird:location/2> 
<ebird:location/2> 
<ebird:location/2> 
<ebird:location/2> 
<ebird:location/3> 
<ebird:location/3> 
<ebird:location/3> 
<ebird:location/3> 
 

<rdf:type> 
<ebird:taxonomy_name> 
<ebird:taxonomy_tid> 
<ebird:taxonomy_genus> 
<rdf:type> 
<ebird:location_country> 
<ebird:location_stateProvince> 
<ebird:location_lid> 
<rdf:type> 
<ebird:location_lid> 
<ebird:location_country> 
<ebird:location_stateProvince> 
 

<ebird:taxonomy> . 
“Parula_americana”  
“63”^^<xsd:int> . 
“Parula” . 
<ebird:location> . 
“USA” . 
“Florida” . 
“2”^^<xsd:int> . 
<ebird:location> . 
“3”^^<xsd:int>  . 
“USA” . 
“New York” . 

Figure 2.3. Data archive ‘data.nt’ 

Table taxonomy                             

tid name genus 
63 Parula_americana Parula 

 

Table location    
lid country stateProvince 
2 USA Florida 
3 USA New York 

 

Figure 2.4. The reconstructed RDB r_Ebird 
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3 Technical Background 

This chapter presents the technical background of the major technologies for 
preservation, reconstruction and querying of databases in terms of Semantic 
Web representations. 

3.1 Relational Database Management Systems 
A database is a large collection of data, while a database management sys-
tem (DBMS) is a collection of programs that enables users to create and 
maintain a database [56]. The DBMS is a general-purpose software system 
for: 

• Defining a database by specifying the data types, structures and 
constraints of the data to be stored in the database; 

• Constructing the database, which is the process to store the data on 
a storage medium controlled by the DBMS; 

• Manipulating a database involves querying the database to retrieve 
data and also update the database; 

• Sharing a database allows multiple users and programs to access 
the database simultaneously. 

Data model and Query Language in RDBMS 
A relational database management system (RDBMS) is a DBMS that is 
based on the relational data model introduced by Codd [14]. In the relational 
data model all data is represented in terms of tuples or rows, grouped into 
relations described as 2-dimensional tables with one or several columns.  

An example of a small relational database is shown in Figure 2.1. The da-
tabase called Ebird stores data about appearance of birds at some event and 
location. It contains four tables occurrence, taxon, event, and location.  

In the relational model a user defines queries in a high-level query lan-
guage where the Structured Query Language (SQL) is the most widely used. 
SQL queries allow the user to describe desired data to retrieve, leaving the 
RDBMS to decide how the data should be accessed. The RDBMS, not the 
user is responsible for planning, optimizing, and performing the physical 
operations necessary to produce the result. 
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For example, the SQL query in Figure 3.1 retrieves the countries and 
provinces where the bird species ‘Parula americana’ has been seen during 
the period from June until October 2003 

The scope of SQL includes data insert, query, update and delete, schema 
creation and modification, and data access control. Although SQL is par-
tially a declarative language, it also includes procedural elements.  

Query processing in RDBMS 
Figure 3.2 shows the typical query processing steps in a RDBMS [26]. The 
SQL query is first checked for syntactic and semantic correctness by the 
query parser and validator, respectively. For example, it is checked that the 
query refers to only existing table and column names.  

SELECT DISTINCT l.country, l.stateProvince  
FROM location l, taxonomy t, event e, occurrence o 
WHERE t.name=’Parula_americana’ AND o.taxon=t.tid  
AND o.event=e.eid AND e.location=l.lid AND 
e.eventDate>’2003-06-01’ AND e.eventDate<’2003-10-01’  
 

Figure 3.1. Example SQL query to Ebird  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2. Query processing steps in RDBMS 
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The result of parsing and validating the query is an algebraic representa-
tion of the query in the form of a logical query plan in a relational algebra 
that is, a sequence of operators to be executed.  No algorithms have yet been 
assigned to implement the operators in the query plan. The task of the opti-
mizer is to produce an efficient execution plan (strategy) since a query often 
can be executed in numerous ways. Each query plan has a predefined cost 
according to some cost model and the cheapest plan is picked by the opti-
mizer. The ‘cost’ can, for example, be approximated by the number of disk 
accesses performed by the RDBMS when executing a specific query plan. 
For the query optimizer to correctly estimate the cost of alternative query 
plans it is therefore important that there exist valid statistics about data char-
acteristics such as number of rows in a table and the number of different 
values in table column.  

Finally, the resulting physical query plan is interpreted by the execution 
engine producing the result.  
  
 In this Thesis it is presented the SAQ prototype system that automatically 
generates RDF views over relational databases. The RDF view can be que-
ried by SPARQL. SPARQL queries are processed in SAQ so that the system 
generates and sends SQL queries to the back-end RDBMS. The SQL queries 
are cost-based optimized and executed in the RDBMS, and the result is post-
processed in SAQ. 

3.2 Long-term Preservation of Databases 
Most of the work done on digital preservation of data has focused on preser-
vation of digital object in conventional file-based formats like documents, 
images, and web pages [12]. Very little work has been devoted to preserva-
tion of databases despite the fact that databases are central to scientific re-
search [7].  

The databases are different from conventional file-based digital objects 
since they have internal schema and constraints. This is the reason that the 
“existing preservation techniques for fixed digital objects are not suited for 
databases” [7]. Furthermore, “long-term preservation of relational databases 
is much more than just making backups of export or dump files from data-
base management applications, though IT professionals usually use archiv-
ing and backup as synonyms” [23]. 

This section introduces concepts, requirements and existing strategies for 
digital long-term preservation of relational databases. 
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Requirements for Long-term Preservation of Databases 
For long-term preservation of databases it is necessary to preserve the “intel-
ligibility and comprehensibility” of the database as well as its data [23]. It is 
required to collect and store enough metadata together with the archived data 
in order to keep the data understandable and meaningful.  

There are some main requirements during the process of long-term pres-
ervation of databases [23]: 

• Integrity – Data integrity ensures that the data stored in the data-
base is complete, correct and consistent.  

• Intelligibility – Both the database schema and data have to be un-
derstandable and related to what they represent. The database intel-
ligibility is the ability to perceive and interpret the data formats and 
the relationships between the tables and what they represent.  

• Authenticity – It relates the preserved information with its source. 
It can be guaranteed by keeping record of the actors, tools and op-
erations involved in the preservation process.  

• Originality – The data structure has to be “as close to the original 
as possible”. 

• Accessibility – It refers to technical readability and usability 

Open Archival Information System Model Reference 
Open Archival Information System (OAIS) [57] reference model is an ISO 
standard with directives for long-term storage of digital information.  

The data flow diagram for the OAIS model is shown in Figure 3.3. The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3. OAIS data flow diagram 
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OAIS model is composed by four functional units: Ingest, Archival Storage, 
Data Management, and Access. The Ingest unit accepts Submission Informa-
tion Packages (SIPs) and generates Archival Information Packages (AIPs) 
for storage and management. The Archival Storage unit receives AIPs from 
Ingest and adds them to permanent storage. The Data Management unit pro-
vides functions for populating, maintaining, and accessing variety of meta-
data stored in the repository.  The Access unit provides an interface between 
the archive and the consumer.   

An OAIS’ AIP contains Content Information, i.e. the archived data and 
the representational metadata, together with a Preservation Description In-
formation (PDI). The PDI contains reference information, context informa-
tion, provenance information, etc. 

The Preservation Planning unit defines and manages strategies to AIPs to 
move through time without losses and changes the content or functionality. 
It starts long before the digital objects to be moved to a long-term preserva-
tion system and continues throughout their existence. 

The Administration unit contains the services and functions for control-
ling the other OAIS functional units. 

 
The prototype system SAQ provides functionality for the Ingest compo-

nent, in particularly on generating the content information in the AIPs when 
preserving relational database contents as RDF 

Preservation Strategies 
Some well-known strategies for digital preservation are the following: 

• Emulation – preservation strategy where the digital objects are kept 
in their original digital formats since it has “the ability to execute 
the software needed to process data stored in its ’original’ encod-
ings” [34];      

• Encapsulation – preservation strategy that is based on re-creating 
the original technological environment of the application in the fu-
ture [8][62];  

• Migration – preservation strategy that transfers a digital object 
from one technological environment to another [8]. It is used to 
transfer information between systems or applications. 

 
The migration preservation strategy doesn’t preserve digital objects in 

their original formats; instead they are transformed to other more ‘up-to-
date’ formats that users will be able to interpret using common software 
[54]. This can be regarded as a format conversion of the archived digital 
objects. 
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The migration preservation strategy is the one used in the SAQ system 
where relational data and schema is migrated to RDF. 

Existing Solutions for Long-term Preservation of Relational 
Databases 
This section summarizes exiting projects for digital preservation of relational 
databases. 

Digital Preservation Testbed 
The Digital Preservation Testbed [9] is an initiative of the Dutch National 
Archives and the Dutch Ministry of the Interior and Kingdom Relations. It 
studies different strategies for long-term preserving of governmental and 
other type of digital information.  

Digital Preservation Testbed has recommended preservation of relational 
databases as XML. A conversion tool was developed for converting rela-
tional databases in Microsoft Access and Oracle into XML. 

SIARD 
SIARD (Software Independent Archival of Relational Databases) [72] was 
developed as part of the SFA’s (Swiss Federal Archives) ARELDA project 
for digital archiving. 

SIARD is an open standard supported by the SIARD Suite, which can be 
used to convert relational databases into the SIARD format [73]. The SIARD 
format is based on open Standards, e.g. ISO norms Unicode, XML, 
SQL1999 and the industry standard ZIP. 

A relational database archived in the SIARD format [73] consists of two 
components: metadata, describing the structure of the archived database and 
primary data, representing the table contents. The metadata provide also 
information about where to find primary data in the archive. 

Database metadata and primary data are stored together in an uncom-
pressed ZIP archive with the filename extension ".siard". The primary data is 
stored in the folder content and the metadata in the folder header (Figure 
3.4). 

The metadata is stored in a file metadata.xml. The metadata folder con-
tains also an XSD (XML Schema Definition) schema metadata.xsd for XML 
file validation.  

The data from each table is stored in an XML file, table.xml representing 
its rows and columns and a corresponding XSD file, table.xsd. If there are 
Large Objects (LOBs) they are stored in binary files or text in a separate 
folder for each such object. The primary data for each database schema is 
stored in a separated folder sequentially numbered, e.g. schema1, schema2, 
etc. 
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RODA 
Work on relational database preservation as XML was done also in The Por-
tuguese Repository of Authentic Digital Objects project (RODA) [54] run by 
the National Archives of Portugal in partnership with the University of Mi-
nho, Portugal. A prototype system converting relational databases to XML 
that conforms to the OAIS reference model was created.  

RODA uses Database Markup Language (DBML) and XML to migrate a 
relational database into a single XML file containing both the database struc-
ture and data. 

3.3 Semantic Web, RDF, SPARQL 
The term “Semantic Web” refers to the vision of W3C about the Web of 
linked data [82]. The Semantic Web provides a common framework that 
allows data to be shared and reused across application, enterprise, and com-
munity boundaries. It is based on the Resource Description Framework 
(RDF). 

content 
 schema1 
  table1 
   table.xsd 
   table.xml 
   lob1 
    record1.txt / record1.bin 
   lob2 
    record1.txt / record1.bin 
    ... 
  table2 
   table.xsd 
   table.xml 
... 
 schema2 
... 
header 
 metadata.xsd 
 metadata.xml 
 
Figure 3.4. Structure of the SIARD archive file 
 
LOB:  Large Object (BLOB, CLOB) 
XSD: XML-Schema-Definition 
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Resource Description Framework (RDF) 
RDF [16] is a W3C standard for representation of web resources in the 
World Wide Web. It can be seen as a language for representing meta-data 
about resources. 

RDF is intended to be processed by applications, rather than being only 
displayed to people [15]. It provides a common framework for information 
representation so that information can be exchanged between applications 
without loss of meaning. The ability to exchange information between dif-
ferent applications means that the information may be made available to 
applications other than those for which it was originally created. 

RDF is based on identifying things using Web identifiers [15], called Uni-
form Resource Identifiers (URIs) [78]. Furthermore, RDF describes re-
sources in terms of simple properties and property values, which enables 
simple representation as statements about resources. The statements are ex-
pressed by a graph of nodes and arcs representing the resources, and their 
properties and values. For example, the group of statements with data from 
Avian Knowledge Network [3] "A bird identified by the URI 
<ebird:P_americana#2107> from the specie ‘Parula americana’ and genus 
‘Parula’ has been seen in USA, Florida by the bird watcher identified by the 
URI <ebird:Personid#obs6432> could be represented as the RDF graph in 
Figure 3.5. The namespace ebird is a prefix for ontology describing birds 
watching data. 

The statements in RDF are always triples having the shape (subject, pred-
icate, object) where a particular terminology is used for describing their var-
ious parts. The part that identifies the thing the statement is about is called 
the subject, e.g. <ebird:P_americana#2107>. The part that identifies the 
property or characteristic of the subject that the statement specifies is called 
the predicate or the property, e.g. <ebird:watch_location>, and the part that 

<ebird:P_americana#2107> “Parula” 

<ebird:Personid#obs6432> 

“USA, Florida” 

<ebird:specie_genus> 

<ebird:bird_seenBy> 

<ebird:watch_location> 

 Figure 3.5. RDF example graph  
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identifies the value of that property is called the object or the value, e.g. 
“Usa, Florida” or <ebird:Personid#obs6432>. 

For example, the RDF triples representing the RDF graph in Figure 3.6 
are shown in Figure 3.6. 

RDF-Schema (RDFS) 
RDFS [11] is a high level language to represent RDF data. It contains a set 
of classes with certain properties. In other words, RDFS provides a type 
system for RDF. For example, RDFS allows resources to be defined as in-
stances of one or more classes. In addition, it allows classes to be organized 
in a hierarchical fashion; for example a class with URI 
<ebird:P_americana> might be defined as a subclass of <ebird:Parula> 
which is a subclass of <ebird:Observed_birds>, meaning that any resource 
which is in class <ebird:P_americana> is also implicitly in class 
<ebird:Observed_birds> as well. 

Everything described by RDF is called an RDF resource; it is identified 
by an URI, and it is an instance of the class <rdfs:Resource>,  which is the 
root class of everything. All other classes are subclasses of this class. 
<rdfs:Resource> is an instance of the main RDF class of resources 
<rdfs:Class>. An RDF property <rdf:Property> is a relation between sub-
ject resources and object resources. The RDF property <rdf:type> is used to 
define the data type of an RDF resource by associating it to one or several 
classes. The domain property <rdfs:domain> identifies the class(es) for 
which a property is defined. The range property <rdfs:range> defines that 
the values of a property are instances of one or more classes.  

For example, Figure 3.7 illustrates RDF triples from an RDFS ontology 

<ebird:P_americana#2107> <ebird:specie_genus> “Parula” 

<ebird:P_americana#2107> <ebird:bird_seenBy> <ebird:Personid#obs6432> 
<ebird:P_americana#2107> <ebird:watch_location> “USA, Florida” 

 
Figure 3.6. RDF triples 

1 <ebird:Observed_birds> <rdf:type> <rdfs:Class> 

2 <ebird:P_americana> <rdfs:subClassOf> <ebird:Observed_birds> 
3 <ebird:specie_genus> <rdf:type> <rdf:Property> 
4 <ebird:specie_genus> <rdfs:domain> <ebird:Observed_birds> 
5 <ebird:specie_genus> <rdfs:range> <xsd:String> 
 
Figure 3.7. RDFS for the example RDF data 
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defined to represent the meta-data for the example in Figure 3.5.  
The RDF triple 1 defines an RDFS class <ebird:Observed_birds> to rep-

resent all types observed birds, while the triple 2 defines a subclass of that 
class <ebird:P_americana> to represent only the birds ‘Parula americana’. 
Triple 3 defines an RDF property <ebird:specie_genus> for the main class 
(represented by triple 4) that has values of type string (represented by triple 
5). 

 
In this Thesis RDF and RDFS are used for representing RDF views over 

relational databases and Topic Maps. 

SPARQL and SPARQL Query Classes 
SPARQL (Simple Protocol and RDF Query Language) [66] is the language 
proposed by W3C for querying RDF triples data. SPARQL is a syntactically 
SQL-like language for querying RDF graphs via pattern matching [25].  

A SPARQL query is composed of the following five parts [25]: 
• Prefix declarations – zero or more; used to introduce shortcuts for 

long identifiers;  
• Query result clause - specifies the form of the result; the result 

clause can be a SELECT, ASK, CONSTRUCT or DESCRIBE clause 
explained below; 

• FROM or FROM NAMED clauses – zero or more; defines the data 
set against which the query is executed; 

• WHERE clause – a set of triple patterns (TPs) to specify the search 
conditions to match against the RDF triples. 

• Query modifiers – zero or more; operate over the triples selected 
by the WHERE clause. As in SQL, the clause ORDER BY orders 
the result set, the LIMIT and OFFSET allow getting the result in 
chunks 

A SELECT SPARQL query provides an answer that is a tuple similar to 
the SQL result in a relational database. An ASK query checks whether there 
is at least one query result; if it does the query answer is YES; otherwise the 
answer is NO. The CONSTRUCT query provides the answer as an RDF 
graph, i.e. the query result is a set of triples. The DESCRIBE query returns 
an RDF graph that describes RDF resources.    

 
The archival queries in SAQ prototype system select parts of an RDB to 

archive. Archival queries are translated to CONSTRUCT SPARQL queries, 
which are processed by a SPARQL query processor. The motivation to 
translate to CONSTRUCT queries is that the result of an archival query 
should be a user selected subset of the RDF graph representing the RDB.   

For example, the query in Figure 3.8 is a SPARQL CONSTRUCT query 
against the RDF triple data in Fig. 3.7 represented by <ebird> in the 
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WHERE clause. The query returns as a RDF graph (triples) all the birds with 
their properties and values that are from the genus “Parula”. 

Query Classes 
A bound-property triple pattern (BPTP) is a SPARQL triple pattern (?s P 
?o) where the property P is a constant URI. An unbound-property triple pat-
tern (UPTP) is a triple pattern (?s ?u ?o) where u is a variable, e.g. (?subject 
?property ?value). A bound-property query is a SPARQL query having only 
BPTPes. An unbound-property query is a SPARQL query having one or 
several UPTPs. 

In a SPARQL query with a TP (?s ?p ?o) we call the variable s a subject 
variable, p a predicate variable, and o an object variable.  In a query, if the 
same variable is an object variable in one TP, e.g. s1 in (?s ?p ?s1), and a 
subject variable in another TP, e.g. s1 in (?s1 ?p1 ?o1), we call the variable 
s1 a subject-object join variable. A subject-object join variable cannot be a 
literal, since subjects are always URIs. 

3.4 Mapping Relational Databases as RDF 
There are two standardized approaches for mapping relational databases to 
RDF, RDB2RDF [58]:  

• The Direct mapping approach maps an RDB into an RDF graph 
where “the graph should be explored/transformed further by the ap-
plication”.  

• The R2RML approach provides a mapping language that allows the 
creation of a “final RDF graph for an application”.  

The Direct Mapping Approach 
In the direct mapping an RDB is mapped into an RDF graph called direct 
graph where the structure of the result RDF graph directly reflects the RDB 
schema elements [41]. There is a direct correspondence between the target 
RDF vocabulary and the names of the RDB schema elements.  

Each table row produces a set of RDF triples with a common subject. The 
subject is an IRI [24] formed from the concatenation of the base IRI, table 
name, primary key column name(s) and primary key value. The predicate for 

PREFIX ebird: <http://birdwatching.org/ebird/> 
CONSTRUCT {?subject ?property ?value } 
FROM <ebird> 
WHERE {?subject  ebird:specie_genus  “Parula” . 
       ?subject  ?property  ?value . } 

 
Figure 3.8.  CONSTRUCT SPARQL Query 



 

 28 

each column is an IRI formed from the concatenation of the base IRI, the 
table name and the column name. The values are RDF literals formed from 
the lexical form of the column value.  

Each foreign key produces a triple with a predicate composed from the 
foreign key column names, the referenced table, and the referenced column 
names. The object of these triples is the row identifier for the referenced 
table. The reference row identifiers must coincide with the subject used for 
the triples generated from the referenced row. The direct mapping does not 
generate triples for NULL values. 

For example, applying the direct mapping on table event from the RDB 
Ebird (Figure 2.1) produces the RDF triples shown in Figure 3.9. 

The triples 1 and 4 define the types of the row identifiers <Event/eid=1> 
and <Event/eid=2> representing the event table rows with primary key val-
ues 1 and 2. The triples 2,3 and 6,7 respectively represent as literals the val-
ues of the non-foreign key columns eid and eventDate for the table rows. 
Finally, the triples 4 and 8 represent the values for the foreign key column 
location in table event as the IRIs <Location/lid#2> and <Location/lid#3> 
which are row identifiers in the owning table location. 

The R2RML Approach 
R2RML is a language for expressing customized mappings from RDB to 
RDF [63]. Each mapping is tailored for a specific RDB schema and target 
vocabulary according to the “mapping author's choice”. An R2RML map-
ping is described as RDF graphs in Turtle syntax [10]. R2RML enables dif-
ferent types of mapping implementations.  

An R2RML mapping refers to logical tables to retrieve relational data 
from the input database. A logical table can be a base RDB table, a view, or     
a valid SQL query. Each logical table is mapped to RDF using a triples map. 
The triples map is a rule that maps each row in the logical table to a number 
of RDF triples. The rule has two main parts: 

1 <Event/eid=1> <rdf:type> <Event> 
2 <Event/eid=1> <Event#eid> “1”^^xsd:int  
3 <Event/eid=1> <Event#eventDate>  “2003-06-07” ^^xsd:dateTime 
4 <Event/eid=1> <Event#location> <Location/lid=2> 
5 <Event/eid=2> <rdf:type> <Event> 
6 <Event/eid=2> <Event#eid> “2”^^xsd:int  
7 <Event/eid=2> <Event#eventDate> “2003-10-08”^^xsd:dateTime 
8 <Event/eid=2> <Event#location> <Location/lid=3> 
 
Figure 3.9. RDF triples for table event by the direct mapping 
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• The subject map generates the subject for all RDF triples to be 
generated from a logical table row. The subjects often are IRIs 
generated from the primary key column(s) of the table. 

• The multiple predicate-object map consists of predicate maps 
and object maps. 

RDF triples are produced by applying the subject map with a predicate 
map and an object map to each logical table row.  

For example, the triples map rule shown as Turtle in Figure 3.10 will 
produce the desired triples from the column eventDate in table event (Figure 
2.1). 

The RDF triples generated from the mapping rule in Figure 3.10 are 
shown in Figure 3.11. 

The RDB to RDF automatically generated mapping in the prototype sys-
tem SAQ conforms to the direct mapping, and more particularly to the aug-
mented direct mapping proposed in [30], which is proven to guarantee in-
formation preservation. Furthermore, a SAQ user is allowed to assign own 
IRIs for representing tables and columns in the mapped RDB instead of us-
ing the automatically generated ones. 

@prefix rr: <http://www.w3.org/ns/r2rml#>. 
@prefix ex: <http://example.com/ns#>. 
 
<#TriplesMap1> 
    rr:logicalTable [ rr:tableName "event" ]; 
    rr:subjectMap [ 
        rr:template "http://example.com/ebird_event/{eid}"; 
        rr:class ex:Event; 
    ]; 
    rr:predicateObjectMap [ 
        rr:predicate ex:date; 
        rr:objectMap [ rr:column "eventDate" ]; 
    ]. 
 
Figure 3.10. R2RML mapping for column eventDate in table event  

< http://example.com/ebird_event /1> <rdf:type> <ex:Event> 
< http://example.com/ebird_event /1> <ex:date> “2003-06-07” ^^xsd:dateTime 
< http://example.com/ebird_event /2> <rdf:type> <ex:Event> 
< http://example.com/ebird_event /2> <ex:date> “2003-10-08”^^xsd:dateTime 

 
Figure 3.11. RDF triples for the R2RML mapping in Figure 3.10 
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3.5 Topic Maps 
Topic Maps [74] is a standard for a semi-structured data representation start-
ed in the 1990s from the idea of managing indices to documents so that mul-
tiple indexes from different sources could be merged. It was published as a 
data model standard in 1999 as ISO/IEC 13250-Topic Navigation Maps.  

The first edition of ISO 13250 included an interchange syntax based on 
SGML and the hypermedia linking language known as HyTime[20]. The 
second edition, published in 2001 [69], added an interchange syntax based 
on XML. This is the syntax with the widest support in Topic Maps process-
ing products. 

The Topic Maps data model can be seen as ontology for describing how 
to navigate into document collections since it provides built-in concepts use-
ful to describe indices of documents or websites. The Topic Maps model can 
be summarized in the following way. A topic map consists of a collection of 
topics, each of which represents some concept. Topics are related to each 
other by associations, which are many-to-many relationships to other topics. 
A topic may also be related to any number of resources by its occurrences. 

Topic Maps can be merged. Merging can take place at the discretion of 
the user or application (at runtime). It can be also indicated by the Topic 
Map's author at the time of its creation [69]. 

The main concepts of the Topic Maps data model are described below. 

Topics 
A topic is a representation of a concept. The Topic Maps standard does not 
restrict the set of concepts that can be represented. Typically topics are used 
to represent electronic resources, i.e. Web pages, Web services, and non-
electronic resources. Topics can be also used to represent abstract concepts 
like "Pensions" or "Insurance" [33]. 

A topic may have zero or more names, each of which is considered to be 
valid within a certain scope. Each name may exist in multiple forms. A name 
always has exactly one base form, known as the base name, and it may, in 
addition, have one or more variants, called variant name for use in specific 
processing contexts [69]. 

Associations 
Associations are the general form for the representation of relationships be-
tween topics in a topic map. An association can be seen as an n-ary aggre-
gate of topics [33], which is a grouping of topics with no implied direction or 
order.  

Occurrences 
Occurrences are used to represent or refer to information about a concept 
represented by a topic. Occurrences can be used either to store string data 
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within the topic map, or to reference any kind of Web-addressable resource 
external to the topic map. There is no restriction on what type of resource is 
addressed by an occurrence.  

Scope 
Scope is the term used in the Topic Maps standard to refer to a constraint or 
a context in which something is said about a topic. The way in which such 
statements about topics are made is by: 
• Adding a name to the topic specifying an occurrence for a topic   
• Creating an association between topics.  

Context scope is often used e.g. to facilitate multi-lingual interfaces, so 
the concept "Dog" may have the label "dog" in the context of the English 
language, "perro" in Spanish, and "hund" in Swedish. 

In a topic map, scope is defined by a collection of topics that can be as-
signed to a name, an occurrence, or an association. The default scope is 
known as the unconstrained scope and means that the name, occurrence, or 
association is always valid. 

A topic representing the city of Helsingborg in Sweden may look like 
this: 

<topic id="cty-cid-cia-Sweden-11"> 
    <instanceOf> 
      <topicRef xlink:href="#city"></topicRef> 
    </instanceOf> 
    <baseName> 
      <baseNameString>Helsingborg</baseNameString> 
    </baseName> 
    <occurrence> 
      <instanceOf> 
        <topicRef xlink:href="#population"></topicRef> 
      </instanceOf> 
      <resourceData>114339</resourceData> 
    </occurrence> 
  </topic> 
 
The topic is identified by a topic id, cty-cid-cia-Sweden-11and the name 

of the city “Helsingborg” appears as a value for the topic’s baseName. An 
occurrence to the topic represents information about the population of the 
city. 

An association representing the relationship between the city of Helsing-
borg, identified by a topic’s id cty-cid-cia-Sweden-11 and the province 
Malmöhus, identified by a topic’s id prov-cid-cia-Sweden-14 might look like 
this: 
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<association> 
    <instanceOf> 
      <topicRef xlink:href="#contained-in"></topicRef> 
    </instanceOf> 
    <member> 
      <roleSpec> 
        <topicRef xlink:href="#container"></topicRef> 
      </roleSpec> 
      <topicRef xlink:href="#prov-cid-cia-Sweden-14”> 
                </topicRef> 
    </member> 
    <member> 
      <roleSpec> 
        <topicRef xlink:href="#containee"></topicRef> 
      </roleSpec> 
      <topicRef xlink:href="#cty-cid-cia-Sweden-11"> 

                                  </topicRef> 
    </member> 
  </association> 

 
Topic Maps provide a meta-model that can be used to build a flexible ap-

plication model. Since its ontology is expressed as topics and associations 
between topics, extension of the ontology becomes an issue of adding data, 
not an issue of redesigning the underlying schema used by an application 
[33]. 

3.6 Mapping Topic Maps as RDF 
 

The existing approaches for mapping Topic Maps as RDF can be divided 
into two main groups [71]: 

• The Semantic mapping approach – based on finding semantic 
equivalences between the Topic Maps data model and the RDF 
data model. 

• The Object mapping approach - based on representing the Topic 
Maps data model in terms of the RDF model. 

The Semantic Mapping 
The semantic mapping starts from higher level concepts that carry the se-
mantics of The Topic Maps model and looks for equivalences with the RDF 
model [70][71]. For example, a binary association in Topic Maps can be 
seen to represent a relationship between two entities and therefore it can be 
represented using a single RDF statement. If there is no direct semantic 
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equivalent of a Topic Map concept in RDF, new RDF classes and properties 
are defined to represent the missing concept. 

The semantic mapping can give good results from a “naturalness” and 
flexibility point of view [35][19] but it is not always possible due to lack of 
semantic equivalences [52]. It is not of general usefulness either since it 
requires an application-dependent approach. 

The Object Mapping 
The object mapping approach provides a general mapping from Topic Maps 
to RDF. Such mappings have been proposed in [36][44][47].  

The proposal [36] by Garshol is based on an earlier version of the 
ISO/IEC model of Topic Maps, i.e. the TMDM model [37]. The so called 
items in TMDM become RDFS classes and the properties of the items be-
come RDF properties. The object mapping [36] is incomplete because there 
are no definitions of the RDFS ranges and domains of the properties and no 
description of how Topic Maps data is mapped to RDF.  

The authors in [44] use the Processing Model for Topic Maps, PMTM4 
[42], which is very simple model and is not considered as a complete model 
for Topic Maps [71]. This disadvantage has been overcome in [47] where a 
Topic Maps model is defined partly in terms of PMTM4 and completed with 
extra XTM terms.  

The proposal [47] is fairly complete but very complicated and the transla-
tion from the Topic Maps data model to RDF is non-reversible [71]. For 
example, it requires seven statements to represent the information content 
that would be modeled using one statement in RDF [71].  

 
An RDB to archive as RDF in terms of SPARQL queries can be indexed 

by a large Topic Map serving as ontology for describing how to navigate 
into the database. Exposing Topic Maps as RDF and making them search-
able by SPARQL would allow search and archive as RDF both the archived 
RDB and its navigation ontology in Topic Map. This is our motivation to 
investigate how to represent and query Topic Maps as RDF. For that the 
prototype system TM-viewer has been developed. In the TM-Viewer an 
object mapping of Topic Maps to RDF is applied. The mapping is based on a 
proposed conceptual schema of Topic Maps representing its concepts. 

3.7 Functional and Object-relational DBMS (Amos II) 
 
Both prototype systems SAQ and TM-Viewer are implemented using the 
functional and object-relational database system Amos II [75]. Amos II is an 
extensible main memory DBMS and it can store data in its main-memory 
object store. It contains functionality for processing end executing queries 
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over data stored locally as well as data stored in external data sources, such 
as relational databases [18]. In order to access data from external data 
sources Amos II contains several wrappers. A wrapper is a program module 
in Amos II having specialized facilities for query processing and translation 
of data from a particular class of external data sources. For example, Amos 
II has wrappers to access relational databases [18], Topic Maps files [81], 
XML files [22], CAD systems [45], etc.   

Query language  
The query language in Amos II is the object-relational and functional query 
language AmosQL [75]. AmosQL is a functional language based on the 
functional query languages OSQL [53] and DAPLEX [59]. Queries are spec-
ified using the Select - From - Where clauses in SQL. AmosQL furthermore 
has aggregation operators, nested subqueries, disjunctive queries, quantifiers, 
and is relationally complete. 

Data model 
The data model of Amos II is a functional data model. The basic concepts of 
the data model are objects, types, and functions. All entities in the database 
are represented as objects. There are both system and user-defined objects. 
Objects are classified into types making each object an instance of one or 
several types. The set of all instances of a type is called the extent of the 
type. Functions model the semantics of objects. They model properties of 
objects, computations over objects, and relationships between objects. They 
furthermore are basic primitives in functional queries and views. 

Query processing 
The query processing in Amos II has the following steps. The query com-
piler translates AmosQL statements first into object calculus and then into 
object algebra expressions. The object calculus is expressed in an internal 
simple logic based language called ObjectLog [80], which is an object-
oriented dialect of Datalog. As part of the translation into object algebra, 
many optimizations are applied on AmosQL expressions relying on its func-
tional and multi-database properties. During the optimization steps, the ob-
ject calculus expressions are rewritten into equivalent but more efficient 
expressions. 

 
The prototype systems SAQ and TM-Viewer utilize the data model, query 

language and query processing of the Amos II system. They extend the 
Amos II system in the following way: 

• Both SAQ and TM-Viewer implement functionality in Amos II for 
automatic generation of RDF views over relational databases and 
Topic Maps documents correspondingly. 
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• SAQ and TM-Viewer extend Amos II query processing by rewrite 
transformations applied on Datalog that are shown to substantially 
improve the query processing time of SPARQL queries to RDF 
views of relational databases and Topic Maps respectively. 
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4 The Prototype Systems  

In this chapter an overview of the architecture and functionality of the proto-
type systems SAQ and TM-Viewer is presented. Furthermore, the steps of 
the processing of SPARQL queries to RDF views over relational databases 
and Topic Maps respectively are also described.  

4.1 SAQ System 
The developed SAQ system for long-term preservation of relational data-
bases follows conceptually the OAIS reference model [57]. SAQ provides 

 
Figure 4.1. SAQ Architecture
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functionality for the OAIS’ Ingest component, in particularly on generating 
the content information in the AIPs (Archival Information Packages) when 
preserving relational database contents as RDF. 

In order to preserve both schema and data from an RDB, it is important to 
represent not only the contents of the RDB as RDF, but also the schema. 
Therefore the RD-view is defined as a union of a schema view (the S-view), 
representing the RDB schema, and a data view (the D-view), representing the 
RDB contents. To allow for interoperability with other systems mapping 
RDBs to RDF, e.g. [6][31][50], the data view mappings conform to the di-
rect mapping recommendations by W3C Recommendation [41] and more 
particularly to the augmented direct mapping proposed in [30]. 

The architecture of the SAQ system is presented in Figure 4.1. The source 
RDB is the underlying RDB, which can be queried by SPARQL and pre-
served by A-SPARQL queries.  

The RD-view generator automatically generates one RDF-view, RD-view 
over each source RDB by reading the database schema though a JDBC inter-
face. The RD-view templates thereby provide general prototypes for the 
structure of the RD-view for any relational database, and the contents of the 
mapping tables provide RDB-to-RDF mappings for specific relational meta-
data into RDF. An archival query defined in an extended SPARQL dialect, 
A-SPARQL is processed by the archiver and translated into a corresponding 
generated query in SPARQL, which is sent to the SAQ query processor. The 
generated query retrieves the data to archive from the RDB. Regular non-
archiving SPARQL queries are sent directly to the SPARQL query proces-
sor. 

The SAQ query processor executes the SPARQL queries to the RD-view 
by accessing the source RDB through the JDBC interface. 

During the execution of the generated SPARQL query, the property URIs 
of the triples to be archived are collected by the meta-data extractor while 
iterating over the result stream. When all data to archive have been proc-
essed, the meta-data extractor joins the collected properties with the S-view 
by issuing a schema query. 

The archived content retrieved by the generated query and the corrspond-
ing meta-data retrieved by the schema query are written by the RDF con-
verter into two N-Triples [46] formatted files, i.e. the schema archive and 
the data archive in the archive repository. 

Later on, when a preserved database is to be restored, the reloader reads 
from the archive repository the two archive files and makes the database live 
again by populating it into a destination RDB or alternatively a destination 
triple store. When an RDB is restored, the reloader first reads the schema 
archive in order to generate the RDB schema and then populates the destina-
tion RDB by reading the data archive. After the destination RDB is restored, 
it can be queried or re-archived with A-SPARQL using SAQ. When the des-
tination DBMS is an RDF triple store system, both the schema and data ar-
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chive files are loaded directly into the triple store and can there be queried 
with SPARQL. 

4.2 TM-Viewer System 
The architecture of the TM-Viewer system is depicted in Figure 4.2. The 
core of the system is the TM-Viewer database that represents imported Topic 
Maps data. The Topic Maps data model is defined by the Topic Maps con-
ceptual schema. The TM-view is a system generic RDF view of Topic Maps. 
It is generated by the RDF view generator based on mapping rules between 
basic Topic Maps concepts and the corresponding RDF and RDFS concepts. 
The TM Importer parses queried XTM files and populates the TM-Viewer 
database. 

The TM-view itself is defined in terms of a TM-Schema and a TM-Data 
view. The TM-Schema view maps the elements of the Topic Maps data 
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model to RDF concepts, while the TM-Data view represents imported Topic 
Maps data objects as RDF. 

A SPARQL query is specified in terms of the TM-view. It is first parsed 
into a Datalog dialect by the SPARQL parser. The query processor rewrites 
and optimizes the generated Datalog query to produce an execution plan, 
which is interpreted.  
 

4.3 Datalog based SPARQL Query Processing 
To process SPARQL queries both prototype systems SAQ and TM-Viewer 
first generate Datalog queries to a declarative RDF view of a relational data-
base or a Topic Map, respectively, and then transforms the SPARQL queries 
to SQL or an execution plan, based on logical transformations. The steps of 
the query processing are illustrated in Figure 4.3 where: 

 
1) The SPARQL parser transforms the SPARQL query into a Datalog 

expression where each triple pattern (TP) in the query becomes a 
reference to the RDF view. 

2) The RDF view expander recursively expands each RDF view ref-
erence in the query into the RDF view definition.  

Figure 4.3. SPARQL Query Processing  
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3) The view specializer then enables a transformation called view 
specialization [29] that substantially reduces bound-property que-
ries.  

4) The DNF-normalizer transforms further the query into a disjunc-
tive normal form (DNF) predicate. We call the DNF-normalized 
query a DNF-normalized query. 

5) The SPARQL rewriter applies on the DNF-normalized and simpli-
fied query a number of query transformations that simplify the 
query and improve the execution time.  

6) The Query Optimizer translates the DNF query into an optimized 
execution plan. In SAQ it includes a SQL generator that generates 
SQL from operators calling SQL. 

7) The Query Executor interprets the optimized algebra expression to 
produce the result of the query. In SAQ this includes execution of 
the generated SQL queries sent to the RDBMS followed by post-
processing of expressions in the RDF view that are not processed 
by the SQL engine.   
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5 Technical Contributions 

In this chapter the technical contributions are described to some detail in 
order to explain how they contribute to answering the research questions and 
give the reader the intuition behind the chosen approaches. The technical 
details are presented in Paper I – IV.  

5.1. Scalable Long-term Preservation and Querying of 
Structured Data in terms of RDF 

To represent relational databases (RDBs) in RDF, the SAQ system automati-
cally generates a specialized RDF view, RD-view (Paper II, Paper III) for 
each given RDB by accessing the RDB catalogue. The RDB to RDF map-
ping in SAQ conforms to the direct mapping recommended by W3C [41], 
and more particularly to the augmented direct mapping proposed in [30], 
which is proven to guarantee information preservation. In the RD-view a 
unique RDFS class is defined for each relational table, except for link tables 
representing set-valued properties as many-to-many relationships. In addi-
tion, a unique RDF property is defined for each attribute in a table. The RD-
view is defined as a union of an S-view, representing the schema of the RDB, 
and a D-view, representing the data stored in the relational database.  

The S-view definition itself is the same for any RDB. It is defined as a 
large union of unions of sub-views representing relational schema concepts 
about tables, columns, types, primary keys, foreign keys, other constraints, 
and indexes. Since the S-view is complex but contains little data and its ex-
tent changes only when the database schema is altered, the S-view is materi-
alized in main memory in SAQ. 

Based on the S-view, i.e. on the imported RDB schema information, SAQ 
generates a D-view for each specific RDB. A D-view definition for each 
concrete database is generated instead of defining a generic D-view since 
this enables substantial query reduction at run time via specialization of the 
view definitions [29].  

The D-view is defined as a large union of: 
• A union of sub-views for each non-foreign attribute to represent 

the attribute values as literals;  
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• A union of sub-views for each foreign key relationship to represent 
foreign key values by URIs; 

• A union of sub-views for each many-to-many link table to repre-
sent the values in link tables as URIs; 

• A union of sub-views for each non-link table to represent the clas-
ses of its row identifiers. 

The automatic generation of the RD-view having the above described def-
inition provides the answer to research question 1a. 

 
Flexible long-term preservation of a selected part of an RDB is enabled in 

SAQ by specifying an archival query to the RD-view in an extended 
SPARQL dialect, A-SPARQL (Paper III). This is the provided answer to the 
research question 2 since A-SPARQL allows a flexible selection of data to 
be archived in terms of a SPARQL-like query to the RD-view. The result of 
the archival query is the RDF triples representing the archived data stored in 
the data archive file. While executing the archival query, the SAQ system 
simultaneously produces sufficient meta-data to enable reconstruction of the 
selected part of the archived RDB. These meta-data are stored in the schema 
archive file.  

For processing an archival query in A-SPARQL SAQ internally generates 
a corresponding SPARQL query to select the triples of the database to ar-
chive. The archival queries are straight-forward to translate into SPARQL 
CONSTRUCT queries. Archiving unions of sets of triples, e.g. for different 
classes and properties, makes the generated SPARQL queries become UN-
ION CONSTRUCT queries.  

Archival queries typically select sets of attributes of tables to archive. 
This corresponds to selecting sets of RDF properties in the RD-view of the 
database to be archived. In the motivating example in section 2 all properties 
of the subjects from classes representing tables taxonomy and location that 
have some special properties are selected for archival. Therefore, in the gen-
erated SPARQL CONSTRUCT query property p in one or several TPs is a 
variable, i.e. the queries are unbound-property queries.  

Unlike processing of bound-property queries to the RD-view, processing 
and optimization of unbound-property queries to the RD-view have been 
little studied [31]. To address this problem in connection with scalable data 
preservation of relational databases some special query rewriting optimiza-
tions for optimizing unbound-property queries to the RD-view have been 
developed (Paper II, Paper III). This answers research question 3a: 

• The Group Common Terms (GCT) query transformation optimizes 
SPARQL queries in such a way that, instead of naively accessing 
the RDB column-by-column following the RD-view definition, 
the RDB is accessed row-by-row instead.  
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• The is-literal query transformation optimizes SPARQL queries in 
such a way that SQL LIKE conditions are not issued on table at-
tributes whose values are represented by URIs in the RD-view. 

• The type-match query transformation optimizes SPARQL un-
bound-property queries so that SQL comparison conditions are is-
sued only on attributes represented with correct literal types in the 
RD-view. 

• The foreign-key relationship (FKR) transformation optimizes 
SPARQL unbound-property queries where a subject-object join 
variable is shared between two UPTPs. This enables SQL queries 
to be generated only for tables where there is a foreign key rela-
tionship between the tables referenced by the joined UPTPs.  

• The eliminate S-view transformation optimizes unbound-property 
queries so that a subject in the S-view is never joined with a sub-
ject in the D-view constructed to be an URI, which reduces the 
number of generated SQL queries.  

Archival queries can also be bound-property queries containing only 
BPTPs where the properties are URIs representing RDF properties in the 
RD-view. Such queries are processed in SAQ using the methods in [29][31].  

To evaluate the performance of typical archival queries a new benchmark 
called ABench was developed (Paper III). ABench is defined as a set of typi-
cal archival queries, specified in A-SPARQL, that archive selected parts of 
databases generated by the Berlin benchmark data generator [5]. A new 
benchmark was developed since the archival queries generate SPARQL 
CONSTRUCT unbound-property queries with UNION clauses, which is not 
covered by any existing benchmark. 

SAQ query optimization strategies have been evaluated using ABench 
(Paper III). The experiments showed that the proposed query rewriting op-
timizations substantially improve the query execution time for unbound-
property queries selecting RDB contents to archive. We also compared the 
performance of our approach with other systems processing SPARQL que-
ries over views of RDBs and found that the proposed optimizations improve 
query scalability compared with the approaches used in those systems. 

5.2. Scalable Reconstruction of RDF archived 
Structured Data  

To reconstruct an RDF-archived RDB and make it live again the reloader 
module of SAQ was developed (Paper IV). When the contents of an archived 
RDB is to be restored, the reloader first reads the schema archive file and 
executes a schema reconstruction algorithm to automatically construct the 
minimal RDB schema required for reconstructing the archived data. Since 
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only selected parts of the RDB are archived, a corresponding partial RDB, 
called the reconstructed RDB, is created containing only the parts of the 
schema describing the archived data. The thus created RDB is then popu-
lated by reading the data archive and converting the read data into relational 
attribute values according to the schema. 

For migrating data from RDBs to RDF repositories, the contents of the 
schema and data archive files can be directly loaded into an RDF repository 
system, e.g. [2][64][79]. 

For scalable reconstruction of RDF-archived data in the reconstructed 
RDB we have developed the Triple Bulk Load (TBL) approach (Paper IV). 
With the TBL approach the relational data is reconstructed by using the bulk 
load facility of the RDBMS. The relational bulk loader requires one CSV file 
of rows for each reconstructed table. Since RDF does not prescribe any spe-
cific triple order, the reloader first joins the data archive triples with meta-
data describing the attributes for each table and then orders the data archive 
per CSV file per table to populate, per triple subject, and per attribute order. 
To do this grouping of RDF triples, the reloader uses an Order-by query in 
the RDBMS. Once the triples are ordered the CSV files are generated 
through a CSV row generation algorithm that post-processes the result scan 
of the Order-by query. 

We compare the performance for the TBL approach with the naïve Insert 
Attribute Value (IAV) approach where relational data is straight-forwardly 
populated by executing SQL INSERT or UPDATE statements to incremen-
tally insert attribute values for each read RDF data archive triple. The per-
formance results show that the TBL approach is substantially faster than 
IAV, which provides the answer to the research question 4. 

5.3. Scalable Querying of Semi-structured Data in terms 
of RDF 

Topic Maps are represented in the TM-Viewer (Paper I) in terms of a de-
fined general conceptual schema of the Topic Maps data model. The de-
signed conceptual schema is a modification of the definitions in [39][69] to 
enable 1:1 mappings between Topic Maps concepts and RDF representa-
tions. A functional data model [75] is used for representing the conceptual 
schema. 

 A declarative RDF view in Datalog of Topic Maps, the TM –view, repre-
sents the conceptual schema is defined (Paper I). It is automatically gener-
ated in the TM-Viewer system. The TM-view over a Topic Maps data 
source, i.e. an XTM file is defined as a union of a schema view, TM-Schema 
representing meta-information in the conceptual schema and a data view, 
TM-Data representing Topic Maps data imported from XTM file. 
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The schema view (TM-Schema) is independent of Topic Maps data, and 
it is always the same. Therefore it is materialized by the system once and for 
all. 

The TM Importer module in the TM-Viewer system translates each Topic 
Maps entity read from an XTM file into a Topic Maps object representing an 
entity in terms of the Topic Maps conceptual schema. Depending on what 
kinds of Topic Maps elements are read, imported Topic Maps objects of 
different types following the conceptual schema are created. The type of the 
imported object furthermore determines the corresponding RDFS class in the 
data view. 

The data view (TM-Data) is defined as a large union of: 
• A union of the sub-views that specify imported Topic Map objects 

as instances of RDFS classes defined in the schema view; 
• A union of the sub-views defining attribute values of imported 

Topic Maps objects as literals;  
• A union of the sub-views defining relationships between imported 

Topic Maps objects. 
The automatically generated TM-view with the described definition pro-

vides the answer to research question 1b since it represents both Topic 
Maps schema and data as RDF. Furthermore, it enables RDF-based tools to 
process Topic Maps, and SPARQL can be used to search indices of docu-
ments and websites defined by Topic Maps.  

 
The view definition of the TM-view, particularly the data view definition 

of the TM-Data becomes complex for large XTM files containing many 
Topic Maps objects and therefore efficient query processing is an issue and 
therefore the query processing of SPARQL queries to the TM-view was 
studied in details (Paper I). The query-processing time for queries over large 
Topic Maps documents, both the optimization and execution time, have 
shown to substantially reduce by the following Datalog-based rewrite trans-
formations: 

• The Property reduction transformation optimizes SPARQL bound-
property queries to the TM-view. BPTPs in a view expanded que-
ry are reduced from large disjunctions to single conjunctions. 

• The Disjunct reduction transformation optimizes unbound-
property queries to the TM-view where a property variable in a 
UPTP is restricted to be a specific URI in another TP. This re-
duces substantially the number of the disjuncts in the large dis-
junction of a DNF normalized unbound-property query.  

Furthermore, Bi-directional encoding of URIs through multi-directional 
foreign functions [80] optimizes SPARQL queries to the TM-view in such a 
way that it allows straightforward Topic Maps-RDF-Topic Maps transforma-
tions, which prevents  from scanning the whole  data.  
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 The developed rewrite techniques provide the answer to research ques-
tion 3b since they optimize SPARQL queries to RDF views over Topic 
Maps data. 

The above rewrite transformations were evaluated (Paper I) using Internet 
available Topic Maps data and SPARQL queries, some of which are taken 
from the Topic Maps query language use cases [55]. The performance meas-
urements clearly show that the rewrite techniques significantly improve the 
query processing time for both bound-property and unbound-property que-
ries to TM-view.  
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6 Related Work 

Long-term Preservation of Relational Databases 
Testbed [9], SIARD [72] and RODA [54] are projects that have developed 
strategies for long-term preservation of relational databases based on XML. 
In both Testbed and RODA the data and metadata of relational databases are 
preserved as XML. SIARD has an own format for preservation which is 
based on XML and SQL1999, and the industry standard ZIP. In contrast, in 
SAQ we use RDF to represent the relational database to archive. Both XML 
and RDF are neutral data formats that don’t rely on current DBMS technol-
ogy and provide hardware and software independence. These make both of 
them suitable for long-term preservation of databases. However, RDF has 
the following advantages comparing to XML. In RDF the identifiers are 
URIs which are universal global unique identifiers that allow identifiers 
from one database or table to be linked with identifiers from other data. Data 
can be represented as XML in many different ways depending on a defined 
DTD or XML schema [32] while the RDF-Schema in RDF provides stan-
dard meta-data representation for describing all kinds of data, including rela-
tional databases [21]. Furthermore, representing relational data as RDF al-
lows migration from RDBs to RDF repositories which are gaining increasing 
popularity compared to XML native repositories.    

In the above mentioned related approaches the entire relational database, 
both the data and schema are migrated into XML or XML-based format and 
stored in files. By contrast, in SAQ we provide selective archival of user-
specified parts of a relational database as RDF using an extended SPARQL 
query language, A-SPARQL. 

 

Mapping and Querying Relational Databases as RDF 
Virtuoso RDF Views [50], D2RQ [6], and SquirrelRDF [65] are systems that 
allow mapping of relational tables and views into RDF to make them queri-
able by SPARQL. These systems implement compilers that translate 
SPARQL directly to SQL. In contrast, SAQ first generates Datalog queries 
to a declarative RD-view of the relational database, and then transforms the 
SPARQL queries to SQL, based on logical transformations. We have shown 
that query transformations on this representation significantly improve per-
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formance for SPARQL unbound-property queries selecting RDB contents to 
archive.  

The system closest to SAQ is Ultrawrap [31] where, like in SAQ, an RDF 
view over a relational database is generated as a union of sub-views. While 
the RDF view in Ultrawrap is defined in SQL in a specific SQL dialect, in 
SAQ the view is defined in a Datalog dialect and thus it is independent of the 
RDBMS. Furthermore, since the view in Ultrawrap is defined in a concrete 
RDBMS the query optimizations are also dependent on the RDBMS, and 
thus the performance measurements in [31] show different results in differ-
ent systems. By contrast, in SAQ the proposed optimizations are made in the 
SAQ query processor and are not dependent on the back-end RDBMS.  

Unlike SAQ, neither D2RQ, nor Virtuoso, nor Ultrawrap includes the 
schema view in the RDF view of RDBs. The inclusion of the S-view is very 
important when archiving relational databases, since the database schema is 
needed to reconstruct an archived database. The logical rewrites of SAQ 
enable scalable processing over full RDF views, including the schema part. 

Mapping and Querying Topic Maps as RDF 
The proposal [47] for mapping Topic Maps to RDF is fairly complete but 
very complicated and the translation from the Topic Maps data model to 
RDF is non-reversible [71]. For example, it requires seven statements to 
represent the information content that would be modeled using one statement 
in RDF [71]. By contrast, the prototype system TM-Viewer is based on a 
canonical and yet simple conceptual schema representation that maps 1:1 to 
both Topic Maps and the corresponding RDF ontology representation of 
Topic Maps. The mapping rules from the conceptual schema to RDF are 
very straightforward: An RDFS class is defined for each entity type as well 
as an RDF property for each function along with its range and domain defi-
nitions. These rules define the declarative general RDF based TM-view over 
any Topic Maps data imported to the TM-Viewer system. The TM-view can 
be queried with SPARQL. 

In [44][47] it was shown that a Topic Map transformed to RDF can be 
queried using F-Logic syntax [61] or the RDF query language SquishQL 
[38]. We support querying of the Topic Maps view by the standard RDF 
query language SPARQL. We are not aware of any other implementation of 
general queries over RDF views of Topic Maps. Moreover, in this Thesis it 
is studied in details the problem concerning the query processing of 
SPARQL queries to the RDF views of Topic Maps. We defined a small 
number of rules important for improving performance of such queries. We 
made theoretical proofs how queries were reduced by the rules and showed 
by measurements their practical impact on different query types. 
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7 Summary 

This chapter summarizes the technical contributions of the Thesis. 

7.1 Scalable Preservation, Reconstruction and 
Querying of Relational Databases in terms of 
Semantic Web Representations 

An approach has been developed for selective scalable long-term preserva-
tion of RDBs as RDF in terms of SPARQL queries, implemented in the SAQ 
system. The proposed approach is suitable for archiving research data used 
in scientific publications where it is desirable to preserve only selected parts 
of an RDB. The archival of user-specified parts of a RDB is specified using 
an extension of SPARQL, A-SPARQL, having an archival statement for 
selective archival. 

The SAQ system for long-term preservation of relational databases fol-
lows conceptually the OAIS reference model [57]. In particular, this work 
has concentrated on the functionality of the Ingest component in the OAIS 
model on generating the content information when preserving relational 
database content as RDF. 

To evaluate the performance of typical archival queries, the archival 
benchmark ABench has been defined that archives selected parts of data-
bases generated by the Berlin benchmark data generator [5]. In experiments, 
the SAQ optimization strategies were evaluated by measuring the perform-
ance of A-SPARQL queries selecting triples for archival queries in ABench. 

SAQ automatically generates an RDF view of an RDB called the RD-
view. The RD-view can be queried and archived with A-SPARQL queries 
that are translated into SQL queries sent to the RDB. An archival query in-
ternally generates a corresponding CONSTRUCT SPARQL query. Since an 
archival query usually selects sets of attributes of tables to archive, the gen-
erated CONSTRUCT SPARQL query is typically an unbound-property or 
UNION query. To achieve scalable data preservation and reconstruction for 
such queries, SAQ uses some special query rewriting optimizations.  

Using ABench queries and data generated by the Berlin benchmark gen-
erator, SAQ’s rewriting optimizations were experimentally shown to im-
prove query execution time compared with naïve processing. Compared with 
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not using the optimizations, they reduce the number of SQL queries to exe-
cute. The performance of SAQ was compared with that of other systems that 
support SPARQL queries to views of existing relational databases. It was 
shown experimentally that SAQ with the rewrite optimizations performs 
better than those systems for all queries returning large results. In general, 
the SAQ optimizations are useful not only for archival queries, but also for 
unbound-property and UNION queries. 

7.2 Scalable Reconstruction of RDF-archived 
Relational Databases 

Approaches for scalable reconstruction of relational databases archived as 
RDF have been investigated. An RDF-archived relational database is recon-
structed from a schema archive file and a data archive file, both in N-Triples 
format. The archives contain RDF triples representing the relational schema 
for the archived content, and relational data content, respectively. When an 
archived RDB is to be reconstructed, the schema archive file is read to au-
tomatically reconstruct the RDB schema in another RDBMS. The schema 
reconstruction algorithm is based on identifying relational database schema 
elements by queries to the schema archive. The reconstructed RDB is then 
populated by reading the data archive file and converting the stored RDF 
triples into relational attribute values according to the schema. We have in-
vestigated two approaches to populate data into the reconstructed RDB: the 
IAV approach and the TBL approach.  

With the IAV approach the reconstructed RDB is populated by first gen-
erating stored procedures, assigners that execute an SQL INSERT or UP-
DATE statement for each archived attribute value.  

With the TBL approach the reconstructed RDB is populated by bulk load-
ing CSV files generated from the data archive for the tables to be recon-
structed. The bulk loader requires one CSV file of rows for each recon-
structed table. Since RDF does not prescribe any specific triple order, the 
data archive file needs to be first regrouped per table and row in order to 
create the CSV files. The TBL approach therefore requires pre-steps to re-
group the data archive file in order to generate a CSV file per reconstructed 
table. For the regrouping the RDF triples in the data archive file are first 
bulk-loaded into an RDB together with meta-data. Then the order-by facility 
of the RDBMS is used to group the bulk-loaded triples per CSV file, row 
identifier, and attribute position in order to produce the CSV files in one pass 
with limited memory.  

Our experiments show that the TBL approach is substantially faster than 
the IAV approach, despite the added grouping and post-processing. 
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7.3 Scalable querying of Topic Maps data in terms of 
RDF 

A general system for exposing the semi-structured data Topic Maps as RDF 
was implemented, the TM-Viewer. With the TM-Viewer RDF views of Top-
ic Maps can be queried using SPARQL.  

A functional conceptual schema was defined for the Topic Maps data 
model. Generic 1:1 mappings from the conceptual schema into RDF were 
defined as an automatically generated declarative RDF view, the TM view. 
The TM-View consists of two parts, the TM-Schema view and the TM-Data 
view. The TM-Schema view describes the Topic Maps conceptual schema as 
RDF triples, while the TM-Data view describes data represented by the Top-
ic Maps conceptual schema as RDF.  

The TM-Viewer enables SPARQL queries to the TM-view which enables 
SPARQL queries to any Topic Maps XTM file. 

The query processing of SPARQL queries to the TM-view is based on the 
two following query rewrite transformations, i.e. the property reduction 
transformation and the disjunct reduction transformation. It was proved that 
the property reduction transformation reduce a class of common disjunctive 
SPARQL queries, i.e. bound-property queries to the TM-view into conjunc-
tions. Thus no normalization is needed and these queries are executed more 
efficiently. This class includes all queries in the standard Topic Map query 
language use case [55].  

Furthermore, the approach also allows expressing SPARQL queries that 
combine Topic Maps meta-data with Topic Maps contents, i.e. unbound-
property property queries. It was shown that processing of unbound-property 
queries was substantially improved by the disjunct reduction transformation. 

It was in addition shown that bi-directional encoding of Topic Maps ob-
ject URIs enables substantial performance improvement for SPARQL que-
ries to the TM-view over large XTM files. 
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8 Summary in Swedish 

Betydelsen av forskning om digital långtidsarkivering har ökat under de 
senaste tio-femton åren. Många tidskriftsartiklar och böcker som beskriver 
problem, verktyg och tekniker för digital dataarkivering har skrivits, och 
många standarder för olika arkiveringsmodeller har publicerats. Det mesta 
av detta arbete har fokuserat på arkivering av filbaserade digitala objekt som 
dokument, bilder och webbsidor. Betydligt mindre arbete har fokuserat på 
långtidsarkivering av strukturerade data, dvs databaser och vetenskapliga 
mätdata, trots att det finns ett erkänt stort behov för sådan forskning. Arkive-
ring av vetenskapliga data tillsammans med vetenskapliga publikationer 
skulle bland annat bidra till att bättre dokumentera ursprunget för vetenskap-
liga resultat och underlätta återskapande av forskningsresultat. 

För att uppnå en långsiktig dataarkivering är det önskvärt att innehållet i 
en databas sparas i ett databasoberoende format, så att databasen kan åter-
skapas efter lång tid med hjälp av senaste databasteknik. Ett lovande format 
för databasoberoende långtidsarkivering av data är RDF (Resource Descrip-
tion Framework). RDF är ett dataformat för lagring och utbyte av olika sor-
ters kunskap och data i form av satser uttryckta som trippler, (subjekt, predi-
kat, objekt), t.ex. (<eBird:Havsörn>, <eBird:boplats>, <eBird:Havsband>) 
för att representera att havsörnar bor i havsbandet. RDF är ett centralt be-
grepp för kunskapsrepresentation inom det forskningsområdet "semantisk 
web". Med hjälp av RDF-baserade format kan man skapa standardiserade 
representationer för alla typer av data, inklusive konventionella relationsda-
tabaser. RDF tillhandahåller vidare ett standardiserat frågespråk SPARQL 
med vilket man kan uttrycka godtyckliga sökningar bland RDF-data. Denna 
avhandling utreder hur semantiska webb-representationer, särskilt RDF och 
SPARQL, kan möjliggöra flexibel och skalbar arkivering, rekonstruktion 
och sökning i databaser.  

En metod för skalbar långtidsarkivering av utvalda delar av relationsdata-
baser i RDF-format med hjälp av SPARQL-frågor har utvecklats, implemen-
terats och utvärderats i det egenutvecklade prototypsystemet SAQ (Semantic 
Archieve and Query). Den föreslagna metoden är lämplig för arkivering av 
forskningsdata som används i vetenskapliga publikationer, där det är önsk-
värt att arkivera endast de delar av en databas som är relevanta för en publi-
kation. Arkivering av valda delar av en databas specificeras genom en före-
slagen utvidgning av SPARQL, benämnd A-SPARQL. SAQ genererar auto-
matiskt en RDF-vy av en relationsdatabas så att man kan söka i databasen 
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med SPARQL-frågor och arkivera valda delar med arkiveringsfrågor ut-
tryckta i A-SPARQL. SAQ översätter därvid frågorna till det frågespråk, 
SQL, som används för att söka i relationsdatabaser för att skickas till rela-
tionsdatabasen för utförande. Resultatet av en arkiveringsfråga är en dataar-
kivfil, som innehåller en RDF- representation av den utvalda data i relations-
databas för arkiveringen. Systemet genererar därvid också en schemafil, som 
innehåller all nödvändig information om strukturen för arkiverade data för 
att senare kunna rekonstruera den arkiverade databasen. För att uppnå skal-
bar arkivering använder SAQ speciella regler för att optimera frågor, vilka 
experimentellt har visats förkorta tiden väsentligt, även jämfört med andra 
system som tillhandahåller SPARQL-frågor över befintliga relationsdataba-
ser. 

För återskapning av en arkiverad relationsdatabas har vi utvecklat en stra-
tegi Triple Bulk Load (TBL), som snabbt rekonstruerar och återupplivar en 
RDF-arkiverad databas. När en arkiverad relationsdatabas skall återskapas 
läser SAQ först schemaarkivfilen och utför en rekonstruktionssalgoritm för 
att automatiskt återskapa endast den del av databasstrukturen som represen-
terar arkiverade data. Därefter läses datarkivfilen för att lägga in arkiverade 
data i databasen. TBL använder därvid s.k. “bulk loading”- vilket är en faci-
litet i en relationsdatabas för att snabbt lägga in nya data. Våra experiment 
visat att TBL är betydligt snabbare än en naiv ansats, trots att TBL kräver 
mer komplicerad sortering och efterbehandling. 

Som alternativ till relationsdatabaser kan man använda s.k. semistrukture-
rade databaser där databasstrukturen är mer informell. Ett sådant databas-
format är s.k. Topic Maps, vilka används för beskriva digitala innehållsför-
teckningar. För att kunna söka och arkivera Topic Map databaser i termer av 
RDF och SPARQL har prototypsystemet TM-Viewer implementerats. Sy-
stemet baseras på ett en generell beskrivning av Topic Map modellen i form 
av ett s.k. konceptuellt schema. Generella ett-till-ett-avbildningar från det 
konceptuella schemat till RDF har definierats som en automatiskt genererad 
RDF-vy, TM-vyn, som representerar vilken Topic Map databas som helst. 
Metoder för att optimera SPARQL frågor mot TM-vyn har utvecklats och 
utvärderats. Utvärderingarna visade att optimeringsmetoderna avsevärt för-
bättrar söktiden. 
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