
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1431

Real-time data stream clustering
over sliding windows

SOBHAN BADIOZAMANY

ISSN 1651-6214
ISBN 978-91-554-9698-2
urn:nbn:se:uu:diva-302799

Dissertation presented at Uppsala University to be publicly examined in ITC 2446,
Lägerhyddsvägen 2, Uppsala, Wednesday, 23 November 2016 at 10:00 for the degree of
Doctor of Philosophy. The examination will be conducted in English. Faculty examiner:
Professor Tamer Özsu.

Abstract
Badiozamany, S. 2016. Real-time data stream clustering over sliding windows. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1431. 33 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9698-2.

In many applications, e.g. urban traffic monitoring, stock trading, and industrial sensor data
monitoring, clustering algorithms are applied on data streams in real-time to find current
patterns. Here, sliding windows are commonly used as they capture concept drift.

Real-time clustering over sliding windows is early detection of continuously evolving clusters
as soon as they occur in the stream, which requires efficient maintenance of cluster memberships
that change as windows slide.

Data stream management systems (DSMSs) provide high-level query languages for searching
and analyzing streaming data. In this thesis we extend a DSMS with a real-time data stream
clustering framework called Generic 2-phase Continuous Summarization framework (G2CS).
 G2CS modularizes data stream clustering by taking as input clustering algorithms which are
expressed in terms of a number of functions and indexing structures. G2CS supports real-
time clustering by efficient window sliding mechanism and algorithm transparent indexing.
A particular challenge for real-time detection of a high number of rapidly evolving clusters
is efficiency of window slides for clustering algorithms where deletion of expired data is not
supported, e.g. BIRCH. To that end, G2CS includes a novel window maintenance mechanism
called Sliding Binary Merge (SBM). To further improve real-time sliding performance, G2CS
uses generation-based multi-dimensional indexing where indexing structures suitable for the
clustering algorithms can be plugged-in.

Keywords: Data streaming; Sliding windows; Clustering;

Sobhan Badiozamany, Department of Information Technology, Division of Computing
Science, Box 337, Uppsala University, SE-75105 Uppsala, Sweden. Department of
Information Technology, Computing Science, Box 337, Uppsala University, SE-75105
Uppsala, Sweden.

© Sobhan Badiozamany 2016

ISSN 1651-6214
ISBN 978-91-554-9698-2
urn:nbn:se:uu:diva-302799 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302799)

To my family

List of Papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Badiozaman, S., Risch, T. (2012) Scalable ordered indexing of

streaming data. International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage
Architectures

II Badiozamany, S., Melander, L., Truong, T., Xu, C, Risch, T.
(2013) Grand Challenge: Implementation by Frequently Emit-
ting Parallel Windows and User-Defined Aggregate Functions.
The 7th ACM International Conference on Distributed Event-
Based Systems

III Badiozamany, S. (2014) Distributed multi-query optimization
of continuous clustering queries, VLDB PhD Workshop

IV Badiozamany, S., Orsborn, K., Risch, T. (2014) Framework for
real-time clustering over sliding windows. SSDBM 2016 Con-
ference on Scientific and Statistical Database Management

Reprints were made with permission from the respective publishers. All
papers are reformatted to the one column format of this book.

Table of contents

1 Introduction ... 11

2 Background and related work .. 13
2.1 Data Stream Management Systems ... 13
2.2 Real-time data stream clustering ... 15
2.3 Sliding windows .. 16
2.4 Indexing sliding windows ... 17
2.5 Two-phase aggregation over sliding windows 17
2.6 Two-phase clustering over sliding windows 19

3 Generic 2-Phase Continuous Summarization 22

4 Contributions ... 25
4.1 Paper I ... 25
4.2 Paper II .. 25
4.3 Paper III .. 26
4.4 Paper IV .. 26

5 Conclusion and future work ... 27

6 Summary in Swedish ... 28

7 Bibliography .. 31

Abbreviations

DSMS Data Stream Management System
G2CS Generic 2-layer Continuous Summarization
SBM Sliding Binary Merge
PGS Partial Grouped Summary
RM Repetitive Merge

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Tore
Risch for his continuous support of my research, for his patience and en-
couragement. Thank you Tore for the sleepless nights we were working to-
gether before deadlines. I would like to thank my co-supervisor Kjell Ors-
born for discussing research ideas and providing valuable feedback.

I thank former and current colleagues Ahmad Alzghoul, Andrej Andrejev,
Matteo Magnani, Khalid Mahmood, Lars Melander, Silvia Stefanova, Thanh
Troung, Cheng Xu, Erik Zeitler, and Minpeng Zhu for sharing their experi-
ence and helping me in teaching and research activities.

More specifically, I would like to thank Silvia, Minpeng, Matteo, and
Thanh for all the fun, the barbeques and parties. Thanks for all the chats we
had about ordinary life as PhD students, your friendship made me feel at
home during the PhD studies. Thanh, I am also grateful for sharing your
extensive knowledge of indexing.

Last but not the least; I would like to thank my family: Elham and Avina
for supporting me spiritually throughout my PhD and my life in general. I
would also like to thank my parents for their dedication and for many years
of support during my whole life that has provided the foundation for this
work.

This project was supported by EU FP7 Project Smart Vortex, the Swedish
Foundation for Strategic Research, and eSSENCE under contract
RIT080041.

 11

1 Introduction

In the big data era, the data is produced at extremely high velocities and
volumes. In many cases the data is in the form of data streams, making the
approach of storing and querying the data offline infeasible. Examples of
data streaming applications are urban traffic monitoring, stock trading, and
industrial sensor data monitoring. To address these applications, Data Stream
Management Systems (DSMSs) are used where queries continuously process
data in real-time and emit output, as opposed to querying stored data.

Many data streams represent the current state of dynamic systems, e.g.
geo-located streams of vehicle positions in an urban area, where knowing the
current characteristics of the systems with low latency is highly desired. To
enable real-time stream processing the DSMS should not fall behind the
current stream and have a low response time, which requires efficient data
indexing and stream maintenance mechanisms. Most DSMSs use main
memory for query processing to meet low latency requirements.

To dynamically capture evolution of the underlying system data streams,
usually a window of most recent data is continuously queried where the
window slides forward as a data stream progresses using continuous
GROUPBY queries.

When the exact grouping of data is unknown conventional GROUPBY is
insufficient because it is based on equality of group keys. In this case clus-
tering algorithms are used, e.g. KMEANS [1] and DBSCAN [2], to form the
groups and maintain the statistics. Clustering streaming data is particularly
challenging because it involves dynamically merging and splitting evolving
clusters over which statistical summaries are maintained in real-time as the
stream progresses [3] [4] [5].

Most of the previous work on data stream clustering is focused on devel-
oping monolithic algorithms where the sliding window and indexing mecha-
nisms are included in the algorithm, resulting in intertwined implementations
that are not easily reusable. For example EXTRA-N [4] and SGS [5] have a
spatial index on window contents: both windowing and indexing mecha-
nisms are implemented within the clustering algorithm. BIRCH [6] is an-
other example of a clustering algorithm that uses an application specific
indexing technique, called CF-tree. Implementing data stream mining algo-
rithms from scratch requires a very rare combination of skills so there is a
need for high-level frameworks where data scientist can express data analy-

 12

ses on a high level, while complex algorithms, indexing and other low-level
storage options can be reused and plugged-in beforehand [7].

In the context of this Thesis, clustering algorithms and conventional
GROUPBY aggregation are different forms of data stream summarization
algorithms as they both group and summarize the data streams.

This Thesis addresses the generic problem of data stream summarization
over sliding windows in real-time by the Generic 2-layer Continuous Sum-
marization (G2CS) framework where different summarization algorithms
and indexing structures can be plugged-in.

The following research questions are investigated:
1. What is the most suitable window sliding mechanism for different kinds

of stream summarization algorithms?
2. What is the suitable indexing mechanism for data summarization over

sliding windows?
3. How can the window sliding mechanism be separated from both index-

ing and the applied summarization algorithm to avoid intertwined im-
plementations?

To address the research questions we developed G2CS where we evaluated
different implementation alternatives.

To address research question 1, in Paper II we analyzed a use case to in-
vestigate different query processing methods for GROUPBY queries. A two-
phase approach [8] [9] [10] [11] [12] for stream summarization over sliding
windows was then picked for further development. Based on this case study,
in Paper IV a two phase approach is presented to efficiently support cluster-
ing queries using a novel window maintenance mechanism called Sliding
Binary Merge (SBM).

Paper I addresses research question 2 by presenting a generic approach
for indexing the data in sliding windows that continuously maintain
GROUPBY aggregates by slicing both the data and the index in sliding win-
dows. This approach is generalized in Paper IV to index the data required for
maintaining dynamically changing clusters over sliding windows.

To address research question 3, in paper IV it is shown how G2CS sepa-
rates sliding window maintenance and indexing from plugged-in summariza-
tion algorithms, which makes it significantly easier for data scientists to per-
form clustering over data streams. G2CS allows for re-use of software com-
ponents and simplify the introduction of new algorithms.

This Thesis overview is organized as follows. Chapter 2 presents the
technology background and reviews the related work. Chapter 3 presents
G2CS, the framework that implements all the contributions. Chapter 4 states
the contributions made in each of the four papers, Chapter 5 presents possi-
ble future directions of this Thesis work, and the Thesis summary in Swedish
is presented in Chapter 6.

 13

2 Background and related work

In this chapter first general technologies and definitions for real-time data
stream analysis are presented. Then approaches for real-time data stream
mining related to G2CS are discussed in details.

2.1 Data Stream Management Systems
A data stream is a continuously extended sequence of tuples, which is usu-
ally ordered, commonly by tuple arrival time or tuple number. In most sce-
narios, due to high data volume and velocity, the elements can be read only
once. Data streams are produced for example by sensor readings from ma-
chines [13], live update of stock prices [14], and spatio-temporal readings
from a number of moving objects [15] [16]. The massive amount of data
produced by data streams need to be systematically processed and analyzed.

There are a number of systems, e.g. Storm [17], Amazon Kinesis [18],
MillWheel [19], Flink streaming [20], and Microsoft Streaminsight [21] for
high-performance data stream processing using a regular programming lan-
guage where a processing pipeline is explicitly programmed. In general, it is
desirable to have a high level query language to analyze data streams, as in
Streambase [22], SQLStream [23], and Gigascope [24]. This is because,
similar to processing data in conventional applications, a high level query
processor enables data analysis for non-programmers since the users express
“what” information is to be retrieved instead of “how” to retrieve it.

Data Stream Management Systems (DSMSs) [25] are software systems
that manage and support querying of continuous data streams. Example
DSMSs are STREAM [26], TelegraphCQ [27], Gigascope [24], and SCSQ
[28]. Since data streams are unbound and echo the changing behavior of a
monitored system, the query model in a DSMS reflects this dynamic behav-
ior using continuous queries [29] where, unlike traditional database queries,
the result continuously changes as the stream progresses. Continuous queries
run and emit updated output until they are explicitly terminated by the user.

Data streams often have high volume and velocity, so DSMSs need to
meet the following requirements:

• The arriving stream elements have to be processed on-the-fly.

 14

• Processing data streams usually is done in a single pass, in contrast
to regular query processing methods that rely on visiting tuples mul-
tiple times.

• To be able to keep up with the stream flow, the processing engine
needs to have low latency and high throughput. Therefore, the
stream processing engines often operate in main-memory and use re-
sponsive main-memory indexing structures.

Event driven systems [30] are similar but optimized for analyzing complex
event patterns using a reactive language.

Figure 1. The SuperComputer Stream Query processor (SCSQ) DSMS

Figure 1 illustrates the architecture of SCSQ. The meta-database stores the
schema used to express queries. The local database maintains in main-
memory data representing current data summaries as well as historical data
using main-memory indexes for efficient search. The continuous query
processor optimizes and executes continuous queries over the data streams
by accessing the meta-data and the local database. Continuous queries can
span both streaming and local data.

SCSQ

Meta Data

Summary data
Historical data
Indexes

Continuous
Query
processor

C
ontinuous Q

ueries

Data Stream(s) 010101 010101 010101 010101 010101 010101

Q
uery results

(stream
)

Local Database

 15

This Thesis work extends the DSMS SCSQ to process real-time data min-
ing queries over sliding windows.

2.2 Real-time data stream clustering
In many applications, complex data mining algorithms are applied on the
stream in real-time to find current data patterns. For example, automated
financial systems use real-time modeling and monitoring of the stock price
trends for predictive applications. Another example is monitoring urban traf-
fic in real-time where the data streams produced by connected vehicle GPS
systems are analyzed to detect traffic regions by forming clusters of cars.

Traditional data clustering algorithms such as K-means [1], Self Organiz-
ing Maps [31], density based clustering techniques such as DBScan [2] and
CLIQUE [32], are applied on finite static data. This allows for several passes
through the stored data. In contrast, because data streams are infinite, data
stream mining algorithms need to process the data in single pass as in Denss-
tream [3], BIRCH [6], Extra-N [4], SGS [5]. In addition to the single-pass
requirement in data stream clustering, real-time data stream clustering re-
quires detecting the continuously evolving clusters formed as the stream
progresses. Responsive real-time cluster detection requires early detection of
clusters as soon as they occur in the stream, which is addressed by G2CS.
For example, a moving car can use traffic data streams to form clusters of
cars in the road to actively detect traffic congestion ahead and slow down. In
this case responsive detection of clusters is essential for safety reasons.

While data stream clustering can be done using data stream processing
engines (e.g. Storm, Kinesis, Stream Mill, Flink Streaming, stream insight,
IBM system S), DSMSs are better fit for data stream clustering because the
end users can express the clustering task in terms of high level queries. For
example, the following query [Paper IV] detects congested areas with radius
50 meters over a window of vehicle positions X and Y using a modified
version of the clustering algorithm BIRCH [6] for sliding windows, C-
BIRCH.

SELECT CENTER(cid), COUNT(cid)

FROM VEHICLE_POSITIONS (RANGE = 10, STRIDE = 2)

WHERE SPEED<30

CLUSTER BY X, Y AS cid

USING C-BIRCH(50)

Here, C-BIRCH is an algorithm that is plugged into the DSMS and the
FROM clause specifies a sliding window, which is discussed in the next
section. G2CS allows for plugging-in clustering algorithms such as C-

 16

BIRCH and executing them with low response times over sliding windows.
The plug-ins can be defined in terms of high level queries to the local main-
memory database. This simplifies the implementation of the algorithms and
improves their performance by utilizing query optimization techniques, e.g.
automatic index utilization.

2.3 Sliding windows
To enable processing of blocking operators like average and sum over infi-
nite data streams, windowing is commonly used in data stream processing
because it limits the extent of data to a sequence of most recent elements in
the data stream. Clustering algorithms are blocking since they require having
all the data points to compute the clusters. Therefore, windowing is needed
for data stream clustering.

There are different ways of defining a window over a data stream [33].
The window specification defines how recent stream elements are selected
for windowing in the FROM clause of a continuous query. When the win-
dow specification is applied on a live data stream it produces new window
instances at different points in time. A window instance logically contains a
set of stream elements.

For example, a sliding window is specified by defining its range and
stride. The range R of a sliding window specifies the length of the window
while the stride S specifies the portion of the range that is evicted from the
window when the window moves forward. A sliding window is specified as
a tuple <R,S>, where S<R. Two common kinds of sliding windows are time-
based and count-based sliding windows. In time-based sliding windows R
and S are defined using time intervals while in count-based sliding windows
they are defined in terms of the number of elements. For example a time
based sliding window with R=10min and S=2min produces window in-
stances that cover the data in the last 10 minutes of the stream and a new
window instance is created every 2 minutes. Without loss of generality, we
present sliding windows using time-based sliding windows.

Real-time data stream clustering can be done using sliding windows be-
cause they reflect the recent elements in the stream. To responsively detect
rapidly changing clusters, a smooth sliding specification is highly desired
where the stride S is small relative to the range R, i.e. the partitioning ratio
PR=R/S is high. G2CS provides a sliding mechanism that allows for effi-
cient processing of clustering algorithms with high PR [Paper IV].

 17

2.4 Indexing sliding windows
The contents of window instances can be stored as a sequence of data items
in a main-memory buffer. However, when the execution of continuous que-
ries involves searching the contents of the window instance, the search can
become expensive if there are many elements in it, e.g., finding vehicles
with a particular pattern in their plate number in a window of a live traffic
stream, or finding the activities of certain mobile phone users within the past
hour. Data indexing [34] is a general technique that provides efficient search
in databases which can also be applied on indexing large data stream win-
dows [35].

Real-time data clustering algorithms often require continuous search for
similar objects in a multi-dimensional space. Calculating the similarity of all
the objects in a large window can be prohibitively expensive; therefore
multi-dimensional indexing that supports efficient similarity search is re-
quired for responsive real-time query processing. Each clustering algorithm
might have a different indexing structure so it is desirable to be able to plug-
in different indexing data structures.

Indexing the contents of sliding window instances brings about the fol-
lowing challenges:

• The indexing structure need to support very high insertion rates to be
able to add the arriving data to the window.

• They also need to have a high performing deletion mechanism to
evict expired data.

In data stream processing main memory indexing structures need to be used
to keep up with the stream flow.

G2CS provides a method for plugging-in algorithm-specific main-
memory indexing of the elements in window instances, while supporting
high insertion rates and a bulk deletion method [Paper I]. For responsive
clustering over sliding windows, G2CS uses a general indexing framework
described in [Paper IV] that separates the indexing from both the applied
clustering algorithms and the sliding mechanisms. This is shown to signifi-
cantly improve the response time.

2.5 Two-phase aggregation over sliding windows
Figure 2 illustrates how data overlaps when windows slide. A window in-
stance Wb,e represents the state of the window W during the valid time inter-
val [b,e). In Figure 2 the data in window instance W0,10, covering the time
interval [0,10) overlaps (gray boxes) with the data in the window instance
W2,12 covering [2,12). The window instance W2,4 is a common partial win-
dow instance of the complete window instances W0,10 and W2,12.

 18

Figure 2. Data overlap in sliding windows

To avoid unnecessary recomputations when data is summarized over sliding
windows, efficient differential maintenance techniques can be used [36]. For
example in Figure 2, the summary for W2,12 can be obtained by adding W10,12
to the summary for W0,10 and removing W0,2 from the summary for W0,10.

 Differential processing is usually done by introducing functions for add-
ing/removing deltas to/from the aggregation state [36]. For example, the
aggregate function COUNT is differential because both of the following
equations hold: ܣ)ܷܱܶܰܥ	(ܤ = (ܣ)ܷܱܶܰܥ + (ܥ\ܣ)ܷܱܶܰܥ (Incremental) (ܤ)ܷܱܶܰܥ = (ܣ)ܷܱܶܰܥ − (Decremental) (ܥ)ܷܱܶܰܥ

Here A, B, and C are sets. Using the incremental and decremental properties,
the summary for a sliding window is differentially maintained as follows.
When a slide happens the summary of the most recent window instance is
reused by adding the incoming elements using the incremental function and
removing the expired elements using the decremental function.

For many data stream summarization algorithms, e.g. clustering algo-
rithms, there is no decremental function, e.g. in BIRCH. Even when a
decremental method can be devised as in [37], it can be very expensive and
must be avoided, as suggested by previous work [4]. G2CS provides a novel
window maintenance technique for efficiently maintaining summaries with-
out requiring the decremental function [Paper IV].

Figure 3. Sliding window aggregation

Figure 3 shows the widely used two-phase aggregation technique [8] [9]
[10] [11] [12] for computing aggregation over sliding windows. The thick-

W0,10

W2,12

0 2 4 6 8 10 12 14 t

W0,2 W2,4 W4,6 W6,8 W8,10 W10,12 W12,14

 19

ness of the arrows in the figure indicates the volume of the stream. First, the
selection filter removes the stream elements that are outside the query selec-
tion criteria. The second and third processes constitute the two-phase aggre-
gation. After applying the selection filter, the two-phase aggregation summa-
rizes the stream per group as follows:
1. In the first phase, called partial aggregation, fine-grain non-overlapping

partial window instances are formed where aggregated data is accumu-
lated.

2. The second phase, called final aggregation, combines consecutive ag-
gregates from the first phase to produce the total aggregate over the
complete window instances.

With the 2-phase window maintenance approach the performance is im-
proved because the incremental property of an aggregate function enables
pushing down incremental computations into the first phase, thus reducing
the data volume in the second phase. Second, the decomposition allows dis-
tributed and parallel processing since phase one and two form a pipeline
[24]. In the 2nd phase, at every slide, the incremental property enables a par-
tial aggregate to be merged into the total aggregate, while the decremental
property allows the contributions of expired partial aggregates to be ex-
cluded.

G2CS extends the two-phase approach to also support non-decremental
summarization algorithms such as clustering algorithms by introducing a
sliding mechanism for responsive maintenance of evolving clusters in the
second phase for clustering algorithms that do not have the decremental
property. The first phase is similar for both clustering and aggregation, only
the aggregated data is algorithm dependent.

2.6 Two-phase clustering over sliding windows
We note that the 2-phase approach is also beneficial for clustering-
algorithms, where expensive cluster formation can be done in phase one and
the formed partial clusters are combined using the clustering algorithm in
phase two. However, there is a fundamental difference between GROUP-BY
queries and clustering queries, which has implications on how the two phase
approach is implemented. In GROUP-BY queries, the groups on which ag-
gregate functions are applied are formed based on equality of grouping keys,
whereas clusters are formed based on algorithm dependent similarity be-
tween data points. Therefore, a window slide in a GROUP-BY query does
not move elements between groups. In contrast, for clustering algorithms the
window slides dynamically change cluster memberships as clusters might
merge or split when new data arrives or old data expires.

 20

Figure 4a shows an example of dynamic group membership in clusters
a1, a2, and a3. Figure 4b illustrates two arriving points (green) and two ex-
pired ones (red). The resulting point-to-cluster memberships in Figure 4c are
completely new.

G2CS allows for such dynamic change of group memberships for cluster-
ing algorithms by allowing for combined group formation and data summa-
rization [Paper IV].

Figure 4. Evolving group memberships in clustering algorithms over sliding win-
dows

The dynamically changing group memberships in clustering algorithms has
the following implications on how they are processed over sliding windows,
compared to conventional GROUP-BY queries:

a. Streamed clustering algorithms require grouping and aggregation to
be combined, whereas group formation mechanisms in GROUP-BY
queries are implemented by first splitting the stream based on the
group key in a grouping operator followed by an aggregation opera-
tor [8] [38]. Therefore stream clustering algorithms needs to main-
tain their own data structures to represent clusters that are updated as
the window slides.

b. For many clustering algorithms, incremental deletion of data points
from clusters is not defined [39], i.e. they are not decremental. Even
when a decremental method can be devised as in [37], it can be very
expensive and must be avoided, as suggested by previous work [4].

c. Efficient grouping by similarity in streamed clustering algorithms
require multi-dimensional indexing to find which clusters are influ-
enced by a regrouping, while streamed GROUP-BY queries can
hash on fixed group keys.

G2CS addresses a. by allowing clustering algorithms to store multiple gen-
erations of summarization data as the cluster memberships evolve over time
with window slides. G2CS addresses b. by a novel window maintenance
technique called Sliding Binary Merge (SBM) which is very efficient when
the applied summarization function is non-decremental allowing for respon-

a)
Clusters before the slide

b)
New and expired points

c)
Clusters after the slide

a1 a2

a3

c1

c2 c3

 21

sive slides. To address c. G2CS provides transparent index plug-ins to speed
up the multi-dimensional search in clustering algorithms, which improves
the response time.

In related work [40] [4] [5] [41], to support non-decremental clustering
algorithms, the summary in each partial window instance, here called Partial
Grouped Summary (PGS), is repetitively merged into all complete windows
it is part of. The repetitive merge (RM) approach is illustrated in Figure 5
where a sliding window of range R=10 and stride S=2 is formed in the 2nd
phase. When PGS5 arrives, it is merged into the five complete window in-
stances W0,10, W2,12, W4,14, W6,16, and W8,18. This causes redundant computa-
tions, e.g. both W8,18 and W10,20 merge all the common partial summaries
PGS6 – PGS9.

Figure 5. Final summarization with Repetitive Merge

With repetitive merge the number of merges per slide becomes high when
PR is high, which substantially decreases responsive detection of clusters, as
shown in [Paper IV]. Unlike the repetitive merge approach, G2CS avoids the
overlapping merges by maintaining small intermediate data stream summa-
ries and organizing them using SBM.

 t

W0,10 = merge(PGS1…PGS5)

W2,12= merge(PGS2…PGS6)

W4,14= merge(PGS3…PGS7)

W6,16= merge(PGS4…PGS8)

W8,18= merge(PGS5…PGS9)

W10,20= merge(PGS6…PGS10)

PGS1 PGS2 PGS3 PGS4 PGS5 PGS6 PGS7 PGS8 PGS9 PGS10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 1614 17 18 19 20

 22

3 Generic 2-Phase Continuous
Summarization

The different user roles in G2CS are shown in Figure 6. The data scientists
are the end users submitting continuous queries to G2CS to find clusters and
perform other analyses. The algorithm designers implement new stream
summarization algorithms and plug them into the system. Plug-ins can be
written to support either conventional GROUPBY aggregation or complex
clustering algorithms; the latter is the focus of this Thesis. Clustering algo-
rithms often require specific indexing for responsive cluster maintenance as
the clusters evolve. G2CS allows arbitrary indexing structures to be plugged-
in by indexing experts. By defining plug-ins in terms of queries over the
main-memory local database [Paper IV], the algorithm design is separated
from index implementation. This is because the query optimizer automati-
cally utilizes indexing [42] when executing the queries over the local main-
memory database.

Figure 6. User roles in G2CS

G2CS

C
ontinuous Q

ueries

Data Stream(s) 010101 010101 010101 010101 010101 010101

Q
uery results

(stream
)

Data scientists

Algorithm designers

Clustering algorithms
as plug-ins

Indexing expert

Indexing structures
as plug-ins

 23

Figure 7 illustrates the architecture of the framework. It utilizes previous
work on query processing [43], data stream management [28], and extensible
indexing [42]. The contributions of this Thesis are the modules that are blue-
shaded in the figure. The query processor receives continuous queries and
produces execution plans that invoke the G2CS kernel.

Figure 7. G2CS architecture

The context manager organizes window instances by contexts. A context
represents the valid time interval of a window instance as a triple <b, e,
cxtid> where cxtid is a unique context identifier of the time interval [b,e) per
window. Contexts are allocated by the context manager and their identifiers
are passed to the plugged-in clustering algorithms. The contextualized index
manager in G2CS maintains an index per context in the local database and
separates indexing from the sliding mechanism and the plugged-in clustering
algorithms.

The partial summarizer implements the first phase of clustering over slid-
ing windows. As new data arrives, it slices the incoming stream into partial
window instances. It then assigns a new context for each new partial window
instance and iteratively calls the adder plug-in for each arriving data point to
incrementally populate summary data for the context identifier.

 24

When the summary data for the partial window instance is fully populated
the final summarizer is called, causing the sliding mechanism to be invoked
in order to form and emit the clusters in a complete window instance. The
final summarizer implements the second phase of the clustering. For differ-
ential algorithms the user can provide methods for both incremental mainte-
nance of clusters (merger plug-in) and decremental ones (excluder plug-in).
For non-decremental algorithms it is crucial to avoid the repetitive merge
approach in the final summarizer because of its redundant calculations. In
this case G2CS maintains and reuses several layers of intermediate window
instances by organizing them by contexts using SBM.

Since SBM maintains a number of intermediate window instances to op-
timize the sliding mechanism, the copier plug-in is invoked to populate new
window instances by copying data from old to new window instances. Then
G2CS makes a number of calls to the merger and excluder plug-ins to gener-
ate complete window instances. By calling the copier calls prior to the
merger and excluder, G2CS retains the necessary old and intermediate win-
dow instances. The reporter plug-in extracts the data to be emitted from a
complete window instance. An incremental garbage collector deallocates
summary data for window instances whose contexts are no longer needed.

 25

4 Contributions

This section summarizes the contributions made by each of the four papers
in the Thesis.

4.1 Paper I
This paper presents an efficient main-memory ordered indexing framework
for sliding windows over data streams. There are three requirements for in-
dexing sliding windows. First, the search needs to be responsive, second
high insertion rates need to be handled to support high stream rates, and
third, piecewise bulk deletion need to be supported for responsive deletion of
expired data as the window slides. A number of main-memory ordered in-
dexes were investigated where the highly optimized cache-aware compact
trie implementation Judy [44] was particularly interesting for responsive
indexing as it supports very fast insertion in constant time. However, Judy
had a very slow range search. We developed a mapper function that applies a
user defined aggregate function while traversing the Judy data structures.
The mapper approach does not require source code modification of the very
complex Judy implementation while significantly improving its range
search. The need for piecewise bulk deletion in sliding windows was ad-
dressed by a framework for indexing sliding windows that allows bulk dele-
tion for any plugged-in indexing structure. This framework was further im-
proved in Paper IV by contextualized indexing.

I am the primary author of this paper. The second author contributed in
discussions and in writing the paper.

4.2 Paper II
In this paper a solution to the DEBS2013 grand challenge [16] is presented.
The problem is implementing four continuous aggregation queries over a
stream of spatio-temporal sensor readings produced in a real soccer game.
The particular challenge was to minimize the response time of the four con-
tinuous queries running in parallel on a single 4-core machine. We used the
two-phase stream aggregation over sliding windows to improve the perform-
ance of standalone queries. Furthermore, to decrease overall resource con-

 26

sumption, we needed to utilize shared execution for the queries when possi-
ble. The two-phase approach allowed for sharing partial aggregations be-
tween queries, reducing the overall resource consumption, and providing
responsive execution of the four queries.

I am a co-author to this paper. I designed and implemented two of the
queries, specifically the two-phase approach for sharing the partial aggrega-
tions. I also contributed in writing most of the manuscript.

4.3 Paper III
This paper outlines the overall research project. It includes an investigation
of query processing over sliding windows, common multi-query optimiza-
tion techniques for aggregate queries over sliding windows, and identifies
the challenges of designing a framework for responsive data stream cluster-
ing. In particular, it identifies supporting non-decremental clustering algo-
rithms as one of the main challenges for real-time data stream clustering
over sliding windows, which is addressed in Paper IV.

I am the author of this paper.

4.4 Paper IV
This paper presents the G2CS framework in details. G2CS uses SBM and
contextualized indexing for real-time data stream clustering over sliding
windows. The design details of SBM and contextualized indexing is outlined
in the paper. Furthermore, the paper includes a thorough computational
complexity analysis for SBM and contextualized indexing, which is also
verified by extensive performance experiments. The paper uses the cluster-
ing algorithm BIRCH as a running example to explain how clustering algo-
rithms can be plugged-in, resulting in a variant of BIRCH for sliding win-
dows called Continuous BIRCH, C-BIRCH.

I am the primary author of this paper, developed G2CS and C-BIRCH,
and performed extensive performance experiments. The other authors con-
tributed in discussions and writing the manuscript.

 27

5 Conclusion and future work

G2CS is a framework that supports real-time data stream clustering over
sliding windows by extending the two-phase approach [8] [9] [10] [11] [12]
for stream summarization over sliding windows. It supports responsive de-
tection of clusters over streaming data by a novel sliding mechanism for
non-decremental clustering algorithms and multi-dimensional indexing. It
uses SBM to avoid overlapping computations which is shown to perform
more responsive compared to the previous repetitive merge approaches [40]
[4] [5] [41]. To support scalable index insertion and deletion under high
volume stream rates, G2CS uses contextualized indexes that separate the
implementation of indexing mechanisms from both the applied clustering
algorithms and the window maintenance mechanisms. This modularization
structures and simplifies the implementation of clustering algorithms over
sliding windows and allows for responsive bulk deletion of indexes as the
windows slide.

There are a number of future research directions. First, parallelizing and
distributing the query processing in G2CS can be investigated to further
improve the response time and throughput of the query processing. Second,
there are often opportunities for minimizing resource consumption by shar-
ing computations when several continuous queries are submitted to the sys-
tem having similar query components [9] [10] [11] [12] [40]. For example,
queries might share window fragments and selection predicates. Third, more
dynamic windowing semantics, like predicate-based and partition-based
windowing [45], can be supported by SBM. Fourth, the Thesis assumes that
stream elements arrive in order, whereas in some applications some elements
might arrive with delays. Therefore, supporting out-of-order element arrival
in SBM is desirable.

 28

6 Summary in Swedish

Digitala data produceras numera i extremt höga hastigheter och volymer.
Databaser som MySQL och sökmotorer som Google används ofta för att
söka och analysera stora datamängder som lagrats på disk i datorer på inter-
net. Emellertid produceras i många fall kontinuerligt strömmande data, t.ex.
ljud, aktiedata, trafikdata och mätvärden från sensorer på maskiner. Efter-
som strömmande data är obegränsade i storlek och produceras i realtid är det
ofta inte möjligt att först lagra dem på disk innan man söker bland dem. I
stället vill man söka och analysera data direkt i strömmen snarare än att först
mellanlagra dem.

För att hantera strömmande data har speciella sökmotorer utvecklats som
brukar kallas dataströmhanteringssystem (eng. DSMS, Data Stream Mana-
gement Systems) till vilka man kan ställa frågor mot dataströmmar på lik-
nande sätt som databashanteringssystem (eng. DBMS, Data Base Manage-
ment Systems) som MySQL hanterar frågor mot lagrade data. En fråga mot
strömmande data ger ett kontinuerligt svar i form av en ström, t.ex. genom
att kontinuerligt detektera skadliga resonansfrekvenser från en eller flera
sensorer som mäter vibrationer i en maskin. En sådan stående fråga filtrerar
data kontinuerligt så länge den är aktiv medan konventionella databasfrågor
utförs omedelbart och avslutas när resultatdata returnerats.

Ofta används stående frågor för att analysera dynamiska system vars upp-
förande kontinuerligt varierar över tiden, t.ex. strömmar av geo-positioner
från fordon i ett stadsområde eller strömmar av uppmätta vibrationer hos en
maskin. För att i tid upptäcka onormalt beteende hos det analyserade syste-
met, t.ex. trafikolyckor eller skadliga vibrationer, bör data från stående frå-
gor produceras med så liten fördröjning som möjligt. Vidare måste data-
strömhanteringssystemet vara snabbt nog att bearbeta data minst lika snabbt
som de produceras, annars fördröjs systemet alltmer och klarar inte att ana-
lysera data med begränsad svarstid. Det vanligaste sättet att begränsa svars-
tiden i konventionella databaser är indexering, dvs. speciella datastrukturer
på disk för att göra sökningar skalbara.

Dataströmhanteringssystem har stora krav på omedelbar bearbetning av
mottagna data och därför måste alla data lagras och analyseras i primärmin-
ne, inklusive indexdatastrukturerna. Genom att göra all bearbetning i pri-
märminne kan resultatet från stående frågor produceras med liten fördröj-
ning.

 29

Ett fönster mot en dataström är en begränsad senaste del av dataström-
men, t.ex. det sista 100 mätvärdena från en sensor eller alla mätvärden under
den senaste millisekunden. Allteftersom strömmen fortskrider glider fönstret
framåt över strömmen. Eftersom dataströmmar kan ha obegränsad längd
måste algoritmer som kräver tillgång till en begränsad mängd data för sin
analys appliceras på sådana fönster. Vidare behövs fönster för att snabbt
upptäcka onormalt beteende hos strömmar från dynamiska system. Ofta
samlas statistik från varje fönster m.h.a. frågor som grupperar data m.a.p. en
kategori eller gruppnyckel, t.ex. uppmätt maximal och genomsnittligt tryck
per sensor för ett antal trycksensorer på en maskin(.). Varje sensor har ett
heltal som gruppnyckel och dataströmhanteringssystemet upprätthåller kon-
tinuerligt en tabell av statistik per gruppnyckel allteftersom strömmen fort-
skrider och fönstret glider framåt.

I många fall kan emellertid ingen gruppnyckel identifieras för att kontinu-
erligt tabulera statistik, t.ex. när man vill identifiera grupper av maskiner
med likartat beteende. I sådana fall används istället s.k. klustringsalgoritmer
som KMEANs [1] och DBSCAN [2] för att forma grupperna och beräkna
statistiken. Sådan klustring av strömmande data är särskilt utmanande efter-
som det innebär att grupper dynamiskt skapas, slås samman och delar sig
allteftersom strömmen fortskrider. Över dessa dynamiskt formade grupper
applicerar algoritmerna därvid statistiska sammanfattningar i realtid [3] [4]
[5].

Det mesta av tidigare forskning inom dynamisk klustring av strömmande
data är inriktad på att utveckla monolitiska algoritmer där fönster- och in-
dexeringsmekanismer ingår i algoritmerna, vilket resulterar i sammanflätade
implementeringar där kod inte kan återanvändas. Till exempel i EXTRA-N
[4] och SGS [5] ingår algoritm-specifika index över data i glidande fönster.
BIRCH [6] är ett annat exempel på en klusteralgoritm som använder en egen
indexeringsteknik, som kallas CF-träd. Att implementera strömmande klu-
stringsalgoritmer från grunden kräver en mycket sällsynt kombination av
kompetens. Därför finns behov av ramverk där analytiker kan uttrycka sina
dataanalyser på en hög nivå, medan olika klustrings- och indexeringsalgo-
ritmer kan utvecklas oberoende och pluggas in i ramverket [7].

Denna avhandling behandlar det allmänna problemet med sammanfatt-
ning av strömmande data i realtid. Följande frågeställningar undersöks:
1. Vilken är en lämplig generell mekanism för glidande fönster för olika

sorters strömmande sammanfattningsalgoritmer?
2. Vad är en lämplig indexeringmekanism för datasammanfattning över

glidande fönster?
3. Hur kan fönstrets mekanism för framåtskridande separeras från både

indexering och den sammanfattningsalgoritm som appliceras för att und-
vika sammanflätade implementeringar?

 30

Ansatsen är att utveckla ett generellt system G2CS (Generic 2-layer Conti-
nuous Summarization) där olika sammanfattningsalgoritmer och indexe-
ringsstrukturer kan pluggas in oberoende av varandra. Olika implemente-
ringsalternativ för G2CS har utvärderats.

För forskningsfråga ett analyserar vi i publikation II olika metoder att ut-
föra frågor som grupperar strömmande data från en fotbollsmatch i realtid.
En två-fas strategi [8] [9] [10] [11] [12] för strömmande summering över
glidande fönster väljs för vidareutveckling. Baserat på denna fallstudie, ut-
värderas i publikation IV två tillvägagångssätt för att effektivt kunna stödja
frågor över kluster med hjälp av en ny fönstermekanism som kallas Sliding
Binary Merge (SBM).

Publikation I adresserar forskningsfråga två genom att presentera en gene-
risk ansats för indexering av data i glidande fönster där grupperade data kon-
tinuerligt aggregeras genom att dela upp både data och index i ett glidande
fönster. Detta tillvägagångssätt är generaliserat i publikation IV för att in-
dexera de data som krävs för att upprätthålla dynamiska kluster över glidan-
de fönster.

För forskningsfråga tre visas i publikation IV hur G2CS separerar sin me-
kanism för glidande fönster från de indexerings- och sammanfattningsalgo-
ritmer som pluggats in. Detta förenklar implementeringen och gör det möj-
ligt att plugga in olika klustringsalgoritmer. Således möjliggör G2CS återan-
vändning av mjukvarukomponenter och förenklar införandet av nya algorit-
mer.

 31

7 Bibliography

[1] James MacQueen, "Some methods for classification and analysis of
multivariate observations," in Proc. Fifth Berkeley Symp. on Math.
Statist. and Prob., 1967, pp. 281-297.

[2] Martin Ester et al., "A density-based algorithm for discovering clusters in
large spatial databases with noise," in Knowledge Discovery and Data
Mining (KDD), 1996, pp. 226–231.

[3] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou, "Density-Based
Clustering over an Evolving Data Stream with Noise," in SDM, 2006, pp.
328-339.

[4] Di Yang, E. A. Rundensteiner, and M. O. Ward, "Neighbor-based pattern
detection for windows over streaming data.," in EDBT conf., Saint
Petersburg, 2009, pp. 229-540.

[5] Di Yang, Elke A Rundensteiner, and Matthew O Ward, "Summarization and
matching of density-based clusters in streaming environments," in
Proceedings of the VLDB Endowment, 2011, pp. 121-132.

[6] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, "BIRCH: an efficient
data clustering method for very large databases," in Proceedings of the
1996 ACM SIGMOD international conference on Management of data ,
1996, pp. 103-114.

[7] Volker Markl, "Breaking the Chains: On Declarative Data Analysis and Data
Independence in the Big Data Era," in International Conference on Very
Large Data Bases (VLDB), Hangzhou, 2014, pp. 1730-1733.

[8] L. Jin, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, "Semantics and
evaluation techniques for window aggregates in data streams," in
SIGMOD conf., Baltimore, Maryland, 2005.

[9] Z. Rui, N. Koudas, B. C. Ooi, and D. Srivastava, "Multiple aggregations over
data streams," in SIGMOD conf., Baltimore, Maryland, 2005.

[10] Krishnamurthy S., C. Wu, and M. Franklin, "On-the-fly sharing for streamed
aggregation," in SIGMOD conf., Chicago, Illinois, 2006.

[11] G. Shenoda, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis, "Optimized
processing of multiple aggregate continuous queries," in Proceedings of
the 20th ACM international conference on Information and knowledge
management, Glasgow, 2011.

[12] G. Shenoda, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis, "Three-level
processing of multiple aggregate continuous queries," in Data
Engineering (ICDE), 2012 IEEE 28th International Conference on,
Hannover, 2012.

 32

[13] Cheng Xu et al., "Scalable Validation of Industrial Equipment using a
Functional DSMS," Journal of Intelligent Information Systems, vol. 47,
August 2016.

[14] Hillol Kargupta et al., "MobiMine: monitoring the stock market from a
PDA," ACM SIGKDD Explorations Newsletter, vol. 3, no. 2, pp. 37-46,
Jan 2002.

[15] Gyozo Gidofalvi, Torben Bach Pedersen, Tore Risch, and Erik Zeitler,
"Highly scalable trip grouping for large-scale collective transportation
systems," in 11th international conference on Extending database
technology: Advances in database technology, 2008, pp. 678-689.

[16] Z. Jerzak and H. Ziekow. (2013) DEBS Grand Challenge. [Online].
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

[17] (2016, Aug) Storm home page. [Online]. http://storm.apache.org/

[18] Mathew Sajee, "Overview of amazon web services," Amazon Whitepapers,
Nov 2014.

[19] Tyler Akidau et al., "MillWheel: fault-tolerant stream processing at internet
scale," in Proceedings of the VLDB Endowment, 2013, pp. 1033-1044.

[20] Paris Carbon et al., "Apache Flink™: Stream and Batch Processing in a
Single Engine," IEEE Data Engineering Bulletin, 2015.

[21] Seyed Jalal Kazemitabar, Ugur Demiryurek, Mohamed Ali, Afsin Akdogan,
and Cyrus Shahabi, "Geospatial stream query processing using Microsoft
SQL Server StreamInsight," in Proceedings of the VLDB Endowment ,
2010, pp. 1537-1540.

[22] (2016, Aug) StreamBase. [Online]. http://www.streambase.com/

[23] (Aug, 2016) SQLStream. [Online]. http://sqlstream.com/

[24] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, "Gigascope: a
stream database for network applications," in SIGMOD conf., New York,
2003, pp. 647-651.

[25] M. Tamer Ozsu Lukasz Golab, "Issues in Data Stream Management,"
SIGMOD Record, vol. 32, no. 2, pp. 5-14, June 2003.

[26] Arvind Arasu et al., "STREAM: The Stanford Data Stream," Stanford, 2004.

[27] Sirish Chandrasekaran et al., "TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World," in SIGMOD, 2003, pp. 668-668.

[28] E. Zeitler and T. Risch, "Massive scale-out of expensive continuous queries,"
in VLDB conf., Seattle, 2011, pp. 1181-1188.

[29] S. Babu and J. Widom, "Continuous queries over data streams," ACM
SIGMOD Record, vol. 30, no. 3, pp. 109-120, 2001.

[30] David Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems.: Springer, 2008.

[31] Teuvo Kohonen, "Self-organized formation of topologically correct feature
maps," Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[32] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan, "Automatic subspace clustering of high dimensional data for
data mining applications," in SIGMOD '98 Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, 1998, pp.
94-105.

 33

[33] Cheng Xu, "Scalable Validation of Data Streams," Uppsala University, PhD
thesis ISSN 1651-6214, 2016.

[34] Ramez Elmasri and Shamkant Navathe, Database systems, 6th ed.: Pearson,
2011.

[35] Lukasz Golab, Shaveen Garg, and Tamer Özsu, "On Indexing Sliding
Windows over Online Data Streams," in International Conference on
Extending Database Technology (EDBT), 2004, pp. 712-729.

[36] Carlo Zaniolo and Haixun Wang, "Logic-based user-defined aggregates for
the next generation of database systems," in The Logic Programming
Paradigm.: Springer Berlin Heidelberg, 1999.

[37] M. Ester, H-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, "Incremental
clustering for mining in a data warehousing environment," in VLDB
conf., New York, 1998, pp. 323-333.

[38] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu,
"General incremental sliding-window aggregation," Proceedings of the
VLDB Endowment, vol. 8, pp. 702--713, 2015.

[39] Sudipto Guha, Nina Mishra, and Rajeev Motwani, "Clustering data streams,"
in Foundations of computer science, 2000. proceedings. 41st annual
symposium on, 2000, pp. 359--366.

[40] D. Yang, E. A. Rundensteiner, and M. O. Ward, "A shared execution strategy
for multiple pattern mining requests over streaming data," in VLDB conf.,
Lyon, 2009, pp. 874-885.

[41] B. Babcock, D. Mayur, M. Rajeev, and L. O'Callaghan, "Maintaining
variance and k-medians over data stream windows," in SIGMOD conf.,
San Diego, 2003, pp. 234-243.

[42] Thanh Truong and Tore Risch, "Transparent inclusion, utilization, and
validation of main memory domain indexes," in 27th International
Conference on Scientific and Statistical Database Management, San
Diego, 2015.

[43] Tore Risch, Vanja Josifovski, and Timour Katchaounov, "Functional Data
Integration in a Distributed Mediator System," in The Functional
Approach to Data Management. Berlin: Springer, 2004, pp. 211-238.

[44] D. Baskins, "Judy home page [http://judy.sourceforge.net/]," 2003. [Online].
http://judy.sourceforge.net/

[45] Xu Cheng, Daniel Wedlund, Martin Helgoson, and Tore Risch, "Model-
based validation of streaming data: (industry article)," in Proceedings of
the 7th ACM international conference on Distributed event-based
systems, 2013, pp. 107-114.

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1431

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-302799

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016

Paper I

 37

Scalable ordered indexing of streaming data

Sobhan Badiozamany and Tore Risch
Department of Information Technology, Uppsala University

Box 337, SE-751 05, Uppsala, Sweden
Sobhan.Badiozamany@it.uu.se Tore.Risch@it.uu.se

ABSTRACT

In order to efficiently answer continuous queries requiring range search in
large stream windows, data stream management systems (DSMSs) need
ordered indexes. Conventional DBMS indexing methods are not specifically
designed for data streaming applications with extremely high insert and de-
lete rates for windows over streams. This motivates a scalability investiga-
tion for various ordered main memory indexing methods in a streaming envi-
ronment, through implementation and experiments. Our experimental studies
show that a state-of-the-art implementation of cache-aware compact tries is a
very suitable indexing structure for data streaming applications allowing
constant time insert and access rates. However, in the best of the investigated
implementation the range search was slow. Since a highly optimized imple-
mentation of compact tries is very complex we developed a framework for
scalable range search in an index without any change to its source code. An-
other important issue is that index maintenance in window based data stream
environments require a scalable way of deleting data, which is addressed by
an index independent window aware bulk deletion technique, also without
changing any source code.

1 INTRODUCTION
A Data Stream Management System (DSMS) usually has a local main mem-
ory database against which high volume streaming data is matched. This
local database includes storage for windows of data streams flowing through
the system. The windows may become large, so indexing data in stream
windows is an interesting problem. In many cases ordered indexing is
needed, which is investigated here.

The requirements of data stream indexing is not exactly the same as con-
ventional DBMS indexing, causing some traditional DBMS indexing struc-
tures to fall behind the requirements of DSMS applications. The following

 38

are important differences between conventional DBMS indexing and DSMS
window indexing:

• Because of very high stream rates DSMS indexes need to be stored
in main memory and the indexing data structure should be main-
memory oriented, i.e. be CPU cache conscious and compact.

• Stream window indexes need to be able to handle very high insert,
update, and delete rates. By contrast, most conventional DBMS ap-
plications behave based on a high watermark. That is, once the data-
base is filled up, it does not rapidly grow or shrink in size. In other
words, DBMS applications have lower demand for massive insertion
and deletion than DSMS application while fast search is desirable in
both.

In this paper we investigate the performance of different kinds of ordered
indexing methods for main memory databases in context of window based
stream processing w.r.t. the three aspects of ordered indexing for massive
data streams: insertion, search, and deletion. The goal is to find the best suit-
able ordered sliding window indexing method for massive data streams.

To improve the performance of deletion from indexes over time stamped
stream windows, we propose a window aware indexing maintenance
method, partitioned temporal window index (PTWI), and through experi-
ments we show that it outperforms a naïve incremental index deletion strat-
egy. In addition PTWI can be used together with any kind of underlying
indexing structure.

We implemented and compared the performance of indexing sliding win-
dows over data streams of main memory B-trees, cache sensitive B+ trees
[12], burst tries [10], and the highly optimized but complex compact trie
implementation Judy [18]. For empirical investigations we used randomly
generated synthetic data as well as data generated by the Linear Road
Benchmark (LRB) [1] for streaming data. Benchmark queries were used to
compare the scalability of insertion, deletion, and range search for different
indexing structures.

Judy is a highly optimized compact trie implementation that focuses on
both compactness and CPU cache utilization to improve the performance.
However, the current Judy implementation lacks efficient range search itera-
tion, as also noted by [15] [16]. To improve memory and CPU cache utiliza-
tion, Judy dynamically changes between its around 50 different internal node
structures based on the current key distribution in each node, which makes
the implementation of Judy very complex and difficult to change. We there-
fore developed a method to improve range search in a complex index im-
plementation such as Judy, without changing its source code. The experi-
mental results show that our extended version of Judy scales the best among
the other investigated main memory indexing structures.

 39

This paper is organized as follows. Section two makes an overview of re-
lated main-memory ordered indexing methods. Section three first defines the
benchmark scenario and then describes required extensions to the indexing
methods for range search and massive deletion. Section four evaluates the
scalability of the different indexing methods through experiments on imple-
mentations. Section five summarizes the result and proposes future work.

2 Background and related work
Sampling techniques like window aware load shedding [19] have been pro-
posed for processing approximate queries when the stream rates are higher
than the DSMS can handle. Load shedding is not suitable when all stream
elements in the window must be maintained, such as in monitoring commu-
nication networks [2] and urban traffic [1].

A complement to load shedding is indexing. Proper indexing increases the
performance of the DSMS and decreases the need for sampling techniques.
We have investigated the performance of the most common main memory
ordered indexing structure for our setting. In particular we review different
kinds of B-trees and tries.

The compact trie implementation Judy was found to be particularly inter-
esting to investigate. However, Judy needs some extensions for supporting
efficient streaming range search and massive deletion. Since the implemen-
tation of a highly optimized compact index structure such as Judy is very
complex, we have devised methods to improve range search and deletion for
an index implementation without altering it.

B-trees

The CSB+ variants of B-trees [12] [9] and the binary T-tree [14] have been
proposed to index main memory data in a cache conscious way. A recent
study [12] suggests that in the context of in-main-memory indexing on mod-
ern processors T-trees do not perform better than classical B-trees. Therefore
classical B-trees regained the research focus and there have been attempts to
make B-trees cache conscious. By exploiting the CPU cache more effec-
tively, the CSB+ tree improves the search time at the cost of using more
space and slightly slower insertion and updates than regular B+ trees [12].
We show that the major problem with CSB+ trees compared to B-trees is
space inefficiency.

Tries

In the simplest form, a trie is a multi-way tree structure in which each node
is an array of pointers. The size of each array is equal to the number of let-
ters in the alphabet, e.g. 26, and each level in a trie indexes a letter in a word.
The main advantage of tries is constant insertion and access time if the

 40

length of the key is fixed. Thus tries should be very well suited for indexing
data stream windows with very high insert rates. Figure 1 shows a naïve
trie. Each node in the trie represents a sub-expanse [18], which is a set of
keys that are accessed through it. In Figure 1, all keys in the range
[COAAA,COZZZ] are in the same sub-expanse accessed through the node
marked as “CO”.

Figure 1. A naïve trie example that stores string keys “cat”, ”car”, ”cone”, ”cold”,
”dell”, and “delta”.

Although tries were originally introduced to index character strings, they can
be easily modified to index any ordered domain. An order preserving key
transformation function can be defined that returns a binary key representing
the rank of the original key in the domain. If prior knowledge about the do-
main exists, such a transformation can be done on-the-fly as done by, e.g.,
[12]. A binary key can then be indexed by breaking it down into bytes and
then introducing them to the trie like characters of a string. For simplicity,
here we consider the binary keys to be 32 bit integers broken into 4 bytes. In
a naïve implementation for integer keys, the trie is then always 4 levels deep.
Each node is a simple array of 256 pointers to the nodes in the next level or,
in case of nodes in the 4th leaf level, pointers to values. Tries can be extended
to support longer integers and other forms of breaking integers [6].

The memory utilization problem with tries is that they are sensitive to the
distribution of keys. In the worst case, when the keys are uniformly scattered
across the whole domain, naïve tries waste memory because there will be
many null pointers in the sparse pointer arrays representing trie nodes. Sev-
eral compression techniques have been introduced to overcome naïve tries’
weak memory utilization [5] [10] [13] [18]. The main objective in most of
them is to achieve a compact representation that, despite its compactness,
can still support constant insertion/search time.

A burst trie [10] is based on the idea that as long as the population is low,
keys that share the same suffix can be stored in the same container. Contain-
ers are sorted lists of partial keys together with their associated values. Dur-
ing index lookup, once the right container is found, the key is located using

 41

binary search. Containers have a limited capacity and therefore, in an at-
tempt to insert more keys into a full container depending on the implementa-
tion particulars, the container is transformed into a larger internal node, and
thus ‘bursts’ into several new containers. The keys will thereby be redistrib-
uted to the new containers based on deeper suffix calculations, and the
pointers in the new internal node will refer to new containers. This is an
effective approach to decrease memory consumption. However, since the
container capacity is fixed in all nodes, the internal nodes often still have
null pointers and the memory utilization can still be a problem.

Judy compact trie implementation

Judy [18][3] can be categorized as a variation of burst tries, but with an im-
portant distinction: the node (container) data structure and its size is not
fixed. To improve memory and CPU cache utilization, Judy dynamically
changes node structures according to the current distribution of keys in each
node choosing among around 50 different representations of internal nodes.
Judy is a highly tuned but very complex data structure. Judy’s approach to-
wards an efficient compression technique is to use a variety of compact node
structures that fit in a single cache block for different kinds of local sub ex-
panse populations. This allows the contents of any kind of node to be moved
to the CPU cache for fast consecutive access. Furthermore, Judy maintains
the most interesting characteristic of tries. That is, the depth of Judy is con-
stant, e.g. for indexing integer keys Judy is always 4 levels deep. This means
constant time is guaranteed for all single element operations.

Judy supports iteration based range search. However, in the current Judy
implementation the iterator always starts at the root, which makes it perform
worst among the investigated methods w.r.t. range search. The J+ tree [16]
and PJ+ tree [15] address this problem by introducing a sorted linked list as
an extra level of leaf nodes. We were unable to obtain the source code for J+
or PJ+ trees for making an empirical evaluation. However, compared to
Judy, the J+ tree worsens the performance of single key operations in Judy
because it adds an extra level of search and maintenance of the leaf node
lists; it also consumes much more memory since prefixes are stored uncom-
pressed in the leaf node lists. The prefetching variant of the J+tree, the PJ+
trees [15], improves the range search performance by adding prefetching
pointers, but does not address any of the J+ tree deficiencies.

Non intrusive range search

Implementations of indexing structures for highly tuned indexing structures
such as Judy might become very complicated. To improve software reusabil-
ity and eliminate unnecessary modifications to highly optimized implemen-
tations, we use mappers as a general method that simplifies traversal of data

 42

structures. A mapper is a second order function that applies a mapping func-
tion on a set of elements. In the ordered indexing context a mapper is a func-
tion that traverses a range of keys specified by low and high bounds, and
applies a user provided mapping function on the key-value pairs in the range.

Using mappers we added range search to Judy without any modification
to it. We show that the mapper approach substantially improves range
search compared to the built-in implementation. This makes Judy extended
with mappers perform better than other investigated approaches.

GIST [11] is a general framework for adding tree-based indexes to an ex-
tensible DBMS for supporting range search. It is challenging to make the
code changes required by GIST for a complex trie structure such as Judy,
and we therefore instead used mappers.

Non intrusive bulk deletion for sliding windows

If there is massive stream flow through a tumbling window, deleting the
expired stream elements from the window index becomes an issue. Naive
element by element deletion is slow. Common methods to speed up bulk
insertion and deletion are to use partitioned indexes and create/delete entire
partitions in bulk [17] or prefixing keys in a B-tree with partition identifiers
[7]. We adapted partitioned bulk deletion to support non-intrusive bulk dele-
tion of indexes over sliding time stamped windows, called partitioned tem-
poral window index (PTWI). The main difference to regular bulk deletion is
that PTWI maintains a circular array of pointers to time stamped sub-
window indexes, which are completely deleted as the main window slides.

3 Ordered indexing of data streams
We address three main challenges in indexing data in sliding windows: scal-
able insert, fast range search, and scalable deletion. The suitability of several
indexing methods w.r.t. these aspects have been investigated. For the inves-
tigation of the methods we used own implementations, publically available
implementations, and publicly available versions extended with our im-
provements.

3.1 Scenario
To analyze the problems of maintaining proper ordered indexing structures
for window based stream processing and comparing scalability of different
indexing solutions, we use the Linear Road Benchmark data generator. It
generates for a predefined number of expressways L an input data stream
with the following tuples:

[T, X, D, S, VID, VEL]

Where

 43

• T is a time stamp.
• X is the expressway on which a vehicle is traveling, 0 to L-1.
• D is the direction in which the vehicle is traveling, which is either

east or west.
• S is the segment of the expressway, 0 to 99.
• VID is the vehicle’s identifier.
• VEL is the speed of the vehicle.

Our performance evaluation simulates index search for the following index
intensive queries:

• Q1: What is the velocity of a specific vehicle v on expressway x
traveling in direction d in segment s during the last minute? This
query selects a single tuple.

select VEL

from [last minute window]

where X=x and D=d and S=s and VID =v;

• Q2: What is the average velocity of all vehicles on expressway x
traveling in direction d in segment s during the last 5 minutes? This
query is selecting 1/L % of the position reports in the window.

select average (VEL)

from [last 5 minutes window]

where X=x and D=d and S=s;

An ordered index on the compound key <X, D, S, VID> provides scalable
answers to both queries. The VID attribute needs to be included in the or-
dered index since, at traffic peaks, LRB generates a large number of vehicles
per segment in a minute (around 100,000).

Query Q1 accesses a single element in the index having the key
<x,d,s,v>.

Query Q2 is a range search where the lower limit of the compound key is
<x,d,s,0> and the upper <x,s,d,∞>.

Since the main window covers 5 minutes and tumbles every 1 minute, the
older data on the index must be removed, which requires massive deletion
from the index.

3.2 Improving range search on Judy
The most common way to iterate over index ranges is to use a Volcano style
scan structure with a next method [8]. Such a structure is indeed available in
Judy, but it does not perform well because the next method always starts
from the root in the current implementation, without using a scan data struc-
ture. For scalable range search, Judy has to be modified. However, to im-

 44

plement a scan data structure in a highly complex indexing structure such as
Judy, having over 50 different node types, is a challenging task since all state
information has to be continuously maintained in the scan. The alternative to
implement scans using linked leaf nodes as in B+ trees would require sub-
stantial modifications of Judy with unknown consequences.

To add efficient range iteration to Judy without the complexity of imple-
menting scans, we instead implemented a second order C mapper function
that applies another C function on every key-value pair in a given key range.
This approach requires no change to Judy and no explicit code to maintain
the complex state information as in scans. Our implementation also supports
generic iteration over scans by using threads combined with a buffer of re-
cently mapped key-value pairs.

Listing 1 shows the general signatures for mapper and mapping functions
in C for range search operations in an ordered indexing structure.

Listing 1. general mapper and mapping functions for range search

Based on the general mapper paradigm, we implemented a mapper function
for Judy that performs the range search. The mapper recursively visits the
nodes that cover sub expanses which are within the specified range. For each
leaf node, it applies the mapping function to the key-value pairs in the leaf
nodes that are within the range. In Judy the bytes of the key are not always
implicitly stored in nodes, so the algorithm has to carry a prefix at any call

typedef int (*mapping) (key k, value v,
 void *xa);
Mapper(indexroot* tree, key lower, key,
 upper, mapping m,void *xa);
int SumMapping(key* k,value* v,void *xa)
{
 *(int *) xa += (int) *v;
 return TRUE;
}

The following code traverses the index structure pointed to by tree in
the range [100,200] and applies SumMapper to all key-value pairs in
the range. The sum of the values are accumulated in the variable sum
passed by reference to the mapper.

key k1=100; k2=200;
int sum=0;
indexroot* tree=new_index();
Mapper(tree, k1, k2, SumMapping, &sum);

 45

level. Listing 2 provides an outline of the algorithm (the C code can be
downloaded from [21]).

Listing 2. Judy mapper

3.3 Window aware index deletion
We compare two different strategies for deleting time stamped elements
from indexes over sliding windows: naive incremental deletion and the bulk
window index deletion method PTWI.

3.3.1 Incremental deletion
In incremental deletion there is only one indexing structure for the whole
window. In order to identify the right set of keys to be deleted, the time

JudyMapper(Judypointer jp, key lower, key
upper, key prefix, mapping fn,void *xa)
{
 switch (type (jp))
 {
 case internal_nodes:/* many variants
 of linear,bitmap,uncompressed */
 for all Judy pointers p in each
 internal node that covers
 the range [lower, upper]do
 {
 Update the prefix;
 JudyMapper(p, lower, upper,
 prefix, fn, void *xa);
 }
 case leaf_nodes:/* linear, bitmap or
 immediate leafs */
 for all keys k inside range
 [lower, upper]do
 {
 Construct the key by extending
 prefix;
 Find value v associated with k;
 (*fn)(k,v,xa); /* apply mapping
 function */
 }
 }
}

 46

stamp has to be explicitly stored as a part of the key. The index key thus
takes the form of <t, k> where k is the application key (i.e. <X, D, S, VID>
in LRB) and t is the time stamp associated with it. Notice that the order in
the compound key proposed here preserves the temporal order of keys.
Therefore, deletion is straight forward; after the time stamp t expires, all
keys of form <t, *> need to be removed. Since an ordered indexing structure
is used, all keys in this range are found and then deleted from the index one
by one.

Naive incremental deletion of keys one by one might take considerable
amount of time since the data structure is searched from the root for each
deleted key.

3.3.2 Bulk window index deletion
As an alternative to incremental deletion we also implemented a special bulk
deletion technique for sliding time stamped windows called partitioned tem-
poral window index (PTWI).

PTWI is applicable for sliding windows. Let N be the time span of the
window and S be the stride for the sliding in time units. At each slide a sub-
window of size M=N/S tumbles. In LRB N=300 seconds and S=60 seconds,
thus M=5. With PTWI M non-overlapping partial indexes are maintained for
the whole sliding window. When the window slides, the partial index that
stores the oldest subwindow is dropped and a new empty partial index is
created. PTWI is implemented as a one dimensional circular index array of
size M of pointers to partial indexes, as illustrated by Figure 2.

Figure 2. The PTWI structure

In the PTWI header the following information is maintained as the window
slides:

 47

T0: Starting time for the indexed stream, initialized to the time for the first
arriving tuple.

M: Number of subwindows. In LRB M=5.

S: The stride of the subwindows as time units. In LRB S=60 seconds.

When a new tuple with time stamp t and data tuple tpl, <t, tpl>, arrives in
the stream, the system first determines whether tumbling of a subwindow is
needed or not. Tumbling is needed when mod(t,S)=0.
a) If mod(t,S)≠0, i.e. no tumbling, the system computes the position i in the

subwindows array containing a pointer to the subwindow index where
tpl should be inserted, accessed, or updated:

i = mod(t-T0,W*S)
b) When mod(t,S)=0 the oldest window tumbles by completely dropping it

from the subwindow array and replacing it with a new empty window
index. The position d in the subwindows array for the window index to
replace is computed by:

d = mod(t/S,W)

For example, Figure 3 illustrates the evolution of the subwindows array for
the LRB scenario. In the beginning of any minute T, the oldest partial index
associated to minute T-5 needs to be dropped and a new empty one for min-
ute T is created. Figure 3 shows the content of the subwindows array during
minutes 1 to 10. In each minute T incoming data is inserted only to the index
associated with the current minute, tagged as @T in the figure.

Queries that access a single tuple at a given time point t, such as Q1, can
be directly answered by calculating i as in a) and then accessing window
index i in the PTWI array of subwindows.

To answer queries that cover the whole window, they have to be divided
into sub-queries – one for each minute – and their results merged. For ex-
ample, for query Q2 the time period is the last 5 minutes and therefore the
range query [<x,d,s,0>, <x,s,d,∞>] for given x, s, and d is issued over all 5
subwindow indexes in the array.

Notice that bulk deletion can be done in a lazy manner in a background
process. In other words, deletion is no longer a burden on the real time ex-
pectations of the system.

Furthermore, notice that any kind of indexing structure can be used for
storing the subwindow indexes.

The space overhead of PTWI compared to incremental deletion is negli-
gible, since it just adds one extra array of M pointers and the PTWI header.
The computational overhead is one extra simple numerical computation per
stream tuple to obtain i, while d is computed only when the window tumbles.

 48

The PTWI’s window index array minute
@1 nil nil nil nil 1
@1 @2 nil nil nil 2
@1 @2 @3 nil nil 3
@1 @2 @3 @4 nil 4
@1 @2 @3 @4 @5 5
@6 @2 @3 @4 @5 6
@6 @7 @3 @4 @5 7
@6 @7 @8 @4 @5 8
@6 @7 @8 @9 @5 9
@6 @7 @8 @9 @10 10

Figure 3. Contents of the PTWI array of subwindows during first 10 minutes, with 5
minutes window size and 1 minute stride. @T represents the pointer to the subwin-
dow index for minute T.

4 Experimental evaluation
We experimentally compared the scalability of insertion, single element
retrieval, incremental deletion, bulk deletion, and range search in a B-tree,
CSB+tree, Burst trie, Judy, and Judy extended with efficient range search.
We also compared the performance of PTWI with incremental deletion for
Judy and B-trees. The outcome supports the initial hypothesis that Judy ex-
tended with efficient range search and PTWI outperforms other investigated
in-main-memory indexing structures. The succeeding sections describe how
tests were performed and present experimental results.

4.1 Experimental setup
The following ordered indexing methods were investigated:

• We implemented the classical B-tree algorithm as in [4]. Then we
experimentally tuned the B-tree node size to minimize cache misses,
which on our hardware happened when each B-tree node contained
750 bytes.

• The CSB+ tree implementation was downloaded from [20]. We used
the full CSB+ tree variant, which is the best variant for high inser-
tion and update rates according to the authors.

• We implemented the burst trie index as specified in [10] adapted for
integer keys.

• Judy was downloaded from [3].
• To have fair comparisons, in all indexing structures both keys and

values are 32 bit integers.

 49

The C code for indexing methods used in the experiments is available at
[21].

We performed two sets of experiments with different key distributions.
The first key distribution consists of uniformly distributed random integers
from the whole 32 bit integer range. This is the worst case for tries since
under this key distribution the trie structure will have sparse pointer arrays
with many null pointers. In our second key distribution the keys are the posi-
tion reports from the more realistic LRB input stream.

Given that the intention was to compare the scalability of indexing struc-
tures, the size of the indexes was gradually increased in a number of steps,
and then the required time to perform insertion, single element retrieval, and
range search operations were measured. After the each step the amount of
main memory so far used by each index is noted. Moreover, to typify the
measurement, the operations were done in batch, i.e. instead of measuring
the time of inserting a single key in each step, which could be affected by
noise, we calculated the average time to insert an element over 0.5 million
keys. Since we measure pure insertion, update, and retrieval time duplicated
keys in the input are omitted.

The performance of deletion is measured in a separate experiment.

4.1.1 Random key distribution
In this experiment first 16 million random keys from a flat distribution of
integers in range [0,232-1] were generated and stored in a one dimensional
array. The experiments were performed by reading the keys from the flat
array as follows:

In steps of size 0.5 million simulated incoming tuples, perform the fol-
lowing actions and measure the time each one takes on all indexing struc-
tures:

1 Insert into the index 0.5 million keys and measure the average time
to insert one key.

2 Measure the accumulated amount of main memory used by each in-
dexing structure after each 0.5 million inserts.

3 Retrieve in random order 50000 keys from all so far inserted keys
and measure the average time to retrieve one key from the index.

4 Generate a random interval covering 10% of the total domain and
make one range search to measure the time.

4.1.2 LRB key distribution
For a realistic data distribution, the indexing keys in the second experiment
were LRB position reports. To construct ordered preserving integer keys k
for LRB, they are computed as follows:

k= VID+SEG*220+D*227+X*229 i.e.:
• Expressway number X, the most significant 4 bits (28-31).

 50

• Direction D, bit 27.
• Segment SEG, bits 20-26.
• Vehicle identifier VID, bits 0-19.

First the whole LRB input file is scanned; the first appearance of each key k
is stored in a flat array. During this preprocessing, duplicates are detected
and discarded.

After forming the flat array containing unique keys, the test is executed in
a number of steps similar to the procedure for random keys, but steps three
and four are different:

• In step three, query Q1 is executed for 50000 randomly chosen so
far inserted position reports and the average single element retrieval
time is measured.

• In step four, for randomly chosen x, s, and d, query Q2 is executed
100 times and the average search time measured.

4.1.3 Deletion
In order to compare the scalability of incremental window deletion with
PTWI, we performed two tests on the two indexing structures Judy and B-
trees.

The first test measures a naive incremental deletion strategy. In this test
the indexes were loaded with different populations of keys as in 4.1.2. For
each population all individual keys are deleted one by one, until the index
becomes completely empty. The total time to empty an index with a given
population is measured.

To measure deletion with PTWI, indexes with the same sizes as in the
first test were populated, but this time, in contrast to deleting individual keys
as in the first test, the whole index structure is dropped at once by traversing
all nodes in it.

In both tests, to avoid memory fragmentation issues from biasing the per-
formance, the application is restarted before any new index is created, i.e.
before any new population is examined.

All experiments were run under Windows 7 on an Intel (R) Core(TM) i5 760
@2.80GHz 2.93 GHz CPU with 4GB RAM, single threaded using the Visual
Studio 10 32 bits C compiler.

4.2 Experimental results
In this section the experimental results from comparing the indexing struc-
tures w.r.t. insertion, single element retrieval, memory utilization, range
search, and deletion are analyzed. Experimental results of each indexing
operation are presented and discussed under LRB key distribution alongside
the random distribution. In the deletion section only LRB key distribution is

 51

presented since the results from random key distribution leads to the same
conclusions.

4.2.1 Insertion
Figure 4 illustrates the time required to insert a single key into each indexing
structure at a given index size when keys from LRB are used. The time is
averaged over 0.5 million insertions.

Figure 4. Insertion under LRB key distribution

The most important observation is that, in this key distribution, after
around 4 million keys, Judy and burst tries reach their maximum depth of 4.
Recall that in our experiments the keys are 4 byte integers and therefore their
overall structure stabilizes. From this point on, it takes constant time to insert
new elements into Judy and burst tries. The reason burst tries are faster than
Judy is that their containers are not compressed, so insertion into them is
simpler and computationally cheaper compared to Judy, where insertion into
containers causes nodes to transform their representations.

As expected, B-trees and CSB+ trees scale logarithmic. CBS+ trees out-
perform B-trees w.r.t. insertion because of two reasons: First, all siblings of
a node in a full CSB+ tree are allocated as soon the node is created, which
reduces the costs of future node creation and potential structural balancing.
Second, the CBS+ tree representation is cache conscious. However, after 8
million keys there is no more memory available in our 32 bit representation
for the full CSB+ tree to grow.

Figure 5 illustrates the time required to insert a single key into each in-
dexing structure at a given index size when keys are picked from a random
distribution. The time is averaged over 0.5 million insertions.

As expected, B-trees and CSB+ trees scale logarithmic and show no sen-
sitivity to the key distribution.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Millions

Judy B-tree Burst trie CSB+tree

 52

Figure 5. Insertion under random key distribution

Under the random key distribution, in particular burst tries and, to a lower
extent, Judy undergo an unstable period when the size is around 3 and 2
million keys, respectively. The fluctuation is due to the specific conditions
under which bursting happens. That is, since the keys are uniformly distrib-
uted within a very wide range, they rarely share prefix at the next level, so
during the burst, new containers are created for most of the keys that are
being re-distributed. The high computation and memory management costs
involved results in poor performance during bursting.

It is worth to note that Judy stabilizes much earlier than the burst trie.
This is because Judy maintains dynamic container structures depending on
the population of each sub-expanse, which decreases the bursting cost.

Figure 6. Single element retrieval under LRB key distribution

4.2.2 Single element retrieval
Figure 6 illustrates the time required to retrieve a single key from each in-
dexing structure at a given index size under the LRB key distribution. B-

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Miljontal

Judy B-tree Burst trie CSB+tree

0

0,01

0,02

0,03

0,04

0,05

0,06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Millions

Judy B-tree Burst trie CSB+tree

 53

trees and CSB+ trees scale logarithmic as expected, with CSB+ trees being
faster mainly because of cache awareness. Retrieval of single elements from
Judy and the burst trie takes constant time after they reach their maximum
depth at four levels. Judy is fastest due to two reasons: first its efficient com-
pression techniques facilitate search in the nodes. For example, bitmap nodes
store only populated sub-expanses and index them using a directly accessed
bitmap. Second, it exploits the CPU cache more efficiently.

Figure 7. Single element retrieval under random key distribution

Figure 7 illustrates the time required to retrieve a single key from each in-
dexing structure at a given index size under the random key distribution.
Again, since B-trees and CSB+ trees are not sensitive to key distribution,
they scale similar to the LRB key distribution in Figure 6. The search time
for burst tries increases until a maximum at around 3 million keys, after
which the retrieval performance improves. The peak happens almost right
before the nodes burst. Before the bursting happens, most of the containers
are highly populated and therefore performing binary search in them be-
comes costly. After the bursting happens, keys are distributed among con-
tainers with lower populations and therefore the cost for binary search de-
creases. In Judy, in contrast to burst tries, due to the maintenance of dynamic
population-based node structures, the search time at each node is optimized
and therefore Judy is much more stable than burst tries.

4.2.3 Memory utilization
Figure 8 and 10 show the memory utilization with LRB and random distribu-
tions, respectively. The inefficient memory utilization of the CSB+ tree im-
plementation is displayed separately in Figure 9.

To illustrate the compactness of indexing structures the main memory
utilization is measured and displayed in terms of byte per key-value-pair
(B/KVP). As a theoretical base line we also plot flat arrays in which KVPs

0

0,005

0,01

0,015

0,02

0,025

0,03

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Miljontal

Judy B-tree Burst trie CSB+tree

 54

are stored un-indexed in consecutive memory cells. Since all investigated
indexing structures use 32 bit integers for both keys and value-pointers, stor-
ing KVPs in such a flat array –independent from the number of KVPs-
achieves 8 B/KVP, the minimum uncompressed memory area needed to
store key-value pairs.

Figure 8. Memory utilization under LRB key distribution

Figure 8 shows the memory utilization when the LRB key distribution is
used. It is worth to note that after a certain population, Judy becomes even
more space efficient than flat arrays. The reason is that as the LRB simula-
tion proceeds, the traffic increases. This means more vehicle ids per seg-
ments of expressways and consequently a more dense key distribution.
Judy’s dynamic node structure utilizes this to minimize memory consump-
tion mainly through using bitmap nodes and leafs [18].

Figure 9. Memory utilization of full CSB+trees

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

by
te

 c
on

su
m

ed
 p

er
 k

ey
 v

al
ue

 p
ai

r

Size of the index Millions

Judy flat array Burst trie B-tree

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

by
te

 c
on

su
m

ed
 p

er
 k

ey
 v

al
ue

 p
ai

r

Size of the index Miljontal

CSB+tree

B-tree

 55

The burst trie on the other hand improves the memory utilization up to a
point where the number of keys in sub-expanses exceeds the maximum con-
tainer size and the containers burst. Each bursting brings about an additional
node, and many new containers, which leads to bad memory utilization.

The memory utilization of B-trees is very stable but not as compact as
Judy.

Figure 9 shows the memory utilization for CSB+ tree compared to the B-
tree for the LRB distribution. The main reason for poor memory utilization
of the Full CSB+ tree is that, as described in [12], it creates all sibling nodes
for each node to improve insertion and update time. As the total number of
keys increases, the memory utilization improves, but since creating new
nodes is essential, and all the sibling nodes are also allocated at the time of
creating any new node, the improvement is limited.

Figure 10. Memory utilization under random key distribution

Figure 10 shows the memory utilization when random key distribution is
used. As expected, since B-trees are insensitive to the key distribution, they
make the same B/KVP as in Figure 8.

Under random key distribution, burst tries go through extreme bursting
and they have even worse memory utilization. This is due to that most con-
tainers created by the burst for a random key distribution contain a single
element. As the experiment proceeds, more keys with the same prefix are
added to the newly created containers, and therefore memory utilization of
burst tries improves.

Judy shows very little sensitivity to random key distributions, because in
Judy containers with very low populations are implemented using a very
specific compact structure - the immediate pointers. In immediate pointers
the contents of nodes and leafs with one or two keys are stored in the pointer
itself. The immediate pointers make the memory utilization become stable
very soon. With random key distribution Judy’s memory utilization is

0
10
20
30
40
50
60
70
80
90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

by
te

 c
on

su
m

ed
 p

er
 k

ey
 v

al
ue

 p
ai

r

Size of the index Miljontal

Judy flat array B-tree Burst trie

 56

slightly worse than flat array and substantially better than the other indexing
structures.

4.2.4 Range search
Figure 11 illustrates for LRB key distribution the time required to perform a
range search at a given index size using B-trees, burst tries, CSB+ trees, the
original iterator based Judy implementation, and Judy extended with the
mapper for range search. As expected, our Judy mapper outperforms the
original range search provided by Judy and it performs almost as efficient as
a B-tree. The reason for the slightly better performance of the B-tree range
search over Judy is that in B-trees a single node stores more keys compared
to Judy for two reasons. First, Judy utilizes the most compact representation
at each node which leads to nodes with lower populations. Second, com-
pared to the rather large nodes in our B-tree, nodes in Judy are generally
smaller since they need to fit in a 64 byte cache line.

Figure 11. Range search under LRB key distribution

Figure 12 illustrates for the random key distribution the time required to
perform a range search using original and extended Judy, B-trees, CSB+
trees, and burst tries at a given index size. The range search scales worse
using Judy compared to B-trees with random key distribution, because Judy
creates huge number of very small immediate nodes.

In both Figure 11 and Figure 12, the Judy mapper implementation scales
better than the burst trie mapper. The reason is that the internal nodes in
burst tries include many null pointers, which increases the traversal time.
That is, the internal nodes in burst tries always contain 256 pointers, even
though many of them represent empty sub-expanses, and consequently, the
burst trie mapper needs to consider all sub-expanses within the [low-high]
range, including the empty ones. The more compact representation of Judy
avoids many unnecessary memory accesses and cache misses. It should also

0
0,002
0,004
0,006
0,008

0,01
0,012
0,014
0,016
0,018

0,02

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

se
co

nd
s

Size of the index Millions

Judy

Judy mapper

B-tree

Burst trie

CSB+tree

 57

be noted that the CSB+ trees in both cases are not faster than B-trees for
range search. The main reason is the larger node size of B-trees, which util-
izes the CPU cache better since the leaf nodes are very short in CSB+ trees
compared to B-trees.

Figure 12. Range search under random key distribution

4.2.5 Deletion

Figure 13. Incremental deletion vs. PTWI

Figure 13 measures PTWI performance using B-tree and Judy subwindow
indexes. As expected, removing an index structure by deleting elements one
by one, as in the incremental deletion, requires much more time than drop-
ping of the whole indexing structure, as in PTWI. Notice that dropping a
Judy index of a given size takes more time than dropping a B-tree index of
the same size. This is due to the higher number of nodes in Judy, which
needs more time to be traversed and freed. However, since in PTWI it is
possible to perform the index drop operation at a background thread in a lazy

0

0,05

0,1

0,15

0,2

0,25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

se
co

un
ds

Size of the index Miljontal

Judy

Judy mapper

B-tree

Burst trie

CSB+tree

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

re
m

ov
al

 ti
m

e
(s

ec
on

ds
)

size of the index Miljontal

Judy_incr

BT_incr

Judy_drp

BT_drp

 58

manner, slight performance improvements in the index drop operation has
insignificant contribution to the overall performance of a DSMS.

4.2.6 Discussion on experimental results
The following main aspects are involved in selecting the suitable ordered
indexing structure for window based data streams: insert time, retrieval time,
range search time, deletion time, and memory utilization.

Since in many DSMS applications, the input stream is massive, support-
ing scalable insertion is the most important aspect of indexing structures for
sliding windows of data streams. From this perspective, a combination of
constant and stable insert time is desired.

As important as insert scalability is scalability of deletions, which was
addressed by PTWI. With the PTWI the scalability of deletion becomes non-
critical.

The next important aspect is scalability of single element retrievals. To
meet the real time requirements of continuous query processing, constant
and stable retrieval time is essential.

Maintaining an index over a sliding window of massive streams requires
indexing structures with acceptable memory utilization. An indexing struc-
ture with poor memory utilization restricts the stream rate that can be han-
dled by the DSMS.

Finally in many applications, e.g. computer network and urban traffic
monitoring applications, range search is needed for answering ad hoc queries
from the current window.

Table 1. Qualitative summary of the experimental results.

 B- tree CSB+
tree

Burst
trie Judy Extended

Judy

memory
utilization good worst bad best best

insertion good good best best best

key access good good good best best

range search best best bad worst good

predictablity best good worst best best

simplicity best bad best worst worst

Table 1 summarizes the results of our experiments in a qualitative manner.
For memory utilization Judy is clearly the best because of its extensive com-
pression. Judy is also the best on insertion and single key accesses. For range
searches the tree based indexing methods are the best, but the extended Judy

 59

is very close in particular for non-random data. Burst tries are not stable in
general and therefore problematic for streaming applications. The main dis-
advantage with Judy is its very complex implementation.

To conclude, in the context of indexing sliding windows of streams, our
extended version of Judy outperforms all other indexing structures.

5 Conclusions and future work
Window based ordered indexing of data streams has additional requirements
to traditional DBMS indexing. Other than scalable range search and individ-
ual element retrieval, it is essential for DSMS indexing structures to support
scalable insertion and deletion under high volume stream rates. We investi-
gated a number of data stream indexing methods by implementing them or
extending available implementations. We compared the following index
structures: B-trees, burst tries, CSB+ trees, and the advanced Judy imple-
mentation of compact tries.

Through extensive experiments we showed that, in the context of window
based indexing of data streams, compact tries with improved range search
capabilities outperform other investigated methods by consuming much less
main memory, supporting constant access time for insertion and retrieval,
and being capable of performing scalable range search. The combination of
the above characteristics makes extended compact tries the best ordered in-
dexing method for window based stream processing.

The performance of massive deletion is also very important when index-
ing high volume data stream windows, which was addressed by PTWI.

Highly tuned scalable indexing structures like Judy might become ex-
tremely complex, making any modification very costly. Therefore, we de-
vised non-intrusive methods to add functionality to an existing index struc-
ture. PTWI and mappers are two examples of nonintrusive additions that
enabled us to successfully re-use, improve, and integrate industry strength
software.

In particular, our extended version of Judy with mapper-based range
search and PTWI outperforms the other investigated indexing structures,
making it attractive for sliding stream window indexing in general.

In addition to supporting range search, tries support more general pattern
matching operations that might be useful in pattern recognition in data
streams. Therefore, adding pattern matching to tries will be a valuable fu-
ture work.

6 ACKNOWLEDGEMENTS
This work was supported by the Swedish Foundation for Strategic Research,
grant RIT08-0041 and by the EU FP7 project Smart Vortex.

 60

7 REFERENCES
1 Arasu, A., Cherniack, M., Galvez, E. et al. Linear road: a stream data

management benchmark. In VLDB '04 Proceedings of the Thirtieth
international conference on Very large data bases (2004).

2 Babu, S. and Widom, J. Continuous queries over data streams. ACM
SIGMOD Record, 30, 3 (2001), 109-120.

3 Baskins, D. Judy home page [http://judy.sourceforge.net/] (2003).

4 Bayer, R. and McCreight, E. Organization and Maintenance of Large
Ordered Indexes. Acta Informatica, 1 (1972), 173–189.

5 Bentley, J. L. and Sedgewick, R. Fast algorithms for sorting and
searching strings. In SODA '97 Proceedings of the eighth annual
ACM-SIAM symposium on Discrete algorithms (1997).

6 Boehm, M., Schlegel, B., Volk, P. B., Fischer, U., Habich, D., and
Lehner, W. Efficient In-Memory Indexing with Generalized Prefix
Trees. 2011.

7 Graefe, G. B-tree indexes for high update rates. ACM SIGMOD
Record, 35, 1 (2006), 39 - 44.

8 Graefe, G. Volcano-an extensible and parallel query evaluation
system. IEEE Transactions on Knowledge and Data Engineering, 6, 1
(1994), 120-135.

9 Hankins, R. A. and Patel, J. M. Effect of node size on the performance
of cache-conscious B+-trees. In Proceedings of the 2003 ACM
SIGMETRICS (2003).

10 Heinz, S., Zobel, J., and Williams, H. E. Burst tries: a fast, efficient
data structure for string keys. ACM Transactions on Information
Systems, 20, 2 (2002), 192 - 223.

11 Hellerstein, J. M., Naughton, J. F., and Pfeffer, A. Generalized Search
Trees for Database Systems. In Proceedings of the 21st VLDB
Conference (Zurich, Switzerland 1995).

12 Jun R., Kenneth A. R. Making B+- trees cache conscious in main
memory. In MOD (Dallas TX 2000), Proceedings of the 2000 ACM
SIGMOD international conference on Management of data.

13 Kurtz, S. Reducing the Space Requirement of Suffix Trees. Software –
Practice and Experience, 29 (1999), 1149--1171.

14 Lehman, T. J. and Carey, M. J. A Study of Index Structures for Main
Memory Database Management Systems. In Proceedings of the 12th
VLDB Conference (1986), Proceedings of the Twelfth International
Conference on Very Large Data Bases.

15 Luan, H., Du, X., and Wang, S. Prefetching J+-Tree: A Cache-
Optimized Main Memory Database Index Structure. Journal of
Computer Science and Technology, 24, 4 (2009), 687-707.

 61

16 Luan, H., Du, X., Wang, S., Ni, Y., and Chen, Q. J + -Tree: A New
Index Structure in Main Memory. In Advances in Databases:
Concepts, Systems and Applications. Springer Berlin, Heidelberg,
2007.

17 Oracle®. Oracle® Database VLDB and Partitioning Guide. Available
at
http://docs.oracle.com/cd/B28359_01/server.111/b32024/part_admin.
htm.

18 Silverstein, A. Judy IV Shop Manual. Available at
http://judy.sourceforge.net/doc/shop_interm.pdf (2002).

19 Tatbul, N. and Zdonik, S. Window-aware load shedding for
aggregation queries over data streams. In VLDB '06 Proceedings of the
32nd international conference on Very large data bases (2006).

20 http://www.cs.columbia.edu/~kar/software/csb+/

21 http://www.it.uu.se/research/group/udbl/DSMSOrderedIndexing/

Paper II

 65

Grand Challenge: Implementation by Frequently Emitting Parallel
Windows and User-Defined Aggregate Functions

Sobhan Badiozamany
Lars Melander
Thanh Truong

Cheng Xu
Tore Risch

Department of Information Technology, Uppsala University, Sweden
Emails: Firstname.Lastname@it.uu.se

ABSTRACT
Our implementation of the DEBS 2013 Challenge is based on a scalable,
parallel, and extensible DSMS, which is capable of processing general con-
tinuous queries over high volume data streams with low delays. A mecha-
nism to provide user defined incremental aggregate functions over sliding
windows of data streams provide real-time processing by emitting results
continuously with low delays. To further eliminate delays caused by time
critical operations, the system is extensible so that functions can be easily
written in some external programming language. The query language pro-
vides user defined parallelization primitives where the user can express que-
ries specifying how high volume data streams are split and reduced into
lower volume parallel data streams. This enables expensive queries over data
streams to be executed in parallel based on application knowledge. Our OS-
independent implementation was tested on several computers and achieves
the real-time requirement of the challenge on a regular PC.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Parallel databases, Query proc-
essing

Keywords
Parallel data stream processing; continuous queries; spatio-temporal window
operators.

1 INTRODUCTION
Monitoring a soccer game requires a system than can process, in real-time,
large volumes of data to dynamically determine physical properties as they
appear. This requires a system having the following properties:

• To keep up with the very high data flow the system must deliver
high throughput while processing expensive computations over high
volume data.

• Response in real-time requires continuous delivery of query results
with low latency.

 66

• Continuous identification of physical phenomena, such as moving
balls and players, requires complex spatio-temporal algebraic com-
putations over windows.

Our EPIC (Extensible, Parallel, Incremental, and Continuous) DSMS pro-
vides very high throughput and low latency through parallelization, extensi-
bility, and user defined incremental aggregation of windowed data streams.
The high level query language provides numerical data representations and
data stream windows as first class objects, which simplifies complex nu-
merical computations over streaming data and enables automatic query op-
timization. To provide very high performance of low level numerical and
byte processing functions the system is easily extensible with user defined
functions over streams and numerical data, which allows accessing external
systems and plugging in time-critical user algorithms.

EPIC extends the SCSQ system [9] with several kinds of data stream
windows and incremental evaluation of user-defined aggregate functions
over the windows. In particular the window operator FEW (Frequently Emit-
ting Windowizer) decouples the frequency of emitted tuples from a win-
dow’s slide.

To process expensive queries with high-throughput and low latency the
system provides application specific stream parallelization functions where
general distribution queries specify how to parallelize and reduce outgoing
data streams.

2 THE EPIC APPROACH
First FEW and its incremental user-define aggregation are presented in sec-
tions 2.1 and 2.2, and then the solution is outlined in section 2.3.

Figure 1 shows the overall data stream flow of the implementation. The
thickness of the arrows in all data flow diagrams in this paper correspond to
the relative volume of the data streams. Each node in the dataflow diagram is
a separate OS process, called a query processing node, in which a partial
continuous execution plan is running. The topology of the dataflow diagram
is completely expressed in the query language where it is possible to specify
continuous sub-queries running in parallel [9]. The system automatically
creates OS processes running the execution plans of the sub-queries and the
communication channels between them (local TCP). In the Grand Challenge
implementation, the query processing nodes all run on the same computer
and the OS is responsible for assigning CPUs to the processes. The system
can also distribute query processing nodes over several computers but those
features are not used here.

 67

Figure 1. High level data stream flow

2.1 Frequently Emitting Windowizer, FEW
EPIC provides window forming operators that support several kinds of win-
dows, including time, count, and predicate windows [5][2][7]. The windows
are formed by window functions mapping streams to streams of objects of
type Window. For example, the window function

tWindowize(Stream s, Number length, Number stride)
 -> Stream of Window ws

forms a stream ws of timed windows over a stream s where windows of
length time units (seconds) slide every stride time units. To avoid copying,
the windows are represented by pointers to their first and last elements.
When a window slides the pointers are updated.

A naive implementation of tWindowize() would emit tuples only when the
formed windows slide. This causes substantial delays, in particular for large
windows. For example, when forming a 10 minutes window, it is not practi-
cal to wait 10 minutes for the aggregation to be emitted. To be able to emit
aggregation results before a complete window is formed, we have introduced
a window function having a parameter ef, the emit frequency:

fewtWindowize(Stream s, Number length, Number stride,
 Number ef)
 -> Stream of Window pw

The window forming function fewtWindowize() forms partial time windows,
pw, every ef time units. The emitted partial windows are landmark sub-
windows of the elements of the window being formed. When the formed
window is complete it is emitted as well before it slides, and then the land-
mark is reset to the start time of the newly slided window.

The FEW windows are required when:

 68

 The results must be emitted before the window is formed.
 The results must be emitted more often than the slide (not used in

this application).

2.2 User-defined incremental window aggregate functions
The windowing mechanism in EPIC supports incrementally evaluated user
defined aggregate functions [1][8]. These are defined by associating init(),
add(), and remove() functions with a user defined aggregate function:

 init() -> Object o_new creates a new aggregation object, o_new,

which is used for accumulating changes in a window.
 add(Object o_cur, Object e) -> Object o_nxt takes the current ag-

gregation object o_cur and the current stream element e and returns
the updated aggregation object o_nxt.

 remove(Object o_cur, Object e_exp) -> Object o_nxt removes from
the current aggregation object o_cur the contribution of an element
e_exp that has expired from a window. It returns the updated o_nxt.

A user defined aggregate function is registered with the system function:
aggregate_function(Charstring agg_name, Charstring initfn, Charstring
addfn, Charstring removefn) -> Object

For example, the following shows how to define the aggregate function my-
sum() over windows of numbers:

create function initsum() -> Number s as 0;
create function addsum(Number s_cur, Number e)
 -> Number s_nxt as res + e;
create function removesum(Number s_cur, Number e_exp)
 -> Number s_nxt as s_cur – e_exp;

These functions are registered to the system as the aggregate function my-
sum() by the function call:

aggregate_function(‘mysum’,’initsum’,’addsum’,’removesum’);

After the registration mysum() can be used in CQs as:

select mysum(w)
from Window w
where w in fewtWindowize(s, 10, 2, 1);

In this simple example the aggregation object is a single number. It can also
be arbitrary objects, including dictionaries (temporary tables) holding sets of

 69

rows, which is used in the Challenge implementation to incrementally main-
tain complex spatio-temporal aggregations.

2.3 Solution outline
In Figure 1 the Event Reader node reads the full-game CSV file and pro-
duces the Game stream consisting of events for both balls and players. The
Event Reader then scales the time stamps by subtracting the start time. It
also transforms the position, velocity, and acceleration values to metric
scales. To avoid the Event Reader becoming a bottleneck it is implemented
as a foreign function in C. To speed up the communication we use binary
representation of all events communicated between query processing nodes,
while the input and output log files use the CSV format.

The Interrupt Reader node produces the Interrupt stream, which contains
referee interruptions, by reading and transforming the provided game inter-
ruptions files.

The DEBS Splitter node merges the two input streams based on the time
stamps in the streams and produces parallel input streams for the different
queries. It also filters out those event stream tuples of the Game stream that
are in-between game interruptions. The nodes Q1 Front End, Q2/Q4 Ball
Hitter, and Q3 Front End receive parallel data streams required for the four
Grand Challenge queries Q1-Q4. Q2 and Q4 share some downstream com-
putations executed by Q2/Q4 Ball Hitter node.

In EPIC the splitstream() system function provides customizable distribu-
tion and transformation of stream tuples. The user can provide customizable
splitting logic as a distribution query over an incoming tuple that specifies
how a tuple is to be distributed, filtered and transformed.

The distribution query for the DEBS Splitter in Listing 1 is passed as an
argument to splitstream().

Listing 1. DEBS Splitter distribution query

The result of the query are pairs (i, ev) specifying that an incoming event ev
is to be sent to output stream number i. In the DEBS splitter distribution
query three output streams enumerated by i are specified. They produce the
corresponding streams Q1 Input, Q2/Q4 Input, and Q3 Input. The Boolean
function isPlayer(v) returns true if v is a player sensor reading.

To speed up the processing, shared computations are made in separate
nodes. In Figure 1 the Q1 Front End and the Q3 Front End nodes perform

1 select i, ev from Integer i
2 where (i = 0 and isPlayer(ev)) or
3 (i = 1) or
4 (i = 2 and isPlayer(ev));

 70

stream preprocessing and reduction for queries 1 and 3, respectively, while
the Q2/Q4 Ball Hitter node detects hits to the ball needed by queries 2 and 4.

2.3.1 Query Q1: Running Analysis
Figure 2 shows the topology of Q1. The aggregated running statistics for
different time windows are computed in parallel based on the common cur-
rent running statistics produced by the Q1 Front End node. The stream con-
taining player sensor readings is sent to the Q1 Front End node (see Listing
1), which produces the running statistics. The running statistics is then
broadcasted to four other nodes to compute the aggregated running statistics
of different time window lengths.

Figure 2. Query 1 data stream flow

2.3.1.1 Incremental maintenance of running statistics
In order to make the result more reliable for the current running statistics, we
first create a 1 s tumbling window and then calculate the statistics for each
player over that window. The window length 1 s was chosen experimentally
to produce stable results. Both running and aggregate statistics utilize user
defined aggregate functions to maintain arrays of the two types of statistics
for each player.

2.3.1.2 Current running statistics
For each incoming player sensor reading in the current 1 s window, the fol-
lowing statistics tuple for each player is incrementally maintained in an ar-
ray:

(ts_start, ts_stop, pid, left_x_start, left_y_start, left_x_stop, left_y_stop,
right_x_start, right_y_start, right_y_stop, right_y_stop, sum_speed, count)

The time stamp ts_start stores the first time when a sensor reading of player
pid arrives to the current window, while ts_stop stores the last sensor read-
ing. The elements left_x_start, left_y_start, right_x_start, and right_y_start
are the position readings of the left and right foot of the player at time

 71

ts_start, while left_x_stop, left_y_stop, right_x_stop, and right_y_stop are
the corresponding foot position readings at time ts_stop. To incrementally
calculate the average velocity the elements sum_speed and count are also
included. ts_start, left_x_start, left_y_start, right_x_start, and right_y_start
are updated only when the first sensor reading of the player pid arrives to the
window, while all the other elements are updated every time a sensor reading
of pid arrives. Here, no remove function is needed for the aggregation, since
we are maintaining a stream of tumbling windows where the statistic will be
re-initialized every time the window tumbles.

With the statistics above, the current running statistics for a given player
is calculated as the Euclidian distance between the average position of the
first and last update during the time window.

2.3.1.3 Aggregate running statistics
We have chosen to log the result tuple of Q1 in CSV format every 1 s since
the current running statistics are not emitted more often than once per sec-
ond. Four FEW time windows were defined for aggregating running statis-
tics with lengths 1 minute, 5 minutes, 20 minutes, and the entire game. All
windows slide and emit results every 1 s. FEW is critical for early emission
while the first windows are being formed.

Aggregate running statistics over the window are incrementally main-
tained in an array similar to current running statistics.

The stream from the Q1 Front End node contains the elements ts_start,
ts_stop, player_id, intensity, distance, and speed. The difference ts_stop –
ts_start is used to incrementally maintain the duration of a player being in
the corresponding running intensity class. Analogously, the moving distance
is maintained for the corresponding intensity classes by incrementally asso-
ciating the incoming distance with the right intensity.

2.3.2 Query Q2: Ball Possession
Figure 3 shows the data flow of queries Q2 and Q4 combined. The Q2/Q4
input stream consists of player, ball, and interrupt sensor readings. The
Q2/Q4 Ball Hitter computes the Ball Hitter and the Ball streams. The Ball
Hitter stream contains ball hitter events, which occur when a player pid at
timestamp ts hits the ball. The Ball stream contains Ball Hitter events inter-
leaved with ball sensor readings. The Q2/Q4 Ball Hitter node emits the Ball
stream to the Shot on Goals query processing node, which executes the final
stages of query Q4. The Ball Hitter stream contains only ball hitter events
and is sent to the Player Possession node, which calculates and broadcasts
the same Player Ball Possession stream to four Team Possession query
processing nodes. The Team Possession nodes log every 10 s statistics of
team ball possessions for the two teams with the different window lengths: 1
minute, 5 minutes, 20 minutes, and a landmark window of the entire game.

 72

As an alternative, we also measured reporting team possessions every 1 s
resulting in the same latency and throughput.

Figure 3. Query 2 and Query 4 data stream flow

2.3.2.1 The Q2/Q4 Ball Hitter query processing node
In order to compute a stream of ball hitters, we maintain acceleration of the
ball ballacc, its position bx, by, bz, the shortest distance from a player to the
ball sdist, and the player pid.

For every input ball sensor reading, the Q2/Q4 Ball Hitter node incremen-
tally updates the ball acceleration and the ball position accordingly. When a
player sensor reading arrives, it incrementally maintains sdist.

A ball hitter event is emitted when both the following criteria hold:

 C1: The ball acceleration reaches a predefined threshold: ballacc > 55 m / s2.

 C2: The shortest distance sdist is within the player’s proximity: sdist < 1 m.

There are 36*200 player sensor readings per second. In addition, after being
hit, the ball acceleration remains high for a while, in particular before the
ball leaves the player’s proximity. Therefore, the two conditions C1 and C2
will hold for a short period of time within which several ball hitter events
could be reported for the same actual ball hit by the player. To avoid gener-
ating false ball hitter events, we employ a dropping policy to drop player
sensor readings occurring significantly later than the last report time. The
dropping policy is expressed by the following query condition over a player
sensor reading v: ts(v)-lrts > epsilon;

Here, lrts is the latest timestamp when a ball hitter event was reported,
and epsilon is the minimum time period between two reports. Because Q4 is
more sensitive to the ball hitter events, we have empirically tuned this pa-
rameter to 0.2 s to get the best possible accuracy of Q4.

2.3.2.2 The Player Possession query processing node

 73

The Player Possession node emits the Player Ball Possession (PBP) stream
consisting of the variables fts, pid, and hits, which state that the player pid
possessed the ball hits times, starting from first time the player hits the ball,
fts.

The Player Possession node increases the variable hits if a ball hitter
event bhe is from the same player pid. Otherwise, it will emit ball possession
events for player pid and then reset the variables. The total possession time
is the interval between the timestamps bhe and fts.

2.3.2.3 The Team Possession query processing nodes
There are four Team Possession nodes, each with different window length: 1
minute, 5 minutes, 20 minutes, and a landmark of the whole game. For the
received Player Ball Possession stream they compute team possession statis-
tics as follows:

Incrementally calculate the sum of the ball possessions of all players in
each team when a corresponding player ball possession arrives.

When a report is logged, the following two percentages are calculated:

ܲ = 	 ܣ	݉ܽ݁ܶ݉ݑݏܣ݉ܽ݁ܶ݉ݑݏ + 			ܤ݉ܽ݁ܶ	݉ݑݏ
 ܲ = 	 ܣ	݉ܽ݁ܶ݉ݑݏܤ݉ܽ݁ܶ݉ݑݏ + 			ܤ݉ܽ݁ܶ	݉ݑݏ

Here FEW windows are used to frequently report while the first windows are
being formed. For example, the results must be regularly delivered every 10
s while the team possession landmark window is being formed.

2.3.3 Query 4: Shot on Goal
The Shot on Goal node receives three different kinds of events in
the Ball stream:

• A ball hitter event marks a shot and contains a time stamp and the
pid of the shooting player.

• A ball event contains the current ball sensor reading.
• An interrupt event indicates a game interruption. It is good practice

to reset the shot detection when an interruption occurs.

Q4 shares detection of a ball hit with Q2. However, the logic for detecting a
shot is slightly different for the two queries: Q2 is specified stricter than
needed for Q4. To share computations this stricter logic is also used for Q4.

The operation of Q4 is straightforward; it is iteration over the Ball stream
to keep track of the state of a shot:
1. Wait for the next ball hitter event.
2. Check ball events until the ball has travelled one meter.

 74

3. Return ball events as long as the ball is approaching the opposite team’s
goal.

The calculation of the ball direction uses basic linear algebra over the ball
sensor readings.

Gravity is accounted for to an extent. The expected time for the ball to
travel to the goal line is multiplied twice with the acceleration constant g,
and added to the height of the goal bar. The actual ball trajectory is not con-
sidered, but the current calculation should be an adequate approximation.

Using the Q2 requirements for detecting a ball hit has the drawback that
some events are not detected, such as the header at 12:19 in the second half
our example Game stream, since the ball is more than one meter away from
any sensor. Whether that is technically a “shot” is questionable.

Curve balls need special attention. For example, at 26:07 in the first half
there is a curve ball goal. In this case the direction of the ball is pointing
outside the goal posts, while the ball later curves inwards and comes to rest
inside the goal.

To handle curve balls we have introduced a state pending, indicating that
a shot is not yet dismissed, but could later become a shot on goal. The model
adds two meters of margin on both sides of the goal posts and the shot is
considered pending if it points in the direction of the margin area.

Bounces are considered as long as the direction of the bounce is within
the negative distance of the goal bar plus gravity. While the instructions do
not account for bounces at all, this limit should add some correctness to the
algebra.

Shots that are bounces, which we detect, are not included in the provided
list of shots on goal. In the second half of the game there are four shots on
goal that are bounces. They are at 4:11, 19:39, 24:36 and 29:29. Setting the
bounce threshold to zero, i.e. not considering bounces creates a result in
accordance to the specification. Viewing the video makes it apparent that the
specification is not correct in this regard.

2.3.4 Query 3: Heat Map
In Query 3 a grid on the field is formed where the cells are numbered in row
order, for example from 0 to 6399 in a 64 X 100 grid. Given the position of a
player (x,y), the function cell_id(x,y,grid_size) returns the corresponding cell
number for a given grid size. Query results for lower resolution grids are
computed by aggregating the results for the higher resolution grids. Thus we
incrementally maintain the results only for the highest resolution.

Note that the results of longer windows cannot be built on top of the re-
sults from a shorter window. This is due to the 1 s stride parameter in all the
queries. For example, the 5 minute window can’t be built on top of the re-
sults produced by the 1 minute window, since the 5 minute window needs to
remove the contributions made to the statistics by the expired elements, i.e.

 75

the elements with the time stamp ts – 300 s, where ts is the current time
stamp. Those elements are too old to be in the 1 minute window. Neverthe-
less, the definition of longer windows in terms of shorter ones could have
been utilized if the stride was one minute instead of the one second stride in
the Challenge specification.

2.3.4.1 Q3 Front End
Figure 4 shows the dataflow diagram for query Q3. The Q3 Front End node
produces the One Second HeatMap (OSHM) stream by forming 1 s tumbling
windows over the incoming tuples. Thereby incremental user defined aggre-
gate functions are used to maintain statistics per second in a table hea-
map1s(pid, cell_id, ts, cnt) local per window. Here ts is the latest time stamp
player pid has been present in the cell identified by cell_id cell identifier in
the highest resolution grid (64 X 100). cnt is the total number of sensor read-
ings for player pid in the cell in the current window.

Figure 4. Query 3 data stream flow

The OSHM stream is produced by emitting all the rows accumulated in the
table during the past second.

The Q3 Front End significantly reduces the stream volume by summariz-
ing it. It receives 200 tuples per second from 36 sensors, in total 7200 tu-
ples/second. It emits at maximum the total number of cells all the players
have been present in the highest grid resolution during one second, which is
about 70 tuples per second, i.e. a factor 10 reductions in stream flow.

2.3.4.2 Q3 query nodes
The OSHM stream is broadcasted to four Q3 query nodes Q3 1 Min, Q3 5
Min, Q3 10 Min, and Q3 Landmark. These nodes run parallel CQs over time
windows with lengths 1, 5, 10 minutes, and whole game, respectively. The
windows are formed by the FEW window specification fewtWin-
dowize(oshm, length, 1, 1), where length is 60s, 300s, 600s and the whole
game duration, respectively. The stride and the emit frequency are both 1 s.

 76

The emit frequency is needed so that sub-windows are emitted while the
window is being formed the first time.

Similar to Q3 Front End, the Q3 query nodes incrementally maintain user
defined aggregates by updating the following local tables inside each win-
dow as the input stream elements arrive:

heatmap(pid, cell_id, ts, cnt)
sensor_count(pid, total_cnt)

In table heatmap, the attribute cell_id is the cell player pid has been present
in, ts is the latest time player pid was in the cell, cnt is the number of times
the player has been present in the cell. To enable translation of cnt into per-
centages per cell, the Q3 query nodes also maintain total_cnt per player,
which stores the total number of position reports in all cells for a given
player during the window in question.

Since Q3 query nodes only maintain the statistics for the highest resolu-
tion in a given window length, at reporting time they compute lower resolu-
tions by aggregating grid cells per player to fill the bigger cells in the higher
resolutions.

The Q3 query nodes log the output CSV streams to files. Since each Q3
query nodes cover all grid settings in a given window size, the produced log
files contains output stream elements for more than one grid setting. We use
the following grid identifiers to tag streams per grid: 6400 for 64 X 100,
1600 for 32 X 50, 400 for 16*25, and 104 for 8 X 13 grid setting.

The size of these log files is huge (ca 400,000 rows/s) since they cover all
movements between grid cells over several very long windows. Here it be-
comes important to use SSD as storage medium, which is fast at writing big
blocks in parallel, while disk arm movements for writing different log files
has been observed to slow down the entire system throughput with a factor
of around two.

3 PERFORMANCE
The performance of our implementation is measured based on both through-
put and delay. The throughput was measured as the total execution time per
query and for all queries in parallel over the entire game. The latency was
measured by propagating the system wall clock of the entry time of the latest
event contributing to each result tuple. The delay was calculated by subtract-
ing the propagated entry time from the wall time when a result tuple is deliv-
ered. The throughput is measured per query while the latency is measured
per output stream.

The experiments are run on a VMware virtual machine with Windows
Server 2008 R2 x64, running on a laptop with the following specifications:
Dell Latitude E6530, CPU: Intel Core i7-3720QM @2.60 GHz, RAM: 8 GB,
Hard Disk Device: ST500LX003-1AC15G, OS: Windows 7 64-bit.

 77

Figure 5 illustrates the throughput of the individual queries as well as all
queries running together. Queries Q1, Q2, and Q4 take around 5 minutes to
finish separately, while Q3 takes considerably longer time, which is mainly
due to intensive report computations in the Q3 query nodes. To investigate
the log writing time, Q3 and the all queries columns have a watermark indi-
cating how much time it takes to execute them without logging to disk,
showing that this takes around 35 % of the Q3 alone time and 25 % of all
queries together. We also investigated whether it would be favorable to par-
allelize the logging of the result stream for Q3 query nodes, but that turned
out to be slower in our current environment.

Figure 5. Performance

Since all queries run in parallel according to the dataflow diagrams, running
all of them together takes approximately the same time as running the slow-
est one, Q3.

Figure 6 shows the average delay per output stream while running all que-
ries together. Notice that Q2 and Q4 are time critical queries since they im-
mediately report real-time phenomena. By contrast Q1 and Q3 report de-
layed statistics aggregated over time.

The VMware virtual machine containing our implementation of the Grand
Challenge can be downloaded from http://udbl2.it.uu.se/DEBS/. There is
also a zip archive that can be run on any Windows machine.

 78

Figure 6. Delays

4 RELATED WORK
In the stream processing community, there has been a lot of work for devel-
oping query languages over data streams [5]. [7] introduced a formal specifi-
cation of different kinds of windows over data streams and provided a tax-
onomy of window variants. The notation of report (emit) frequency was
proposed in SECRET [2] without any actual implementation. SECRET is a
descriptive model to help users understand the result of window-based que-
ries from different stream processing engines. Esper [4] also allows a report
frequency but does not have user defined window aggregate functions. Fur-
thermore Esper’s sliding window model is different from FEW because the
slides are triggered by window content changes rather than explicitly speci-
fied time periods.

To efficiently calculate the aggregate result over long windows with small
strides, [6] and [1] use delta computations to reduce the latency and the
memory usage. The focus of [8] is to extend a DSMS with online data min-
ing facilities by user defined aggregate functions over windows. The imple-
mentation described in this paper shows that EPIC is general enough to de-
fine very complicated user defined aggregations as functions while in [1] and
[8] the aggregates are defined as updates.

5 CONCLUSIONS
We have addressed the Grand Challenge by expressing continuous queries in
a high level language that supports incremental evaluation of aggregate func-
tions over windows and frequently emitting windowing. We meet the real-
time requirements of the real-time queries on a virtual machine running on a
laptop. The extensibility of the query engine was used for supporting high
throughput and low latency of time critical operations.

 79

ACKNOWLEGEMENTS
This work was supported by the Swedish Foundation for Strategic Research,
grant RIT08-0041 and by the EU FP7 project Smart Vortex.

REFERENCES
1. Bai, Y., Thakkar, H., Wang, H., Luo, C., and Zaniolo, C.: A Data Stream Lan-

guage and System Designed for Power and Extensibility. Proc. CIKM Conf.,
2006.

2. Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R. J. and Tatbul, N. SE-
CRET: A Model for Analysis of the Execution Semantics of Stream Processing
Systems. Proc. VLDB Conf., 2010.

3. Botan, I., Fischer, P. M., Florescu, D., Kossmann, D., Kraska, T., and Ta-
mosevicius, R. Extending XQuery with Window Functions. Proc. VLDB Conf.,
2007.

4. http://esper.codehaus.org/

5. Law, Y-N, Wang, H., and Zaniolo, C.: Relational Languages and Data Models for
Continuous Queries on Sequences and Data Streams. ACM TODS 36, 2, (May
2011).

6. Li, J., Maier, D., Tufte, K., Papadimos,V., and Tucker, P. A. Semantics and
evaluation techniques for window aggregates in data streams. Proc. SIGMOD
Conf., pp. 311 - 322, 2005.

7. Patroumpas, K. and Sellis, T. Window specification over data streams. Proc.
EDBT Conf., 2006.

8. Thakkar, H., Mozafari, B. and Zaniolo, C.: Designing an Inductive Data Stream
Management System: the Stream Mill Experience. Proc. 2nd International Work-
shop on Scalable Stream Processing Systems, 2008.

9. Zeitler, E. and Risch, T.: Massive scale-out of expensive continuous queries,
Proc. of the VLDB Endowment, ISSN 2150-8097, Vol. 4, No. 11, pp.1181-1188,
2011.

Paper III

 83

Distributed multi-query optimization of continuous clustering queries

Sobhan Badiozamany
Supervised by Tore Risch

Department of Information Technology
Uppsala University

Box 337, SE-751 05,
Uppsala, Sweden

sobhan.badiozamany@it.uu.se

ABSTRACT
This work addresses the problem of sharing execution plans for queries that
continuously cluster streaming data to provide an evolving summary of the
data stream. This is challenging since clustering is an expensive task, there
might be many clustering queries running simultaneously, each continuous
query has a long life time span, and the execution plans often overlap. Clus-
tering is similar to conventional grouped aggregation but cluster formation is
more expensive than group formation, which makes incremental mainte-
nance more challenging. The goal of this work is to minimize response time
of continuous clustering queries with limited resources through multi-query
optimization. To that end, strategies for sharing execution plans between
continuous clustering queries are investigated and the architecture of a sys-
tem is outlined that optimizes the processing of multiple such queries. Since
there are many clustering algorithms, the system should be extensible to
easily incorporate user defined clustering algorithms.

1 INTRODUCTION
Compared to conventional database applications, a Data Stream Manage-
ment System (DSMS) has different data processing requirements. First, con-
tinuous queries run for very long periods of time over data streams. Second,
as the data flows through the system, only a limited window of data is pre-
sented at a given point in time. Sliding windows are commonly used for
capturing the evolving behavior of data streams, which requires efficient
incremental algorithms. Finally, since queries stand for a very long time, at
any point in time there are potentially many queries that have overlapping
computations. In particular, they might share expensive computations such
as clustering, aggregations, and filtering in presence of overlapping window
specifications.

Examples of such data streaming workloads can be found in monitoring
applications with many users and queries, e.g. urban traffic monitoring,
stock trading, and industrial sensor data monitoring. The essence of data
streaming is to continuously summarize the data. When the exact grouping

 84

of data is unknown, clustering is a very good candidate for explorative
grouping of similar data over which statistics is computed.

Multi-query optimization has been studied in conventional databases
since 80s [12] motivated by the fact that several queries might share the
same data. Multi-query optimization is even more beneficial in data stream-
ing applications. To elaborate the extra benefits of multi-query optimization,
we compare the characteristics of conventional OLAP and OLTP workloads
with data streaming workloads in Fel! Hittar inte referenskälla.. Data
streaming has similar characteristics as OLAP: Since they both have long
query life spans there is higher potential for overlapping computations, and
since they both contain expensive summarization queries shared computa-
tion of queries in beneficial. Note that since the life span of queries is even
longer in data streaming, the sharing is more beneficial.

A sharing solution has to be distributed in today’s widespread distributed
computing platforms where resources are limited and have a price tag.
Therefore the focus of this PhD project is to develop novel methods and
system architecture for optimization of multiple clustering queries over data
streams in a distributed environment.

Workload
Life span of

active queries
Prevalence of

summarization
queries

Computation
overlap in the

active query set
OLTP Short Low Low

OLAP Long Very High Potentially high

Data
Streaming

Very Long Very High Very high

Table 1. Characteristics of different data processing workloads

Clustering data points into disjoint sets is similar to conventional grouped
aggregation, with two differences, first the process of clustering is much
more expensive than grouping, and second, incremental maintenance of clus-
ters is challenging. While there have been several publications on optimizing
multiple Aggregate Continuous Queries (ACQs) [9] [10] [11] [13] [14], there
has been little research on the task of optimizing multiple Continuous Clus-
tering Queries (CCQs).

A general system that optimizes shared execution of multiple CCQs must
fulfill the following three main requirements:

1 Since in real scenarios resources are always limited, the system must
provide resource oriented scalability, i.e. given a certain resource al-
location, it must minimize the response time. The key here is using
shared processing techniques.

2 To facilitate exploiting new resources, the system must be distribut-
able.

 85

3 The sharing techniques should be independent of specific clustering
methods. Therefore a general system should be extensible so that
new clustering algorithms can be added to it in a non-intrusive man-
ner.

The rest of the paper is organized as follows. Section 2 covers the back-
ground, mainly the related work on multi-ACQ and multi-CCQ optimization
indicating the relevance to our research problem, leading to Section 3 where
the research questions are stated. Section 4 defines an extensible generic
clustering query operator and sketches how it can be distributed over several
computation nodes. Section 5 outlines the architecture of a distributed multi-
CCQ processing system.

2 Background and related work
First we define multiple Continuous Summarization Queries (CSQs) over
sliding windows as a general concept covering both ACQs and CCQs. We
then cover the related work on maintaining non-shared CSQs over sliding
windows. Then multi-ACQ optimization is discussed and finally the related
work and remaining challenges for multi-CCQ optimization is presented.

2.1 Multiple CSQs over sliding windows
Assume we have a data stream DS with a set of attributes A {A1…An}. We
define Q {Q1 … Qn} as a set of CSQs where each Qi ∈ Q has the following
properties:

• A window specification tuple W=(R, S), where R and S are the range
and stride parameters for the window.

• A subset of the attributes G ⊆ A that specifies data grouping or clus-
tering.

• A selection predicates P that selects tuples from DS.

We also define the set of all window specifications in Q, W*, the set of all G
in Q, G*, and set of all selection predicates in Q, P*.

For example, assume we have DS with A= {a, b, c, d}, Q= {Q1, Q2}
where

• Q1 is specified by W= (10, 2), G= {a, b}, P= (d=c1), where c1 is a
constant.

• Q2 is specified by W= (6, 3), G= {b, d}, P= (b=c2), where c2 is a
constant.

Then W*= {(10, 2), (6, 3)}, G*= {a, b, d}, and P*= {(d=c1), (b=c2)}.

2.2 Non-shared CSQs over sliding windows
ACQs are similar to CCQs because both of them form groups of data points.
However, they differ in the cost of the group formation because in the con-

 86

ventional group-by aggregates the group formation is only dependent on
equality of values, whereas in clustering the group formation is a very ex-
pensive similarity based operation. Furthermore, sliding a window for CCQs
is more complex than removing elements from groups.

Consider a sliding window specified by the two parameters stride S and
range R. Figure 1 illustrates how a sliding window can be maintained, for
R=10 and S=2. The data stream is first broken down into contiguous pieces,
i.e. partial windows (PW0 to PW9). To form the sliding window several
consecutive partial windows are assembled. The size of these partial win-
dows is determined by the stride S and range R parameters of the window
specification. In Figure 1, each window is formed by assembling 5 partial
windows, each of size 2. Notice that if S and R are time based, depending on
the stream rate, there might be varying number of data points in each of the
partial windows.

Based on such partial windows, processing an ACQ is commonly done in
two steps, partial aggregation and final aggregation [10] [11] [13] [14]. The
partial aggregation step is applied on each partial window (PW0 to PW9),
thereby summarizing its contents to produce partial grouped aggregates.
The final aggregation step forms ACQ results by rolling up the partial
grouped aggregates corresponding to the full window.

SELECT seg-id, COUNT(*)

FROM Traffic [RANGE 10 Minutes,SLIDE 2 Minutes]

GROUP BY seg-id

Listing 1. simple aggregate queries over data streams

For example, the query in Listing 1 calculates the number of vehicles in
segments of streets over a window. The total number of vehicles is first cal-
culated per partial windows of size 2 minutes, producing partial grouped
aggregates. Then, to find the total number of vehicles in each 10 minute
window, in the final aggregation step the corresponding 5 consecutive partial
grouped aggregates are summed.

Figure 1. Sliding window maintenance

W0= [PW0-PW4]

W1= [PW1-PW5]

W2= [PW2-PW6]

W3= [PW3-PW7]

W4= [PW4-PW8]

W5= [PW5-PW9]

PW0 PW1 PW2 PW3 PW4 PW5 PW6 PW7 PW8 PW9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 161 4 17 18 19 20

 87

When the window slides, a partial window expires and needs to be evicted.
Handling deletion under sliding window semantics for conventional grouped
summaries (aggregates) is done incrementally by simply deducting the con-
tribution made by the expired partial grouped aggregates from the ACQ re-
sults.

In contrast to ACQs, deleting expired elements from clusters is more
complicated, since the impact of removing data points from clusters might
not stay local to them: clusters might shrink, split, or disappear. For this
reason CCQ deletion is handled in [15][1] as follows. Instead of simply de-
ducting the expired data points from the window summary, the need for de-
letion is eliminated by adding the new set of points into as many windows as
they participate in. For example, referring back to the sliding window main-
tenance in Figure 1, the partial cluster summaries formed over PW5 are
merged into all of the windows W1 to W9. Therefore at any point in time 5
windows are maintained simultaneously.

This strategy is similar to our earlier preliminary work on maintaining
raw data indexes over sliding windows [3]. A potential drawback of the ap-
proach is the multiplied cost of adding the individual partial grouped aggre-
gates to all the windows they participate in. Furthermore, the amount of
memory required to simultaneously maintain several windows will also be
multiplied. The aforementioned drawbacks make the window maintenance
expensive, particularly for long windows with short strides.

The incremental algorithm in [6] to delete expired elements from clusters
in data warehouses was rejected in [15] motivated by the high cost of dele-
tion from clusters. However, the experiments in [15] do not show the effect
of scaling the window size when the incremental approach in [6] is com-
pared to their deletion elimination approach.

Incremental deletion of expired elements from clusters remains a chal-
lenging open problem.

2.3 Multi-ACQs optimization
Gigascope [5] is a data stream management system which is designed for
processing traffic monitoring queries over IP networks. In particular, it sup-
ports shared optimization of multiple ACQs [10]. An example ACQ in Gi-
gascope is given in Listing 2.

SELECT win_time, source_IP, COUNT(*)
FROM IP_header_stream [RANGE 1 Min, SLIDE 1 Sec]

GROUP BY win_time, source_IP
Listing 2. simple Gigascope ACQ

The execution strategy for such a query is illustrated in Figure 2 taken from
[10]. It exemplifies the two tier distributed processing having partial aggre-
gation and final aggregation, where the Low level Filter, Transforms, and

 88

Aggregate (LFTA) is the partial aggregation step and the High level Filter,
Transforms, and Aggregate (HFTA) is the final aggregation step. For exam-
ple, in Listing 2 the partial aggregation (LFTA) is COUNT, while the final
aggregation (HFTA) is SUM.

Individual data points, e.g. C1 in the figure, are continuously added to the
partial grouped aggregates in LFTA (i.e. COUNT). The partial grouped ag-
gregates in the LFTA are sent to the HFTA when a partial window becomes
complete.

Figure 2. Single aggregation in Gigascope

Listing 3 is an example of a set of ACQs from [10], where Q={Q1, Q2, Q3},
W*= {(1, 1)}, and G*= {A, B, C}.

/*Q1*/
SELECT A, COUNT(*)

FROM R [RANGE 1 Min, SLIDE 1 Sec]

GROUP BY A

/*Q2*/
SELECT B, COUNT(*)

FROM R [RANGE 1 Min, SLIDE 1 Sec]

GROUP BY B

/*Q3*/
SELECT C, COUNT(*)

FROM R [RANGE 1 Min, SLIDE 1 Sec]

GROUP BY C
Listing 3. A set of ACQs with varying grouping attributes

 89

Figure 3 shows the two main execution strategies in Gigascope investigated
in [10]: naïve (none shared) (Fig. 3a), and phantom based (shared) process-
ing (Fig. 3b).

Figure 3. Processing multiple aggregates in Gigascope

In the naïve approach, each query maintains its index for grouping, so three
hash indexes are maintained for grouping by A, B, and C, respectively.
Every incoming tuple is matched against all three indexes.

In the phantom based approach, the input stream is first grouped by the
phantom ABC, from which individual A, B, C groupings are fed. A phantom
is a virtual grouping that is not used in any of the queries in Q, but is used to
facilitate the shared processing of queries by the simple intuition that a finer
grain grouping can feed several coarser grain groupings. Here the phantom
ABC can feed any grouping specified using a subset of {A, B, C}, for exam-
ple {A}, {B}, {C}, {A,B}, etc. The key point is that the feeding of A, B and
C happens only when the partial grouped aggregates in a partial window are
emitted. Since all queries in Listing 3 have the same slide = 1 second (W*=
{(1, 1)}), the feeding occurs once per second.

When not all windows have the same slide, i.e. when W* is not a singleton
set, [13] generalizes the method by materializing finer grain partial windows
in the pre-aggregation phase, from which all windows in W*are formed.

The phantoms and other hash tables form a feeding graph [10]. Since
there might be many different feeding graphs, the optimization problem of
finding the right feeding graph is also studied in [10].

Maintaining phantoms is beneficial for sharing the execution of several
ACQs because, in contrast to the naïve approach, only a single look-up of
the ABC index is made per incoming stream tuple. At the feeding time, there
will be updates to the A, B and C indexes, but those are relatively infrequent,
since the original tuples are already partially grouped in phantom ABC.

 90

Multiple ACQs were also present in the DEBS 2013 Grand Challenge [8],
where resource limitations were critical and therefore a shared execution
strategy was vital, as shown in [2].

Gigascope does not support dynamic query optimization, and does not
consider selection predicates P* in multi-ACQ optimization. As an im-
provement Krishnamurthy et al. in [11] proposes a solution focusing on dy-
namic multi-ACQ optimization in presence of high query churn, i.e. queries
frequently join and leave the system. To address dynamic query optimiza-
tion, a single execution pipeline is proposed where addition and removal of
queries from the pipeline is implemented by modifying data structures in
different parts of the pipeline.

There are a number of shortcomings with the approach in [11]. First, no
strategy for parallel or distributed execution is proposed. Second, the sharing
scheme for selection predicates does not scale for the following reason. The
system tags all input tuples with a bitmap signature, indicating what combi-
nation of query selection predicates they fulfill. Having this tag, the tuples
can be assigned to fragments, which are the non-overlapping groups of tu-
ples. The total number of fragments is 2N, where N is the number of queries.
Therefore the proposed solution is not scalable w.r.t. the number of queries.
Another shortcoming in [11] is the lack of support for a general GROUP
BY.

Guirguis et al. [14] [13] improve the single pipeline approach in [11] by
incorporating the optimizations in Gigascope on sharing grouped aggregates,
but the non-scalable selection predicate sharing problem remains, as does the
problem of parallelized or distributed execution.

In general there is no system that combines the following two aspects of
shared execution of multiple ACQs:

1 Efficient sharing of selection predicates.
2 Shared execution of a general GROUP BY operator.

Furthermore, automatic distributed or parallel multi-ACQ execution has not
been addressed. For example, in [2] the parallelization was manual, which
becomes very complex when there are many complex queries. This leaves
room for improvement in multi-ACQs optimization.

2.4 Multi-CCQ optimization
Initial work on shared execution of clustering queries can be found in [16].
The authors propose a method to share execution of multiple density based
CCQs for a query set Q that contains diverse density parameters and window
specifications. In general the method is based on the deletion elimination
approach explained in section 2.2 with the following limitations:
1. There is no support for specific clustering attributes, G, in queries. It is

assumed that all queries in Q* cluster the data based on all the attributes.

 91

2. There is no support for selection predicates, P, i.e. all queries in Q* have
the same filter.

3. Only one density clustering method [15] is supported. There is no sup-
port for plugging in new clustering algorithms.

4. There is no distributed or parallel execution strategy.

3 The research questions
The following research questions are not addressed by any related work on
multi-CCQ optimization:
1. How can the combination of P*, G*, and W* be exploited for optimizing

shared execution of multiple CCQs?
2. How can extensible clustering be supported? That is, how can the shar-

ing framework be made independent of a specific clustering algorithm?
3. How can the query execution components be automatically distributed

over several nodes?

Next a generic clustering framework that facilitates answering the research
questions is outlined.

4 An extensible framework for processing distributed clustering que-
ries

In this section a general framework for processing clustering queries is in-
troduced, with two requirements in mind. First, it has to be extensible, i.e. it
should be easy to plug in a variety of clustering methods. Second, it has to
support distributed query execution.

SELECT
CONVEX_HULL(*), COUNT(*)

FROM
TRUCK_POSITIONS(RANGE 1 Min, SLIDE 1 Sec)

WHERE
CITY=’Stockholm’

CLUSTER BY
X, Y

ALGORITHM EXTRA_N(0.1, 5)
Listing 4. A CCQ

Listing 4 shows an example of a CCQ with syntax borrowed from [4] where
the FROM clause is extended to support sliding windows over data streams.
The attributes X, Y, and CITY are attributes of the tuples of the data stream
TRUCK_POSITIONS. CONVEX_HULL and COUNT are aggregate func-
tions applied per cluster returning a spatial object and a number, respec-
tively. In the ALGORITHM clause an incremental clustering algorithm is
specified, here EXTRA_N [15]. Unlike GROUP BY queries there is no ex-

 92

plicit grouping key in clustering queries, which is why the SELECT clause
only includes aggregate functions. This query is useful in active safety sys-
tems in modern vehicles where the focus is to avoid accidents. In this case,
the query returns the boundaries of the congested areas every second to warn
the drivers cruising at high speed prior to approaching congested areas.

Each cluster is represented by a system generated cluster identifier. At
any point in time in a given window, the output of a clustering query is a set
of aggregate objects for each cluster.

Unlike incremental maintenance of aggregate functions in ACQs, the
definition of the clustering algorithm addresses group formation, rather than
aggregation.

To allow the clustering algorithm to be executed incrementally, the defi-
nition of it is broken down into four components: init, add, merge, and ex-
clude (Listing 5).

init(parms p)->cluster_set initial;

add(data_point d, cluster_set partial, parms p)
 ->cluster_set new_partial;

merge(cluster_set total, cluster_set partial, parms p)
 ->cluster_set new_total;

exclude(cluster_set total, cluster_set partial, parms p)
 ->cluster_set new_total;

Listing 5. Incremental user defined clustering function

The above components of a CCQ are distributed and executed over three
processing nodes, as illustrated in Figure 4. The thickness of the arrows in
the figure indicates relative volume of the stream.

As a preprocessing step, the selection filter process applies the selection
predicate in the CCQ, typically reducing the stream volume.

Similar to the two level processing of ACQs, the clustering task in CCQs
is broken down into two levels. First a partial clustering process slices the
incoming stream into partial windows, similar to partial aggregation.
Thereby the init function in Listing 5 creates an initial cluster set for the
partial window. For example, in distance based clustering algorithms such as
[7] the init function generates initial centroids. Following the invocation of
the init function, the add function is called for each data point in the partial
window to add new data points to the partial cluster set. This will support all
single-pass algorithms like BIRCH [18]. The processing of data points in a
partial window finishes by sending the partial cluster set to the final cluster-
ing process.

 93

Figure 4. Data flow of a single CCQ

The final clustering process rolls up the consecutive incoming partial cluster
sets sent by the partial clustering node to maintain the total cluster set corre-
sponding to the whole window, similar to final aggregation in ACQs. This is
done by applying the merge function on every incoming partial cluster set to
update the total cluster set, for example, as done by the merge step in the
STREAM algorithm [7]. When the window slides, the exclude function is
executed to remove the contributions made by the partial cluster sets in the
expired partial window. The exclude function is optional, i.e. if a remove
algorithm is not specified, the final clustering task merges each delta cluster
set with as many windows as it corresponds to. This supports density based
approaches like Extra-N [15] where the need for implicit deletion is elimi-
nated.

Notice that this framework is easily data parallelizable at all different
stages. For example, if partial clustering becomes the bottleneck, the system
can create other instances of it to parallelize the work and distribute the par-
tial windows using, e.g., round-robin [17]. The merge can also be done in
parallel using a divide and conquer paradigm in several steps forming a
merge tree.

To conclude, the framework is general, extensible, and capable of repre-
senting both incremental and deletion elimination methods. It can handle
both distance based and density based clustering methods. It is optimizable
and parallelizable.

cluster_set
new total

cluster_set
partial Partial clustering

init()
add()

Final clustering
Merge ()
exclude()

Selection
filter

 94

Figure 5. MSCQ system

5 Multiple Stream Clustering Query (MSCQ) Processor
Figure 5 sketches the overall architecture of the proposed MSCQ system to
process multiple CCQs. The system receives a set of CCQs applied on input
data streams. The MSCQ optimizer produces an optimized shared distributed
execution plan for the CCQ set. The query distributor sets up combined dis-
tributed query execution plans (CDQEPs) by initializing distributed proc-
esses and establishing communication links. The components of the
CDQEPs are locally executed by a query execution engine (QEE) on each
processing node. An execution monitor continuously observes CDQEPs to
identify bottlenecks and adapts the local plans in the nodes to cure them.

An open problem is how to dynamically modify CDQEPs when queries
join or leave. A naive approach is to generate a new CDQEP every time a
new CCQ joins or leaves. More sophisticated approaches would incremen-
tally modify running CDQEPs.

6 Conclusion
We introduced and motivated the problem of optimizing multiple continuous
clustering queries (CCQs). We showed its similarities and differences with
the well-studied optimization of multiple aggregate continuous queries
(ACQs). Based on this, we showed the need for research on extensible, dis-
tributable multi-query optimization, specifically exploiting all sharing oppor-

Set of CCQs

Input data stream QEE

QEE

QEE

QEE

Optimized shared
distributed execution plan

Query results

Combined Distributed Query
Execution Plans (CDQEP)

MSCQ
Optimizer

Query
Distributer

Execution
Monitor

QEE

Input data stream

Input data stream

QEE

QEE

QEE QEE

QEE

QEE

Query results

Query results

Query results

 95

tunities in multiple CCQs. As first steps, an extensible framework for proc-
essing distributed CCQs was presented and the initial system architecture
was outlined.

7 ACKNOWLEDGMENTS
This work was supported by the Swedish Foundation for Strategic Research,
grant RIT08-0041 and by the EU FP7 project Smart Vortex.

8 REFERENCES
[1] Babcock, B., Mayur, D., Rajeev, M., and O'Callaghan, L. Maintaining

variance and k-medians over data stream windows. In SIGMOD conf.
(San Diego 2003), 234-243.

[2] Badiozamany, S., Melander, L., Truong, T., Xu, C., and Risch, T.
Grand Challenge: Implementation by Frequently Emitting Parallel
Windows and User-Defined Aggregate Functions. In Proceedings of
Distributed Evenet Based Systems 2013 (Arlington 2013), DEBS
2013.

[3] Badiozamany, S. and Risch, T. Scalable ordered indexing of streaming
data. In Workshop proceedings of the Accelerated Data Management
Systems 2012, in conjunction with VLDB 2012 (Istanbul 2012), ADMS
Workshop at VLDB.

[4] Chengyang, Z. and Yan, H. Cluster By: a new sql extension for spatial
data aggregation. In Proceedings of ACM international symposium on
Advances in geographic information systems (Seattle, Washington
2007), 53.

[5] Cranor, C., Johnson, T., Spataschek, O., and Shkapenyuk, V.
Gigascope: a stream database for network applications. In SIGMOD
conf. (New York 2003), 647-651.

[6] Ester, M., Kriegel, H-P., Sander, J., Wimmer, M., and Xu, X.
Incremental clustering for mining in a data warehousing environment.
In VLDB conf. (New York 1998), 323-333.

[7] Guha, S., Mishra, N., Motwani, R., and O'Callaghan, L. Clustering
data streams. In Proceedings of Foundations of Computer Science
conference (Redondo Beach, CA 2000), 359-366.

[8] Jerzak, Z. and Ziekow, H.
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails.
In DEBS 2013 Grand Challenge (2013).

[9] Jin, L., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A.
Semantics and evaluation techniques for window aggregates in data
streams. In SIGMOD conf. (Baltimore, Maryland 2005), SIGMOD.

[10] Rui, Z., Koudas, N., Ooi, B. C., and Srivastava, D. Multiple
aggregations over data streams. In SIGMOD conf. (Baltimore,

 96

Maryland 2005), SIGMOD.

[11] S., Krishnamurthy, Wu, C., and Franklin, M. On-the-fly sharing for
streamed aggregation. In SIGMOD conf. (Chicago, Illinois 2006),
SIGMOD.

[12] Sellis, T. K. Multiple-query optimization. (March 1988), Transactions
Of Database Systems TODS, 23-52.

[13] Shenoda, G., Sharaf, M. A., Chrysanthis, P. K., and Labrinidis, A.
Optimized processing of multiple aggregate continuous queries. In
Proceedings of the 20th ACM international conference on Information
and knowledge management (Glasgow 2011), CIKM.

[14] Shenoda, G., Sharaf, M. A., Chrysanthis, P. K., and Labrinidis, A.
Three-level processing of multiple aggregate continuous queries. In
Data Engineering (ICDE), 2012 IEEE 28th International Conference
on (Hannover 2012), ICDE.

[15] Yang, D., Rundensteiner, E. A., and Ward, M. O. Neighbor-based
pattern detection for windows over streaming data. In EDBT conf.
(Saint Petersburg 2009), 229-540.

[16] Yang, D., Rundensteiner, E. A., and Ward, M. O. A shared execution
strategy for multiple pattern mining requests over streaming data. In
VLDB conf. (Lyon 2009), 874-885.

[17] Zeitler, E. and Risch, T. Massive scale-out of expensive continuous
queries. In VLDB conf. (Seattle 2011), 1181-1188.

[18] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: an efficient data
clustering method for very large databases. In SIGMOD conf.
(Montreal 1996.), 103-114.

Paper IV

 99

Framework for real-time clustering over sliding windows
Sobhan Badiozamany

Kjell Orsborn
Tore Risch

Department of Information Technology, Uppsala University, Sweden
Emails: Firstname.Lastname@it.uu.se

ABSTRACT
Clustering queries over sliding windows require maintaining cluster mem-
berships that change as windows slide. To address this, the Generic 2-phase
Continuous Summarization framework (G2CS) utilizes a generation based
window maintenance approach where windows are maintained over different
time intervals. It provides algorithm independent and efficient sliding
mechanisms for clustering queries where the clustering algorithms are de-
fined in terms of queries over cluster data represented as temporal tables. A
particular challenge for real-time detection of a high number of fastly evolv-
ing clusters is efficiently supporting smooth re-clustering in real-time, i.e. to
minimize the sliding time with increasing window size and decreasing
strides. To efficiently support such re-clustering for clustering algorithms
where deletion of expired data is not supported, e.g. BIRCH, G2CS includes
a novel window maintenance mechanism called Sliding Binary Merge
(SBM), which maintains several generations of intermediate window in-
stances and does not require decremental cluster maintenance. To improve
real-time sliding performance, G2CS uses generation-based multi-
dimensional indexing. Extensive performance evaluation on both synthetic
and real data shows that G2CS scales substantially better than related ap-
proaches.

CCS Concepts
• Information systems~Data stream mining

Keywords
Sliding windows; Clustering; Framework

1 INTRODUCTION
In the big data era, the data is produced at extremely high velocities and
volumes. Data Stream Management Systems (DSMSs) [1] address these
challenges by processing continuous queries (CQs) over streaming data.
Examples of data streaming applications are urban traffic monitoring, stock
trading, and industrial sensor data monitoring. When the exact grouping of
data is unknown, continuous clustering queries (CCQs) enable real-time

 100

identification of continuously evolving clusters over which statistical sum-
maries are computed as the stream progresses.

Sliding windows are widely used in DSMSs since they enable processing
of infinite data streams. In particular, they capture the real-time and evolving
behavior of data streams by processing only the most recent data at a given
point in time. Here we focus on time-based sliding windows, but the pro-
posed techniques are applicable to count-based sliding windows too.

An example CCQ is given in Listing 1 where a modified version of the
clustering algorithm BIRCH for sliding windows, C-BIRCH, is used to de-
tect congested areas with radius 50 meters over a window of vehicle posi-
tions X and Y. The window has range 10 minutes and slides every 2 minutes.
Given a window, C-BIRCH forms a set of clusters identified by cid on
which the aggregate functions CENTER and COUNT are applied. In the
query the clustering algorithm C-BIRCH is a parameter.

SELECT CENTER(cid), COUNT(cid)

FROM VEHICLE_POSITIONS (RANGE = 10, STRIDE = 2)

WHERE SPEED<30

CLUSTER BY X, Y AS cid

USING C-BIRCH(50)

Listing 1. An example Continuous Clustering Query

To be able to utilize existing clustering algorithms in such queries, a frame-
work where clustering algorithms can be plugged into a DSMS is needed.
Such algorithms need to maintain algorithm specific data per cluster where
the schema of such data depends on the algorithm. The Generic 2-phase
Continuous Summarization framework (G2CS) provides an algorithm inde-
pendent and efficient sliding mechanism for clustering queries, called sliding
binary merge (SBM). G2CS simplifies the development of clustering algo-
rithms by defining them in terms of queries over cluster data represented as
tables. The system provides transparent algorithm independent multi-
dimensional indexing of clustering data.

Figure 1 illustrates how data overlaps when windows slide. A window in-
stance Wb,e represents the state of the window W during the valid time inter-
val [b,e). In G2CS time intervals are represented as object called contexts.
In Figure 1 the data in window instance W0,10, covering the time interval
(context) [0,10) overlaps (gray boxes) with the data in the window instance
W2,12 covering [2,12). The window instance W2,4 is a common partial win-
dow instance of the complete window instances W0,10 and W2,12.

 101

Figure 1. Data overlap in sliding windows

Complex data mining queries may have nested windows, i.e. the queries that
form windows on top of other windows. To enable efficient processing of
such queries, it is not sufficient to destructively maintain the latest window
instances in-place, but old instances of windows need to be retained as well.
Therefore, a generation based window maintenance technique need to be
devised where older instances of windows are maintained as long as they are
referenced by other windows. This approach also facilitates shared execution
plans for queries having different window ranges.

To avoid unnecessary re-computations when data is summarized over
sliding windows, efficient differential maintenance techniques can be used
[2]. Differential processing is usually done by introducing functions for add-
ing/removing deltas to/from the aggregation state [3]. For example the ag-
gregate function COUNT is differential because both of the following equa-
tions hold:

ܣ)ܷܱܶܰܥ ∪ (ܤ = (ܣ)ܷܱܶܰܥ 	+ (ܥ\ܣ)ܷܱܶܰܥ (Incremental) (ܤ)ܷܱܶܰܥ = (ܣ)ܷܱܶܰܥ − (Decremental) (ܥ)ܷܱܶܰܥ

Here A, B, and C are sets.
Aggregation queries over sliding windows are commonly processed in

two phases [2] [4] [5] [6] [7]:
1 In the first phase, called partial aggregation, fine-grain non-

overlapping partial window instances are formed where aggregate
data is accumulated.

2 The second phase, called final aggregation, combines consecutive
aggregates from the first phase to produce the total aggregate over
the complete window instances.

With the 2-phase window maintenance approach the performance is im-
proved because the incremental property of an aggregate function enables
pushing down incremental computations into partial windows in the first
phase, thus reducing the data volume in the second phase. Second, the de-
composition allows distributed and parallel processing since phase one and
two form a pipeline [8]. In the 2nd phase, at every slide, the incremental
property enables a partial aggregate to be merged into the total aggregate,

W2,12W0,10

0 2 4 6 8 10 12 14 t

W0,2 W2,4 W4,6 W6,8 W8,10 W10,12 W12,14

 102

while the decremental property allows the contributions of expired partial
aggregates to be excluded.

We note that the 2-phase approach is also beneficial for clustering-
algorithms, where expensive cluster formation can be done in phase one and
the formed partial clusters are combined using the clustering algorithm in
phase two. However, there is a fundamental difference between GROUP-BY
queries and clustering queries, which has implications on how the two phase
approach is implemented. In GROUP-BY queries, the groups on which ag-
gregate functions are applied are formed based on equality of grouping keys,
whereas clusters are formed based on algorithm-dependent similarity be-
tween data points. Therefore, a window slide in a GROUP-BY query does
not move elements between groups. In contrast, for clustering algorithms the
window slides dynamically change cluster memberships as clusters might
merge or split when new data arrives or old data expires. This has the fol-
lowing implications on how clustering algorithms are processed over sliding
windows, compared to conventional GROUP-BY queries:

a) Streamed clustering algorithms requires grouping and aggrega-
tion to be combined, whereas group formation mechanisms in
GROUP-BY queries are implemented by first splitting the
stream based on the group key in a grouping operator followed
by an aggregation operator [2] [9]. Thus, each clustering algo-
rithm needs to maintain its own data structures to represent
clusters that are updated as the window slides. In order to effi-
ciently support queries that involve nested windows, these data
structures need to be retained for different window instances.

b) For many clustering algorithms, incremental deletion of data
points from clusters is not defined [10], i.e. they are not decre-
mental. Even when a decremental method can be devised as in
[11], it can be very expensive and must be avoided, as sug-
gested by previous work [12].

c) Efficient grouping by similarity in streamed clustering algo-
rithms require multi-dimensional indexing to find which clus-
ters are influenced by a regrouping, while streamed GROUP-
BY queries can hash on fixed group keys.

In this paper we present the Generic 2-phase Continuous Summarization
(G2CS) framework, with the following main contributions to the state-of-
the-art methods:

1 To address a) G2CS relies on a query language for modeling
the clustering algorithms. Contexts are used for allowing clus-
tering algorithms to store multiple generations of summariza-

 103

tion data as the cluster memberships evolve over time with
window slides, described in Section 3.1.

2 To address b) G2CS maintains and reuses several intermediate
window instances by organizing them using contexts and ana-
lyzing their temporal dependencies as a lattice called the SBM-
lattice, described in Section 3.2.

3 To address c) G2CS provides a method for transparent multi-
dimensional indexing of the contents of each window instance,
called contextualized indexing, described in Section 3.3.

The rest of the paper is organized as follows. Section 2 defines the basic
concepts and terminology used in the paper. Section 3 presents the G2CS
framework and the three main contributions. The approach is exemplified by
adapting the well-known BIRCH clustering algorithm [13] for real-time
stream clustering, called C-BIRCH, which is another contribution. The ex-
perimental evaluation in Section 4 uses synthetic and real data to measure
the performance of the proposed methods, showing significant improve-
ments over previous work, while retaining clustering quality. Section 5 dis-
cusses related work and Section 6 concludes and proposes some future re-
search directions.

2 PRELIMINARIES
In this section the basic concepts that are used throughout the paper are
briefly reviewed.

Repetitive merge, RM
To support non-decremental clustering algorithms, in previous approaches
[10] [12] [14] the summary in each partial window instance, here called Par-
tial Grouped Summary (PGS), is repetitively merged into all complete win-
dows it is part of. The repetitive merge (RM) is illustrated in Figure 2 where
a sliding window of range R=10 and stride S=2 is formed in the 2nd phase.
When PGS5 arrives, it is merged into the five complete window instances
W0,10, W2,12, W4,14, W6,16, and W8,18. This causes redundant computations, e.g.
both W8,18 and W10,20 merge all the common partial summaries PGS6 – PGS9.
The partition ratio PR of a window is defined as:

 								ܴܲ = ܴܵ

For example, in Figure 2 PR=5. Scaling up PR is important to track fast
changing clusters with fast concept drifts in real-time. With the repetitive

 104

merge approach, maintaining the sliding windows in the 2nd phase becomes
expensive when PR is large.

Figure 2. Final summarization with Repetitive Merge

2-phase decomposition of clustering algorithms
Suppose that a clustering function C over a dataset DS is computed using
two components: first a “partial-clustering” function P(DSi)->CSi computes
cluster summaries CSi over the disjoint data sets DS1, DS2, …, DSn where
DS=∪1≤ i ≤n DSi. In the 2nd phase a binary merger function M (CS, CS) ->CS
is repeatedly applied by an orchestrator function F to combine the output
from all P(DSi) in some order:

C (DS) =F(M, {P (DSi)| 1≤ i ≤n})

In G2CS the functions P and M are algorithm dependent plug-ins while F is
an optimization strategy for sliding windows that G2CS executes.

We call such a clustering function C, represented by the combination of
functions M, P, and F an incremental clustering function.

There are incremental variants of both density based and centroid based
clustering algorithms. For example, DBSCAN for data warehouses [11] in-
crementally merges batches of data points into a database of clusters while
STREAM [10] incrementally merges disjoint subsets of datasets that are pre-
clustered using K-means.

Now, assume that there are two datasets DS1 and DS2 such that DS1 ⊆
DS2. An incremental clustering function C is differential if it is also decre-
mental, i.e. there exist an exclude function EX(CS,CS) ->CS that removes the
contributions made by expired partial clustering of CS1 from CS2:

C(CS2 \ CS1) = EX(CS2, CS1)

 t

W0,10 = merge(PGS1…PGS5)

W2,12= merge(PGS2…PGS6)

W4,14= merge(PGS3…PGS7)

W6,16= merge(PGS4…PGS8)

W8,18= merge(PGS5…PGS9)

W10,20= merge(PGS6…PGS10)

PGS1 PGS2 PGS3 PGS4 PGS5 PGS6 PGS7 PGS8 PGS9 PGS10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 1614 17 18 19 20

 105

Overall, most of the clustering algorithms are not decremental. G2CS pro-
vides an efficient real-time sliding mechanism for such non-decremental
clustering algorithms.

3 GENERIC 2-PHASE CONTINUOUS SUMMARIZATION
FRAMEWORK

The G2CS framework generalizes the 2-phase aggregate function processing
frameworks over sliding windows [2] [4] [5] [6] [8] to process continuous
clustering queries (CCQs) by separating the sliding and indexing mecha-
nisms from the plugged-in summarization algorithms.

Figure 3. Generic 2-Phase Continuous Summarization

Figure 3 illustrates the architecture of G2CS. The contributions of this paper
are the modules that are underlined in the figure.

Unlike aggregate functions where the operator state is simple due to sepa-
ration of grouping from aggregation, clustering algorithms require maintain-
ing complex and algorithm-dependent relationships between data points in
order to continuously maintain the evolving clusters. To enable high-level
modeling of such clustering state information for the plugged-in algorithms
G2CS provides a built-in Main-Memory Data Manager having full query
processing and indexing capabilities over a local database.

The algorithm developers define summarization algorithms using a num-
ber of plug-in functions, marked as red in Figure 3, that modularize the clus-
tering algorithms and separate them from the sliding mechanism.

Window instances may be referenced from other objects. For example,
they can be saved in the local database or several windows specified over the
same stream may cause the same window instance to belong to more than
one window specification. This requires generation based window manage-

Partial
Summarizer

Final Summarizer

adder

m
erger

excluder

reporter

Main Memory Data Manager

Context Manager

Contextualized index manager

Continuous
Summarization Queries

Stream
Continuous
Summarycopier

G2CS

 106

ment where the system retains window instances as long as they are refer-
enced from other objects.

The context manager organizes window instances by contexts. A context
is represented as a triple <b, e, cxtid> where cxtid is a unique context identi-
fier of the time interval [b,e) per window. Contexts enable non-destructive
updates of window instances. They are allocated by the context manager and
their identifiers are passed to the plugged-in clustering algorithms. The con-
textualized index manager in G2CS maintains an index per context in the
local database and separates indexing from the sliding mechanism and the
plugged-in clustering algorithm.

The plug-ins functions are called by the partial and final summarization
phases as follows.

The partial summarizer implements the first phase of clustering over slid-
ing windows. As new data arrives, it slices the incoming stream into partial
window instances. It assigns a new context for each new partial window
instance and then iteratively calls the adder plug-in for each arriving data
point to incrementally populate summary data for the context identifier.

When the summary data for the partial window instance is fully populated
the final summarizer is called, causing the sliding mechanism to be invoked
in order to form and emit the clusters in a complete window instance. It
implements the second phase of the clustering and is the focus of this paper.
For differential algorithms the user can provide methods for both incre-
mental (merger plug-in) and decremental (excluder plug-in) maintenance of
clusters. When there is no excluder for a clustering algorithm, the final
summarizer minimizes redundant computations by analyzing dependencies
between different contexts.

G2CS internally maintains a number of intermediate window instances to
optimize the sliding mechanism. In order to populate new window instances
the copier is invoked to copy data from old to new window instances. Then
G2CS makes a number of calls to the merger and excluder plug-ins to gener-
ate complete window instances. By calling the copier calls prior to the
merger and excluder, G2CS retains old window instances. The reporter
plug-in extracts the data to be emitted from a complete window instance.

An incremental garbage collector deallocates summary data for window
instances whose contexts are no longer needed.

3.1 Context Management
In this section we explain how the state of a clustering algorithm is repre-
sented using contexts and how the decomposed clustering algorithms operate
on contexts. We have adapted the well-known BIRCH [15] algorithm for
sliding windows, called C-BIRCH. C-BIRCH is used as a running example
of a 2-phase non-decremental clustering algorithm. We first briefly describe
BIRCH.

 107

3.1.1 The BIRCH Algorithm
The BIRCH clustering algorithm provides an approximate K-means compu-
tation in a single pass over the original dataset. It builds a spatial summary of
the read multi-dimensional data points in main memory represented as micro
clusters characterized by a Cluster Feature vector, CF-vector. The CF-vector
contains three items summarizing the data points in a micro-cluster: their
linear vector sum ls, their squared vector sum ss, and the number of points c
in the micro-cluster. BIRCH builds this summary by loading the data points
into a B-tree-like spatial indexing structure called a CF-tree.

The CF-tree maintains a hierarchy of clusters. The coarsest cluster is the
root node, while the leaf nodes contain the most fine grain clusters, i.e. the
micro-clusters. The CF-tree is constructed by adding the data points one by
one as follows. For an incoming data point, dp, first the closest micro-
cluster, cf-near is located by recursively selecting the closest cluster while
the CF-tree is traversed. It then tests whether dp can be added to (absorbed
by) cf-near without violating a pre-specified maximum allowed radius of a
micro-cluster r. If absorbing dp into cf-near does not make its radius larger
than r, then dp is added to cf-near, otherwise, a new micro-cluster contain-
ing only dp is created in the same leaf node of the CF-tree where cf-near is
stored. The CF-vectors on the path from the root to the leaf are adjusted to
reflect the addition of dp in the tree.

As BIRCH is sensitive to the arrival order of data points, an optional sec-
ond pass significantly reduces the order dependence, making it a 2-phase
clustering algorithm. There, all the CF-vectors in the leaf nodes are accessed
to populate a second CF-tree as follows. For each CF-vector CFV, first its
center of mass cm is calculated from its ls, ss, and c. Then cm is used to
lookup the second CF-tree to find the nearest cluster to CFV and ls, ss, and c
of CFV are added to those of the nearest cluster.

The final step of BIRCH scans the second CF-tree and applies a global
clustering algorithm (e.g. K-means) on the micro-clusters in its leaf nodes.

BIRCH is non-decremental since deletion of an expired point, ep, is
meaningless. This is because more data points are added after the addition of
ep, potentially moving the center of the micro-cluster of ep. Therefore when
ep expires, the closest micro-cluster to it is not necessarily the one it contrib-
uted to, and hence there is no guarantee that deletion of ep cancels out the
effects of its addition.

C-BIRCH fully supports streaming K-means but does not maintain the hi-
erarchy of clusters maintained inside the CF-tree in BIRCH.

3.1.2 The Contextualized Clustering Table
Clustering algorithms associate summaries with cluster identifiers. In order
to adapt a clustering algorithm for sliding windows, we need to associate
algorithm specific data of each cluster identifier with different window in-

 108

stances. In the G2CS framework information about clusters are stored in a
contextualized clustering table, CCT with the schema:

CCT(cid, cxtid, a1,….an)

Here cid is a cluster identifier, cxtid is the context identifier for the valid
time of cid, and a1,….an are algorithm-dependent summary information
about cid.

CCT for C-BIRCH
Rather than a data representation that is highly integrated as the CF-tree in
BIRCH, CCT provides a general representation of clustering data that can be
indexed independently. The CCT of C-BIRCH has the schema:

CCT-BIRCH(cid, cxtid, cm, ls, ss, c)

The center of the micro-cluster cm is a vector computed by the adder and
merger as cm = ls / c. By explicitly storing cm in CCT-BIRCH it can be
indexed by a multi-dimensional index to facilitate finding the nearest micro-
cluster, as will be explained later.

3.1.3 Plug-in Definitions
The G2CS plug-ins signatures are presented in Listing 2. We will exemplify
them by sketching the plug-in definitions for C-BIRCH.

adder (Integer c_partial, Vector dp, Object p)
copier (Integer c_org, Integer c_dest, Object p)
merger (Integer c_incoming, Integer c_res, Object p)
excluder (Integer c_expired, Integer c_res, Object p)
reporter (Integer c_rep, Object p) -> Set of (Number cid, Object summary)
Listing 2. G2CS decomposition of clustering algorithms

C-BIRCH adder
The C-BIRCH adder receives at every call from G2CS a context identifier
c_partial representing the current partial window instance pwi, a data point
dp, and an algorithm-specific parameter(s) p (the maximum radius r in
BIRCH). First the closest micro-cluster cf_near is found by running a near-
est neighbor query over the CCT-BIRCH table where cxtid = pwi. Then the
adder checks whether cf_near can absorb the new data point; otherwise a
new micro-cluster object is added to CCT- BIRCH for context pwi.

C-BIRCH copier
The C-BIRCH copier makes a copy of the rows in CCT-BIRCH where cxtid
= c_org and assigns cxtid = c_dest to the copied rows.

 109

C-BIRCH merger
As shown in Listing 3, the C-BIRCH merger receives from G2CS the two
context identifiers c_incoming and c_res. It merges the CCT-BIRCH rows
where cxtid=c_incoming into c_res. For each micro-clusters mc in
c_incoming, cf-near is found by a nearest-neighbor search over the CCT-
BIRCH rows where cxtid=context_res. If cf-near can absorb mc, its row is
updated otherwise a new row representing mc is added to CCT-BIRCH for
context c_res.

1 CBIRCH-merger(Integer c_incoming, Integer c_res, Number r)
2 {
3 for each ROW mc in (
4 select cid, c_incoming, cm, ls, ss, c
5 from CCT-BIRCH where cxtid = c_incoming)
6 {
7 cf-near= nearest(c_res, mc.cm)
8 if can-absorb(cf-near, mc.cid, r)
9 update table CCT-BIRCH set
10 cm = cm + mc.cm,
11 ls = ls + mc.ls,
12 ss = ss + mc.ss,
13 c = c + mc.c
14 where cid = cf-near.cid;
15 else
16 insert into CCT-BIRCH values
17 (new_cid(), c_res, mc.cm,
18 mc.ls, mc.ss, mc.c);
19 }
20 }

Listing 3. C-BIRCH merger plug-in

C-BIRCH reporter
Given a context identifier c_rep, the values of cm, and c of all the micro-
clusters in CCT-BIRCH are directly emitted. An optional post-processing
step is to apply a global clustering algorithm, e.g. K-means.

There is no C-BIRCH excluder plug-in since BIRCH is not a differential
algorithm and therefore G2CS uses SBM to minimize the number of merger
calls.

BIRCH is generally sensitive to the order of the data points, but as ex-
plained by the authors of BIRCH [15], the second pass alleviates the sensi-
tivity since the first CF-tree has captured most of the locality of the data.
Similarly, by building a global CCT-BIRCH table in the final summarizer,
C-BIRCH is less vulnerable to order sensitivity. In the experimental section
we compare the quality of C-BIRCH clustering with a baseline BIRCH re-
computed over each window instance, indicating that they have comparable

 110

quality, while C-BIRCH is substantially faster for large PR to track fast con-
cept drift.

3.2 Sliding Binary Merge
SBM avoids the overlapping merges of RM by generating and retaining in-
termediate window instances incrementally based on analyzing the SBM
lattice. The lattice illustrates how SBM works; it is not explicitly stored in
G2CS.

The SBM lattice represents temporal relationships between window in-
stances in terms of their time intervals, i.e. contexts. We illustrate it with the
example in Figure 4. Suppose that we want to cluster the data over a sliding
window W with range R=64 seconds and stride S=4. In this case, the partial
summarization phase performs partial clustering over tumbling windows of
S=4, and the final summarization phase combines PR=R/S=16 consecutive
PGSs to form a complete window instance. To simplify the discussion we
first assume that PR is a power of two, which will be relaxed later. The
SBM-lattice in Figure 4 has R=64 and S=4. Assuming time t starts from 0,
each node in the lattice in the figure represents a window instance Wb,e.

Figure 4. Sliding Binary Merge (SBM) dependencies

The nodes at the leaf level L=0 of the SBM-lattice represent the successive
incoming PGSs, W0,4, W4,8,…,Wb,b+S each S=4 time units long. The root level
nodes (L=4) represent complete sliding window instances over R=64 time
units. Each intermediate node combines summary information from two
nodes with non-overlapping time spans forming a contiguous interval, as
indicated by the arrows in Figure 4. The number of levels in the lattice is 5,
in general ݈݃ଶ(ܴܲ) + 1. Each arriving PGS at a leaf triggers a cascade of
merges down the lattice. First, W0,4 arrives to the final phase at t=4 and be-
comes the leftmost leaf node in the figure. When W4,8 arrives at t=8, it is
combined with W0,4 to produce level L=1 window instance W0,8 covering the
first 8 seconds. When W8,12 arrives at t=12 it is combined with W4,8 into
W4,12, and this process is continued for each arriving PGS. In general the
range of level L=1 window instances are 2·S, while their strides are still S.

 84 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 t

W0,4 W4,8 W8,12 W12,16 W16,20 W20,24 W24,28 W28,32 W32,36 W36,40 W40,44 W44,48 W48,52 W52,56 W56,60 W60,64 W64,68 W68,72 W72,76 W76,80 W80,84

W0,8 W4,12 W8,16 W12,20 W16,24 W20,28 W24,32 W28,36 W32,40 W36,44 W40,48 W44,52 W48,56 W52,60 W56,64 W60,68 W64,72 W68,76 W72,80 W76,84

W0,16 W4,20 W8,24 W12,28 W16,32 W20,36 W24,40 W28,44 W32,48 W36,52 W40,56 W44,60 W48,64 W52,68 W56,72 W60,76 W64,80 W68,84

W0,32 W4,36 W8,40 W12,44 W16,48 W20,52 W24,56 W28,60 W32,64 W36,68 W40,72 W44,76 W48,80 W52,84

W0,64 W4,68 W8,72 W12,76 W16,80 W20,84

 111

For example, when W12,16 arrives, it is first combined with W8,12 to form
the level L=1 sliding window instance W8,16 and then W8,16 is combined with
W0,8 to form the level L=2 sliding window instance of range 4·S, W0,16.

The cascading merges continue until complete window instances of size
R=64 are formed on level L=4 (the SBM-lattice root) where sliding window
instances of range 16·S are represented. The first final window is not formed
until W60,64 arrives and triggers four cascading merges as indicated by the
bold arrows.

In general SBM-level L in the SBM-lattice represents a sliding window of
range S·2L, where L ∈{0, 2,…݈݃ଶ ܴܲ}. The stride is always S. For the high-
est L the range becomes S·PR=R.

The sliding window mechanism continuously identifies expired nodes, i.e.
the nodes that are not going to be combined with any new node in the SBM-
lattice. These nodes represent window instances that can be passed to the
garbage collector. At every slide, the oldest node in each level, that is the
left-most node, is identified as expired. For example, when W64,68 arrives the
complete window instance W0,64 slides into W4,68. Thereby, W0,4, W0,8, W0,16,
W0,32, and W0,64 are no longer needed in any new node, and can be released.
In general, when the complete root level window instance slides, the left-
most expired path in the lattice is expired. For each slide the expired path
moves to the right, so when W80,84 arrives and the red-marked W16,80 expires,
all the red-marked nodes in the figure are expired, while the gray-shaded
nodes expired earlier. In general, when the complete window instance Wb,b+R
slides S units into Wb+S,b+R+S, all ݈݃ଶ(ܴܲ) +1 windows Wb,* are expired.

It can be noticed that more nodes in Figure 4 can be identified as expired,
for example, at t=64, all level 0 nodes to the left of and including W52,56 are
no longer needed. Identifying them improves the memory footprint of SBM.

3.2.1 Computational Complexity and Memory Consumption
The number of cascading merges per incoming PGS increases during the
initialization period until the first complete window is formed at time t=R. In
Figure 4 this happens when W60,64 arrives. After the initialization period,
since the size of the sliding window doubles at each level, each PGS triggers
exactly ݈݃ଶ ܴܲ merges. Therefore the number of merges required to build a
complete window instance using SBM is also	݈݃ଶ ܴܲ. By contrast, for RM
(Figure 2), each PGS is combined with ܴܲ complete windows at each slide.

So far we have considered only the costs in terms of the number of
merges per slide. However, the sliding involves several operations in addi-
tion to the merge, even though the algorithm dependent merger plug-in is
usually the dominating cost. In both RM and SBM a single slide involves
iteratively calling the copier and merger plug-ins for each level. Let CC be
the average copier cost and MC be the average merger cost. We define the
cost of one iteration IC as:

 112

IC = CC + MC

CC depends on the data volume and on the window maintenance method.
Therefore, we subscript their costs with RM or SBM, respectively, e.g.
CCRM. MC is independent of the window maintenance method, but is very
much dependent on the data mining algorithm, where e.g. indexing can play
a key role, as will be discussed later.

The total cost of a slide for RM is defined as

TCRM = PR · (CCRM + MC)

An iteration in RM always involves applying the copier and the merger plug-
ins on a complete window instance, so there will be PR iterations per slide.
Let AC be the average number of clusters in the complete window instances.
We assume that CC is proportional to AC. Furthermore, without loss of gen-
erality we set its proportion to one. Then TCRM becomes:

TCRM = PR · (AC + MC)

Unlike RM where all iterations involve complete window instances, the in-
termediate nodes in the SBM-lattice cover shorter ranges, and therefore they
should contain fewer clusters than AC. The number of iterations in SBM is
log2 PR. Let CCL denote the copier cost at level L of the SBM-lattice. As-
suming the intermediate nodes in the SBM-lattice contain fewer clusters than
the complete window instances, we can overestimate the average merger
costs at all levels as MC, thus:
ௌெܥܶ = 	 ܥܥ) + మ(ோ)ିଵ(ܥܯ	

ୀ

Assuming CCL is proportional to the window instance range, we get:
ܥܥ = 2 ∙ ܴܲܥܣ	

ௌெܥܶ = 	 2 ∙ మ(ோ)ିଵܴܲܥܣ	
ୀ + మ(ோ)ିଵܥܯ

ୀ

= ܥܣ − ACܴܲ ܥܯ+ ∙ logଶ ܴܲ

Real-time clustering becomes computationally expensive when the granular-
ity PR or the number of generated clusters AC are scaled up. Therefore PR
and AC are the significant terms in our performance analysis.

 113

Since PR >1 for any sliding window, it always holds that TCSBM < TCRM.
Furthermore, the costly MC is multiplied by log2 PR in SBM in contrast to
being multiplied by PR in RM. Thus SBM scales better than RM with finer
sliding granularity. Furthermore, notice that the overall copy cost in RM is
AC·PR, while it is less than AC for SBM. Thus SBM will scale better than
RM with the number of clusters.

Memory footprint
We use the total number of clusters in the final node as an implementation
independent measurement of the memory footprint. Since PR complete win-
dow instances are maintained for RM, the total memory footprint is AC · PR.

The total memory footprint of SBM is the sum of the number of clusters
in the window instances at each level L. Assuming that the number of clus-
ters in a window instance is linearly proportional to the range of its window,
the number of clusters in a window instance at level L is	2 ∙ 	 ோ	. Since there
are ܴܲ − 2 + 1 active nodes (white nodes in Figure 4) at level L the total
memory footprint of SBM becomes:
 	2 ∙ ܴܲܥܣ	 ∙మ ோ

ୀ (ܴܲ − 2 + 1) = 23 ∙ ܥܣ ∙ ܴܲ + ܥܣ − 2 ∙ 3ܥܣ ∙ ܴܲ

The memory footprints of both SBM and RM are O(AC·PR), but with differ-
ent constant multipliers.

3.2.2 Sliding N-ary Merge Lattices
The SBM-lattice could be generalized to represent N-ary merges at each
level, which we call a sliding N-ary merge (SNM) lattice. In an SNM-lattice
at each level L, N nodes from level L-1 having non-overlapping time spans
are merged. Therefore the intermediate nodes at level L maintain window
instances with a range PR·LN. N is called the fan-in of the SNM-lattice.

 Lemma 3.1: The optimal fan-in for an SNM-lattice w.r.t. the total number
of merges per slide is N=2, i.e. the SBM-lattice is optimal.

 Proof: the number of merges per slide for an SNM-lattice that maintains a
window with partition rate PR is
 ݂(ܰ) = (ܰ − 1) ∙ logே ܴܲ

This is because at each level N-1 merges are performed.

 114

Since
ୢ(())ୢ = (ିଵ)	∙	୪୬ ୖ୪୬ is positive for N≥2, f(N) is monotonically in-

creasing, and, since in an SNM-lattice N≥2, N=2 provides the minimum total
number of merges.

3.2.3 Supporting Windows of Arbitrary Sizes
The example in Figure 4 covered the case where PR is a power of two.
When PR is not a power of two, we define PRaux as the highest power of two
less than PR, i.e. ܴܲ௨௫ = మہ2 ோۂ. For example, for R=84, S=4, and PR =
21, PRaux=16. SBM uses a base lattice for PRaux. In order to maintain the full
range for PR, SBM needs to use and extended lattice where additional PR-
PRaux nodes are retained in the root level of the base SBM-lattice. For exam-
ple, the snapshot of the base lattice for PR=21 at t=84 is illustrated by the
white nodes in Figure 4 plus all root nodes.

The problem is now: what windows in the extended SBM-lattice should
be combined in order to maintain the complete sliding window when PR is
not a power of two?

The first sub-problem is: what subset of levels in the extended SBM-
lattice, LS ⊆ {0,1,2,…,log2PR}, should be selected for combination? The
constraint is that the sum of the ranges of the selected levels should add up to
R: ∑ ܵ ∙ 2ఢௌ = ܴ	 i.e. ∑ 2ఢௌ = ܴܲ

To minimize the number of selected levels and thus minimize the number of
merges, LS can be obtained by the bits in the binary representation of PR.
For example, for PR= 21 = (10101)2, LS={0,2,4} since 20+22+24=21.

The second sub-problem is how to form the sliding window instances for
PR at a slide at time t, i.e. what window instance from each level in LS
should be selected at t? The concatenation of the valid time interval of the
selected window instances to combine should be equal to the valid time of
the complete window instance at time t, [t-R,t). In our example, at time t=84
we need to combine a number of window instances from the extended SBM-
lattice to form W0,84.

As mentioned in Sec. 2, G2CS assumes that the order in which the merge
function is applied does not matter, therefore, the levels in LS can be chosen
in any order, so G2CS selects them in decreasing level order. The first win-
dow instance chosen is the window starting at time t-R at the highest level L0
in LS, i.e. [t-R, t-R+ S · 2L0). The valid time interval of next selected win-
dows at level Li starts when the previous at level Li-1 ends. In general a series
of window instances Wb,e at level Li are selected where ܾ = ݐ − ܴ	,	݁ = ܾ + ܵ ∙ 2 and ܾ = ݁ିଵ

 115

In the example, the first selected window for t=84, R = 84, S=4, and L0=4 is
W0,64. Then L1 = 2 so W64,80 is chosen. Finally L2 = 0 so W80,84 is chosen.
This covers the entire valid time interval of complete window instance at
time t=84 since [0,84) = [0,64) + [64,80) + [80,84).

So far we showed what levels in the extended SBM-lattice need to be
used to compute PR and what window instances from each level should be
picked at a given time. In order to form sliding window instances of size PR,
we add an extra auxiliary root node to the extended SBM-lattice that com-
bines the intermediate nodes as explained above. Since three bits were set in
LS for this example, we have two additional merges in the auxiliary root
node. The number of additional merges in the worst case is ݈݃ଶ ܴܲ, which
occurs when all bits are set. Therefore the total number of merges per slide is
still	ܱ(݈݃ଶ ܴܲ).

The memory footprint of using extended SBM-lattice is only slightly
higher than for the base SBM-lattice since only PR-PRaux extra nodes are
retained at the root level, so the overall memory footprints of the two are
very similar.

The expired nodes in all levels of the extended SBM-lattice are identified
using the same method as before, with the exception of the root level where
PR-PRaux most recent nodes are retained.

3.3 Contextualized Indexing
Since clustering algorithms form clusters based on similarity between ob-
jects, they need to perform k-NN and proximity queries over multi-
dimensional feature vectors. With G2CS these feature vectors are stored in
some CCT attribute. For example, the function nearest(Integer cxtid, Vector
qp) in C-BIRCH finds the micro-cluster that has context cxtid and whose cm
is closest to the feature vector qp. In order to efficiently support such a
query, indexing is needed on the attribute in CCT storing qp. In G2CS this is
implemented by partitioning CCT based on context identifiers and having a
separate multi-dimensional index per partition.

Figure 5 shows how such a contextualized index for a multi-dimensional
attribute ai in the CCT is represented. It is a two level secondary index where
the first level is a hash table indexed on cxtid and the second level is a main-
memory multi-dimensional index for each context. The key to the hash table
in Figure 5 is cxtid, and the value is the address of a multi-dimensional in-
dex, currently a main-memory X-tree [16] plugged-in to our main-memory
database engine using MEXIMA [17]. The key to the X-tree is a feature
vector attribute ai in the CCT and the value stores the primary key of the
CCT, i.e. cid.

For the contextualized index of CCT-BIRCH the key to the X-tree is cm.
To process the nearest() function, first the hash table is looked up with the
key cxtid, returning the address to the X-tree corresponding to the cxtid, after
which a nearest neighbor search of the X-tree is performed. Assuming that

 116

the X-tree provides the nearest neighbor in logarithmic time and the hash
table look up takes constant time, the complexity of the merger plug-in in
Listing 3 of I-BIRCH becomes reduced from O(AC2) without indexing to
O(AC · log AC), i.e. MC is substantially reduced.

However, indexing window instances increases the copy cost CC since
the index data structure need to be built. In particular, since RM involves
large amounts of copying, the gain by indexing is expected to be lower for
RM compared to SBM where less data is copied.

Figure 5. Contextualized multi-dimensional index

If the X-trees were not organized by context identifiers as in Figure 5, an
alternative is a secondary index on only cxtid, which would make the cost of
nearest() proportional to the number of clusters in each context.

Notice that a global X-tree on the ai attribute would not facilitate execu-
tion of the nearest neighbor query for a given context identifier because the
nearest neighbor returned by looking up a global X-tree is not guaranteed to
be in the given context.

The contextualized indexing supports regular GROUP BY queries as
well. The difference is that in Figure 5 instead of multi-dimensional X-tree
indexes, a conventional hash table can index the groups in each context. In
general any indexing structure required by the summarization algorithm can
be plugged-in to our main memory database system [17] and used for con-
textualized indexing.

4 PERFORMANCE EVALUATION
To evaluate the performance of SBM we scale the window slide granularity
PR by varying the window range R and keeping the slide S constant. We
implemented Repetitive Merge (RM) as baseline algorithm. Contextualized

cid cxtid … ai …

1 1 … ai1 …

2 1 … ai2 …

3 1 … ai3 …

4 2 … ai4 …

5 2 … ai5 …

6 2 … ai6 …

… … … … …

cxtid

2

1

index

…

A) The CCT

B) ContextualizedX-
trees

2 1 3

X-tree containing
ai1 , ai2, and ai3

5 6 4

X-tree containing
ai4 , ai5, and ai6

 117

indexing is evaluated by scaling AC while keeping R and S constant. As
baseline, we compare it to using a secondary index only on the cxtid attribute
of CCT.

Table 1 lists the four alternative approaches used in the experiments to
combine sliding and indexing alternatives.

 indexing

Sliding approach

Contextualized
Indexing (CI)

No Contextualized
Indexing (NCI)

RM
RM-CI

RM-NCI

SBM
SBM-CI

SBM-NCI

Table 1. Sliding window maintenance alternatives

The experiments report the average window sliding time in the final summa-
rization phase. We omit the partial phase since it added less than 12% over-
head to the total cost in all experiments and is not important when scaling
PR or AC. The experiments thus start by loading pre-calculated partial sum-
maries into main memory from which the window maintenance mechanisms
read a stream of PGSs.

For each window size, the window maintenance algorithms are executed
over the stream of PGSs. Every arriving PGS triggers a slide, so many slides
are performed for a given window size. The average sliding time is shown in
the diagrams and the corresponding standard deviation is reported for each
experiment.

The data streams
We use both a synthetically generated and a real data stream in our experi-
ments. The reason for using synthetically generated data is to have con-
trolled experiments where only one parameter is scaled at the time. The real
data stream is used to show how much difference the proposed methods
make in practice, when both PR and AC are scaled.

The synthetic data streams for experiments involving clustering generates
well separated 2D clusters randomly placed around the center of a number of
cells in a square grid. Its schema is SDC(ts,x,y) where x and y are the 2D
coordinates of some object at time ts. The data in SDC is generated as fol-
lows. Given the size of a grid cell c_size and the number of cells per dimen-
sion nc, the data stream generator randomly picks cells and randomly gener-
ates coordinates within a constant distance of c_size/5 from the cell centers

 118

to guarantee one cluster per cell. The number of clusters is controlled by
varying nc and c_size.

The real data stream is from the DEBS2013 Grand Challenge [11] with
schema DEBS(ts,pid,x,y,z), recording the 3D coordinate x/y/z of soccer
player pid at time ts in a real soccer match. Notice that when PR is scaled in
this data stream, AC varies as well.

The stream rate was not scaled since it influences only the partial summa-
rization phase, which is independent of our contribution. However, the num-
ber of clusters is scaled.

We ran our experiments on a HP PC with the following specifications:
CPU: Intel Core i5 – 760 @ 2.80 GHz, RAM: 4 GB, OS: Windows 7 64-bit.

4.1 Conventional GROUPBY Queries
As a first simple illustration of the trade-offs between different window
maintenance alternatives we compare the performance of RM and SBM
when the summarization algorithm is conventional GROUPBY aggregation
with COUNT. In this case we also implemented differential maintenance,
DM, since we are interested in measuring the performance of SBM com-
pared to DM for the simplest possible grouped aggregate function. For this
experiment the stream has the schema SDG(ts,gk,mv), where mv is the meas-
ured value for the group key gk at time ts. gk is a random integer in range
[1,20]. The gk value range is chosen to ensure that AC is constantly 20 while
PR is scaled. Contextualized indexing is not used as its impact has the same
factor for all methods when AC is constant.

The experiment in Figure 6 scales PR in the following query by increas-
ing R:

SELECT gk, COUNT(*)

FROM SDG (Range = R, Slide = 1sec)

GROUP BY gk

As expected, RM slows down proportional to the size of the window, DM
remains constant, and SBM_NCI slows down logarithmically. Since the cost
of RM increases very quickly compared to the other two methods its per-
formance is shown only when PR≤50. The standard deviation was below
2%.
It is observed that the performance of SBM is not that different from
differential maintenance, making it very close to the ideal when differential
maintenance is not possible. Since SBM performs slightly better for values
of PR that are powers of two there are small dips there (Sec 3.1.3).

 119

Figure 6. conventional GROUPBY over SDG stream.

4.2 Non-indexed C-BIRCH
This experiment shows the performance of SBM without contextualized
indexing for clustering with C-BIRCH when PR is scaled by increasing R
over the synthetic data stream SDC:

SELECT Center(cid), Radius(cid), COUNT(cid)

FROM SDC (Range = R, Slide = 1sec)

CLUSTER BY X, Y, Z

USING C-BIRCH(Radius = 5 meters)

The number of micro-clusters in the window is kept constant by using a
rather small grid with nc=5, and c_size=10. Since all the cells are present in
all partial window instances, every complete window instance contains all 25
micro-clusters. The radius parameter of BIRCH is chosen as 5 since diame-
ters of the cells are c_size=10. The standard deviation for RM-NCI was be-
tween 1% and 3%, while it was between 2% and 5% for SBM-NCI.

Figure 7 shows that RM slows down linearly to the size of the window
while SBM scales logarithmically, as expected. The response time of
SBM_NCI stays below 0.2, while it increases substantially for RM_NCI,
making RM_NCI not suited for real-time clustering. With RM, if the sliding
time goes above the stride being 1s, the system will start lagging.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200

Av
er

ag
e

sli
di

ng
 t

im
e

(s
ec

)

Slide granularity (PR)

DM-NCI

RM-NCI

SBM-NCI

 120

Figure 7. C-BIRCH over SDC stream.

4.3 Contextualized indexing of C-BIRCH
This experiment investigates the performance improvement by using contex-
tualized indexing with SBM for C-BIRCH. We use the same query as in 4.2
but keep R=40 sec while scaling AC by varying the grid size in SDC to pro-
duce different streams. For each data stream, we measured the average slid-
ing time with C-BIRCH for 400 window instances with a contextualized
index compared with a regular hash index on cxtid in CCT-BIRCH. As ex-
pected from the analysis in Section 3.3 and shown in Figure 8a, the contex-
tualized index on cm substantially improves the scalability. The standard
deviation was between 2% to 8% for both SBM-NCI and SBM-CI. Notice
that even SBM_NCI does not keep up when AC>600, i.e. the response time
exceeds one second, while SBM_CI scales much better with increasing AC.

a) Impact of indexing b) Impact of summarization factor

Figure 8. Varying AC in complete window instances

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 50 100 150

Av
er

ag
e

sli
di

ng
 t

im
e

(s
ec

)

Slide granularity (PR)

RM-NCI
SBM-NCI

0
0.2
0.4
0.6
0.8

1
1.2

0 500

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

AC in complete window
instances

SBM-NCI

SBM-CI

0

10

20

30

40

50

60

0.5 0.7 0.9

A
ve

ra
ge

 s
lid

in
g

ti
m

e
(s

ec
)

summarization factor

RM-NCI
SBM-NCI
SBM-CI
RM-CI

 121

4.4 Summarization factor impact
To investigate the impact of the number of generated clusters, we define the
summarization factor as:

 1 − ݁ܿܽݐݏ݊݅	ݓ݀݊݅ݓ	݁ݐ݈݁݉ܿ	ℎ݁ݐ	݊݅	ݏݐ݊݅	݂	ݎܾ݁݉ݑ݊݁ܿ݊ܽݐݏ݊݅	ݓ݀݊݅ݓ	݁ݐ݈݁݉ܿ	ܽ	݊݅	ݏݎ݁ݐݏݑ݈ܿ	݂	ݎܾ݁݉ݑ݊

Figure 8b compares the average sliding time of the sliding mechanism for
different summarization factors. SDC is used with PR=180, while changing
the grid size to vary the number of clusters from 56 (summarization factor
0.97) to 800 (summarization factor 0.54). Each complete window instance in
this SDC had 1800 data points.

SBM is always better than RM, since having a high number of clusters
makes both methods have more clusters.

4.5 Contextualized C-BIRCH for Real Data
Figure 9a illustrates the effect of increasing range R in the following query
over the real DEBS data stream:

SELECT Center(cid), Radius(cid), COUNT(cid)

FROM DEBS (Range = R, Slide = 1sec)

CLUSTER BY X, Y, Z AS cid

USING C-BIRCH(Radius = 2.0 meters)

Unlike the synthetic streams above, real data streams are more dynamic,
causing AC to change with changing window sizes. As expected SBM scales
better than RM. The SBM scalability is further substantially (factor 2) im-
proved by contextualized indexing, while indexing does not improve RM
very much (factor 1.1). This is expected because the excessive copying
overhead of RM offsets the gains by the indexing, as mentioned in Sec.
3.2.1. RM with indexing starts lagging when PR=150. The total speed-up
for this real data stream from RM_NCI to SBM_CI is 12.3. The standard
deviation was 2%-10% for RM-CI, 2%-11% for SBM-CI, 2%-11% for
SBM-NCI, and 2%-15% for RM-NCI.

We notice that in Figure 9a RM converges toward linear slow down for
larger windows even though the complexity estimates in 3.2.1 indicate that it
should slow down quadratically. To investigate this, Figure 9b shows how
AC changes when PR is increased for the DEBS data stream. In general, AC
gets saturated when PR increases, as is often the case for real data. In the
DEBS data stream, as the window size increases more parts of the soccer
field are covered by the players. This leads to an abundance of existing mi-
cro-clusters that absorb newly arriving data points, effectively slowing down
the increase of AC. The standard deviation for Figure 9b was between 2%
and 8%.

 122

a) Sliding performance

c) AC variation

Figure 9. C-BIRCH over DEBS2013 data stream

4.6 Memory Consumption
Figure 10 compares the memory consumptions of SBM with RM in terms of
number of clusters when PR is scaled for the DEBS data stream and the
same query as in Section 4.5. The number of clusters in both methods is
proportional to AC·PR, validating the formulations in Sec. 3.2. Since AC

0

0.5

1

1.5

2

0 100 200Av
er

ag
e

sl
id

in
g t

im
e

(s
ec

)

Slide granularity (PR)

RM-NCI SBM-NCI
SBM-CI RM-CI

0
50

100
150
200
250
300
350
400

0 50 100 150 200A
ve

ra
ge

 n
um

be
r o

f c
lu

st
er

s i
n

co
m

pl
et

e
w

in
do

w
 in

st
an

ce
s

(A
C)

Slide granularity (PR)

 123

increases as PR is scaled (Figure 9b), AC·PR is a quadratic curve. SBM has a
higher total number of clusters because the number of BIRCH clusters satu-
rates as PR scales. This means that the intermediate nodes in the SBM are
not significantly smaller w.r.t. the number of clusters in them than the root
node, unlike the proportional relationship assumed between PR and AC in
the formulations in Section 3.1. Therefore for this saturating data stream, the
constant multiplier of AC·PR is larger for SBM compared to RM. Further-
more, there are no dips in the SBM curve, i.e. the SBMs having PRs that are
powers of two do not have significantly lower total number of clusters. This
is because the auxiliary nodes in the extended SBM add an insignificant
number of clusters to the total sum.

Figure 10. Memory consumption

4.7 Workload Breakdown
Figure 11 compares the percentage time spent in each plug-in function for
different window maintenances methods for the query in Section 4.5, includ-
ing the overhead of G2CS. For RM-NCI and RM-CI the copier plug-in
dominates. This is because in RM all the maintained window instances are
complete window instances, containing AC clusters. The copier plug-in takes
even more time with RM-CI since copying indexed data involves costly
index re-builds for many complete window instances. On the other hand, for
SBM the copier takes much less time since many of the nodes in the SBM
cover a shorter range R and thus contain much fewer clusters. This means
that even though the copier cost increases for SBM-CI, unlike RM, the extra
overhead is not significant enough to undermine the benefits of contextual-
ized indexing. The adder and reporter take relatively more time with SBM,
since the costly merger in the final phase is no longer the bottleneck. The
added overhead of G2CS is between 5% and 17%.

0

50000

100000

150000

200000

0 100 200

To
ta

l #
of

 cl
us

te
rs

 in
 th

e
fin

al
 p

ha
se

Slide granularity (PR)

RM SBM

 124

Figure 11. Workload break down for C-BIRCH variants

4.8 Clustering Quality
In this experiment we compare the quality of clusters detected by C-BIRCH
with the clusters detected by regular BIRCH. We used a Java implementa-
tion of BIRCH [18]. The clustering quality measure used in the experiment
is the Weighted Average Radius (WAR) [15] of clusters. We used a 200 sec
portion of the DEBS data stream when high soccer activity is observed and
used the radius threshold parameter of three meters. The BIRCH algorithm
was applied in batches of overlapping window instances, while C-BIRCH
used the SBM window maintenance.

Figure 12. Comparing the accuracy of C-BICH and BIRCH

PR was scaled by keeping the stride constant at one second while the range
was scaled to 30 seconds. For each PR, there were a number of window in-
stances over which the WAR was calculated for the two algorithms. For the
BIRCH algorithm, WAR was calculated over leaf-node-level micro-clusters
in all window instances of a given PR.

0% 20% 40% 60% 80% 100%

RM-NCI

RM-CI

SBM-NCI

SBM-CI

adder merger copier reporter G2CS Overhead

0

0.5

1

1.5

2

2.5

3

3 13 23

W
ei

gh
te

d
av

er
ag

e
cl

us
te

r r
ad

iu
s

(M
et

er
s)

Slide granularity (PR)

BIRCH

C-BIRCH

 125

Figure 12 compares the weighted average cluster radius of the two algo-
rithms as PR is scaled. C-BIRCH produces clusters with 1 to 5 % lower
weighted average cluster radius (a lower WAR is considered better [15]).
This experiment verifies that the two-phase C-BIRCH provide clusters that
are very similar to BIRCH clusters.

5 RELATED WORK
Differential maintenance approaches for continuous aggregate functions over
sliding windows [8] [2] [4] [5] [6] are not applicable to clustering algo-
rithms, which usually are not decremental. The scalable methods for han-
dling non-decremental aggregate functions by [19] [9] do not support clus-
tering since they do not allow for evolution of group memberships, which is
essential for continuous re-clustering of data streams.

Kanat et al. [9] proposed a non-decremental aggregate functions mainte-
nance approach that uses a flattened Fixed Size Aggregator (Flat-FAT) bi-
nary tree. Flat FAT is not applicable to clustering algorithms since it requires
a pre-split phase based on the group key, which disallows dynamic group
membership changes. Furthermore, Flat-FAT does not support generation
based window maintenance, disallowing nested windows. Very recently,
Kanat et al. proposed an amortized constant time sliding solution for non-
decremental aggregate functions over sliding windows based on two stacks
[20]. While this solution further improves the conventional aggregation over
sliding windows, it is still dependent of pre-splitting and is not generation
based.

Slider [21] supports single pass clustering algorithms like BIRCH over
sliding windows, but since it utilizes Hadoop map-reduce tasks it does not
meet the real-time requirements of streaming applications. In contrast, the
sliding times in our main memory oriented approach is typically below one
second.

Most data stream clustering methods are one-pass algorithms [15] [10]
[22] [23] where stream elements are read one by one, which is different
from conventional data clustering algorithms like K-means and DBSCAN,
where the whole database is available and can be searched in several passes.
The one-pass algorithms reduce the memory footprint by maintaining an
approximate summary of the clustering information in main memory while
the data is being scanned. The single pass algorithm in [11] is designed for
data warehousing where a delta is periodically added to the current database.
This is similar to the merger plug-in. However, it does not efficiently handle
concept drift since its method for deleting expired elements often implies
complete re-clustering every time deltas expire, as clusters might shrink,
split, or disappear [12].

The single pass algorithms look very promising for data stream clustering,
first because they are non-blocking, i.e. they do not need the complete data-
set to provide the data clustering, and second because they provide a sum-

 126

mary of the clusters rather than including all the individual points in each
cluster. However they fail to address the concept drift as deletion is either
not defined or is inefficient, as discussed in this paper.

Single pass algorithms are sensitive to the order of read data. One way to
overcome this is to have a second phase [15] where summaries built during a
first scanning phase are re-processed. In G2CS this re-processing is per-
formed by the merger plug-in in the final phase.

Babcock et al. [14] introduced repetitive merge to enable a single-pass al-
gorithm to be used for continuous clustering over sliding windows. We have
shown that repetitive merge is too inefficient for fast concept drift in real-
time data mining, while SBM scales for fast concept drift.

STREAM [10] is another example of a stream clustering algorithm for
sliding windows using repetitive merge. It uses the small space algorithm
where K-means is first applied on disjoint partial window instances, each
producing K intermediate centroids. Then repetitive merge is used for apply-
ing K-means on the intermediate centroids to obtain the final K centroids.

Extra-N [12] and SGS [24] modify DBSCAN for sliding windows by in-
tegrating the sliding mechanism into the algorithm. While this approach
minimizes the number of spatial index lookups, it also uses the repetitive
merge approach and therefore does not support fast concept drift. Further-
more, the algorithm is very complex since clustering and sliding mechanisms
are tied together, while G2CS completely separates indexing and window
maintenance from the plugged-in clustering algorithm.

The stream clustering frameworks proposed by Charu C. Aggarwal, et. al.
in [25], [26], and [27] do not support sliding windows.

To the best of our knowledge G2CS is the only stream clustering frame-
work that supports sliding windows while avoiding repetitive merge and
separating cluster indexing and window maintenance from the plugged-in
algorithm.

6 CONCLUSIONS AND FUTURE WORK
G2CS provides a real-time sliding window maintenance framework for non-
decremental clustering algorithms using SBM. It supports cluster evolution
by organizing clustering and summarization using contexts. Scalable multi-
dimensional search for the closest cluster over sliding windows is provided
by contextualized indexes. Furthermore, G2CS separates the sliding and
indexing mechanisms from the applied clustering algorithm, which struc-
tures and simplifies the implementation of clustering algorithms over sliding
windows. We also developed Continuous BIRCH C-BIRCH, an equally
accurate variant of BIRCH that is applicable on sliding windows. By exten-
sive experimentation over real and synthetic data streams we showed that the
proposed methods significantly improve the real-time performance of the
applied clustering algorithms while the accuracy of the algorithm is not sac-
rificed.

 127

G2CS provides two main future research directions. First, there are op-
portunities for multi-query optimization by analyzing the SBM-lattice when
the window specifications of the submitted queries are different since each
level of the SMB-lattice maintains different window ranges. Second, there
are parallelization and distribution opportunities as G2CS is easily data par-
allelizable at different stages. For example, if partial summarization becomes
a bottleneck, the system can create other instances of it to parallelize the
work and distribute the partial windows using, e.g., round-robin [28]. Paral-
lelizing and distributing SBM is also an interesting topic to investigate given
the dependencies between the contexts in the SBM-lattice.

REFERENCES
[1] Lukasz Golab and Tamer M Özsu, "Issues in data stream management,"

in SIGMOD Record, 2003, pp. 5-14.

[2] L. Jin, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, "Semantics
and evaluation techniques for window aggregates in data streams," in
SIGMOD conf., Baltimore, Maryland, 2005.

[3] Carlo Zaniolo and Haixun Wang, "Logic-based user-defined aggregates
for the next generation of database systems," in The Logic
Programming Paradigm.: Springer Berlin Heidelberg, 1999.

[4] Z. Rui, N. Koudas, B. C. Ooi, and D. Srivastava, "Multiple aggregations
over data streams," in SIGMOD conf., Baltimore, Maryland, 2005.

[5] Krishnamurthy S., C. Wu, and M. Franklin, "On-the-fly sharing for
streamed aggregation," in SIGMOD conf., Chicago, Illinois, 2006.

[6] G. Shenoda, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis,
"Optimized processing of multiple aggregate continuous queries," in
Proceedings of the 20th ACM international conference on Information
and knowledge management, Glasgow, 2011.

[7] G. Shenoda, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis,
"Three-level processing of multiple aggregate continuous queries," in
Data Engineering (ICDE), 2012 IEEE 28th International Conference
on, Hannover, 2012.

[8] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, "Gigascope:
a stream database for network applications," in SIGMOD conf., New
York, 2003, pp. 647-651.

[9] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung
Wu, "General incremental sliding-window aggregation," Proceedings of
the VLDB Endowment, vol. 8, pp. 702--713, 2015.

[10] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan, "Clustering data
streams," in Proceedings of Foundations of Computer Science
conference, Redondo Beach, CA, 2000, pp. 359-366.

[11] M. Ester, H-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, "Incremental

 128

clustering for mining in a data warehousing environment," in VLDB
conf., New York, 1998, pp. 323-333.

[12] Di Yang, E. A. Rundensteiner, and M. O. Ward, "Neighbor-based
pattern detection for windows over streaming data.," in EDBT conf.,
Saint Petersburg, 2009, pp. 229-540.

[13] T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: an efficient data
clustering method for very large databases," in SIGMOD conf.,
Montreal, 1996., pp. 103-114.

[14] B. Babcock, D. Mayur, M. Rajeev, and L. O'Callaghan, "Maintaining
variance and k-medians over data stream windows," in SIGMOD conf.,
San Diego, 2003, pp. 234-243.

[15] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, "BIRCH: an
efficient data clustering method for very large databases," in
Proceedings of the 1996 ACM SIGMOD international conference on
Management of data , 1996, pp. 103-114.

[16] Stefan Berchtold, Keim A Daniel, and Hans-Peter Kriegel, "The X-tree
: An Index Structure for High-Dimensional Data," in Proc. VLDB
Conf., 1996, pp. 28-39.

[17] Thanh Truong and Tore Risch, "Transparent inclusion, utilization, and
validation of main memory domain indexes," in 27th International
Conference on Scientific and Statistical Database Management, San
Diego, 2015.

[18] Roberto Perdisci. (2015, November) JBIRCH - BIRCH clustering
implementation in Java. [Online].
http://roberto.perdisci.com/projects/jbirch

[19] Jennifer Widom and Jun Yang, "Incremental Computation and
Maintenance of Temporal Aggregates," in Proceedings of the 17th
International Conference on Data Engineering, 2001, pp. 51-60.

[20] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider, "Constant-
Time Sliding Window Aggregation," IBM, IBM Research Report
RC25574 (WAT1511-030), 2015.

[21] Pramod Bhatotia, Junqueira P Flavio, Acar A Umut, and Rodrigo
Rodrigues, "Slider: Incremental Sliding Window Analytics," in
Middleware’14, Bordeaux, France., 2014, pp. 61-72.

[22] Fazli Can, "Incremental clustering for dynamic information
processing," ACM Transactions on Information Systems (TOIS) , vol.
11, no. 2, pp. 143-164 , 1993.

[23] Douglas H Fisher, "Knowledge acquisition via incremental conceptual
clustering," Machine learning, vol. 2, pp. 139--172, 1987.

[24] Di Yang, Elke A Rundensteiner, and Matthew O Ward, "Summarization
and matching of density-based clusters in streaming environments," in

 129

Proceedings of the VLDB Endowment, 2011, pp. 121-132.

[25] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu, "A
framework for clustering evolving data streams," in VLDB '03
Proceedings of the 29th international conference on Very large data
bases, 2003, pp. 81-92.

[26] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu, "A
framework for projected clustering of high dimensional data streams,"
in VLDB '04 Proceedings of the Thirtieth international conference on
Very large data bases, 2004, pp. 852-863.

[27] Charu C Aggarwal and Philip S Yu, "A framework for clustering
uncertain data streams," in Data Engineering, 2008. ICDE 2008. IEEE
24th International Conference on, 2008, pp. 150--159.

[28] E. Zeitler and T. Risch, "Massive scale-out of expensive continuous
queries," in VLDB conf., Seattle, 2011, pp. 1181-1188.

