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ABSTRACT

To support new application areas for database systems such as mechanical engineering
applications or office automation applications a powerful data model is required that
supports the modelling of complex data, e.g. the object-oriented model. 

The object-oriented model supports subtyping, inheritance, operator overloading and
overriding. These are features to assist the programmer in managing the complexity of
the data being modelled. 

Another desirable feature of a powerful data model is the ability to use inverted func-
tions in the query language, i.e. for an arbitrary function call fn(x)=y, retrieve the argu-
ments x for a given result y. 

Optimization of database queries is important in a large database system since query
optimization can reduce the execution cost dramatically. The optimization considered
here is a cost-based global optimization where all operations are assigned a cost and a
way of a priori estimating the number of objects in the result. To utilize available
indexes the optimizer has full access to all operations used by the query, i.e. its imple-
mentation.

The object-oriented data modelling features lead to the requirement of having late
bound functions in queries which require special query processing strategies to achieve
good performance. This is so because late bound functions obstruct global optimization
since the implementation of a late bound function cannot be accessed by the optimizer
and available indexes remain hidden within the function body.

In this thesis the area of query processing is described and an approach to the man-
agement of late bound functions is presented which allows optimization of invertible
late bound functions where available indexes are utilized even though the function is
late bound. This ability provides a system with support for the modelling of complex
relations and efficient execution of queries over such complex relations.
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1 Introduction 

This thesis addresses the problem of how to efficiently manage late bound func-
tion calls in the execution plan in an object-oriented database management sys-
tem (OODBMS) [4]. 

An object-oriented database management system is a system based on the
object-oriented model with database facilities [4][26]. An execution plan is a
strategy of how to efficiently access and combine data in the database to pro-
duce the answer to a query submitted to the database [52][53][54]. A late bound
function is a function whose implementation cannot be selected in advance of
its invocation since function names may denote several implementations and
the selection of implementation is made based on the types of the arguments the
function is applied on.

This is an important issue to address in the overall area of query processing
in a database management system (DBMS). 

To support new application areas such as mechanical engineering applica-
tions or office automation applications, a powerful data model is required that
supports the modelling of complex data, e.g. the object-oriented model [8][10]. 

The object-oriented model supports subtyping, inheritance, operator over-
loading and overriding. These are features to assist the programmer in manag-
ing the complexity of the data being modelled. 

Optimization of database queries is particularly important in order to achieve
satisfactory system performance since query optimization can reduce execution
cost dramatically. State of the art query optimization is cost-based where all
operations are assigned a cost and a way of a priori estimating the number of
result objects [47]. It is important that the optimizer has access to all referenced
operations, i.e. global optimization. To achieve global optimization, all func-
tion calls in the execution plan are substituted by their implementations.

Unfortunately, the object-oriented features lead to the need for late bound
functions in queries, which is contradictory to good performance. The reason
for this contradiction is that late bound functions obstruct global optimization
since the function calls cannot be substituted by their implementations and
available indexes and other important information remain hidden within the
late bound function bodies.

Another desirable feature of a powerful data model is the ability to use
inverted functions in the query language, i.e. for an arbitrary function call
fn(x)=y, to retrieve the arguments x for a given result y. 

Invertibility and late binding is a combination that requires special treatment
to be executable and optimizable. We propose such novel query processing
strategies for managing inverted late bound functions in the execution plan. 
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Our strategy is to substitute each late bound function call in the execution
plan by an algebra operator, DTR, which is invertible and optimizable. 

The ability to use inverted late bound functions and to optimize them using a
cost-based optimizer means that the advantages of the modelling capabilities
can be fully utilized with little or no performance degradation.

The main contribution of this thesis are:

 • An efficient method of executing late bound functions, both inverted and
non-inverted.

 • A method to make late bound functions optimizable using a regular cost-
based optimizer. 

 • A performance study which demonstrates a dramatic performance improve-
ment achieved by our approach.

 • A mechanism for resolving when late binding must be used and a description
of an incremental query compiler. 

1.1 Outline of the thesis

The next section, section 1.2, presents an introduction to query processing
which will be followed by an example using the relational data model. To illus-
trate the object-oriented model the example will then be remodelled using this
model.

In section 1.5 the text conventions and denotations used throughout this the-
sis will presented. In chapter 2 a basic review of the object-oriented and func-
tional data models is given and is followed by a survey of some object-oriented
and extended relational database systems in chapter 3.

This provides the background for type resolution and invertibility in an
object-oriented model which is presented in chapter 4. In chapter 5 the solution
to the management of late bound functions is presented. The solution is to be
placed in the context of the data model described in the proceeding chapters.

To improve the object-oriented model, the message passing style of function
invocation will be replaced by a strategy using multi-functions. A multi-func-
tion is a function where all argument types are used to resolve which imple-
mentation to employ. In chapter 6 the model described chapter 4 is extended
with multi-functions and type resolution in such a model is described.

Finally, a discussion and outline of future work are presented in chapter 7.
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1.2 Query processing

The term query processing refers to all actions that need to be performed in
order to execute a request for information over some data maintained by a
DBMS.

Figure 1.1: Query processing overview

Processing a query involves interpretation and execution of the query
expressed in some database language, for example SQL. In figure 1.1 a sche-
matic overview of query processing is given. A statement expressed in some
database language is fed into the query processor. It is then the responsibility of
the query processor to perform whatever the statement expresses and return an
answer to the caller. 

The area of query processing covers a wide range of issues. The problems
addressed in this thesis relate to the translation of a high level query into an
intermediate representation of the query, i.e. an algebraic representation (the
box coloured black in figure 1.2), and the transformation (optimization) of the
generated algebra expression.

The translation of a high-level declarative representation to a low-level pro-
cedural representation is a major step which involves several sub-issues; For
object-oriented systems one such a problem is providing an algebraic represen-
tation of late bound functions.

High level query

Data

Result

Query Processing
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A refined view of query processing is pictured below (fig. 1.2) where the
overall task of query processing has been broken up into several sub-tasks. 

Figure 1.2: Query processing steps

 • The query is expressed in a high-level declarative language which is trans-
lated into some intermediate representation in order to make it easier for the
system to handle. In a declarative query language the user specifies what
data is to be retrieved rather than how to retrieve it; the latter is the task of
the query processor.

 • The declarative representation of the query is syntax and type-checked to
make sure the query is correctly expressed and that type related runtime
error will not occur. A syntactically correct and type-checked query is fur-
ther processed by the query processor. An erroneous query will cause an
exception to be signalled and no further processing will be carried out. 

 • The type-checked query is translated into an intermediate representation.
This intermediate representation is constructed in such a way that it can be
processed efficiently by a system, i.e. an algebra, a procedural language. An
algebra typically consists of low-level operations to access the data and to
perform certain operations on the data. In some cases the query is first trans-
lated into another non-procedural representation, a calculus, on which cer-
tain optimizations are performed before the algebraic representation of the
query is constructed.

 • Optimization of a query is the task of finding the best plan or at least a good
plan among all possible execution plans. The execution plan is derived from
the algebraic representation. In order to be able to optimize a query, the sys-
tem must have the ability to generate all equivalent execution plans and the
ability to judge whether a certain execution plan, A, is cheaper to execute
than another plan, B, according to some cost measure.

High-level query

Data

Result

Translation
to algebra Optimization

Execution
of algebra

Syntax and
type-check
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 • The optimized representation is then executed and the result is returned to
the caller, user or process. Execution of a query involves the traversal of the
execution plan and execution of each statement in the plan. It is in this phase
of the query processing the data in the database is accessed.

Query processing in an object-oriented database management system is more
demanding than query processing in a relational database management system
(RDBMS) [26] since the discrepancy between the conceptual data model and
the physical storage is much larger [54]. This is so because the expressiveness
of the object-oriented (OO) model allows the application programmer to build
complex models which then require very powerful query processing capabili-
ties to provide efficiency. 

1.3 The relational model

An important milestone in the history of database management was the intro-
duction of the Relational model [13] in the 70’s. Along with the relational
model came systems with query languages and data independence. Data inde-
pendence is an important feature which isolates the user or the application from
the physical representation of the data. In a system with a high level of data
independence it is possible to change the representation of the data and add
new data without having to change any applications accessing the data. If data
is removed, then only applications accessing the removed data should be
affected.

The relational model is a simple and comprehensive model that has gained
popularity and commercial success. Many commercial systems use the SQL
query language. SQL is an abbreviation for Structured Query Language and
includes a declarative query language. SQL was developed at IBM to interface
their prototype SYSTEM-R [5] and was originally called SEQUEL. In addition
to the declarative query component, SQL contains procedural constructs for
schema definitions and table population, thus SQL is both a data definition lan-
guage (DDL) and data manipulation language (DML).

The fundamental concept of the relational model is the table into which the
data being modelled is entered. Each table consists of one or more attributes
which can only contain atomic values1. Data from different tables can be com-
bined by connecting the rows from the different tables that agree upon the
value of some attributes, a join2. Other operations on the table are selection and
projection. A selection retrieves the rows in a table that have a certain value for
a certain attribute. A projection of a table is a view of the table where some
attributes have been removed.

1. An atomic value is a value which cannot be divided into sub-components, e.g. inte-
gers

2. In this case an equi-join. For theta-joins other operators than = are allowed; e.g. <, >, 
etc.
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Figure 1.3: Relation tables

In figure 1.3 there are two relation tables: One table, Employees, lists the
name, social security number and the age of the employees of a company and
the other table, Works_At, lists the department name and the social security
number where each employee works. By joining the two tables on the attributes
Ssn and Empl, respectively, we can also work out the names of the persons that
work at each department.

Although the relational model was a major step forward, it has its shortcom-
ings when it comes to modelling complex data. As will be shown, modelling
complex data in the relational model can be difficult since the data has to be
adapted to the flat structure of a table where each attribute must be atomic val-
ued. The data has to be adapted to tables in such a way that certain properties
hold for the data. These properties are called Normal forms [26].

1.3.1 An example

To illustrate data modelling in the relational model consider the example where
a company wants to keep track of which sub-components a given component
consists of and of who delivers these components. This example will be reused
in section 1.4.2 to illustrate data modelling using the object-oriented model.

To model this example in the relational model, all data have to fit into tables
consisting only of atomic-valued attributes.

Name AgeSsn Department Empl

Table: Works_At
Table:Employees

Bill

John

Steve

Ron

21

2

43

5

39

21

28

56

Construction

Sales

Accounting

Management

21

2

5
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Figure 1.4: Example Relational database

In this example there are three tables. The Component table lists all the parts
the company handles. The Consists_of table lists the components, Id2, a certain
component, Id1, consists of. For example the component named “PenA” with
Id 1 consists of the components with Id 2, 3, and 4. The last table, Manuf, lists
the manufactures the company purchases parts from. 

Consider the scenario where one of the companies which delivers some
parts, for example ICInc, raises its prices significantly. A relevant database
query is the retrieval of all parts that consist of some parts from the company
named ICInc. This query can be expressed in SQL as:

Example 1: SQL query

One possible corresponding relational algebra query tree to the query is
illustrated in figure 1.5. The initial query tree mirrors the structure of the origi-
nal query. On the initial tree rewrite rules are applied to transform the tree into
an equivalent tree that is more efficient to execute. Finally, the execution plan
is derived from the rewritten query tree by traversing the tree in some order.
Thus, the following tree is a result of several transformations on the initial tree
generated from the declarative query.

Id manuf name
1
2
3
4
5
6
7
8
9

m2
m3

m6

m7

PenA
Tube
Tube

Cartridge
Inktube

Ballpoint
Spring

Ball
Cartridge

Table: Component
Id1 Id2

Table: Consists_of

1
1
1

2
3
4

4
4 5

6
6
6
6

7
8
9
......

m6

m6

m3

m2
m7

Name 
m2
m3
m6
m7

... ... ...

ICInc
H&V
Jans
Sears

1 
3 

9 
4 

Table: Manuf

Id
A Rd

C Rd
B Rd
D Rd

NoStreet

SELECT c2.name

FROM component c, component c2, consists_of co, manuf m

WHERE m.name=’ICInc’ AND c.manuf=m.id AND

co.id2=c.id AND co.id1=c2.id
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Figure 1.5: Relational algebra query tree

The execution plan is described by the query tree by defining a traversal
order of the tree. One such traversal of the query tree above is to first access the
Manuf table and all rows which satisfy the condition name=’ICInc’ are
selected. The selected rows are then joined with the Component table. The
result of the first join is joined with the Consists_of table using the join condi-
tion that the Id2 attribute from the Consists_of table must be equal to the Id
attribute from the Component table in the result of the first join. 

The result of the second join is then joined with the Component table and the
result of this join is projected onto the name attribute from the Component table
which will be the result of the query. 

Using the data in the example (fig. 1.4) the result is the set of names {Car-
tridge, Ballpoint}3. Note that the components manufactured by ICInk do not
appear in the result set, i.e. the components named Inktube and Ball. 

Perhaps the easiest way to attend to this problem is to extend the Consists_of
table with rows that contain the same value for both attributes, i.e. Id1 and Id2.
Another solution is to define an entirely new query which retrieves the union of
the results of the first and third join before the projection onto the attribute
name. This fairly simple query on the data results in a complicated query tree
containing three joins.

To overcome the shortcomings of the relational model, much attention data-
base research has focused on the object-oriented model within the database
community. The object-oriented model is a much richer model oriented towards
modelling the behaviour of objects instead of oriented towards fitting the data
into a specific data structure, e.g. the relation table.

3. This example can be further complicated by saying that any part that consists of a part 
in the result set should also be a member of the result, i.e. transitive closure.

Manuf

σName=’ICInc’

Id2 = Id

Consists_of

Component

π Name

Id1=Id

Select

Join (2) 

Join (3) 

Project

manuf=Id

Component

Join (1)
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1.4 Object-oriented concepts

In this section a brief overview is given regarding the terminology of the
object-oriented model as defined in [4] and the example from section 1.3.1 is
modelled in the object-oriented model. 

The object-oriented model is an attempt to support the modelling of complex
applications such as computer aided design (CAD), office information systems
and finite element modelling (FEM) [8][10]. The object-oriented model con-
tains constructs that enable the programmer to manage data involving complex
relationships relatively easy compared to modelling within the relational
model.

The object-oriented model is a general concept describing the features of
object-orientation. Specific variants of the object-oriented model are called
object-oriented data models. For example the data model of C++ [57] is an
object-oriented data model

1.4.1 Object-oriented terminology

The object-oriented model is built on the notion of an abstract data type (ADT)
where the ADT is modelled as a class and the functions and procedures that
operate on the abstract data type are methods of the class. All objects are
instances of some class i.e. a data item of some data type. In this thesis the term
type is used in favour of class. 

Objects that share the same behaviour are grouped into types. The types are
organized in a subtype - supertype hierarchy where subtypes inherit properties
from their supertypes. Inheritance means that if type A is a subtype of type B
and if B has a certain property, p, then the type A also possesses the property p.
Properties include functions, procedures and variables. 

The subtyping can be viewed as a specialization of general behaviour or con-
cept into more specific behaviour or a more specific concept. For example a pit
bull terrier is a specialization of the more general concept of dog. 

To describe the behaviour of objects functions (methods4) are used, which
are invoked by message passing. A message is sent to an object and the object
responds to the message by invoking the procedural specification that corre-
sponds to the message. Functions can return atomic values, composite values or
other objects. Atomic values include integers, reals or characters. Composite
values include lists, sets and arrays. The support for composite (complex) val-
ues constitutes a major difference from the relational model where attribute
values have to be atomic.

Each object is unique, i.e. two objects can exhibit exactly the same behav-
iour and yet be different objects. The identity is maintained by the system
which assigns each object a unique object identifier, OID. This is illustrated in
figure 1.6.

4. In standard object-oriented terminology the notion of method is often used, in this 
thesis the notion of function is preferred.
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Figure 1.6: Object diagram

In the Object diagram (fig. 1.6) there are three types t1, t2 and t3 with five
functions fn1…fn5. The functions fn1, fn2 are defined in type t1 and are inher-
ited by types t2 and t3. 

There are six objects, o1…o6. The objects o1, o2 are instances of type t2, o4 is
an instance of type t1 and the other objects are instances of type t3. 

The functions fn1, fn2 are applicable to object o4 and functions fn1, fn2 and
fn5 are applicable to objects o1, o2. Functions fn1…fn4 are applicable to the
instances of type t3, i.e. objects o3, o5 and o6.

Function names may be overloaded, i.e. given several implementations. Each
implementation is called a resolvent. Functions inherited by a type can be given
a new implementation for that type, i.e. overriding. In figure 1.6 the function
fn1 is overridden in the type t2. Late binding of functions to resolvents is a con-
sequence of overriding.

The object-oriented model is a powerful modelling tool that permits the user
to model real-world complex behaviour and relations in a fairly easy manner.
The object-oriented model has gained popularity both as a model for building
computer programs and is supported by programming languages such as C++
[57], SmallTalk and Eiffel [42] and as a model for managing complex data
[18][28][35][36].

Type Inheritance
Direction

o5o4

o3o2 o1

o6

SubType
Instance of type

fn1
fn2

fn3
fn4

fn5

Function
t1

t2 t3fn1
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1.4.2 The example revisited

Consider again the example presented in section 1.3.1. In this section the exam-
ple will be modelled using object-oriented concepts.

Figure 1.7: Example object-oriented database schema

The above figure shows the types and functions required to model the exam-
ple in section 1.3.1. The root of the type tree is a type which summarizes all
types required in the example application. The function name is defined for this
type and is inherited by the subtypes.

A function named consists_of is defined for the Complex_Component type,
which given a Complex_Component object returns a multiset5 of Component
objects. This function overrides the consists_of function defined for the Com-
ponent type which returns the multiset containing only the object itself, i.e. a
singleton multiset.

Two functions are defined to the Manuf type: makes and address. The func-
tion named makes returns a set of components for a given object of the Manuf
type. The function named address returns a tuple consisting of an integer value
and a charstring value which correspond to the street number and street name
respectively. 

The schema (fig. 1.7) must be populated with objects that correspond to the
data in the tables in the original example (fig. 1.4). The populated database
schema is illustrated in an object diagram as follows.

5. A multiset is a set which can contain duplicates, often called bag, denoted {| |}

Application
Type

Component Manuf

name:ApplicationType→Charstring

consists_of:Component→{| Component |}

makes:Manuf→{ Component }
address:Manuf→<Int, Charstring>

Component
Complex_

consists_of:Complex_Component→{| Component |}
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Figure 1.8: Object diagram

In the object diagram (fig. 1.8) all objects which are instances of a particular
type are enclosed in a box named after the type. Note that the instances of the
Complex_Component type are contained within the box of the Component type.
The reason is that the Complex_Component type is a subtype of the Component
type whose instances are in fact also instances to the Component type. Disjoint
from the Component objects are the objects which are instances of the Manuf
type.

Once again we are interested in the retrieval of all parts that consist of sub-
parts from the company named ICInc. In this example the OSQL [28] language
is used. 

Example 2: OSQL query

The =-operator in OSQL is overloaded and in above query the =-operator is
equivalent to an intersection operation. 

For illustration purpose only, algebra operations similar to the relational
algebra operations are used with the extension that complex data can be used in
conditions and that select and project can use functions in their conditions. In

OID:1

consists_of:{| 5 7 11|}
name:’PenA’

OID:5
name:’Tube’

OID:7
name:’Tube’

OID:11

consists_of:{| 17 21|}
name:’Cartridge’

OID:17
name:’Inktube’

OID:21

consists_of:{| 9 3 31|}
name:’Ballpoint’

OID:9
name:’Spring’

OID:31
name:’Cartridge’

OID:3
name:’Ball’

OID:10
name:’ICInc’
address:<1,’A Rd’>
makes:{ 17 3 }

OID:2
name:’H&V’
address:<3,’D Rd’>
makes:{ 5 31}

OID:6
name:’Jans’
address:<4,’B Rd’>
makes:{ 1 7 21 }

OID:4
name:’Sears’
address:<9,’C Rd’>
makes:{ 11 9}

Component

Complex_
Component

Manuf

SELECT name(c) FOR EACH Component c, Manuf m

WHERE name(m)=’ICInc’ AND consists_of(c) = makes(m); 
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this example algebra, a project using a function is analogous to a function invo-
cation. The translation from the declarative query to the algebra tree is made in
several steps. A possible query tree for this query6 is the following tree: 

Figure 1.9: Object-oriented Query tree

In the object-oriented query tree (fig. 1.9) of the example two of the three
original joins (fig. 1.5) are eliminated and the tree has a simpler structure. The
join that remains joins the result of applying the consists_of function on all
objects of Component type, which also includes all objects of the
Complex_Component type, with the products that the object named ‘ICInk’
makes. 

The join7 condition is a set condition which evaluates to a true value if any
object in the result of applying the function consists_of on the objects in the left
branch is a member of the right branch. The results of the join are the objects
from the left branch which fulfilled the join condition. The result of the join is
projected onto the name function and the result is the set of object names:
{‘Cartridge’, ‘Ballpoint’, ‘Inktube’, ‘Ball’}

Recall the query tree from the corresponding relational example (fig. 1.5)
which contained three joins. The object-oriented query tree (fig. 1.9) contains
only one join. The join that remains has a condition which is fairly complex in
nature. To provide the optimizer with more options to find a good plan, an
object-oriented algebra has to be constructed out of operations on a lower level,
thus the task of query processing will become more complex.

6. The translation from the OSQL query to the query tree is outside the scope of this the-
sis.

7. This kind of join is called semi-join, denoted  [26].

Manuf

σname=’ICInc’

Component

name

Select

Join

Project (2)

Project (1)

π

π
makes

consists_ofSJ

SJ
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1.4.3 Late binding

The requirement of having late binding in the query language is a consequence
of function redefinition in the type hierarchy with inheritance. One example of
function redefinition (overriding) is given in section 1.4.2 (fig. 1.7) where the
function named consists_of is defined for the Component type and the defini-
tion is overridden in Complex_Component type. 

As shown in the object diagram (fig. 1.8) all objects that are instances of the
Complex_Component type are also instances of Component type. Thus query-
ing the objects of the Component type means querying all instances of the
Complex_Component type as well. 

If there exists only one definition of a particular function for the types whose
extents are being queried, this definition can be selected before execution. This
a priori selection is possible since the definition is applicable to all objects that
are instances of the types being queried. This is called early binding or com-
pile-time type resolution. 

If, on the other hand, there exist more than one definition of a particular
function defined for the queried types, the definition to be used is dependent on
the type of the object which the function is applied to, thus the function defini-
tion cannot be selected until the time of application. This is called late binding
or run time type resolution.

Consider the algebra operator join in the query tree (fig. 1.9). Here the func-
tion consists_of must be late bound to select the correct function definition
depending on the type of the object. In project(1) (fig. 1.9) the function makes
can be early bound. 

As the example shows, an object-oriented model with late binding gives the
user a very flexible system when modelling complex data.

1.4.4 Invertibility

In the normal case a function is applied to some arguments to produce some
result. The values bound to the arguments are known and the result is sought.
If, on the other hand, the result is known and the arguments are sought, the
inverse of the function can be applied to produce a result. Thus, a desirable
property of an declarative object-oriented query language is the ability to invert
functions, i.e. for an arbitrary function call in the query language fn(x)=y,
retrieve the set of arguments x for a given result y. 

Example 3: Function inverses and application of function inverse

square(Number)->Number

sqrt(Number)->{Number}

SELECT x FOR EACH Number x
WHERE square(x)=9;
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In example 3 two functions are defined, each function being the inverse of
the other. The function square has the property that it maps two different val-
ues to the same result, i.e. the result of its inverse is a set consisting of several
values. The inverse of the function square is then used in a query. During opti-
mization of the query, a cost-based optimizer will choose the inverse of func-
tion square, i.e. function sqrt, if this makes the query cheaper to execute.

In the context of a database, a function fn, may map several different objects
to the same result. Thus the inverse, fn-1, must find all objects that return this
particular result when the function fn is applied to them. 

Figure 1.10: Function mappings and inverse

Function inverses should be system inferred and it is the optimizer that
selects which function to use, its definition or its inverse, to achieve the best
performance.

A special problem is the combination of invertible functions and late bind-
ing. The problem is special because the objects in the result of an inverted late
bound function are used to select which definition of the late bound function to
apply on them.

1.4.5 Problems with late binding

As shown in the example in section 1.4.2, the benefits of late binding are
enhanced modelling capabilities and greater flexibility in the query language.
Unfortunately, these useful properties have their price. Late binding introduces
complexity into the query processing in the following ways:

 • Late bound functions obstruct global optimization at compile time since it
is not until runtime that the definition can be selected.

 • The ability to use inverted functions, i.e. for an arbitrary function call 
fn(x)=y retrieve the argument x for a given result y, when the function fn
is late bound constitutes a problem.

 • The binding time, i.e. early or late, must be resolved by the system to pro-
vide a flexible and expressive query language.

 • The query compiler must function incrementally to manage an evolving
database schema given that the system resolves whether to bind functions
late or early.

These problems will be addressed in the remaining chapters of this thesis.

o1 o2

o3

or
fn

fn

fn

 fn-1(or) = {o1, o2, o3}
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1.5 Text conventions

This section describes and explains the text conventions and denotations used
in the thesis. 

1.5.1 Denotations

The letter t is used to denote an arbitrary type, tsub denotes any subtype of t and
tsup denotes any supertype of t.

1.5.2 Figures

Figures are used throughout the text to exemplify and enhance the readability.
In the figures the following graphical conventions are adopted:

Figure 1.11: Graphical conventions

Person

Employee

salary:person→integer

An ellipse with a name in it denotes a type. In this 
example a type named Person is denoted.

Person Types connected by a line indicats a subtype-supertype
relation. Here the Person type is a supertype to the type
Employee.

Person

The operations associated with a type are written as:
<fnname>:<parametertypes>→<resulttypes> where
both parametertypes and resulttypes can be of 
arbitrary length.

OID:10
name:’Theodor’
address:<1,’A Rd’>
salary: 45000 $

Objects are denoted by a square with rounded corners.
Inside the object all data associated with the object
through functions are listed. In this example the object 
identity is 10 and the function name has the value
 ‘Theodor’.

o3

Objects may also be denoted by a small circle
 containing its identity.
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1.5.3 Fonts

Emphasized text is used to denote a new concept and to distinguish certain
words given in normal text in order to enhance readability. For example, type
or function names that have appeared in an example are be put in emphasized
text in order to make the reference to the example more clear.

Examples of code expressions in examples and figures are written in cou-
rier font to distinguish them from the text. In the text this font is never used.

1.5.4 Naming

In the examples of code reserved words are always CAPITALIZED, names of
types are always written with a leading Capital, variable and function names
are always written in lower case.

Example 4: Code example

In the example above an expression that selects the names of all persons in
the database is given. The expression is initiated with two reserved words: FOR
EACH. A variable p is declared to be of Person type. The functions named
name is then applied to the variable p. Bearing these conventions in mind, little
or no knowledge about the syntax of the languages that are used is required.

Intermediate representations of function resolvents and queries are written as:

Example 5: Intermediate query representation

The interface is the name of the function and the argument list and result
type. The implementation is the type-checked and rewritten body of the origi-
nal function. 

FOR EACH Person p SELECT name(p);

Employee.reports_to(Employee e)->Supervisor

SELECT 

WHERE

_G2=Department.mgr(_G1);

_G2 

_G1=Employee.department(e)and

Interface

Implementation



20



21

2 Object-oriented and 
extended relational models

In this section the object-oriented model and the functional model are
described. 

2.1 Object-orientation

The object-oriented data model has received a considerable amount of attention
during the last decade [4][10][22][23][27][28][41][43][48][53][54]. The
object-oriented (OO) model is an attempt to support the modelling of complex
applications such as computer-aided design (CAD), office information systems
and finite element modelling (FEM) [8][10]. The OO data model contains con-
structs that enable the programmer to manage data exhibiting complex relation-
ships with relative ease compared to modelling within the relational model. 

Modelling data within the relational model forces the programmer to fit all
data into tables. The object-oriented model is more of a conceptual model
where the programmer has more modelling ‘tools’ and the system is responsi-
ble for the mapping between the conceptual OO model and physical storage.

2.2 Object-oriented concepts

In “The Object-Oriented Database System Manifesto” [4] the OO model for
database systems is defined. The OO concepts are grouped into mandatory,
optional and open characteristics where the mandatory characteristics are those
that a system must satisfy in order to be viewed as an object-oriented system.
The optional characteristics can be added to enhance the performance of the
system. The open characteristics are those where the designer has a number of
choices. In this section the mandatory features are reviewed.

The mandatory OO features are:
 • Support for complex objects
 • Object identity
 • Encapsulation
 • Types and classes
 • Type (Class) Hierarchy
 • Overriding, overloading and late binding
 • Computational completeness
 • Extensibility
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2.2.1 Complex objects

Complex objects are built from simpler ones such as Integer, Character or
Boolean as well as user-defined object types by applying a constructor to them.
There are various complex object constructors such as set, bag, list, array or
tuple. The constructors must be applicable to any object type. For example, the
list constructor must be applicable to any object type in the database schema,
both user-defined and system-defined object types.

2.2.2 Object identity

Object identity must be supported in order to distinguish between different
objects with identical behaviour. Object identity is maintained by a system-
generated and immutable object identifier (OID). Thus objects can be equal,
i.e. have the same behaviour and objects can be identical, i.e. have the same
object identity. 

In an identity-based system objects can be shared and updated easily. Con-
sider the following figure:

Figure 2.1: Identity-based system

The objects o1 and o2 share object o3 but via different relations. Finding the
objects that are related to the same object through the children and married_to
relations involve only object identity tests. In a value-based model the issue is a
bit different, consider the following:

Example 6: Value based system

In a value based model, such as the relational model, the above mentioned
search means checking that all values are equal. In the example (ex. 6) two 39

o1 o2

o3

name: Wilbur name: John

name: Alice

married_to:children: { }

age: 39

o4

name: Alice
age: 39

(<name Wilbur> <children (<name Alice><age 39>))
(<name John> <married_to (<name Alice><age 39>))
(<name Alice> <age 39>)
(<name Alice> <age 39>)
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year old Alice exist and the question as to whether John is married to the
daughter of Wilbur cannot be decided. To overcome such problems in value-
based models the concept of a primary key and normalization [14] are intro-
duced. A primary key is a set of attributes whose values can be used to uniquely
identify an object.

Another issue involves managing updates in a value-based system. When-
ever the age of Alice changes then the references maintained by Wilbur and
John need to be updated as well8. 

This problem does not exist when objects are shared as in an identity based
system. In this thesis object identity is considered as a mandatory object-ori-
ented feature (see [23] for an alternative approach).

2.2.3 Encapsulation

Encapsulation is the distinction between behaviour and implementation. The
implementation is hidden from other objects and applications, thus the only
way to manipulate objects is through the methods applicable to the object, i.e.
its interface. Encapsulation provides some data independence: the implementa-
tion can be changed without any changes in the application programs since
these did not have any access to the previous implementation, nor do they have
access to the new. This claim is valid as long as the existing interface methods
model the same behaviour.

A strict definition of encapsulation allows only methods, not data, to be in
the interface and methods can only see and manipulate data within each object.
Encapsulation in OO terminology corresponds to data independence in rela-
tional terminology.

The strict definition of encapsulation may be too restrictive in some applica-
tions and in some implementations of the OO model the encapsulation is
relaxed, e.g. friends in C++ [57], a declaration that allows object types to
access private data from each other.

2.2.4 Types and classes

Support for types or classes is also a mandatory characteristic of an OO data-
base system. Types are traditionally used for correctness control of programs.
Types in OO terminology describe the structure of the class where a class is the
container for objects and methods. In this thesis we are primarily interested in
types and will use the notion of type in the remaining. A type is used to summa-
rize the common features of a set of objects with the same characteristics. 

A type consists of an interface and an implementation. The interface consists
of a set of operations together with their signatures. A signature is the name of
the operation annotated with the names of the argument and result types. The
implementation part of the type consists of a data part and an operation part.
The data part describes the internal structure of the type and the operation part

8. This is the case even for tables with primary keys if the value of an attribute in the 
primary key is changed.
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consists of the procedures that implement the interface operations.
Whether data is allowed in the interface of a type is optional. In [43] a type

is specified to contain a set of hidden instance variables and in C++ data is
allowed in the interface. 

All objects are instances of some type and thus it is possible to apply all
methods defined for the type to the object. The set of objects that are instances
of a particular type is called the extent of that type.

2.2.5 Type hierarchy

The types are organized in an inheritance hierarchy. Inheritance is a powerful
modelling tool which helps in factoring out shared specifications and imple-
mentations. 

A type that inherits properties from another type is called a subtype of that
type, the supertype. A subtype specializes the behaviour of its supertype by
additional behaviour and, in some models, changes inherited behaviour, thus
the subtype-supertype relation can be viewed as a specialisation - generalisa-
tion relation. 

The inheritance mechanism is central to the object-oriented model: creating
an OO model of some problem is very much the creation of a type hierarchy
with inheritance that mirrors the structure of the problem. Consider the follow-
ing database schema that models a company database:

Figure 2.2: Database schema

In above figure there are four types, Person, Employee, Supervisor and
Department. The Supervisor type inherits from Employee type which in turns
inherits from the Person type. This means that the methods name, ssn, Depart-
ment, reports_to and supervises are applicable to objects of the Supervisor
type. 

A type may inherit properties from more than one other type. This is called
multiple inheritance. Multiple inheritance is not a mandatory characteristics of
the OO model. Allowing multiple inheritance adds complexity to the model and
problems arise when a type inherits operations with the same name from more
than one of its supertypes. Multiple inheritance is, despite its drawbacks, a use-
ful feature since it allows combination of types.

Closely related to inheritance is polymorphism, the ability to take several

Person

Employee

Supervisor

Department
name:Person→Charstring

ssn:Person→Charstring

department:Employee→Department
reports_to:Employee→Supervisor

super:Department→Department

supervises:Supervisor→Department

name:Department→Charstring

reports_to:Supervisor→Supervisor
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forms. Inclusion polymorphism [15] describes subtypes and inheritance where
an object can be viewed as belonging to many different types that need not be
disjoint. This means that for any specification of an object of type t an object of
type tsub can be used. The polymorphisms experienced in an OO model are
examined more closely in section 2.3.

2.2.6 Overriding, overloading and late binding

Another important characteristic of an OO database system is support for over-
riding, overloading and late binding. These notions all stem from the desire to
have the same name to denote different operations where the type of the object
is used to select which operation to apply when there are several operations
with the same name. 

The term overloading denotes when operation names have several imple-
mentations. Each implementation of an overloaded operation is called a resol-
vent. In the database schema (fig. 2.2) there are two overloaded names: name
and reports_to. The function name is defined for arguments of Person type and
is also defined for arguments of Department type. These two definitions share
the same name but have different implementations. 

In method name overloading a particular polymorphism is introduced into
the model, parametric polymorphism [15]. Parametric polymorphism means
that a method works uniformly over a range of types. These types normally
exhibit some kind of common structure. In the OO model this common struc-
ture is found among types related through the subtype-supertype relation. 

To exemplify overriding consider again the example (fig. 2.2) where the
name reports_to is overloaded with definitions for arguments of Employee type
and arguments of the Supervisor type. Note that the reports_to function defini-
tion of Employee type is inherited by the Supervisor type and that the
reports_to function is also defined for the Supervisor type. In this case the
name reports_to defined for employees is overridden by the definition of
reports_to for supervisors. All subtypes of the Supervisor type inherits the def-
inition of reports_to defined for supervisors. 

Overriding occurs when an inherited name is given a new implementation in
the type it is inherited by. This is why the overloaded method name name (fig.
2.2) is not overridden: there is no inherited definition that is given a new imple-
mentation for name. 

Binding method names to implementations can either be done early or late.
Early binding is when the binding can be done at compile time, whereas late
binding is when the binding of the method name to an implementation of the
name is done at run time. Late binding of methods is a consequence of inherit-
ance in the type hierarchy and overriding of method names. 

2.2.7 Computational completeness

Yet another desirable feature of an OO database is computational complete-
ness. This means that any computable function should be expressible in the
data manipulation language (DML) of the system. A good example of a DML
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is SQL, The current SQL standard, SQL-92 [40], however, is not computation-
ally complete.

Computational completeness means that the DML does not need any invoca-
tions of programs written in any language other than the DML. A DML is nor-
mally used for querying and updating data in a declarative fashion and
extending it to become computationally complete will result in a large language
with both declarative and procedural characteristics. Often systems have the
ability to define complex computations in an auxiliary language, e.g. C++, and
introduce these definitions into the query languages. 

Computational completeness is outside the scope of this thesis and will not
be addressed further in what follows.

2.2.8 Extensibility

The final mandatory OO characteristic mentioned in [4] is extensibility. Exten-
sibility means that it must be possible to add user-defined types to the set of
predefined types in the database. There must not be any distinction in usage
between system-defined types and user-defined types. It is in [4] not a require-
ment that the set of collection types such as tuples, sets, lists, or bags are exten-
sible.

2.3 Polymorphism

In an object-oriented system several different polymorphisms are experienced.
A consequence of the inheritance in the type hierarchy is that a reference
declared to denote objects of type t can denote objects of type tsub. This is legal
since all properties of type t are inherited by type tsub so any operation on the
reference declared as type t will be applicable to any object of type tsub. This
property is an instance of inclusion polymorphism [15].

This so-called coercion of the reference to denote objects of types other than
the declared type must ensure substitutability. Substitutability means that any
object of type t can be used in any context specifying an object of type tsup.
Consider the following figure:

Figure 2.3: Example type hierarchy

t1

t2 t3

t4 t5 t6 t7

A

fn:t1→tres

fn:t3→tres
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Any reference declared to denote objects of type t2 can, without violating the
substitutability, denote objects of any type in the subtree marked A (fig. 2.3).
Any other object of a type other than the types in A would violate the substitut-
ability if denoted by the reference. This is so because t2 would not be a super-
type of the type of the object denoted by the reference.

In the example above (fig. 2.3) the method name fn is overloaded. The
method fn is applicable to all types in the type hierarchy. Determining which of
the two resolvents of the method name to use is based on the type of the object
that the method is applied to. 

In a polymorphic language the selection of which implementation of a
method name to use at a particular application, type resolution, is a more com-
plex task than in non polymorphic languages, e.g. C, Pascal. 

For example: Let ref be a reference declared to denote objects of type t2.
Under the substitutability criterion the reference ref can denote objects of type
t2, t4 or t5. 

A method invocation fn(ref) when ref is declared as type t2, t4 or t5 will be
resolved as an invocation of the resolvent fn:t1→tres on ref. 

If on the other hand the reference ref were declared to denote objects of type
t1, then ref can denote objects of type t1 .. t7. A method invocation fn(ref) will
be resolved to fn:t1→tres if ref denotes an object of type t1, t2, t4 or t5. and to
fn:t3→tres if ref denotes an object of type t3, t6 or t7. This is an example of
when type resolution cannot be carried out until runtime, i.e. late binding must
be used.

2.4 Limitations of some object-oriented models

Recall from section 2.2.4 that types consist of an interface and an implementa-
tion. The interface consists of a set of operations together with their signatures
and the implementation consists of the procedures that implement the opera-
tions of the interface. Now consider the following function with two argu-
ments:

Example 7: Two argument function

In this example a function named distance that takes two arguments of type
Polygon and Line is defined. The function returns the distance between its
arguments. 

In which type interface and type implementation should the function be
defined? Can it be defined in the Polygon type, the Line type, both types or nei-
ther of them? Relations like this do not fit well into the OO model. This prob-
lem is dealt with in [24] where the argument is in favour of having this type of
function outside any type, thus abandoning encapsulation.

distance(Polygon p,Line l)->Length_unit
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Another limitation is message passing as a model for method invocation.
Using message passing, there might be additional arguments supplied with the
method. This corresponds to a function application where a function is applied
to the object that receives the message plus any additional arguments. With
message passing only the type of the object the message is sent to is used to
resolve which message to invoke, hence overloading is limited to the first argu-
ment only, e.g. [10][18][28][53][57].

To exemplify the weakness of overloading on the first argument only, con-
sider the two resolvents of the operation distance below (ex. 8) where Segment9

is a subtype of Line.

Example 8: Overloaded multi-methods

The message distance sent to a polygon with a line as argument cannot be
resolved to a method at compile time since it is legal to coerce a reference to a
Line into a Segment and different implementations of the method will be
applied depending on the runtime binding. 

In, for example, C++ [57] based systems this cannot be achieved since the
first argument, i.e. the object which the message is sent to, is treated as special
[3]. Consider the following C++ example.

9. Here, a segment is a sequence of n lines where the endpoint of the i:th line is equal to 
the startpoint of the i+1:th line for all i in [1..n-1]. 

distance(Polygon p,Line l)->Length_unit

distance(Polygon p,Segment s)->Length_unit
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Example 9: Example of multi-methods in C++

In the example above, the reference li which is declared to denote objects of
the Line type is set to denote an object of the Segment type. Since the Segment
type is a subtype of the Line type this coercion is legal to perform. This type-
casting is not reflected in the method that is invoked. The only way to achieve
the desired behaviour is by programming the selection of the method manually.

2.5 The Functional data model

Another data model that has received some attention is the functional data
model. This data model was presented by D.W. Shipman along with the
DAPLEX language [50]. Here I will use the name DAPLEX to denote both the
data model and the language. DAPLEX is an attempt to provide a database sys-
tem interface which allows the user to model more conceptually. 

The examples in this section use the syntax of the DAPLEX language. The
examples are, however, kept simple so the examples should be understandable
without any explanation of the DAPLEX language.

2.5.1 An overview of DAPLEX

In DAPLEX there are two major constructs, entity and function. An entity is
meant to bear a one-to-one correspondence to real world objects. A DAPLEX
function is a mapping from entities to a set of target entities. Functions can be
either single-valued or multi-valued. Single-valued functions always returns a

class Line {
// Definition of the class
}

class Segment : public Line {
// Definition of the class
}

class Polygon {
public: int distance(Line li);

int distance(Segment se);
}

int main(void){
Polygon *pl = new Polygon; //Create an inst. of Polygon
Line *li = new Line;
Segment *se = new Segment;
pl->distance(*li); 
li=se;
pl->distance(*li); //li now denotes a segment but the 

//method invoked is distance(line)
}
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singleton set of entities whereas a multi-valued function returns a set10 of arbi-
trary cardinality. Multi-valued functions are initialized to return the empty set
and single-valued functions must be initialized by the user.

Functions in DAPLEX can have zero, one or more arguments. Functions
with zero arguments define entity types. 

Example 10: DAPLEX entity type definition

In the above example the entity type and function named person is defined.
Only the entities returned by the function named person are of type Person,
thus a call to the function returns the entire extent of the entity type Person.
The function named person is a multi-valued function as indicated by a double
arrow: =>>. 

Example 11: DAPLEX function definition

In this example a single-valued function is defined as indicated by a single
arrow: =>. The defined function returns a singleton set containing an entity of
the type STRING when applied to an entity of the Person type. 

The entity types in DAPLEX can be ordered in subtype - supertype relation-
ships. 

Example 12: Subtype declaration

In above example the Student entity type is declared as a subtype of the Per-
son entity type. The set of entities of the Student type will then be a subset of
the set of entities of the Person type, thus the person function (ex. 10) will also
return entities of the Student type. This means that the subtype - supertype rela-
tion of DAPLEX introduces inclusion polymorphism [15]. 

All functions defined to apply to entities of the Person type are inherited by
entities of the Student type. Multiple inheritance is allowed in DAPLEX but
with the restriction that if a type A inherits function fn from both type B and
type C, then it must be the same fn that is inherited, thus an arbitrary selection
of which one to choose can be made. To illustrate, consider the figure below.

10. A set in DAPLEX is a set in the mathematical sense, i.e. an unordered collection of 
elements without duplicates

DECLARE Person() =>> ENTITY

DECLARE name(Person) => STRING

DECLARE Student() =>> Person
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Figure 2.4: Multiple inheritance

In figure 2.4 a legal variant of multiple inheritance in DAPLEX is illus-
trated. The function fn which is inherited by the type A from both type B and
type C is indeed exactly the same fn since it is inherited from type X by the
types B and C.

Functions with more than one argument are legal in the DAPLEX data model
and are defined in a similar way to functions with one argument.

Example 13: Multiple argument function

The definition in example 13 defines a function named grade which takes
two arguments and returns a singleton set with an entity of the Integer type.

Function inversions are declared explicitly as illustrated below.

Example 14: Function inversion 

The above definitions define a function instructor that returns the instructor
of a course. In addition, a function course is defined as an inverse of the func-
tion instructor. The course function returns the courses that a particular
instructor is an instructor of. The keyword INVERSE OF is a syntactic con-
struct to simplify the definition of inverses and the course function can be
defined without using the INVERSE OF construct as:

fn

A

B C

X

C inherits fn from X

A inherits fn from C and B

B inherits fn from X

DECLARE grade(Student,Course) => INTEGER

DECLARE instructor(Course) => Instructor

DEFINE course(Instructor) =>> Course
INVERSE OF instructor(Course)



32 Object-oriented and extended relational models

Example 15: DAPLEX function definition

2.5.2 Derived data

The course function (ex. 15) is defined in terms of another function, in this case
the function named instructor. Hence, the function course is a derived function. 

A derived function derives new properties from existing properties. Func-
tions that are not derived, e.g. instructor (ex. 14), define properties of entity
types. These properties can then be combined in various ways in derived func-
tions to express new properties.

The use of derived data in DAPLEX is made transparent to the user, i.e. the
user does not have to know whether the data is a stored property or derived
data. Using derived data enhances the logical data independence, naturalness
and usability of the database system.

2.5.3 Overloading

Function name overloading is permitted in DAPLEX. The resolution of the
function resolvent is made based on the role of the entities the function is
applied to. The role is the entity type that the entities are to be viewed as. Roles
can always be determined by a static analysis of the data description, i.e. early
binding. 

Recall that when entity types are defined, a function with zero parameters is
also defined. This function returns the set of all entities of a given type and is
used when querying sets of data. By using the person() function all entities of
the Person type are returned. Also recall that the entities of the Student type is
a subset of the entities of the Person type whereby all entities of the Student
type are contained in the set returned by the function person(). 

By disallowing redefinition of functions in subtypes the problem of having
late bound functions is eliminated. Hence, to override function definitions as
described in section 2.2.6 is not meaningful in DAPLEX.

2.5.4 Type resolution 

In DAPLEX overloaded functions can take more than one argument. Recall that
message passing in the object-oriented model only uses the type of the first
argument of the function to resolve which implementation to use. In DAPLEX
all argument types participate in type resolution.

To illustrate type resolution consider the following hierarchy.

DEFINE course(Instructor) =>> Course SUCH THAT
Instructor = instructor(Course)
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Figure 2.5: Type hierarchy

Assume there are two resolvents to the function named fn, namely 
fn(t4, t1)→tres and fn(t2, t3)→tres, and an application of the function name fn as
fn(d, f) where d is declared as being of type t4 and f is declared as being of type
t6. 

Which implementation of fn is the correct one to select? The resolvent 
fn(t4, t1)→tres matches the first argument best and the resolvent fn(t2, t3)→tres
is the best match for the second argument. Since both arguments are equally
important in DAPLEX, type resolution of the function application fn(d, f) will
result in two equally applicable functions and such function application is con-
sidered ambiguous and thus illegal. Using message passing in an OO system
the resolvent fn(t4, t1)→tres will be selected.

2.5.5 Aggregate functions

An aggregate function is a function that applied on a collection of objects cal-
culates some kind of property over the collection. Examples of aggregate func-
tions are average, min, max and sum. Aggregate expressions are somewhat
difficult to express in DAPLEX since it is set oriented, i.e. the result of any
invocation is always filtered to only contain unique objects / values. 

For example, calculating the average age of a set of persons cannot be
accomplished simply by applying the aggregate function average to the result-
ing set of applying the function age to all persons since this set would not con-
tain any duplicates. 

This problem is solved by using a special operator, OVER, and iterating over
the set of persons rather than over the set of the age of the persons.

2.5.6 Special operators in the DAPLEX language

One special operator in the language already encountered is the INVERSE OF
which is a syntactic construct to simplify the definition of function inverses.
Another special operator is the TRANSITIVE OF operator that allows the tran-
sitive closure of a function to be calculated. 

A transitive closure is computed as follows. Assume the DAPLEX function

t1

t2 t3

t4 t5 t6 t7
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fn applied to entity x yields the entity set {e1 e2 e3}. The transitive closure of
fn(x) is then the union of {e1 e2 e3} and the transitive closure of fn(e1), fn(e2)
and fn(e3). 

To manipulate entity sets the operators INTERSECTION OF, UNION OF
and DIFFERENCE OF are used. These operators can be used when creating
new entity types:

Example 16: Intersection type

In this example a new entity type is the intersection of two existing entity
types, Surfer and Student so that both are subtypes of the entity type Person. A
new entity type is created which is a subtype of each of the entity types in the
expression, thus the functions applicable are the ones defined or inherited by
the new type.

The operator COMPOUND OF that can be used to specify pairs of related
entities. 

Example 17: Pairs in DAPLEX

In example 17 a new entity type is defined which is the cartesian product of
the operands, Student and the set of courses each student is associated with.

The DAPLEX model also contains constraints and triggers that add active
behaviour to the data model. This functionality is, however, beyond the scope
of this thesis and the reader is directed to [51] for further discussion about
active database systems.

2.5.7 DAPLEX and object-orientation

The set of features of the DAPLEX data model and the object-oriented model
are not completely disjoint, but there are features that are mandatory if a sys-
tem is to be viewed as object-oriented which are not included in DAPLEX. 

DAPLEX supports object identity11 and includes the notion of type. Types
are organized in a type hierarchy with inheritance, all in accordance with OO. 

11. The DAPLEX paper [50] is rather vague as to whether entities have distinct identi-
ties as required according to the object-oriented database system manifesto [4]. The 
interpretation of this author is that entities in DAPLEX have distinct identities as 
required.

DEFINE Surfing_students() =>>

INTERSECTION OF Surfer, Student

DEFINE Enrolment() =>>

COMPOUND OF Student, course(Student)
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However, DAPLEX does not permit late binding, it lacks support for com-
plex objects, no encapsulation is allowed, and the DAPLEX language is not
computationally complete. The closest DAPLEX comes to complex object sup-
port is the COMPOUND-statement that creates a tuple-valued entity type.

In [24] a proposal of how the DAPLEX model can be extended to become
object-oriented is presented. The proposal is mainly oriented towards encapsu-
lation, better support for complex objects and extending the language to include
recursion12. The proposal includes a language, OODAPLEX, where OODA-
PLEX denotes the entire proposal. 

In OODAPLEX it is possible to override function definitions in subtypes,
and thus late binding is required in the model. 

OODAPLEX supports multi-argument functions and the problem of fitting
them into the OO model is recognized, see section 2.4 above. 

The rather strange requirement in DAPLEX that if functions with the same
name are inherited several times via multiple inheritance then, it must be
exactly the same function, is relaxed. Several different functions with the same
name can be inherited but any conflicts that arise must be manually resolved by
explicitly stating which resolvent to use.

The notion of mutable and immutable types is introduced in OODAPLEX.
An immutable type is a type whose instances cannot be created, deleted or
modified by users as opposed to the case for mutable types. Immutable types
are the primitive types such as Integer, Real, Boolean and String. 

Better support for complex objects is introduced: OODAPLEX supports, for
example, the aggregate types set, tuple and multiset which are also treated as
immutables, i.e. an instance of an aggregate type is identified by its members.
Multisets are important since they often form the input to aggregate functions
such as count, average, max or min., thus the awkward way of calculating
aggregates in DAPLEX is removed.

12. How to extend the algebra to include recursion is not specified.
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3 Overview of research 
systems and standards

In this section an overview of a few well-known object-oriented and extended
relational database systems are presented with an emphasis on their data mod-
els and any special features they incorporate.

3.1 The ORION database system

The ORION [7][8][9][35] OO prototype system was built (using the Common
Lisp language) as a support for an expert system, PROTEUS, in the late 1980s.
The importance of supporting schema evolution and including a query language
were recognized in the ORION project. Instead of having the applications navi-
gate through the data by following references, a query language was to be pro-
vided. ORION also supports objects with multiple versions and has a
framework for the management of different versions of objects.

3.1.1 Schema evolution in ORION

ORION includes a framework for managing an evolving schema. The schema
changes allowed are as follows:
 • Add, remove or change name of a type (ORION uses notion of Class).
 • Insert or remove a superclass of an existing class.
 • Add, remove or change a method of a class.
 • Add, remove or change an attribute of a class.

In order to maintain the schema in a consistent state with respect to the types
of changes listed above, a set of properties, invariants of the class lattice, are
identified. These invariants must be preserved despite changes to the schema. 

For some changes there may be more than one way to preserve the invariants
and a set of rules have been developed which preserves these invariants [9].
These rules guide the preservation of the invariants when there is more than
one way to preserve an invariant.

3.1.2 The ORION data model

In ORION classes are organised in a subtype-supertype hierarchy with inherit-
ance. The hierarchy is rooted in the Object class from which all other classes
are reachable. A subclass inherits both instance variables and methods from its
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supertypes. For each class the following must hold.
 • All instance variables and all methods defined in or inherited by a class must

have distinct names.
 • All instance variables and methods of a class must have a distinct identity. 
 • If several distinct instance variables or methods with the same name can be

inherited, at least one must be inherited. 

The first requirement listed above means that methods cannot be overloaded
within a class13, thus the distance example as described in section 2.4 cannot
be realized in the ORION data model.

The second requirement is exactly the same as DAPLEX [50] also requires,
as in the example of multiple inheritance in DAPLEX (fig. 2.4). A function can
be inherited by a type from several supertypes only if it is exactly the same
function inherited.

The last requirement says that two distinct instance variables or methods
with the same name can not be inherited by a single class. This is achieved by
inheriting one of them or inheriting both by renaming as required. This last
requirement also means that names can be overridden in subclasses; rather than
inheriting a method or variable, the one defined in the class is used. 

Objects in ORION have distinct identity where each object can exist in sev-
eral versions. Each version is identified by a version number, thus each distinct
object and version of the object can be identified.

In order to be able to manipulate a set of objects as a single logical entity
ORION provides composite objects. A composite object is an object with a
hierarchy of exclusive component objects. The hierarchy of classes the objects
belong to is a composite object hierarchy. 

All objects, except the root, of a composite object are called dependent
objects. A dependent object is referenced by another object through a compos-
ite link. A dependent object cannot exist on its own. If the object it depends on
is deleted, the dependent object itself is deleted. A dependent object can only
be referenced once within any composite object. The dependent object can
however be referenced by another object through a non-composite reference.

The advantage of having composite objects in ORION is the performance
improvement achieved by clustering composite objects on secondary storage.
The reason for this is the likelihood of accessing some of the dependent objects
whenever a root object is accessed. It is also argued that using the composite
object as the unit for locking is advantageous for system performance.

One disadvantage of having composite objects is that deeply nested objects
are costly to traverse since no fast access methods can be utilized. This problem
is recognized in OODAPLEX [24] with regards to aggregate structures where it
is advised not to build such structures.

The query model and query processing in ORION are relatively simple. Que-
ries are expressed in a Lisp-like syntax and the execution of the query is mainly
a traversal of the expression. 

13. Which is the same as overloading on the first argument only.
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Method invocation in ORION is based on the message-passing metaphor and
the binding of method implementation to messages is always late. ORION is an
pioneering system where query optimization and efficient query processing was
seen as a future problem; instead the importance of providing a query language,
support for schema evolution, composite objects and versions was recognized.

3.2 O2 . 

O2 [25][33][36] is an object-oriented system developed by the Altair group to
support business applications such as office automation and multimedia appli-
cations. The project began in 1986 and two prototypes were implemented; the
first one was demonstrated in late 1987 and the second in mid-1989.

3.2.1 Objects and values

O2 supports both objects and values, which is a side-step from pure OO where
everything is viewed as an object. The structure of values are known by the
user whereas the structure of the instances of a class are encapsulated within
the class. 

The reason to have both objects and values is that pure OO has the drawback
that every time a complex value is needed, a new class has to be defined of
which the complex value can be an instance. This leads to an undesirable
growth of the class hierarchy. 

In O2 the objects are viewed as a pair consisting of an object identifier and a
value. Besides simple atomic values O2 supports set values, lists and tuples. Set
and list values are defined as a finite collections of values. A tuple value is a
collection of pairs of attributes and values defined by a partial function fn.
<a1:id1 a2:id2 … an:idn> is a tuple value where fn(ai)=idi for all ai in the tuple. 

3.2.2 Types and classes

In O2 a class is an association of a class name and a type. The type associated
with a class describes the structure of the objects that are instances of the class.
A type is either a constructed type or a basic type and all types have a type
structure. A constructed type can be set or tuple structured.

The classes are organized in a subclass - superclass hierarchy with inherit-
ance. An object which is an instance of a type t is also an instance of all super-
types to type t, thus inclusion polymorphism exists in the model. Multiple
inheritance is allowed but any ambiguities that may arise when the same name
is inherited from different supertypes must be resolved manually.

3.2.3 Methods

Every class has a set of attached methods that are used to manipulate the
instances of the class. Only the method signatures are visible to others, not the
implementation, i.e. O2 employs encapsulation. Methods are inherited from
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superclass to subclass. If a method is defined in several superclasses of a par-
ticular class, then the method that is defined in the most specific superclass is
the one that is inherited. 

It is possible to override inherited methods in subclasses so late binding is
required. Multi-argument methods are supported but the type of the first argu-
ment is used to determine to which type the method is attached and it is only
possible to overload on the first argument, which is equivalent to OO message
passing. 

In O2 messages are replaced by function calls whenever possible. In unre-
solved cases, method name resolution is accomplished by the executing code in
an ad hoc manner [61]. This means that whenever possible early binding is
used.

3.3 The EXODUS project

The database project, EXODUS [16][44][60], which started in 1986 at the Uni-
versity of Wisconsin was mainly oriented towards problems of data structuring
and processing requirements of emerging application areas. In the EXODUS
system a versatile storage manager and a general purpose type system have
been implemented as well as a set of tools that help the database programmer to
develop new database system software. For example, tools are provided that
generate a query optimizer from a rule-based description of the possible alge-
bra transformations. 

As the EXODUS project progressed the problem of designing a data model
and a query language started to emerge. The data model of EXODUS is known
as the EXTRA data model and the query language is known as EXCESS where
EXTRA is an abbreviation for EXtensible Types for Relations and Attributes
and EXCESS stands for EXtensible Calculus for Entity and Set Support. Today
the EXODUS project has terminated and the SHORE (Scalable heterogeneous
object repository)[17] project has replaced it.

3.3.1 Type hierarchy

In the EXTRA data model the types are organized in a hierarchy with inherit-
ance. Multiple inheritance is allowed, but in the case of conflict either the same
attribute or the function is inherited from several supertypes, see section 2.5.1
(fig. 2.4), or the conflict is resolved by the programmer by explicitly stating
which implementation of the name in conflict to use. A subtype inherits all of
its supertype’s properties. In subtypes it is possible to redefine inherited prop-
erties, thus late binding is required.

The types are either base types or tuple types. There are a number of prede-
fined base types such as Integer, Real or Character. and new ones can be
defined. Base types are types whose instances are identified by their values and
the value of an instance of a base type cannot be deleted or changed. Base types
correspond to the immutable types of OODAPLEX [24]. In EXTRA it is possi-
ble for the user to define new base types by adding abstract data types (ADTs).
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ADTs are written in the E programming language14 [44] whereas the schema
types (tuple types) are written in the EXCESS language.

The tuple types are created solely by the programmer to capture the behav-
iour of the modelled entity.

Example 18: Tuple type definition 

In this example, a tuple type named Person is defined. The type contains two
attributes, ssn and name. The tuple types of EXTRA correspond to the tuple
structured types in O2 [36]. 

3.3.2 Complex objects

The EXTRA data model supports the complex objects tuple, array and set.
Arrays can be of both fixed size and variable size where in variable sized arrays
elements can be inserted and deleted anywhere in the array. Arrays can be
declared to hold data of any type. The set data type can also be declared to hold
data of any type. If a set or array has been declared to hold data of type t then
any data of type tsub can be stored in the set or array. 

In order to further support complex objects, values that are references to
other object are allowed, thus object graph structures can be built. 

In EXTRA three different kinds of value semantics exist. It is up to the data-
base programmer which value semantics to use by declaring the value of an
attribute as: OWN, REF or OWN REF. To illustrate, consider the following exam-
ples.

Example 19: Declaration of value as OWN

In above example the attribute children is declared to denote a set of Person
owned by the Parent object. The elements in the set are values rather than
objects, thus the elements do not have any OID and cannot be referenced else-
where in the database. If the owner of an object is deleted, the object itself is
deleted, and owned objects cannot exist on their own. If a Parent is deleted
from the database so are the children.

14. The E language is an extension to C++[57]

DEFINE TYPE Person:
(

ssn : Int4,
name : Char[]

)

DEFINE TYPE Parent:
(
children : {OWN Person}
)
INHERITS Person
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Example 20: Declaration of value as OWN REF

If the declaration of the children attribute is OWN REF (ex. 20) the value is a
set of references to objects of the Person data type. Each Person referenced can
now be referenced from elsewhere in the database. The objects are still owned,
thus the deletion semantics remains. A Person instance referenced in a children
set of a Parent instance cannot be referenced in another children set simultane-
ously. This corresponds to the complex objects in the ORION data model [35].

Example 21: Declaration of value as REF

By declaring the children attribute as a set of references to Person instances
(ex. 21), referenced objects are not automatically deleted whenever a referenc-
ing object is deleted. 

3.3.3 Functions

The value of an attribute may be derived from the database whenever required.
Such an attribute is called a derived attribute. A derived attribute is defined by
an EXCESS query. A derived attribute in EXTRA is similar to a derived func-
tion in DAPLEX [50]. Functions may have several arguments and are associ-
ated with the declared type of the first argument; thus the invocation of a
function is analogous to message passing in object-oriented languages. Late
binding is supported but only for the first argument of the function in a similar
way to functions declared as virtual in C++ [57]. This means that in an
EXCESS/EXTRA application implementing the distance example, described in
section 2.4, the type dispatch have to be explicitly programmed as in any C++
implementation of that example. 

The EXCESS data model only supports set and not multiset and the syntax of
the EXTRA language when aggregate functions are present is somewhat awk-
ward, analogously to DAPLEX.

When querying the database using the EXCESS language, it is possible to
range over any named persistent set of objects, an array, or over a sub-range of

DEFINE TYPE Parent:
(
children : {OWN REF Person}
)
INHERITS Person

DEFINE TYPE Parent:
(

children : {REF Person}
)
INHERITS Person
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an array which, for example, enables any user to query the set of children of a
given parent in a simple way. 

In [60] an approach to managing late bound function calls in the execution
plan is presented which deals with how to perform a runtime dispatch and the
difficulty of optimizing late bound functions. This approach will be evaluated
in chapter 5.

3.4 The object database standard: ODMG-93

The ODMG standard proposal [18] is a product of the Object Database Man-
agement Group (ODMG) whose members come from a number of commercial
companies. ODMG is a portability standard in that it guarantees that a compli-
ant application can easily be ported from one system to another [6]. ODMG
defines an ODBMS [19] as a DBMS that integrates database capabilities with
object-oriented programming language capabilities. In an ODBMS database
objects appear as programming language objects.

The ODMG-93 standard proposal targets systems where the application and
data definitions are compiled and linked together into one application where
the application program and the database manager share the same type system
and execution environment. Systems that support applications with this type of
architecture are called Database programming languages in [18]. The concepts
are illustrated in the figure below: 

Figure 3.1: ODMG target architecture
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3.4.1 The ODMG target architecture

To clarify the ODMG standard proposal this section will provide an overview
of the architecture that the ODMG standard proposal is targeted at (fig. 3.1). 

All data definitions are expressed using an Object Definition Language
(ODL). The ODL is used only to define types and their properties, i.e. signa-
tures for operations, relationships and attributes. It is not used for defining the
implementation of the operations. The ODL is independent of the syntax of the
programming language used. A data definition in ODL is portable, i.e. it can be
supported by any ODMG-compliant ODBMS. The application implementation
is written in an Object Manipulation Language (OML). A typical OML is C++
extended to provide transactions and query invocation capabilities. Queries are
expressed in an Object Query Language (OQL) and are invoked from the OML.

The disadvantage of this architecture appears in the restrictions placed on
the system by the implementation language15. The systems use the method dis-
patch that the implementation language provides, they use the same argument-
passing and compile time rules. Thus the optimizations that can be performed is
limited, the incorporation multi-functions to provide a system capable of
expressing the distance example, section 2.4, is a challenge and efficient man-
agement of late bound functions is also a challenge.

3.4.2 The ODMG-93 data model

Types are organized in an inheritance hierarchy where subtypes inherit all
properties of their supertypes. In a subtype it is possible to add new properties
or to redefine inherited properties. 

Objects have distinct identity and are instances of types. The model supports
substitutability, i.e. any object of type t can be used wherever an object of type
t or tsup is expected. The extent of type t is a subset of the extent of type tsup,
thus the model supports inclusion polymorphism. Extents are not maintained by
the system, thus the application must explicitly maintain the extents itself.

A type consists of an interface and one or more implementations where the
interface is public and the implementation is hidden. The interface consists of
operation signatures, attribute signatures and relationship signatures. 

The operation signature is the name of the operation annotated with the name
and type of any arguments and return value and the names of any exceptions16

that can be raised. Operation names may be overloaded, but only the type of the
first argument is used in type resolution although several arguments are
allowed. Each operation name must be unique within the type definition. This
means that the distance example described in section 2.4 cannot be modelled in
an elegant way.

An attribute signature is the name and type of any attributes. An attribute can
only be declared to denote literal values, e.g. Integer, Real or Character. 

15. C++
16. An exception signals an error condition. An exception is raised when an error is 

encountered.
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Finally, a relationship signature specifies any binary relationships that the
instances of the type can participate in. The signature defines the type of the
other object or set of objects involved and the traversal function. A traversal
function is used to refer to the related object or set of objects. Traversal func-
tions are defined for traversing the related objects in one direction. Traversal in
the opposite direction is performed by the inverse traversal function. 

Example 22: Inverse traversal function in ODMG-93

In example 22, interfaces to the types Student and Course are defined. In the
interface to the Student data type a relationship to a set of Courses is defined.
The relationship has a traversal function named takes that has an inverse traver-
sal function named is_taken_by defined in the interface to the Course type.
Note that relationships are defined between mutable types. 

Four collection types are supported: set, bag, list and array where sets are
unordered duplicate-free collections. Bags are unordered collections that may
contain duplicates. Lists are ordered collections that may contain duplicates.
Finally, the model allows arrays, whose length must be specified at creation.
The main difference between lists and arrays is that arrays cannot be traversed
by fetching the next element. An array must be traversed by retrieving the ele-
ment at a given position. Lists can be traversed in either way. 

Collections are typed, i.e. they can only contain elements of a given type.
Since substitutability is supported, any element of type tsub can occur in a col-
lection of type t. Each of the collection types has an immutable variant where
only creation of instances is allowed. Immutable collections are identified by
their members, whereas mutable collections retain their identity after insertion
or deletion of elements. The elements in collections are retrieved by using an
iterator that traverses the collection element by element. 

Extents are predicate-defined collections where the predicate checks that the
members are of a given type.

One important use of collection types is to maintain the type extents.

3.4.3 OQL

OQL [6][18] is a declarative high-level query language defined in the ODMG
standard to facilitate interactive ad hoc queries. OQL uses the same type system
as the application programming language, i.e. C++. Thus C++ elements can be
passed as parameters and the result can be used directly in C++. Hence, there is

interface Student
{

takes: Set<course> INVERSE Course::is_taken_by
}

interface Course
{

is_taken_by: Set<Student> INVERSE Student::takes
}
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no impedance mismatch17 between OQL and C++.
The ODMG standard defines the syntax and deals with how to bind a query

language to a programming language. The ODMG approach is to support a
loose coupling where query functions are introduced that take strings contain-
ing queries as their argument. These queries are optimized at runtime. Invoca-
tion of an OQL query is carried out by calling the oql-function18 defined to take
a variable and a string. The result of the OQL query is bound to the variable.
The OQL query is contained in the string argument to the oql function.

Since methods called from OQL are allowed to have side effects and the cost
of invocation is unknown, thus optimization of OQL queries is limited. For
example reordering is not possible.

3.5 SQL-3 Standard proposal draft

A standard proposal under construction is SQL-3. The SQL-3 standard proposal
incorporates object-oriented features into the language. Since the standard is
under construction, this section is based on a tutorial given at the 1995 ACM
SIGMOD conference by Nelson M. Mattos, IBM. The following extensions are
being proposed at present:
 • Type system extended with ADTs
 • ADTs organized in a subtype - supertype hierarchy with inheritance
 • Substitutability among instances of ADTs
 • Function overloading permitted
 • Support for multi-functions where type dispatch is based on all argument

types
 • Support for late binding
 • Support for roles, i.e. an instance of type t can be treated as an instance of

any supertype of t.
 • OID support of instances of ADTs
 • Parameterized types

It is interesting to note that the need for multi-methods is recognized as a
desirable feature in a database query language. Recall the distance example (ex.
9) which cannot be given a simple implementation unless multi-methods
(multi-functions) are supported by the language. Also note that support for late
binding is required; thus the approach presented in this thesis of how to manage
late binding in a system is highly relevant to any system that strives to comply
with the SQL-3 standard.

17. Impedance mismatch occurs when two different type systems with different expres-
siveness in different environments must exchange data.

18. This is a function in the host language that takes as argument a string containing an 
OQL-query. 
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3.6 POSTGRES

POSTGRES [45][56] is an extended relational system where the basic rela-
tional model has been extended with inheritance and support for complex
objects.

Tables can be declared to inherit attributes from other tables as:

Example 23: Table declarations in POSTGRES

There are two ways to query a particular table in POSTGRES. Either the
query spans a certain table and all tables are declared to inherit from the que-
ried table or the query only spans over the queried table only.

Example 24: Queries in POSTGRES

In the left query above the *-operator is used to specify that the result of the
query should be the result of executing the query over the Person table and,
transitively, union all tables declared to inherit from the Person table. In the
query to the right the *-operator is omitted, which means that the query must
only be executed on the Person table. 

New atomic data types can be introduced by defining ADTs and a set of
operations associated with the new type as

Example 25: POSTGRES ADT definition

An ADT is defined in POSTGRES by the DEFINE TYPE statement (ex. 25)
where the type name, size, input and output methods are declared. The opera-

CREATE Person (name = Charstring[25],
birthdate = date)

CREATE Student (programme = Charstring[20])
INHERITS (Person)

RETRIEVE (p.name)
FROM p IN Person*
WHERE birthdate = 080594

RETRIEVE (p.name)
FROM p IN Person
WHERE birthdate = 080594

DEFINE TYPE box IS (Internal Length = 16,
InputProc = ChartoBox,
OutputProc = BoxtoChar)

DEFINE OPERATOR equal(box, box) RETURNS boolean IS
(proc = box_equal, Precedence = 2, 
Associativity = “Left” )
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tions on the ADT are created by the DEFINE OPERATOR statement where
input and output types are declared and the procedural implementation of the
type is specified. The procedural specification is implemented in a regular pro-
gramming language, e.g. C, and is then associated with a name. In example 25
the ADT function named equal is associated with the procedural specification
named box_equal. 

Table attributes can be typed with any ADT and the operations on the ADT
can be used in queries. Procedures operating on tuples from tables can be
defined and their names can be overridden in subtypes. A type-resolving
scheme that handles multiple inheritance by selecting the first applicable proce-
dure has been suggested.

It has not been explicitly stated what happens if the *-operator is used in
combination with overriding, e.g., if procedures will be bound early or late. one
can assume that late binding is not supported by POSTGRES.

In POSTGRES, a few useful features have been incorporated which resem-
bles OO features. However the relational style of modelling data remains, i.e.
accommodating data in tables.

3.7 Summary

All systems except POSTGRES reviewed in this chapter allow for late binding
but few of them address the problem of how to provide efficient management of
late bound function calls.

Both standard proposals reviewed in this chapter, ODMG-93 and SQL-3,
realize that it is desirable to have late binding, so the work presented in this
thesis is relevant to both the standards and to any system which incorporates
late binding. Multi-functions is part of the current SQL-3 proposal. Our solu-
tion to the management of late bound functions is presented in chapter 5 and
the incorporation of multi-functions into an object-oriented system is presented
in section 6.
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4 Type resolution and 
invertibility

In this chapter type resolution and invertibility in a basic object-oriented data
model is presented. A basic object-oriented model uses message passing as
function invocation. The data model presented is strongly influenced by the
functional data model DAPLEX [50] and by the Iris [28] data model with the
OSQL [38] query language. OSQL (Object SQL developed at HP Lab) is an
object-oriented extension of SQL. 

The data model includes a query language AMOSQL.v019 [34] which is an
extension of OSQL with rules [46][51]. This basic model will later in this the-
sis be used as platform for describing our approach to efficient management of
late bound functions (chapter 5). In chapter 6 it will be extended with multi-
functions to become an extended object-oriented model.

4.1 Functions, types and objects

The relations between functions, types and objects can be described as in the
following figure:

Figure 4.1: Functions, types and objects

All objects are instances to some type and types are used to classify objects.
Side-effect-free functions that denote mappings from objects to objects relate
objects. Functions are constrained to accept only objects that are instances of
the declared argument types or any subtype of the declared argument type.

19. In this section it will be referred to AMOSQL.
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Types inherit all properties from their supertypes and any conflict due to
multiple inheritance must be resolved by the user. Inclusion polymorphism is
included in the model and it is possible to override properties in subtypes, thus
late binding is required in the model. Types are created along with their proper-
ties as:

Example 26: Create type statement in AMOSQL

If the SUBTYPE OF part is omitted in the type definition, the defined type
will become a subtype of the system-defined type Usertypeobject in the type
hierarchy. In the PROPERTIES part of the statement a shorthand way of creat-
ing stored functions20 is provided. In example 26 two stored functions are cre-
ated, the function named name and the function named age. Additional stored
functions can be added later. 

The data model contains both mutable objects and immutable objects. Muta-
ble objects are identified by their OIDs and immutable objects are identified by
their values, i.e. literal objects. A literal is always assumed to exist and its
value cannot be changed. Examples of literals are the types Integer, Real and
Character. A literal object can be either simple or complex. The complex liter-
als Bag, Vector, List and Tuple are supported. New objects are created as fol-
lows:

Example 27: Create objects in AMOSQL

In this example three objects of the Person type are created and given values
for the attributes name and age. 

The notion of a function is almost consistent with DAPLEX [50] (chapter
2.5) which supports both stored and derived functions. A difference is that the
zero argument extent function in DAPLEX does not exist in this model21.
Stored functions can be both literal and object valued. Both simple and com-
plex literals are supported. The notion of a stored function replaces the con-
cepts of relation and attribute in the ODMG-93 model [18].

Example 28: Create stored function in AMOSQL

20. A stored function stores properties of objects.
21. A finite extent of type t can be generated by a function typesof(type t). 

CREATE TYPE Person SUBTYPE OF Mammal

PROPERTIES (name Charstring, age Integer);

CREATE Person (name, age) INSTANCES 

(‘Ralph’,12), (‘Rodney’, 7), (‘Rick’, 11);

CREATE FUNCTION married_to (Person p) -> Person AS STORED;
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In example 28 an additional stored function, married_to, is added to the set
of stored functions applicable to objects of the Person type. The function
married_to is declared to denote an object of the Person type, which corre-
sponds to a relationship in ODMG-93.

Functions can be overridden in subtypes and late binding is required. Func-
tion invocation is based on the OO message passing style where the type of the
first argument is used to resolve which implementation to use, although several
arguments are allowed. 

Resolvent names are created by annotating the function name with the name
of the first argument type. For example, the resolvent name of the function
defined above (ex. 28) is Person.married_to. The signature of the same func-
tion resolvent is married_to:Person→Person. The signature is the function
name annotated with the types of all its arguments and result types.

4.2 Queries

Queries are expressed in AMOSQL as

Example 29: Query in AMOSQL

In above query the name of all objects of the Person type is selected if the
age is greater than three. The query contains one range variable, p, which
states that all objects of the Person type and subtypes of the Person type are
considered, since inclusion polymorphism is part of the model.

A query can select several properties as:

Example 30: Multi query in AMOSQL

In this query the name and age of all persons who are married to a person
older than 30 are selected.

Queries can be used to define derived functions

Example 31: Derived function in AMOSQL

SELECT name(p) FOR EACH Person p

WHERE age(p)>3;

SELECT name(p), age(p) FOR EACH Person p, Person q

WHERE age(q)>30 and married_to(p)=q;

CREATE FUNCTION adultp(Person p)-> Boolean AS

WHERE age(q)>30 and married_to(p)=q;

SELECT true FOR EACH Person q
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In above example the derived function adultp is created which, given an
object of the Person type, returns true if the argument object is defined as
being married to a person older than 30. 

At time of creation the derived function is compiled and optimized, thus
invocation of the function as an ad hoc query will be substantially much faster
than invocation of an entirely new query that has to be parsed, type-checked
and optimized.

4.3 Static and dynamic types

This section presents a more precise approach to subtypes and inheritance. Sub-
typing will be given a definition based on type conformance [11] and the notion
of static and dynamic type [52][53] will be introduced. This framework will be
used in chapter 5 where type resolution and resolution of late binding will be
further investigated.

Definition 1:  Type conformance

A type ti conforms to type tj if
i ti provides at least the operations of tj 
ii The result types of all operations of ti conform to the

result types of the corresponding operations of tj. 
iii The argument types other than the first argument type 

of the operations of type tj conform to the argument 
types of the corresponding operations of type ti.

The definition of type conformance can then be used to constrain what is
meant by a subtype.

Definition 2:  Subtype

A type ti is a subtype of type tj if ti conforms with tj. 
ti <tj denotes ‘ti is subtype of type tj’.
ti ≤tj denotes ti <tj or ti =tj 
tsub denotes t or an arbitrary subtype of type t, tsup denotes t
or an arbitrary supertype to type t.

In a subtype it is possible change the implementation of an inherited opera-
tion and to add behaviour. Adding behaviour can be done freely but when
changing the implementation of an inherited method, the new implementation
must not violate type safety which ensures that type errors will not occur when
a method is late bound.

An instance of a type is also an instance of any supertype of that type. This
property results in the notion of substitutability [49].

Definition 3:  Substitutability

An object, o, of type t can be used in any context specifying
an object of type tsup.
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Substitutability means that whenever an object of a certain type is expected,
objects that are instances of any subtype can occur. Under substitutability the
set of all objects, extent, of a certain type is defined as:

Definition 4:  Extent

The extent of a type t is the set of objects O={o1…on}
where for each o∈O one of the following must hold
i typeof(o)=t or
ii typeof(o)=tsub
Where typeof is returning the most specific type of the
object. The extent of a type t is denoted ext(t).

This definition implies that the extent of a type contains all objects that are
instances of any subtype of the type. To exemplify, consider the following
example database schema.

Figure 4.2: Example database schema

Assume that the database schema (fig. 4.2) is populated with objects of the
types Person, Employee, and of the Supervisor type:

Figure 4.3: Database extents

Person

Employee

Supervisor

name:Person→Charstring

reports_to:Employee→Supervisor

reports_to:Supervisor→Supervisor

plays:Person→Charstring

p1

p2

p3

e1

e2
s1 s3 s2

ext(Person)

ext(Employee)
ext(Supervisor)
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The names of all persons are sought in the populated database. This is
expressed in AMOSQL as:

Example 32: Simple query over persona

The range variable, p, in above query ranges over the entire extent of the
Person type which is equal to the set {p1, p2, p3, e1, e2, s1, s2, s3}. Thus the
result of the query is the set obtained by applying Person.name to every ele-
ment of the set.

Consider another query over the same database (fig. 4.2)

Example 33: Simple range query

This query will range over the extent of the Employee type which is equal to
the set {e1, e2, s1, s2, s3}. The result of this query is the set obtained by apply-
ing the resolvent Employee.reports_to to the objects in {e1, e2} union the
result of applying the resolvent Supervisor.reports_to to the objects in {s1, s2,
s3}.

In the previous example the result was the union result of applying two dif-
ferent resolvents on disjoint subsets of the set the query ranged over. In order to
decide which resolvent to apply to a particular object, the notions of static type
and dynamic type [53] are required.

Definition 5:  Static type

The static type of a reference, ref, is the declared type of
the reference. S(ref) denotes the static type of a reference
ref.

For example, the range variable p (ex. 29) has as its static type the Person
type and for the resolvent Person.name (fig. 4.2) the static type is Person. In a
strongly typed language it is always possible to determine the static type of a
reference at compile time.

Definition 6:  Dynamic type

The dynamic type of a reference, ref, is the type of the
object referenced at runtime. D(ref) denotes the dynamic
type of a reference ref.

Constrained under substitutability the dynamic type of a reference can be the
static type of the reference or any subtype of this type. 

In the previous example (ex. 33), different resolvents were applied depend-
ing on which object was referenced, i.e. the dynamic type of the range variable

SELECT name(p) FOR EACH Person p;

SELECT reports_to(e) FOR EACH Employee e;
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was used to select which resolvent to apply.
Closely related to the static and dynamic type is the dynamic type set.

Definition 7:  Dynamic type set

The dynamic type set of a type, t, is the set of all possible
dynamic types of a reference with static type t. The
dynamic type set of a type t is denoted T(t). 

The dynamic type set is the set of types a reference, constrained by substitut-
ability, can denote instances of, i.e. D(ref)∈T(S(ref)). Another view of the
dynamic type set of a type t is the set of types in the subtree rooted at type t.

In the example schema (fig. 4.2) the dynamic type set of a reference with
static type Person is the set of types {Person, Employee, Supervisor}.

4.4 Type resolution

Type resolution, i.e. selecting a resolvent of a function call to apply, is carried
out at compile time22. The general rule in type resolution is to select the most
specific resolvent of a particular function with a static type which is not more
specific than the static type of the first argument to the function. To resolve
which resolvent to select for an application, fn(a), there exists a function, resol-
vent [30], which given a function name and a type returns the applicable resol-
vent. 

Definition 8:  resolvent: NM x Tp →FNM

NM is the set of all names, Tp is the set of all types and
FNM is the set of all resolvent names, a subset of NM.
If resolvent(fn, S(arg)) = tj.fn, then there must not exist any
other resolvent, tk.fn, such that:
i S(arg)≤S(tk.fn) and
ii S(tk.fn)<S(tj.fn)
If no resolvent, tj.fn, exists the result is the special value
NIL. 

Definition 8 ensures that the returned resolvent is the most specific resolvent
defined for a supertype or equal to the type of the first argument the function is
applied to. 

Also note that the domain FNM is a subset of NM. Hence it is possible to
use elements from FNM where elements from NM are expected to determine if
a certain resolvent is applicable to some argument. To exemplify, consider:

22. Even when functions are late bound, the type resolution that detects the requirement 
of late binding is performed at compile time.
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Example 34: Simple query

To resolve which implementation of the function name to use in the above
example the resolvent function is called as: resolvent(name,S(e)). Given the
example hierarchy (fig. 4.2) evaluates to Person.name. The implementation of
the function named plays is obtained by resolvent(plays,S(e)) which evaluates
to Person.plays.

4.5 Invertibility

A highly desirable feature is the ability to use the functions of a database
schema in the inverse direction. For clarification, consider the name function
(fig. 4.2) used as:

Example 35: Simple query

In the query above the result of the name function is known and the argu-
ments that are mapped by the name function onto the character string ‘Ralph’
are sought. 

One way to execute this query is to scan the entire extent of the Person type
and apply the name function to select the objects with ‘Ralph’ as their name. 

Figure 4.4: Query tree

In this query tree (recall the example algebra from section 1.4.2) the extent
of the Person type, ext(Person), is scanned and to each object, o, the selection
condition name(o)=’Ralph’ is applied to accept only those objects whose name
property has the value ‘Ralph’. 

Another way to execute the query is to use the inverse of the Person.name
resolvent, Person.name-1, as:

SELECT name(e) FOR EACH Employee e

WHERE plays(e)=’Bass’;

SELECT p FOR EACH Person p

WHERE name(p)=’Ralph’;

ext(Person)

σPerson.name=’Ralph’
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Figure 4.5: Query tree with inverted function

Note that the algebra operator select (fig. 4.4) is replaced by a form of
project (defined in section 1.4.2 to be analogous to a function application). 

By being able to use an inverted function, a scan of an extent has been elim-
inated. If the resolvent Person.name-1 is given an efficient implementation, e.g.
by using a secondary index, a dramatic performance improvement has been
achieved. 

4.5.1 Inverse of stored, derived and foreign functions

There are three function types: stored function, derived functions [50](chapter
2.5), and foreign functions [37]. Foreign functions are defined using an auxil-
iary programming language such as C, C++ or Lisp and then introduced in the
database query language by associating the auxiliary definitions with a resol-
vent name. 

To make foreign functions invertible their inverse must be explicitly
defined. To exemplify, consider the following figure:

Figure 4.6: Creating an invertible foreign function

In this figure two functions, osql_sin and osql_asin, are defined in some aux-
iliary programming language. These functions are bound to the query-language
function resolvents, Number.sin and Number.sin-1, and the resolvents become
visible to the query processor. The inverse remains hidden from the user but the
non-inverted, resolvent Number.sin, is visible in the query language.

‘Ralph’

πPerson.name-1

float osql_sin(oidtype arg){
........
}

float osql_asin(oidtype arg){
........
}

Auxiliary definitions

Number.sin

Number.sin-1foreign_function(osql_sin,

foreign_function(osql_asin,

Number.sin)

Number.sin-1)

Resolvent names
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For stored functions the inverse is created by the system when the function is
defined. When a stored function is created, a data structure is created which
enables fast access to data, for example a hash table. When the stored function
is populated (by using add or set [34]) data is inserted into the data structure.
The internals of a stored function is some kind of access mechanism that uti-
lizes any fast access paths available. The inverse of a stored function is an
access strategy to data through an object typed as the result type of the stored
function. To make the execution of inverse of a stored function efficient, an
index on the result should be created.

To exemplify inverses of stored functions consider the following figure:

Figure 4.7: Creating the inverse of a stored function

In above figure a resolvent, Person.name, is created. This resolvent is visible
in the query language. Along with the resolvent its inverse is created, 
Person.name-1; the inverse is, however, not visible in the query language. The
inverse is invoked by the system. This is because the user must be relived from
having to explicitly specify when to use the inverse and the declarativness of
the language would be lost.

The inverses of derived functions are inferred by the system. By having
access to the body of a derived function, its inverse can be generated by the
system by, for example, using the inverses of the functions in its body. To
exemplify, consider the following database schema where indexes are created
on the result of all stored functions.

CREATE FUNCTION name(Person) -> Charstring AS STORED;

Person.name name-1:Charstring→Person
name:Person→Charstring

SignaturesResolvent
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Figure 4.8: Database schema

For example, Employee.reports_to is defined as:

Example 36: Definition of Employee.reports_to

First, the query is rewritten to eliminate nested function applications. The
body of Employee.reports_to is rewritten to become:

Example 37: Body of derived function

Both Department.mgr and Employee.department are stored functions, so
their inverses are created by the system. The signatures of the resolvent
inverses are:

Person

Employee

Supervisor

Department
name:Person→charstring

ssn:Person→charstring

department:Employee→Department
reports_to:Employee→Supervisor

super:Department→Department

supervises:Supervisor→Department

name:Department→charstring

reports_to:Supervisor→Supervisor

mgr:Department→Supervisor

Usertype
object

CREATE FUNCTION reports_to(Employee e)->Supervisor AS

SELECT mgr(department(e));

Employee.reports_to(Employee e)->Supervisor

SELECT 

WHERE

_G2=Department.mgr(_G1);

_G2 

_G1=Employee.department(e)and
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Figure 4.9: Signatures of resolvent inverses

One possible23 definition of the inverse of Employee.reports_to may be
inferred by the system to become:

Example 38: Body of inverted derived function.

Any derived functions referenced from within a function body are substi-
tuted by their bodies so the inverses are described in terms of only stored and
foreign function inverses. If a foreign function lacks an inverse, the functions
referencing the uninvertible foreign function may also lack an inverse.

The case where an uninvertible function may cause the referencing function
to become uninvertible occurs when the inverse provides the only way of exe-
cuting the query.

The query tree of the inverted function (ex. 38) is pictured below:

Figure 4.10: Query tree of an inverted derived function

Resolvent inverse Signature of inverse

Employee.reports_to-1 reports_to-1: Supervisor→Employee

Department.mgr-1 mgr-1:Supervisor→Department

Employee.department-1  department-1:Department→Employee

23. There are several possible definitions of the inverses

Employee.reports_to-1(Supervisor e)->Employee

SELECT

WHERE _G2=Department.mgr-1(e)and

_G1 

_G1=Employee.department-1(_G2);

π
Department.mgr-1

e

π
Employee.department-1

_G1

_G2
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Consider another possible inverse of Employee.reports_to where the body
consists of non-inverted stored functions:

Example 39: Body of inverted derived function using non-inverted stored functions

One possible query tree representation that corresponds to this query24 (fig.
4.11) is considerably more complex than the query tree for the same inverted
derived function using inverted functions (fig. 4.10):

Figure 4.11: Query tree of inverted derived function with non-inverted body

In the above query tree the body consists of non-inverted stored functions.
Two extents have to be scanned in order to execute the query which is a large
impairment compared to the query tree where inverted stored functions were
used with indexes on the result (fig. 4.10). In the latter case execution is per-
formed in constant time25 whereas in the former, where extents are scanned,
execution time is proportional to the cardinality26 of the extents.

The inverse of a derived function is generated by the optimizer which uses
the inverse or regular variant of the referenced functions to find the best possi-
ble inverse of the overall derived function. 

In chapter 5 optimization will be further explained along with our method to
manage late bound functions. Our approach involves among several issues a
strategy to execute inverted late bound functions and an approach to optimiza-
tion of late bound function calls.

24. The translation to algebra is outside the scope of this thesis
25. Assuming hash index on the result
26. The number of elements in a set, denoted card(S) where S is a set.

Employee.reports_to-1(Supervisor e)->Employee

SELECT

WHERE e=Department.mgr(_G2)and

_G1 

_G2=Employee.department(_G1);

ext(Department)

σDepartment.mgr = e

ext(Employee)

_G2_G1

π
Employee.department

=

_G1

SJ
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5 Object-oriented query 
processing

In this chapter cost based optimization [47] is reviewed and our approach to
optimizing late bound functions is presented. 

Our approach to the management of late bound functions is to substitute the
late bound call by a special algebra operator, DTR (Dynamic Type Resolver)
[30], which is invertible and optimizable. This substitution is made by the
query processor so the query processor must resolve the cases where late bound
functions must be used.

Having a query compiler that performs this resolution means that whenever a
new instance of overriding is introduced or removed, the database schema must
be adapted to this change in order to remain in a consistent state. Thus, the
query compiler must be able to function incrementally [29] to recompile the
effected functions.

5.1 Query optimization

Good query optimization is extremely important to the overall performance of a
database system since optimization can reduce the amount of resources
required for executing a query dramatically. Query optimization is the task of
selecting, among all equivalent execution plans, the one which requires the
least resources to execute. The resources include CPU-time, time required for
disk I/O, communication time over a network and memory requirement. The
objective of the optimizer is to minimize the total resource requirement [47] of
executing a query. The resource requirement of executing a query can be seen
as the cost of execution. 

By assigning a cost to the resources spent by the execution of a query and a
way of determining a priori which resources a certain query will require during
its execution, it is possible to judge whether a certain execution plan is cheaper
than another. Thus, in order to be able to perform query optimization, the sys-
tem must be able to:

 • Generate all equivalent execution plans
 • Determine the cost of utilizing a resource
 • Determine a priori which resources the system needs to execute a query
 • Calculate the overall cost of executing a query
 • Compare costs to select the cheapest.
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5.1.1 Complexity of optimization and heuristics

The problem of query optimization is a problem with worse than polynomial
complexity [32] over the size of the query, i.e. an NP-hard problem. This is
because the only way to find the optimal solution to a given problem is by
exhaustive search of the search space of the possible query trees

The complexity of optimization prohibits any optimizer from finding the
cheapest execution plan for an arbitrarily large query. This is because all possi-
ble execution plans must be examined in order to make this guarantee.

For relational optimizers it is often the case that the queries are small enough
for the optimizer to explore all possible execution plans to find the best plan
[59]. 

To be able to handle large queries despite the complexity, Randomized heu-
ristic methods[59][32] can be used. A heuristic method is a method that does
not guarantee an optimal solution. A good heuristic method is a method that is
experimentally proven to often produce good plans. 

As an example of such a method, there is a randomized heuristic method,
Iterative-Improvement [32] which works as follows:

i Select random starting state in the solution space 
ii Select random neighbour 
iii If the cost of the neighbour is lower than the current cost select

the neighbour as the current state and proceed with step ii. If not, select
another neighbour and proceed with iii.

Steps iii and ii are repeated until a local minimum is reached, i.e. no neigh-
bours are cheaper. By keeping the cheapest plan and repeating steps i to iii,
until some stopping criterion is fulfilled, a query plan that is cheaper than many
other plans is produced. As stopping criteria the number of iterations or elapsed
time can be used. 

In step ii of the algorithm a neighbour is selected. A neighbour is an adjacent
state according to some neighbour function. The neighbour function must be
easy to compute and produce a relatively smooth cost distribution for good per-
formance of the system. The requirement of easy computation of the neighbour
function exists because the computation is performed at least once in every iter-
ation of the algorithm. The requirement of smooth cost distribution exists
because increasing the number of local minimums reduces the chances of find-
ing a global minima. 

Randomized methods have been proven to work well with queries that con-
tain many joins [59]. In such queries the neighbour is a reordering of the joins
in the join tree [32]. The following figure illustrates the algorithm.
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Figure 5.1: Iterative-Improvement

In figure 5.1, two examples of the algorithm are represented and marked by
an arrow originating at the random start state and ending at a local minima. By
performing more iterations of the algorithm, the likelihood of finding a better
local minima is increased. In practice, only a limited number of iterations can
be performed.

5.1.2 Query plan generation and global optimization

Generation of equivalent query plans is closely related to the algebra chosen to
represent the query internally. 

One way of generating all equivalent plans is to define transformation rules
for the algebra and then start from a certain query tree and apply these genera-
tion rules to the tree. 

Figure 5.2: Optimization

Above (fig. 5.2), a schematic view of optimization is given. Recall from sec-
tion 1 the overall view of query processing (fig. 1.2), where the input to the
optimizer was an initial query tree produced by the algebra translator. By
applying transformation rules and calculating the cost of execution, query opti-
mization is performed. Plan generation is often guided by some algorithm27,

C
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Random start2

Local minima

Random start1

Local minima
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e.g. Iterative-Improvement, to produce interesting plans.
Plan generation is a rather technical matter which is closely related to the

algebra, (for a survey of relational algebra query plan generation the reader is
directed to some textbook on the subject, e.g. [26]). In [54] an algebra and exe-
cution plan generation for an object-oriented model is presented.

To provide the optimizer with access to all possible query plans the imple-
mentation of all referenced functions must be accessible to the query plan gen-
erator. This means that the optimizer must be a trusted system component
which is allowed to break encapsulation [22][39] to access the implementation
of types and functions [47]. In relational systems this corresponds to view
expansion [55] where the definitions of all referenced views are accessed. To
exemplify, consider the following two AMOSQL statements in the context of
the schema in figure 4.8:

Example 40: Example definitions

In this example a derived function, reports_to, is defined and later used in an
ad hoc query. The variable :jd used in the ad hoc query is assumed to have an
object of the Department type assigned to it. When the ad hoc query is opti-
mized the implementation of the selected reports_to resolvent is accessed and
the overall query is optimized. In this example the resolvent Supervi-
sor.reports_to is selected and the rewritten resolvent body is substituted by the
function call as28:

27. The optional feedback loop in the figure depends on the plan generation algorithm 
used. If the current plan is used by the algorithm to generate the next plan, the feed-
back loop is present.

28. Recall from section 1.5.4 the denotation of intermediate query representation

CREATE FUNCTION reports_to(Supervisor s)->Supervisor AS
SELECT mgr(super(department(s)));

SELECT reports_to(s) FOR EACH Supervisor s
WHERE department(s)=:jd;
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Example 41: Substitution of function names by resolvent implementations

In this example, the rewritten resolvent Supervisor.reports_to is first given
and then substituted by the call to the function reports_to in the ad hoc query
(ex. 40). As the example clearly shows, the query can be simplified to:

Example 42: Simplified query

If the body of the resolvent Supervisor.reports_to was not accessed by the
optimizer, this simplification would not be detectable. Not only are simplifica-
tions are hidden, any available indexes will also remain hidden if the imple-
mentations of referenced functions are not accessed. Hence global optimization
is important to achieve good system performance. 

Consider another example of the same database schema (fig. 4.8):

Example 43: Example with overridden functions

In this example the function reports_to is overloaded with two resolvents:
Employee.reports_to which is overridden by Supervisor.reports_to. The ad hoc
query calls the function reports_to with an argument of the Employee type. A
resolvent of the call to function reports_to cannot be selected here since late
binding is required, thus the function call cannot be substituted by a resolvent
body and global optimization is obstructed.

reports_to(Supervisor s)->Supervisor 
SELECT _G1

SELECT _G1 FOR EACH Supervisor s

WHERE _G1=Department.mgr(_G2) AND 

_G3=Employee.department(s);

Employee.department(s)=:jd;

WHERE _G1=Department.mgr(_G2) AND 

_G3=Employee.department(s) AND

_G2=Department.super(_G3) AND

_G2=Department.super(_G3) AND

SELECT _G1
WHERE _G1=Department.mgr(_G2) AND

_G2=Department.super(:jd);

SELECT reports_to(e) FOR EACH Employee e
WHERE department(e)=:jd;

CREATE FUNCTION reports_to(Supervisor s)->Supervisor AS
SELECT mgr(super(department(s)));

CREATE FUNCTION reports_to(Employee e)->Supervisor AS
SELECT mgr(department(e));
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The obstruction of global optimization can cause the performance of a sys-
tem to degrade significantly when the inverted variant of a late bound function
is beneficial, e.g. by utilizing any available indexes. To clarify, consider an
example:

Example 44: Definition of function supervises over managers

In the above function the optimizer will choose the inverted variant of the
resolvent Supervisor.reports_to to avoid scanning the entire extent of the
Supervisor type. The globally optimized function will substitute the call to the
resolvent Supervisor.reports_to by the body of its inverse as:

Example 45: Inlined inverted derived function

Since indexes exist on the result of all stored functions in the example (sec-
tion 4.5.1), a scan of the extent of the Supervisor type is eliminated by using
the inverse of the derived function resolvent Supervisor.reports_to.

If on the other hand the function reports_to had to be late bound, the inverse
would not be accessible through global optimization as in:

Example 46: Definition of function supervises over employees

Here the inverses of Employee.reports_to and Supervisor.reports_to are ben-
eficial but inaccessible since the late bound call obstructs global optimization.
The consequence is that the improvement achieved by being able to use
inverted functions is lost whenever late binding must be used. Hence by being
able to utilize the inverses when the function is late bound, a significant per-
formance improvement can be achieved.

CREATE FUNCTION supervises(Supervisor s)->Supervisor AS
SELECT s1 FOR EACH Supervisor s1
WHERE s=reports_to(s1);

supervises(Supervisor s)->Supervisor 

WHERE _G2=Department.mgr-1(s) AND 

s1=Supervisor.department-1(_G3);
_G3=Department.super-1(_G2) AND

SELECT s1

CREATE FUNCTION supervises(Supervisor s)->Employee AS
SELECT e FOR EACH Employee e
WHERE s=reports_to(e);
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5.1.3 Cost models

That the cost model reflects the actual cost of executing a query is crucial to
achieve good optimization. 

A cost function and a model to predict the expected number of output objects
is assigned to each algebra operator. The overall cost of an execution plan is
then calculated by aggregating over the execution plan.

The total cost of an algebra operation is the cost of the operation times the
number of objects it has to be applied to. For example, consider the following
query and its corresponding query tree:

Figure 5.3: Query and query tree

In this query tree the entire extent of the Person type has to be scanned and
the resolvent Person.name applied. The cost of executing the query is the cardi-
nality of the Person extent times the cost of invoking the Person.name resol-
vent. 

If a condition on the objects is introduced on the query above, the query and
query tree will become:

Figure 5.4: Query and query tree

In this query a condition is introduced, which reduces the number of objects
to which the name function is applied and it will be cheaper to perform the pro-
jection. However, there is a cost of making the selection which has to be con-
sidered. The cost of executing the above tree is the sum of the selection and the

SELECT name(p) FOR EACH Person p;

ext(Person)

πPerson.name

SELECT name(p) FOR EACH Person p

πPerson.name

WHERE age(p)= 24;

σPerson.age=24

ext(Person)
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projection. It is not necessarily the case that the query tree above (fig. 5.4) is
more expensive than the previous (fig. 5.3) since the cost of the selection may
be very low29 and the selectivity may be low, i.e. very few objects have the age
24 and it is very cheap to access those objects. The cost functions for each alge-
bra operator is closely related to the underlying storage of the objects.

5.2 Managing late bound functions using the DTR operator

The problem of late bound functions is recognized as one which presents a
challenge [22] and has been addressed in [21][60]. The main difficulties with
having late bound functions in the execution plan are:

i How to execute inverted late bound functions, (section 4.5.1).
ii Late bound functions obstruct global optimization, (section 5.1.2).

The combination of late bound functions and inverted functions has, to the best
of our knowledge, only been addressed in [30]. The problem of optimizing
query plans with late bound functions has been addressed in, e.g. [21][60].

Our approach is to substitute each late bound function call in the execution
plan by a special operator, DTR, which is invertible and optimizable using any
cost based optimizer. During optimization the DTR is regarded as an expensive
predicate [31], i.e. the cost is not negligible and standard pushing down the
query tree is not applicable. Alternative approaches are evaluated in section
5.5.

5.2.1 Construction of a call to DTR

The DTR is invoked by a call as:

Example 47: DTR call

The possible_resolvents is a sequence of all resolvents that may be invoked
at runtime and in_args are the arguments of the possible resolvents. 

Consider the following example from the example database schema (fig. 4.8)
with the definitions of the reports_to resolvents (ex. 43)

Example 48: Definition of function supervises over employees

29. By having an index on the result of resolvent Person.age and using Person.age-1. 

DTR(possible_resolvents,in_args)

CREATE FUNCTION supervises(Supervisor s)->Employee AS
SELECT e FOR EACH Employee e
WHERE s=reports_to(e);
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In this function definition the call to reports_to must be late bound and the
function call is substituted by a call to the DTR operator as:

Example 49: Substitution of late bound call by DTR

The possible resolvents are Supervisor.reports_to and Employee.reports_to
and the argument, to the resolvent selected at runtime, is e. To see exactly how
the DTR call is created, recall the definitions from section 4.3 and from section
4.4.

To construct a DTR call the set of all resolvents that are eligible for execu-
tion must be retrieved. This retrieval is carried out by the resolvent* function
defined as:

Definition 9:  resolvent*: NM x Tp →{FNM}

If resolvent*(fn, S(arg)) = {tj.fn, tk.fn, …, tl.fn} then, for all
resolvents, tn.fn, in the result set it must hold that
i S(tn.fn)∈T(S(arg)) or
ii tn.fn = resolvent(fn,S(arg))

The set of possible resolvents of a function call, fn(arg), is given by the
above definition of resolvent*(fn, S(arg)). The possible resolvents is the set of
resolvents of fn defined for types in the dynamic type set of the static type of
argument arg. Furthermore, if the resolvent applicable to the static type of the
argument is inherited, then it must also be added to the set since it is not
defined for a type in the dynamic type set of the static type of the argument.

The set of possible resolvents is then sorted into a partial order where more
specific resolvents precede less specific ones. The sorted resolvent sequence
can then be used by DTR. This sorting is important in achieving good perform-
ance since the algorithms for executing DTR and DTR inverse use this sort
order.

5.3 DTR

For a non-inverted, regular, late bound function call, fn(arg), where the argu-
ment, arg, is bound, the resolvent is selected on the basis of the dynamic type
of the argument. Thus the resolvent to apply is obtained by computing resol-
vent(fn,D(arg)).

Recall that the first argument to DTR is a sorted sequence of resolvents with
more specific resolvents early. The DTR operator implements the computation
of resolvent(fn, D(arg)) by selecting the first resolvent, t.fn, in the sorted
sequence that satisfies S(t.fn) ≥D(arg)30. This is a sufficient criterion for apply-
ing the correct resolvent since the algorithm starts with any of the most specific

CREATE FUNCTION supervises(Supervisor s)->Employee AS
SELECT e FOR EACH Employee e
WHERE s=DTR([Supervisor.reports_to,Employee.reports_to],e);
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resolvents and then tries more general ones until an applicable resolvent is
found.

In this way the overhead of resolvent resolution is O(n) in the worst case and
O(n/2) on average, where n is the cardinality of the DTR resolvent sequence.
The cardinality n is always less than or equal to the total number of resolvents
of a given function name in the database schema. It is possible to perform the
dispatch in constant time by using dispatch tables [2] but the benefit of dispatch
tables compared to DTR is negligible if the number of possible resolvents is
small. The algorithm for DTR is:

Figure 5.5: The DTR algorithm

To make DTR optimizable using any cost based optimizer, it must be given a
cost function and a model to predict the expected number of result objects. The
execution cost of a late bound call must be estimated on the basis of the possi-
ble resolvents that can be applied. For example, estimating the cost of the DTR
call in example 49 is performed using the execution cost and selectivity of
resolvents Supervisor.reports_to and Employee.reports_to.

Avoiding bad execution plans is more important than finding the optimal
plan. Therefore, we have adopted the conservative approach of using the maxi-
mum cost and the maximum fanout, F, of the possible resolvents as estimates
of the cost and fanout of a DTR call. The fanout is the expected number of out-
put objects calculated as the selectivity of the function times the cardinality of
the argument set.

Let c1…cn be the execution cost and f1…fn the fanout of the possible resol-
vents t1.fn(arg)…tn.fn(arg), respectively. The cost, C, and fanout, F, of DTR is
defined as:

30. The first resolvent which is defined to a supertype or equal to the dynamic type of 
the argument.

resolvents=DTR resolvent sequence
resolvent=first(resolvents)
while resolvent!=NULL

if D(arg)≤S(resolvent)

end if
resolvents=resolvents-resolvent
resolvent=first(resolvents)

end while

return(apply(resolvent,arg))
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Definition 10:  Cost and fanout of DTR

The constant k in above cost formula is the overhead of performing dynamic
type dispatch among n resolvents. This cost will be very small compared to the
cost C. 

5.4 DTR-1 .

An inverted late bound function call is more complex than a regular one, since
the types of the result objects are used to determine which resolvent the objects
should be a result of.

A call to DTR-1 is constructed analogously to the construction of a call to
DTR but where all resolvents in the resolvent sequence are inverted. Therefore,
to be able to optimize DTR-1, all resolvents in the resolvent sequence must be
optimized for inverse execution. If any resolvent in its resolvent sequence lacks
an inverse then the DTR-1 also lacks an inverse and is considered uninvertible.

Recall the definition of the function supervises (ex. 48) where the function
reports_to is late bound. The call can be substituted either by DTR (fig. 49) or
by DTR-1 as:

Example 50: Substitution of late bound call by DTR-1

The possible resolvents and sort order are identical for DTR and for DTR-1.

The difference is that DTR-1 is described in terms of the inverses of the possi-
ble resolvents, whereas DTR is described in terms of the regular (non-inverted)
resolvents.

In order to define an execution strategy for DTR-1 the expected result of an
inverted late bound call must first be defined. An inverted late bound function
call, R=fn-1(res), is considered correct if each object in the result set, R, when
used as argument to the function fn, produces the value of the reference res.

C max ci( ) k n×+= F max fi( )=

CREATE FUNCTION supervises(Supervisor s)->Employee AS
SELECT e FOR EACH Employee e
WHERE e∈DTR-1([Supervisor.reports_to-1,

Employee.reports_to-1],s);
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Definition 11:  Correctness of inverted late bound function call

Let R=r1∪ r2∪…∪ rk={o1 o2…on}, where R=fn-1(res) is
the result of executing the inverse of fn(arg)=res and ri is
the result of executing a resolvent, ti.fn

-1, in the resolvent
sequence. For an inverted late bound function call to be
considered correct then for all objects, o, there must exist a
resolvent, ti.fn, such that the following holds:
i o∈ri and
ii ti.fn=resolvent(fn, D(o)) and
iii res=ti.fn(o) 

The correctness definition states that for all objects in the result set of a pos-
sible resolvent, ti.fn

-1, the applicable resolvent is ti.fn, which, when applied to
the object, returns the value. This definition is necessary in order to produce
the correct result as will be illustrated by an example in the next section.

5.4.1 DTR-1- an example

For this example of the result of using inverted late bound functions consider
again the example database schema (fig. 4.8) and the definitions of function
reports_to (ex. 43) and function supervises (ex. 48).

The database is populated as:

Figure 5.6: Example database population

All employees that report to a certain supervisor are sought by calling the
supervises function with an arbitrary object of the Supervisor type.

Type OID Properties

Employee e1 department(e1)=d2

e2 department(e2)=d2

e3 department(e3)=d1

Supervisor s1 department(s1)=d1

s2 department(s2)=d2

Department d1 super(d1)=d2, mgr(d1)=s1

d2 super(d2)=NULL, mgr(d2)=s2
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Example 51: Invocation of function supervises with argument s2

The resolvent body of the supervises function with a call to DTR-1(ex. 50) is
invoked.

All objects of the Employee type which, when applied by the reports_to
function is mapped to supervisor s2, are sought. Thus all objects that are
instances of any subtype of the Employee type are also sought. This means that
all resolvents in the resolvent sequence have to be executed in order to produce
the desired result.

In this example there are two resolvents in the DTR-1 call: Supervi-
sor.reports_to-1 and Employee.reports_to-1, whose intermediate forms are:

Example 52: Inverses of Employee.reports_to and Supervisor.reports_to

The result of executing the resolvent inverse Employee.reports_to-1 with
argument s2 returns the result set {e1, e2, s2} and the result of the resolvent
inverse Supervisor.reports_to-1 is the set {s1}. Notice that the correct result of
DTR-1 is not achieved by taking the union result of the possible resolvent
inverses. The union result of executing both resolvents is the set {e1, e2, s2,
s1}. To see that this result is incorrect, recall the definition of correctness, def-
inition 11. Using this definition for each object in the result set produces the
following table:

supervises(s2);

Employee.reports_to-1(Supervisor e)->Employee
SELECT
WHERE _G2=Department.mgr-1(e)and

_G1 

_G1=Employee.department-1(_G2);

Supervisor.reports_to-1(Supervisor s)->Supervisor

WHERE _G2=Department.mgr-1(s) AND 

_G1=Employee.department-1(_G3);
_G3=Department.super-1(_G2) AND

SELECT _G1
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Figure 5.7: Properties of objects in the result of inverted function call

Using the correctness definition on all objects of the result set we can see
that all objects except the object s2 are correct result objects. Object s2 belongs
to the result set of the resolvent inverse Employee.reports_to-1 but the applica-
ble resolvent is Supervisor.reports_to-1 which violates the correctness crite-
rion.

5.4.2 DTR-1 execution strategy

As shown in the previous example the result of DTR-1 is not achieved by com-
puting the union of the possible resolvent inverses. In order to compute DTR-1

each result set has to be filtered to remove the objects that violate the correct-
ness prior to calculating the union. 

The result of DTR-1([t1.fn-1,…, tn.fn-1], val)= arg is the union result of a spe-
cial execution strategy, EDTR, applied to the result of each of the possible resol-
vents to generate correct result sets, ri the union of which the overall result set
R can be formed.

Definition 12:  DTR-1

We introduce EDTR to remove the objects in the result of a resolvent that
belong to the extent of a more specific resolvent. Without EDTR the previously
defined correctness criteria will be violated.

To satisfy the formula given in definition 12 the result of executing each
resolvent in the resolvent sequence must not include any object o that is in the
extent of the static type of a more specific resolvent in the resolvent sequence. 

OID(o) Result of resolvent(reports_to, D(o)) fn(o)

e1 Employee.reports_to-1 Employee.reports_to s2

e2 Employee.reports_to-1 Employee.reports_to s2

s2 Employee.reports_to-1 Supervisor.reports_to NULL

s1 Supervisor.reports_to-1 Supervisor.reports_to s2

DTR 1– tifn
1– ...,tnfn

1–
[ , ], res( ) EDTR tifn

1– res( ) tifn
1– ...,tnfn

1–
[ , ],( )

i 1=

n

∪=
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Definition 13:  EDTR

For each ti.fn
-1 in the resolvent sequence, rs, of DTR-1, the

result of EDTR(ti.fn
-1(res), rs) is defined as:

Let ri={o1, o2…on}, where ri=EDTR(ti.fn
-1(res), rs). For all

objects, o, in the result set ri and for all possible resolvents,
tj.fn such that S(tj.fn) < S(ti.fn) then
i o∈ext(S(ti.fn)) and 
ii o∉ext(S(tj.fn))

DTR-1 algorithm

From the above, an execution algorithm can be devised for DTR-1. The algo-
rithm uses a function typeof that, given an object, returns the most specific type
of the object (definition , section 4.3). 

As the sequence of resolvents in DTR-1 is sorted into a partial order with
more specific resolvents early, the DTR-1 execution algorithm starts with any
of the most specific resolvents and then proceeds with more general ones. All
objects in all result sets of the resolvent inverses are checked to see if any
object violates the correctness criterion (definition 11). Since the resolvents are
sorted, this check can be performed by simply checking that the most specific
type of the object is not a subtype of or equal to the static type of any previ-
ously executed resolvent. The algorithm is:

Figure 5.8: DTR-1 algorithm

The above algorithm executes every resolvent in the DTR resolvent
sequence and removes those objects that should be the result of a more specific
resolvent. Such removal is performed in the if-statement, where the set result is
extended with the object o if that object is an instance of a type that is not a
subtype of or equal to any type in the set types.

To make DTR-1 optimizable using a cost-based optimizer, a cost model must

types={}
resolvents=DTR-1 resolvent sequence

For Each resolvent in resolvents

types=types∪S(resolvent)

result={}

 For Each t in types 

tmpres=apply(resolvent, res)
For Each o in tmpres

result=result∪ o

end if

end For Each

end For Each
return(res)

/* execute all resolvents */

/* add object o to res*/

/* check type of all objects in temporary result */

If typeof(o) ≤ t then

end For Each

validresult=TRUE

validresult=FALSE

If validresult then 
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be defined. Since all resolvents are executed, the cost of DTR-1, C, is the sum
of the costs of the possible resolvents plus the cost of executing DTR-1 itself.
The fanout, F, is estimated as the sum of the fanout of the possible inverse
resolvents. 

Let c1…cn be the execution cost and f1…fn the fanout of 
t1.fn-1(res)…tn.fn-1(res), respectively. The cost and fanout of DTR-1 are then
estimated as:

Definition 14:  Cost and fanout of DTR-1

In the cost formula the constant, k, is the overhead of checking the type of
every object o emitted from each resolvent. The cost and fanout are used in the
cost-based optimizer to decide when DTR-1 is favourable compared to DTR.

5.4.3 Performance analysis

To see how DTR-1 can improve performance, a study has been conducted
where the benefit of DTR-1 is shown by reducing a complexity of O(n) to O(1)
which is a dramatic improvement.

The test was performed using the example database (fig. 4.8) populated ran-
domly. The database was scaled up in each test for supervisors / employees as
1/10 2/40 5/100 25/500 50/1000 250/5000 500/1000. Over the populated data-
base the function supervises (ex. 48) was called with a randomly chosen super-
visor as argument. Two variants of the supervises function where tested. One
variant used DTR (ex. 49) and one used DTR-1 (ex. 50). The two variants were
tested on the same database with the same manager as argument and the execu-
tion time was measured.

C k fi×

i 1=

n

∑ ci
i 1=

n

∑+= F fi
i 1=

n

∑=
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Figure 5.9: Performance study

The result (fig. 5.9) shows the normalized31 execution time of the two vari-
ants of the supervises function versus the database size.

The measurements verify that the cost of executing the supervises function
using DTR-1 is constant when there are more than 40 employees, as it should
be, since there are constantly 20 employees per department and the cost of
DTR-1 is proportional to the fanout of the resolvents plus the fixed execution
cost. The cost of executing each resolvent is constant since hash indexes are
used. By contrast, the execution of the supervises function using DTR is linear
to the cardinality of the extent of the Employee type as expected. Note that
selecting DTR in favour of DTR-1 is cheaper when the cardinality of the extent
of the Employee type is less than 50. With a proper k value in the cost model of
DTR-1, definition 14, the optimizer will choose the correct strategy.

31. Each measured value is normalized by dividing it with the minimum value.
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5.5 Other approaches to managing late bound functions

In [60] an approach to managing non-inverted late bound functions is dis-
cussed. The approach consists of two alternative strategies: a runtime dispatch
or a union strategy where all possible resolvents are inlined together with type
dispatch expressions. The idea is to select the union approach when the late
bound functions are large and require optimization; otherwise a runtime dis-
patch is performed. 

Since optimization is an NP-hard problem, inlining several large query trees
with their type dispatch expressions enlarges the search space and it is not cer-
tain that this will be beneficial. The idea was not implemented, thus it is hard to
judge whether it is better to inline all possible query trees or to perform a sim-
ple runtime dispatch.

An approach to optimization that can be applied to late bound functions is
proposed in [21] where some optimization effort remains to be performed at
start-up time. This approach is primarily targeting at the problem when the
runtime bindings which are unknown at compile time, have significant impact
on the performance of the execution. In the case for late bound functions much
optimization may be required at runtime prior to the invocation of a function.

For a query that contains a late bound function one cannot choose the opti-
mal plan at start-up time of the query since which resolvent to choose depends
on the state of the database, ant not only on the runtime bindings of the param-
eters to the query.

5.5.1 Alternative DTR-1 .

Recall that filtering had to be performed in the DTR-1 algorithm. An alternative
is to inline everything into the query tree. For each possible resolvent, type dis-
patch expressions according to definition 12 and the resolvent body must be
inlined into the query tree. The result of the inverted late bound function is the
result of executing each resolvent with their type dispatch expressions and cal-
culate the union. This approach suffers from the same problems as described
above for the proposal of how to manage non-inverted late bound functions in
[60].

5.6 Incremental compilation and resolution of late binding

In order to be able to use DTR in a system, the system must resolve when a
function must be late bound. Such a system must also respond to schema
changes to maintain the schema in a consistent state [29][63]. The concept of
schema evolution covers all types of changes that can occur to a schema, e.g.
type changes, changes to the inheritance graph and changes to the functions in
the schema. The schema changes considered here are the changes that may
cause inconsistencies among resolvents:
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 • Introduction of overriding
 • Deletion of a resolvent or a database procedure32. 
 • Redefinition of a resolvent.

Database procedures may be redefined freely since the implementation of
procedures are not accessed in optimization due to the possible side-effects
which may be caused during their execution. Hence procedures are treated as
black-box routines by the optimizer.

Whenever any of the listed schema changes occur, the system has to respond
to perform certain actions to maintain schema consistency.

5.6.1 Resolution of late binding

To make the binding policy transparent to the user, the system must resolve
when a function needs to be late bound. It is important to bind late only when it
cannot be avoided since late bound functions are more costly to execute. Thus,
for performance reasons functions are, whenever possible, bound early. The
same approach is found in O2 [61]. 

Using the definition of resolvent* in definition 9, a sufficient criterion can be
defined for determining when late binding must be used.

Definition 15:  late_binding:NM x Tp → B

B is a set containing two values: TRUE and FALSE. A
function call, fn(arg), must be late bound if the predicate
late_binding(fn, S(arg)) evaluates to TRUE where
late_binding(fn, S(arg)) evaluates to true iff 
cardinality(resolvent*(fn, S(arg)))>1, to FALSE otherwise.

5.6.2 Incremental compilation

To give the optimizer more choice, function calls appearing inside any other
resolvent body are substituted by their appropriate resolvent bodies. Any resol-
vent using an updated resolvent must consider this change since it contains the
old body of the updated resolvent. If this update is not considered, the resolvent
will be inconsistent with the updated resolvent, thus leaving the schema in an
inconsistent state. The approach implemented in AMOS to make the schema
consistent after an update is to recompile any resolvents that must consider the
change.

By having the resolvent objects maintain a set of references to the resolvents
that use them, it is easy to retrieve the set of resolvents that need to respond to
a certain update. These references are named UsedByFunction. In O2 the
dependencies are stored at the class level instead [63]. The types of updates that
are relevant to system resolution of late bound functions are as follows:

32. Procedures are invoked as functions but may contain side-effects.



82 Object-oriented query processing

 • Redefinition of a function resolvent, t.fn, must be reflected in all resolvents
that use the redefined resolvent. By substituting the old definition in all
function resolvents in the transitive closure of the UsedByFunction set of t.fn
by the new definition of t.fn and re-optimizing, the database schema has
adapted to the change. 

 • Deletion of a function resolvent, t.fn. All resolvents in the UsedByFunction
relation of t.fn must be re-examined. If there exists another resolvent j.fn
where S(j.fn) > S(t.fn), then the function resolvents in the UsedByFunction
set is re-optimized to use j.fn. If no such resolvent exists, the resolvents in
UsedByFunction is deleted and any resolvent in their UsedByFunction rela-
tion is re-examined.
Another case occurs s when the deleted function resolvent, t.fn, participates
in a DTR call. If the removed resolvent is the most general one, the function
resolvent with the DTR call has to be deleted since no applicable resolvent
exists for the most general objects. If, on the other hand, the DTR call con-
sists of only one possible resolvent after the deletion of t.fn, the DTR call is
replaced by an early bound function call to the remaining resolvent.

 • Introduction of a new overriding resolvent, t.fn, will cause all functions
using the overridden resolvent to either select the new resolvent or to use
DTR with the two resolvents as a possible resolvents. If the overridden
resolvent is already overridden, all functions using the overridden resolvent
late rebuilds their DTR calls to incorporate the new resolvent in their resol-
vent sequences to DTR.

All functions that need to be re-examined are identified and sorted into a
partial order according to the UsedByFunction relation. The partial order starts
with the resolvents that do not use any resolvents in the partial order. If resol-
vent f has resolvent g in its UsedByFunction relation then g must precede f in
the order. Circular dependencies must not exist among the resolvents.

Having the resolvents sorted in this order, the correct actions will be per-
formed by the query compiler when recompiling the functions to maintain con-
sistency.

Having an incremental query compiler with resolution of late binding is
essential to be able to use DTR and to make the binding policy transparent to
the user.



83

6 Multi-functions in an 
object-oriented system

As pointed out in section 2.4, the basic object-oriented model of function invo-
cation using message passing is not sufficient to describe certain relationships
among types. In this section the basic OO model is extended with multi-func-
tions and type resolution, and late binding of multi functions is described.

6.1 Multi-functions

As indicated in section 2.4 message passing, which is overloading on the first
argument only, is not sufficient to describe bilateral relationships between
objects as, for example, the distance relation (ex. 9). To overcome this short-
coming of pure object-orientation, multi-functions are incorporated into the
model of AMOS, our research platform. Multi-functions are analogous to
multi-methods [1][2][3][12][20][58] but are here called multi-functions to
maintain consistency with the terminology in previous chapters. 

To distinguish multi-functions from functions invoked with a message pass-
ing style, the latter are referred to as mono-functions. 

When multi-functions are invoked, all argument types and result types par-
ticipate in the resolution of which resolvent to select.

Issues that have to be addressed when multi-functions are incorporated
include:

 • To which type does a multi-function belong?
 • When is a multi-function overloaded, overridden and when must late

binding be used?
 • How can multi-functions be inverted?
 • How can the DTR approach be extended to apply to multi-functions?

To see the benefit of using multi-functions, recall the distance example from
section 2.4 (ex. 9) which could not be expressed using overloading on the first
argument. Consider the following hierarchy of types:
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Figure 6.1: Type hierarchy of spatial types

The distance example can be expressed using AMOSQL.v133 as:

Example 53: Distance relations in AMOSQL

The two resolvents of the distance functions can be used to select the objects
that are not further apart than 25:

Example 54: Using the distance relations

In the query defined above, the distance function will be late bound since it
is overridden on the second argument. The query will span the extent of the
Polygon type and the extent of the Line type. The extent of the Line type has a
subset that is the extent of the Segment type. During execution of the query the
appropriate resolvent of the distance function will be selected according to the
dynamic type of the reference l.

33. AMOSQL.v1 supports multi-functions and is the successor to AMOSQL.v0 
described in section 4

Region

Circle

Point

Line Position

Segment

Polygon

Spatial
Object

CREATE FUNCTION distance(Polygon p, Line l)->Number AS

CREATE FUNCTION distance (Polygon p, Segment s)->Number AS

/* Function implementation */ ;

/* Function implementation */ ;

SELECT p, l FOR EACH Polygon p, Line l

WHERE distance(p,l)<25;
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Multi-functions introduce more complexity into the system since ambigui-
ties may arise in the type resolution phase of query processing, e.g. on the type
hierarchy above (fig. 6.1) two multi-functions are defined:

Example 55: Multi-functions

A function application is performed as:

Example 56: Application of multi-function

It is more complex to resolve which resolvent of intersects that is the correct
resolvent to apply in the example above when multi-functions are used since all
arguments are equally important in type resolution. In above example the two
resolvents are equally applicable and an ambiguity has arisen. 

In [1] the problem of how to perform the disambiguation of ambiguous
multi-function calls is addressed. In the approach chosen for AMOS, at this
stage ambiguous calls result in an error which the programmer has to respond
to, i.e. explicit disambiguation [1].

The remainder of this section will address the first two issues in the above
list, i.e. encapsulation and type checking of multi-functions. The two remaining
issues, i.e. invertibility and DTR, are future research areas that will have to be
addressed to achieve an extended object-oriented database system with effi-
cient management of late bound functions.

6.2 Types and multi-functions

In pure object-orientation the implementation of functions are encapsulated in
the type to which they belong. As pointed out in OODAPLEX [24], deciding
which type a multi-function should be encapsulated within is a problem. In
OODAPLEX it is suggested that multi-functions should not be encapsulated
within any type. This approach is chosen in AMOS as well. It is arguable that
the required encapsulation exists anyway since the only way of accessing data
is through stored functions or foreign functions whose implementation are hid-
den from the user. 

A function with one argument may be encapsulated within the type of its
argument. This type of function is analogous to an attribute of a type. Functions
with several arguments are not encapsulated within any type. Since multi-func-
tions do not belong to any type, they cannot be inherited from supertype to sub-
type. Still multi-functions are applicable to arguments that are subtypes of the

intersects(Region r, Line l)->Point;

intersects(Circle c, Point p)->Point;

intersects(c, l)=p;

SELECT p FOR EACH Point p, Circle c, Line l

WHERE 
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declared argument types of the function.
Rather than viewing multi-functions as a replacement for mono-functions,

multi-functions can be viewed as a generalization of mono-functions and the
two variants can coexist in the data model [3].

The name of a resolvent of a multi-function is an annotation of the function
name with the names of all argument types and result types. For example:

Example 57: Creation of multi-function

creates a multi-function resolvent named34:

Example 58: Multi-function resolvent

The name of a multi-function resolvent is only used by the programmer
when explicit disambiguation is required, otherwise the generic name is used
and the query compiler will select the appropriate resolvent for any invocation.

6.2.1 Type resolution of general multi-functions

As already emphasized, multi-functions are a generalization of mono-methods
and therefore the basic data model needs only a few generalizations to incorpo-
rate multi-functions. 

Multi-functions are not inherited from one type to another, but through
inclusion polymorphism and substitutability multi-functions are applicable to
other than the declared argument types. Consider the following function
defined for the schema illustrated in figure 6.1:

Example 59: Multi-function resolvent

The multi-function m-fn (ex. 59) is applicable in any context where the
actual type of any argument of the function is a subtype of or equal to the
declared type of the argument and the expected result type of the multi-function
is a supertype to the declared result type of the multi-function. 

34. The name is just a syntactic construct and the variant proposed in this thesis reflects 
the current implementation of AMOS.

CREATE FUNCTION intersection(Region p, Region q)->

Region AS /* Implementation */;

Region.Region.intersection->Region

m-fn(Region r,Point p)->Point
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To clarify, consider a nested function application as:

Example 60: Nested function application

In above application g(f(5)), the expected result type of f is the Point type,
which is the declared argument type of g, and the declared result type of f is the
Position type. Thus the expected result type of f is a supertype of the declared
result type of f which makes the application legal.

Also, the number of arguments a multi-function is defined to accept must
match the number of actual arguments passed to the function. This leads to the
definition of the applicability of multi-functions.

Definition 16:  Applicability of multi-functions 

Let denote a multi-function with n argu-
ments and a result where the type of the i:th argument is ti
and the result type is tr. The multi-function 
is applicable to a tuple of actual arguments  and
expected result ar if
i The arity of the multi-function match the number of

actual arguments, i.e. m=n
ii The result type tr is a subtype of or equal to the expected

result type, S(ar).
iii For each actual argument, ai, S(ai)≤ti.

If several multi-function resolvents are applicable, the most specific applica-
ble (MSA) multi-function resolvent is selected as the one to apply for a given
call. The definition uses subtype and static type of tuple types, these are
defined after the definition of MSA.

Definition 17:  MSA: {FNM}xTpnxTp →FNM

Let  denote the
set of all applicable multi-function resolvents of a particu-
lar function call fn(a1,…,an) where the types of the actual
arguments are: at1…atn. and the expected result type is atr.
If MSA(ar,<at1…atn>,atr) =  then for all
multi-function resolvents  in ar it must
hold that:
i  
ii If  then 

In this definition, the most specific applicable resolvent is defined to have a
static type that is a subtype of the static type of all other applicable resolvents.
If the static types of two resolvents are equal, the MSA is the resolvent with the

g(Point p)->Point
f(Integer i)->Position
g(f(5));

fn(t1, …,tn)→tr

fn(t1, …,tn)→tr
<a1, …,am>

ar={fn(t1
1 , …,tn

1 )→tr
1 ,… ,fn(t1

k , …,tn
k )→tr

k}

fn(t1
j , …,tn

j )→tr
j

S(fn(t1
i , …,tn

i )→tr
i)

S(fn(t1
j , …,tn

j )→tr
j ) < S(fn(t1

i , …,tn
i )→tr

i)
S(fn(t1

j , …,tn
j )→tr

j ) = S(fn(t1
i , …,tn

i )→tr
i)

S(tr
i) ≤ S(tr

j )
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most general result type is. To conclude the definition above, the notion of the
static type of a multi-function and the definition of a subtype have to be revised
to address type tuples.

The static type of a multi-function is a tuple of types rather than a single type
as was the case for the static type of a mono-function. The static type of a
multi-function named is .
Therefore, the previous definitions of static type, dynamic type and the
dynamic type set from section 4.3 must be extended to address type tuples as
follows:
 • S(<ref1,…,refn>) = <S(ref1),…,S(refn)>
 • D(<ref1,…,refn>) = <D(ref1),…,D(refn)>
 • T(<ref1,…,refn>) = {<t1,…,tn> | t1 ∈ T(ref1),…,tn ∈ T(refn)}

Definition 18:  Type tuple subtype 

If <t1
i ,…,tn

i > < <t1
j ,…,tn

j > then, for each pair, tk
i , tk

j , it must
hold that:
i tk

i  ≤ tk
j  for all k, and

ii tp
i  < tp

j  for any p

Thus, for a type tuple to be considered a subtype of another type tuple the
tuples must have the same arity and each type in one tuple must be a subtype of
the corresponding type of the other tuple and for at least one pair, a strict sub-
type relation must hold.

The definition of MSA above is applicable to mono-methods as well, thus
definition 8, resolvent, can be revised to use MSA by retrieving all applicable
resolvents of a given function name and then using MSA to select the most spe-
cific applicable resolvent.

Definition 19:  resolvent: NM xTpnxTp →FNM

If resolvent(fn, <t1,…,tn>, tr) =  then, 
MSA(rs,<t1,…,tn>, tr) =  where rs is the set
of all applicable resolvents.
If no such resolvent exists, the result is an error value.

The set of all applicable resolvents, rs, in the above definition can be
retrieved by using the applicability condition, definition 16, on all resolvents of
the particular function name, fn. 

Overriding of multi-functions is no longer restricted to the type of the first
argument of the function and thus all arguments must be considered when
deciding if late binding is required. Still, it is the case that functions are bound
early whenever possible.

By revising the definition of resolvent*, definition 9 from section 5.2.1, to
consider tuple types instead of single types, the existing resolution of late bind-
ing can be reused. The new definition of resolvent* of a call fn(a1,…,an) with
expected result type, r, becomes:

fn(arg1, …,argn)→tr S(fn(arg1, …,argn)→tr) =< t1, …,tn>

fn(t1, …,tn)→tr
fn(t1, …,tn)→tr
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Definition 20:  resolvent*: NM xTpnxTp →{FNM}

If resolvent*(fn, S(<a1,…,an>,r)) =
 then, for all resol-

vents, , in the result set, it must hold that
i S( )∈T(S(<a1,…,an>)) and

S( )∈T(S(r)) for all i, or 
ii  = resolvent(fn,S(<a1,…,an>,r))

Using the revised definition of resolvent* the criteria for when late binding is
required remains the same, i.e. resolvent* is not a singleton set. Note especially
that the result type can cause late binding. This is something controversial and
the reason is the requirement of invertibility. There are two options with
respect to overloading on the result: to allow it or to prohibit it. This will be
further analysed in section 6.2.2.

To exemplify these definitions, recall the definitions of the multi-function
intersects (ex. 55) and the application of intersects (ex. 56). Both resolvents,
intersects(region, line)→point and intersects(circle, point)→point, are applica-
ble to <point, circle> since 
 • <circle, point>≤S(intersects(region, line)→point) 
 • <circle, point>≤S(intersects(circle, point)→point) 

But neither of them is an MSA since neither of the resolvents has a static type
that is a subtype of the static type of the other resolvent. Thus an ambiguity has
arisen.

6.2.2 Overloading on the result

To illustrate the consequences of allowing the result type to cause late binding,
consider this very simple, but perhaps unnatural example35:

Figure 6.2: Example of late binding due to result type

At compile time, before optimization, it must be decided whether to bind
function f late or early. During optimization it is decided whether to use f or f-1.
The following variant of function fn uses f-1:

35. For clarity only one argument is used. 

{fn(t1
1 , …,tn

1 )→tr
1 ,… ,fn(t1

k , …,tn
k )→tr

k}
fn(t1

j , …,tn
j )→tr

j

fn(t1
j , …,tn

j )→tr
j

tr
i

fn(t1
j , …,tn

j )→tr
j

Number

Integer Real

CREATE FUNCTION f(Integer i)->Number AS

CREATE FUNCTION f(Integer i)->Integer AS

CREATE FUNCTION fn()->Number AS
SELECT n FOR EACH Integer i, Number n
WHERE n=f(i);

/*function implementation*/ ;

/*function implementation*/;
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Example 61: Intermediate query representation

There are two variants of f-1, 

Example 62: Resolvent inverses

Given these two variants it is clearly the case that late binding must be used,
since the dynamic type of n may be Integer or Number.

The difference between multi-functions and standard message-passing
invoked functions in this example is that using message passing, only the first
argument is used to resolve which implementation to use and that would be
impossible and lead to an exception during type resolution.

Using a non-inverted call to function f will result in the following variant:

Example 63: Intermediate query representation

Both resolvents of function f must be executed in this case since both are
applicable and both will produce results with correct types. The execution of
the two resolvents are over subsets of the argument domain. These subsets need
not be disjoint. The resolvent f(Integer)→Number is executed over those inte-
gers that are mapped to the instances of Number that not are Integer. The resol-
vent f(Integer)→Integer is applied to those instances that are mapped to
instances of type Integer as:

fn()->Number n
SELECT n
WHERE f-1(n)=i

f-1(Number)->Integer

f-1(Integer)->Integer

fn()->Number n
SELECT n
WHERE f(i)=n
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Figure 6.3: Mapping of function overridden on the result.

The figure above shows how the extent of Integer is divided into two non-
disjoint subsets where each subset is mapped by any of the two resolvents. 

Overriding on the result cause nested function applications to become more
complex. Consider the following example:

Example 64: Nested function application with overridden result

In this example, selecting which resolvent of f to apply is not possible unless
the expected result type of f is known. The expected result type of f is the type
of the argument of function g where the result if f of is to be used. In the exam-
ple above there are two resolvents of g that are possible.

Guided by the previous example (ex. 64) the execution strategy of the two
resolvents of f is given. To the result of the two resolvents of f, apply the appro-
priate resolvent of g selected at runtime.

For practical reasons we suggest that the result type alone cannot cause late
binding. The motivations for this suggestion are:
 • Hard to find any application where it is desirable
 • The data model will lose its conceptual naturalness.

Integer
Number

Integerf(Integer)→Number

f(Integer)→Integer
f(Integer)→Number

f(Integer)→Integer

CREATE FUNCTION g(Number n)->Integer AS STORED;

CREATE FUNCTION g(Integer i)->Integer AS i+1;

CREATE FUNCTION f(Integer i)->Number AS STORED;

CREATE FUNCTION f(Integer i)->Integer AS STORED;

SELECT g(f(i)) FOR EACH INTEGER i WHERE i=5;
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6.2.3 Type resolution of restricted multi-functions

In AMOS we have decided not to allow overloading on the result. Thus in the
example (fig. 6.2) it will be ambiguous as to which resolvent of the function f
to choose.

The definition of MSA must be revised to signal an ambiguity if the types of
the arguments of two different resolvents are identical and the result types of
the resolvents are both subtypes of the expected type. It is possible to overload
on the result type but not to use functions that are overridden on the result type.
The restricted version of MSA is:

Definition 21:  Most specific applicable resolvent, MSA, restricted

Let  denote the
set of all applicable multi-function resolvents to a particu-
lar function call fn(a,…,n) where the types of the actual
arguments are: at1…atn and the expected result type is atr.
If MSA(ar,<at1…atn>,atr) =  then for all
multi-function resolvents  in ar it must
hold that:
i  

The definition of resolvent* for restricted multi-functions becomes more
complex since it must now guarantee that an MSA can always be selected when
late binding is used36. This guarantee can be made if there do not exist any
resolvents with identical argument type declarations in the set returned by
resolvent*.

Our approach differs from the approach taken in [1][20] since we allow dif-
ferent result types of resolvents with identical argument types. In AMOS the
following overloading is allowed:

Example 65: Function creation

During type checking the query processor will select the appropriate resol-
vent by having enough information on the expected result type. Clearly, if the
necessary information regarding the expected result type cannot be derived, an
ambiguity will arise.

Having multi-functions in a database system with late binding and invertibil-
ity is indeed a challenge where special execution strategies have to be invented
to manage late bound multi-functions that are optimizable and invertible. 

36. Which is when the set returned by resolvent* contains several possible resolvents.

ar={fn(t1
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 S(fn(t1
i , …,tn

i )→tr
i)

S(fn(t1
j , …,tn

j )→tr
j ) < S(fn(t1

i , …,tn
i )→tr

i)

CREATE FUNCTION f(Integer i)->Integer AS ...;
CREATE FUNCTION f(Integer i)->Charstring AS ...;
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7 Summary and future work

In this last section of the thesis, a summary of the main contributions of this
work and directions of future work are presented.

7.1 Summary

In this thesis the vast area of query processing has been outlined and some of
the object-oriented aspects of query processing have been addressed. One par-
ticular problem in object-oriented query processing is the management of late
bound function calls in the execution plan. 

Query processing refers to all actions that need to be taken in order to trans-
late and execute a high-level declarative query over some database. The main
sub-areas of query processing include:
 • Data model definition
 • Algebra representation of queries
 • Translation of declarative high-level queries to low-level algebra representa-

tion
 • Optimization of algebra query trees
 • Execution plan generation from algebra query tree
 • Execution of plan

In this thesis the specific problem of allowing late bound functions in que-
ries has been addressed in depth and an approach to managing late bound func-
tions throughout all query processing steps has been presented. The main
contributions of this thesis are:
 • Making late bound functions invertible
 • Making late bound functions optimizable
 • Resolution of the requirement of late binding
 • Incremental query compilation for transparent binding policy

By resolving when late binding must be used the late bound function is
replaced with a call to a special algebra operator, DTR. The arguments of the
DTR operator is the set of possible resolvents and their arguments. 

By making DTR invertible and assigning it a cost model and fanout predic-
tion, the DTR can be optimized using a cost-based optimizer. Thus the
enhanced modelling capabilities that allowing late bound functions in the exe-
cution plan provides can be fully utilized with little or no performance degrada-
tion. The DTR and DTR inverse are defined in terms of the resolvents and
resolvent inverses that are eligible for execution at runtime. The cost and
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fanout prediction of DTR is made on the basis of the cost and fanout of the pos-
sible resolvents.

By performing a local optimization any available indexes within the late
bound functions can be utilized and this will be reflected in the cost of the
enclosing DTR.

Nevertheless, having the DTR in a database system there are remaining
problems that need to be addressed.

7.2 Future work

There are a number of issues to address in order to present a complete approach
that covers the area of query processing in an object-oriented database manage-
ment system. 

7.2.1 Multi-functions and DTR

Our proposal to make late bound functions optimizable and invertible involves
functions overloaded on the first argument only. The DTR approach must be
generalised to address multi-functions. A new problem that arises is that it is
not meaningful to consider the inverse of a multi-function. To exemplify, con-
sider the following figure:

Example 66: Multi-function definition and application of multi-function

In the figure above a multi-function named m-fn is created. The multi-func-
tion is then applied where the result and the first argument of the multi-function
are known and the second argument is sought. Obviously, when using multi-
functions the inverse is just a special case of a more general concept of differ-
ent configurations of bound and unbound arguments and result. 

For each multi-function with n arguments and one result there are 2n+1 con-
figurations of which some might be unexecutable. This means that the DTR
operator must be capable of executing any of the 2n+1 variants.

7.2.2 Comparison operators other than equality

How can comparison operators other than equality, i.e. <, >, be used in combi-
nation with DTR and ordered indexes (various types of search trees [62]) in an
efficient manner? Queries with such comparisons are called range queries.

Given a system that supports several different index structures, range queries
have to be carefully optimized to utilize any search trees available. If a DTR is

CREATE FUNCTION m-fn(Number a,Number b)->Integer c AS
/* Implementation of function */;

SELECT b FOR EACH Number b WHERE 5=m-fn(3,b);



95

present, not only the execution order (inverse or regular) has an impact the
optimization of the possible resolvent, the comparison operator used must also
be taken into account. To exemplify consider:

Example 67: Late bound function in range query

In this example, the function must be late bound in the range query. For effi-
cient execution the possible resolvents of DTR must be optimized with respect
to the < operator if any efficient storage structures are utilizable. Also, invert-
ing fn in the above example must consider the < operator.

Clearly, there are some issues that remain to be addressed but it is our belief
that the DTR approach is viable and that the problems described here can be
incorporated by generalizing and extending the basic DTR approach.

7.2.3 Algebra

The algebra used in the examples throughout this thesis is a very simple exten-
sion to the relational algebra. This algebra is only used for the purpose of
exemplifying in an easily understood manner. It is important not to view it as a
proposal for an algebra to be used in an object-oriented system.

It is crucial to the performance of a system that the algebra is easy to opti-
mize and designed for an easy and efficient translation from a declarative query
language into the algebra. The special features of a system must be expressible
in an efficient manner in the algebra. Along with the definition of the algebra,
transformation rules must be defined that supports generation of semantically
equivalent query trees.

The special features of AMOS which an algebra must be able to express
include: invertibility, function applications, multi-functions, late binding and
the usual object oriented features, including subtyping, inheritance and com-
plex objects. 

The algebra must also be designed so that new storage structures and
retrieval primitives can be incorporated into the system. This means that the
algebra must be able to use new access primitives and yet be optimizable.

The reason for wanting to incorporate new storage structures is that certain
applications require special storage structures and access primitives to be effi-
cient, e.g. spatial data, image data or multimedia data.

Clearly, designing an algebra that supports all these features is a challenge.

CREATE FUNCTION fn(Number b)-> Integer AS 
/* Function Implementation */;

CREATE FUNCTION fn(Integer i)-> Integer AS
/* Function Implementation */;

SELECT i FOR EACH Integer i, Number n
WHERE i<fn(n);
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