
Uppsala Master's Theses inComputing Siene No. 299Examensarbete DV32005-06-02ISSN 1100�1836Using Reliable JXTA P2P CommuniationBetween Mediator PeersTeppo SiiriläInformation TehnologyComputing Siene DepartmentUppsala UniversityBox 337S-751 05 UppsalaSwedenAbstratThe main objetive of this thesis is to investigate how JXTA teh-nology an be used for reliable ommuniation between Amos II me-diator peers.JXTA tehnology is a set of Peer-To-Peer protools designed thatmultiple of devies an ommuniate with eah other in a Peer-To-Peerfashion. The idea of JXTA is that any kind of devie that an om-muniate in some way will be able to partiipate in a JXTA network.Amos II is an objet-oriented mediator/wrapper database systemdeveloped at UDBL. Via the wrapper apabilities Amos II an aessand query many external data soures inluding other Amos II nodes.By using mediator systems appliation design is simpli�ed beause theappliation need only to ommuniate with the mediator instead of allthe external data soures.A series of evaluation tests were made that measured lateny andthroughput using both JXTA ommuniation methods and the AmosII ommuniation methods, whih uses TCP/IP sokets.Supervisor : Tore RishExaminator: Tore RishPassed:

2

SammanfattningDetta examensarbete gik ut på att undersöka hur man kan använ-da JXTA teknologi för kommunikation mellan olika Amos II noder.JXTA teknologi är en mängd �Peer-To-Peer� protokoll som möjlig-gör att man kan koppla ihop väldigt många olika apparater som kankommuniera på ett �Peer-To-Peer� sätt. Meningen med JXTA är attalla apparater som kan kommuniera på något vis ska kunna vara endel i ett fungerande JXTA nätverk.Amos II är ett objekt-orienterat mediator/wrapper databas systemsom utveklas i UDBL gruppen. En �wrapper� är ett litet program somöversätter mellan den externa data källans format oh ett gemensamtformat som i det här fallet Amos II använder. Genom att använda�wrappers� kan Amos II utföra frågor mot många externa data källorsamt andra Amos II noders data. En �mediator� är ett program an-vänder sig av olika �wrappers� för att utföra frågor mot data i externadatakällor. Genom att applikationer använder sig av �mediatorer� kanapplikationen göras enklare då den inte behöver ställa separata frågormot �era datakällor oh sedan kombinera deras resultat utan det räkermed att kunna kommuniera med �mediatorn�.Test mätningar gjordes när systemet var implementerad för att mä-ta oh jämföra latensen oh �throughput� mellan JXTA metoderna ohAmos II metoderna som använder sig av TCP/IP sokets.

Using Reliable JXTA P2P Communiation Between Mediator Peers

CONTENTS 3Contents1 Introdution 41.1 Report overview . 52 Bakground 62.1 Databases and Query languages 62.2 Mediator/Wrapper . 72.3 Amos Mediator System . 82.3.1 External Interfaes . 92.4 Peer-to-Peer . 102.5 JXTA Tehnology . 102.5.1 Peers . 122.5.2 Peer groups . 122.5.3 JXTA ommuniation 132.5.4 Advertisements . 142.5.5 Servies . 143 Arhiteture 163.1 API layer . 163.2 JXTAAmos layer . 163.3 Example . 173.4 Implementation Alternatives 194 Evaluation 204.1 Test set-up . 204.2 Reliability . 214.3 Lateny . 224.4 Throughput . 244.5 Fators . 264.6 Comments . 265 Summary & Conlusions 275.1 Summary . 275.2 Conlusions . 275.3 Limitations . 285.4 Future Work . 286 Referenes 30A APPENDIX: Test Explanation 31A.1 Reliability tests . 31A.2 Lateny tests . 32A.3 Throughput tests . 34Using Reliable JXTA P2P Communiation Between Mediator Peers

4 1 INTRODUCTION1 IntrodutionThe use of P2P1 networks and appliations are inreasing and P2P tehnol-ogy is used more and more for ommuniation between appliations. P2Pappliations started with instant messaging systems followed by resouresharing appliations. To make it easier for developers to write P2P appli-ations, Sun released JXTA[18℄ tehnology in 2001 and it has sine thendeveloped further as an open soure projet[9℄. JXTA tehnology is a set ofP2P protools designed in suh a way so that a multiple of di�erent deviesan ommuniate with eah other in a P2P fashion. The idea is that any de-vie with some kind of ommuniation apabilities will be able to partiipatein a JXTA P2P network in some way.Databases are used together with di�erent appliations either in a dis-tributed manner or as a stand alone database. Amos II2[15℄ is an objet-oriented mediator/wrapper[19℄ database system, developed at UDBL3, whihan at both as a single-user database and as a multi-user server to applia-tions and other Amos II peers. It is light weight and very extensible beauseof its wrapper apabilities. A wrapper is a piee of software that translatesrequests and data to an other data format. So via wrappers a database anaess data from a multiple of di�erent external data soures. Mediatorsuse these wrappers to aess external heterogeneous data soures and makeit possible for appliations to use these data soures. The use of mediatorssimpli�es appliations whih needs to aess several external data soures byletting the mediator aess and query the data. The appliation needs onlyto ommuniate with the mediator in order to aess all the external datasoures.The main objetive of this thesis was to investigate how JXTA tehnologyan be used for reliable ommuniation between Amos II mediator peers andto evaluate if the JXTA ommuniation is e�ient and reliable enough foruse in a database system ompared to Amos II ommuniation as it is now,i.e. TCP/IP soketsThe approah to this was �rst to do some researh on how JXTA tehnol-ogy works, what kind of methods it supports, how to use JXTA, et. and tolearn about how Amos II works and how to use its query language AmosQL.After that the ore JXTA ommuniation methods were implemented inre-mentally and when those were ready they were made available to Amos IIas foreign funtions. When the JXTA ommuniation was made available toAmos the evaluation test were made.1Peer-to-Peer2Ative Mediator Objet System3Uppsala DataBase Laboratory, http://www.it.uu.se/researh/group/udbl/Using Reliable JXTA P2P Communiation Between Mediator Peers

1 INTRODUCTION 51.1 Report overviewThe rest of this report is arranged in the following way: In setion 2 thebakground information is presented. The bakground information is fol-lowed by setion 3 in where the arhiteture of the new JXTAAmos systemis desribed. Setion 4 desribes the evaluation tests that were made and theresults of the tests. Setion 5 ontains a brief summary of the onlusionsalong with a brief disussion of future work.The bakground setion there is a brief desription of databases and querylanguages (setion 2.1), Mediator/wrapper systems and Amos II (setion 2.3)and �nally P2P and JXTA tehnology (setion 2.5).

Using Reliable JXTA P2P Communiation Between Mediator Peers

6 2 BACKGROUND2 Bakground2.1 Databases and Query languagesDatabases are simply a olletion of data of some kind. This data an beaessed and modi�ed usually via a DBMS4. A DMBS is a set of programsand meta-data for aessing the data in a database in an e�ient and fastway. Central to the DBMS approah is that every database ontains meta-data, alled shema, that desribes the struture of the database. A datamodel of a DMBS is the onepts used to desribe its shema, i.e. model itsdata.Databases an have di�erent kinds of data models[16℄, whih is how thedatabase models the meta-data. The following are data models are the mostommon ones:
• Relational data model
• Entity-Relational data model5
• Objet-Oriented data model
• Objet-Relational data modelThe most widely used data model is the relational data model, in whihthe data and the relation ship between di�erent data is represented by tables.The E-R model is also widely used. In the E-R model data an be seen asentities and relationship is simply assoiations between di�erent entities.There are also other data models that are used, like Objet-oriented datamodel whih extends the E-R model with methods and more. When using anobjet-oriented data model there is no need to �atten out objets into tableswhen storing them, the objets an be stored diretly. Objet-relational datamodel ombines ideas from objet-oriented data model and relational datamodel.Query languages are used to send queries to the DBMS for some parti-ular data. In the early ages of the databases there were many di�erent kindsof query languages, but there has emerged a standard, SQL, whih many oftodays relational- databases use. SQL whih stands for Strutured QueryLanguage. Even though SQL is alled a query language, but it an also up-date and manage the database shema. It was designed at IBM in the late1970's and sine then has spread to many other databases. Although it hasbeen made a standard by both ISO6 and ANSI7, many database appliationfrom ompanies have added proprietary features to their version of SQL butthey all support a subset of SQL.4database-management system5The E-R model6International Organization for Standardization7Amerian National Standards InstituteUsing Reliable JXTA P2P Communiation Between Mediator Peers

2 BACKGROUND 72.2 Mediator/WrapperIn order to make it easier to aess and query data from di�erent kinds ofdata soures the mediator/wrapper arhiteture was thought of in 1992[19℄.

Figure 1: Mediator/Wrapper ArhitetureThe purpose of the mediator/wrapper arhiteture is to make it possiblefor appliations to make use of many heterogeneous data soures in a simpleway. This way appliations only need to ommuniate with one mediator inorder to gain aess all the di�erent external data soures and this simpli�esthe appliation design.The mediator/wrapper arhiteture has one mediator server and mayuse one or possibly more wrappers (see �gure 1). The mediator server has aCDM8 in whih the mediator handles the data. The following part illustrateshow a query might go through a mediator/wrapper system.In the appliation program, queries are written and sent down to themediator. Depending on the query the mediator an split up the query tosmaller parts and send the smaller queries to one or several of its wrappersor send queries to other mediators whih an split it further if there is a needto do that.When a query arrives at a wrapper, the wrapper translates the queryto a data spei� form and obtains the wanted data from its data soure.After that the wrapper translates the answer bak to the CDM and returnsit to the mediator. The mediator then assembles the answer from all thewrappers/mediators it has gotten an answer from and sends the whole answerbak to the appliation.8Common Data ModelUsing Reliable JXTA P2P Communiation Between Mediator Peers

8 2 BACKGROUND2.3 Amos Mediator SystemAmos II is a distributed objet-oriented mediator/wrapper system, deve-loped at UDBL, it an onnet to other Amos II lients using TCP/IP soketsand to many external data soures using di�erent wrappers. Amos II onsistsof a omplete lightweight DBMS that is extensible and has a omplete querylanguage alled AmosQL whih is similar to the objet-oriented parts ofSQL:99. Amos II runs on Windows and Linux systems and has a graphialuser-interfae written in JAVA whih is alled GOOVI9[2℄.

Figure 2: Amos Arhiteture[14℄Figure 2 shows the arhiteture of an Amos II server. It is split into threelevels. The top level is the appliation layer, where di�erent appliations anaess Amos II via its allin interfae or other embeddings. The middle levelis the mediator layer whih onsists of the main Amos II funtionality suhas wrappers. The kernel ontains the basi DBMS funtionality. The thirdand lowest layer onsists of the external data soures Amos II an handle.Amos II an aess data from three di�erent kind of soures due to itsmediator/wrapper apabilities:
• from Amos II internal database
• from external data soures
• from other Amos II lients.By being able to do this Amos II an aess data from many soures,mainly beause the ability to aess data from external data soures. Thismakes Amos II appear as a single database system to the user rather thanmany single databases. It is also this that makes Amos II very extensible.To be able to aess and query data from a new data soure a new wrapper9Graphial Objet-Oriented View IntegratorUsing Reliable JXTA P2P Communiation Between Mediator Peers

2 BACKGROUND 9has to be de�ned that translates between Amos internal data format andthe new external data format. For example wrappers for XML �les[11℄,Internet searh engines[10℄, MIDI musi �les[7℄ and others[1℄ have alreadybeen implemented.2.3.1 External InterfaesAmos II has external interfaes so it an ommuniate with external pro-grams written in JAVA, C or lisp, with the the allout interfae[4℄. Externalappliations an also all Amos II via the allin interfae.Callin The allin interfae is used if an external appliation wants to a-ess Amos II. As mentioned earlier Amos II an be either embedded in theappliation or have a lient/server onnetion to the appliation. While thelient/server onnetion an handle several appliations at the same time itis also hundreds of times slower than the embedded Amos onnetion.Amos II an be aessed in two ways via the allin interfae, either by anembedded query method or the fast-path method. In the embedded querymethod a string is passed to Amos II to be dynamially parsed and evaluated.In the fast-path method spei� Amos II methods are alled diretly by theappliation. This method is faster than the embedded query method due tothe need of parsing the query.Callout The allout interfae is used to aess external methods in otherlanguages than AmosQL. The things needed for this to work, is the imple-mented funtion, a foreign funtion in AmosQL that desribes how to aessthe external method and an optional ost hint of the method. After de�ningthe foreign funtion in a similar way then the all to the external method isas easy as any other all to an Amos funtion. An example of how to reatea foreign funtion, assumed that you have the orret JAVA lasses:1 reate funtion jlisten() -> Charstring s as2 foreign "JAVA:JxtaAmosAPI/listen";

Using Reliable JXTA P2P Communiation Between Mediator Peers

10 2 BACKGROUND2.4 Peer-to-PeerThe evolution of Internet has gone from homogeneous lient-server arhi-teture (see �gure 3(a)) to heterogeneous lient-server arhiteture (see �g-ure 3(b)) and now is taking going more and more towards peer-to-peer (see�gure 3()) arhiteture.P2P appliations ommuniate di�erently with eah other than lient-server appliations. In lient-server arhiteture there is a entralized serverto whih many lients an send requests for data, i.e. web server and Internetbrowsers. But in P2P arhitetures the peers ommuniate diretly withother peers, so there is no need for a entral server. This an amongst otherthings redue bandwidth in the net sine peers an obtain the informationfrom other peers and not from a entral server.
(a) Client-Server Arhi-teture (b) Web-based Cli-ent-Server Arhite-ture () Peer-to-Peer ArhitetureFigure 3: Evolution of Internet arhiteture[13℄The regular lient-server model, where several lients onnet to oneserver has dominated the Internet struture sine the dawn of the Inter-net, but P2P appliations are used more and more in di�erent appliationssuh as instant messaging lients have used P2P ommuniations to sendmessages to other lients.In the reent years P2P appliations like Freenet[3℄, Gnutella[5℄ and manyothers have made it possible for users to share resoures diretly with eahother without the need of a entral server. JXTA tehnology wants to hangethis so that not only desktop omputers use P2P networks and appliationsbut also other smaller devies as PDAs10, phones and others as seen in�gure 3() an be onneted together in a P2P fashion.2.5 JXTA TehnologyJXTA tehnology is a series of P2P protools designed so that as manydevies as possible an ommuniate with eah other as easily as possible.When using JXTA tehnology many di�erent devies an make use of it, like10Personal Digital Assistant i.e. a hand held omputer or a personal organizerUsing Reliable JXTA P2P Communiation Between Mediator Peers

2 BACKGROUND 11PDAs, mobile phones, regular workstations, servers and many other typesof devies.JXTA tehnology was �rst developed at Sun mirosystems, In, to makeP2P networks and appliations more easier to develop. In 2001 the JXTAprojet beame an open soure projet when Sun released JXTA version 1.0with many partiipants all over the world, either researhing about it ordeveloping appliation that uses JXTA tehnology. Anyone who wants anbeome involved with the projet[9℄.JXTA provides methods for peers on the network to �nd other peers,ommuniate with them, forming peer groups, searhing for resoures, et.Lets begin by looking in more detail at a ouple of these things. At the mo-ment JXTA tehnology de�nes six di�erent protools that peers an use[6℄.
• Peer Disovery Protool, peers use this protool to �nd di�erent ad-vertisements from other peers, and thus join peer groups, et.
• Peer Resolver Protool, this allows peers to searh for di�erent re-soures in the JXTA network, like peers, pipes et.
• Peer Information Protool, peers an use this protool to obtain infor-mation of other peers, to hek that the other peer is alive et.
• Peer Membership Protool, is used to assure that a peer is allowed tojoin a peer group et.
• Pipe Binding Protool is used when binding a pipe advertisement to apipe endpoint.
• Endpoint Routing Protool is used by peer routers to answer queriesfrom peers that want to know routes to a destination peer.

Figure 4: Jxta Arhiteture[6℄Using Reliable JXTA P2P Communiation Between Mediator Peers

12 2 BACKGROUNDFigure 4 on the previous page show the arhiteture for JXTA systems.The bottom layer is the ore layer. This layer has some basi methods whihare needed for basi P2P appliations suh as reation of peers, peer groups,disovery of other peer and ommuniation methods. The seond layer is theservie layer. This layer inludes network servies that might be desired butnot neessary for P2P appliations, suh as searhing, indexing, �le sharing.The appliation layer is where the developer appliations are suh as instantmessaging, resoure sharing and other appliations.2.5.1 PeersA peer is a node that ommuniate in some form with other peers or serviesusing a JXTA protool. The idea is that any type of devie that an om-muniate in some way an beome a peer in the JXTA networks. The peersin a JXTA network does not have to understand all six JXTA protools inorder to partiipate and funtion in a JXTA network. Many peers with sameinterests build up peer groups.2.5.2 Peer groupsPeer groups are a gathering of peers that have similar interests or similarneeds. JXTA provides methods for reating, joining and leaving peer groups.Any peer an reate a new peer group that either are open to all oropen only to those that meet a ertain riteria. JXTA tehnology does notdesribe how or when a peer group should be reated. Figure 5 shows anexample of how peer groups an be formed and used.

Figure 5: peer group example[18℄So to ommuniate with other peers, the peers must be members of thesame peer group. whih leads us into JXTA ommuniation.Using Reliable JXTA P2P Communiation Between Mediator Peers

2 BACKGROUND 132.5.3 JXTA ommuniationThere are several ways for peers to ommuniate with eah other in peergroups. JXTA Pipes are the basi way of ommuniation. They are used toommuniate with other peers and with JXTA servies. Pipes are hannelswith whih peers an send messages to other peers or more exatly to otherpeers endpoints. Endpoints are atual input and output hannels of a peer.There are two di�erent kinds of pipes[12℄:
• Uniast pipes are pipes where a message an only go in one diretion.Therefore there are two kinds of pipes, input pipes (the reeiving end)and output pipes(the sending end) (see �gure 6). Messages sent outon an output pipe will end up in the listening input pipe.
• Propagated pipes are similar but instead of having one input pipe ithas many. This means that messages whih are sent out on the outputpipe will propagate out to all the input pipes that are listening to thatoutput pipe.

Figure 6: pipe example[8℄As mentioned earlier pipes are the base of JXTA ommuniations, thismeans that they an be extended to allow other forms of ommuniationson top of the pipe servie. An example of this are bidiretional pipes whihare built on top of the input/output pipe infrastruture. These funtion in asimilar way that input/output pipes. The di�erene is that you do not needtwo separate pipes to send and reeive data to/from. Another di�erene isthat bidiretional pipes are reliable. Bidiretional pipes use a message basedinterfae like the regular pipes. There is a limit on the message sizes whenusing bidiretional pipes, messages an at most be 64KB large.Another example of extension of the pipes are JXTA Sokets. Thesesokets behave and work almost the same as regular JAVA sokets i.e. theyuse a stream based interfae to send messages and they also are reliable.JXTA sokets use automati message hunking whih enables to send largermessages than 64Kb through JXTA sokets.Using Reliable JXTA P2P Communiation Between Mediator Peers

14 2 BACKGROUND2.5.4 AdvertisementsIn order to be able to join a peer group, reate a pipe or servie et, thepeer must have aess to an advertisement. Advertisements an be seen asthe blueprints of di�erent JXTA objets. These advertisements desribe theresoure, what name and id it has, how to �nd it and everything else neededto be able to reate an instane of the objet or join a peer group. Theyare represented as XML douments with all the meta information about theresoure. An example of an advertisement for a regular input pipe in JXTA:<?xml version="1.0"?><!DOCTYPE jxta:PipeAdvertisement><jxta:PipeAdvertisement xmlns:jxta="http://jxta.org"><Id>urn:jxta:uuid-05C3A089241E4C91A3D4AA3345548C71103E127EDABF437087CFCF1803F6FE3904</Id><Type>JxtaUniast</Type><Name>AmosPeerGroup:AmosPipe:InputPipe:Amos</Name></jxta:PipeAdvertisement>The uuid string is an identi�ation string for a spei� advertisement.When reating an advertisement there is a hoie of reating the advertise-ment with a spei� uuid number or with a random uuid number. But howdo other peers reate pipes to others if they do not have its advertisements?After reating an advertisement for a pipe, by using the advertisement thepeer an reate one instane of the objet from the advertisement. The peeran also publish the advertisement so that other peers an �nd it when theydo a searh for advertisements. Publishing means that the advertisement ispropagated out to other peers or to a rendezvous peer so that other peersthat only know about the rendezvous peer an �nd more advertisements.2.5.5 ServiesPeers of peer groups an provide servies to other peers. These servies aresimply a set of methods that the provider o�ers. Examples of servies anbe a resoure sharing servie provided by a resoure sharing peer group.JXTA Servies an be divided into:
• Peer Serviesare aessible only on the peer that provides the servie. If that peerUsing Reliable JXTA P2P Communiation Between Mediator Peers

2 BACKGROUND 15fails in some way the servie fails with the peer. The provider mustpublish the servie advertisement in the peer group to make it possiblefor other to make use of it.
• Peer group Serviesare running on multiple peers in the peer group, so it does not matterif one peer fails, the servie is aessible from the other peers.

Using Reliable JXTA P2P Communiation Between Mediator Peers

16 3 ARCHITECTURE3 ArhitetureThis setion desribes how the new module that was implemented duringthis projet works. The following �gure (�gure 7) gives an overview of thesystem and how it is built up. The parts that were developed in this projetare the JXTAAmosAPI and JXTAAmos that an be seen in the �gure 7.

Figure 7: Arhiteture of the systemThe arhiteture is divided into 4 parts. The top layer is the Amos II levelwhih has been desribed in setion 2.3 on page 8. Via the allout interfaeand foreign funtions Amos II an all funtions in the JXTAAmosAPI layer.The API layer alls the next layer, JXTAAmos level, via standard JAVAalls. The bottom layer is the JXTA level, whih has been desribed insetion 2.5 on page 10. It is this layer that handles the atual ommuniationbetween di�erent JXTAAmos peers, like sending and reeiving messages,searhing for other peers and more.3.1 API layerThe API layer onsists of all the foreign funtions that Amos II an all,so this layer only direts the tra� between the Amos II layer and the JX-TAAmos layer. The reason for this is explained in setion 3.4 on page 19.3.2 JXTAAmos layerMost of the important methods are in the JXTAAmos layer. It ontainsmethods like:
• Initialization method. This method initializes the JXTAAmos layer.Creates or joins the peer group, reates all pipes, sokets that areUsing Reliable JXTA P2P Communiation Between Mediator Peers

3 ARCHITECTURE 17needed and publishes the advertisement so other peers an ommuni-ate with this peer.
• Listening. These methods listen for inoming tra� from other peers,and may send bak a result depending on the message. There aresome �listen� methods that listen on the di�erent JXTA ommunia-tion hannels, i.e JXTA sokets and JXTA bidiretional pipes. Thesemethods blok until they are aneled by pressing ENTER in the ter-minal.
• Send methods. There are two kind of send methods:� Send, this is the basi send ommand. Simply sends a message toanother peer.� Ship, this method is similar as the basi send ommand exeptthis method waits for the reeiver to send bak a result.
• Searh for other peers.
• Message hunking for JXTA bidiretional pipes.3.3 ExampleTo explain how the system works, lets look at how the send and ship om-mand goes through the system and what happens where. Steps 1 � 10 arethe same for the send, ship and broadast ommands, steps 11-16 appliesonly to the ship ommand where a reply is sent bak to the sending end.Figure 8 shows how the di�erent layers ommuniate with eah other.

Figure 8: Example of a send ommandThe di�erent steps of the ommuniation proess:Using Reliable JXTA P2P Communiation Between Mediator Peers

18 3 ARCHITECTURE1. The reeiving end starts listening to inoming messages by alling theforeign funtion listen, whih bloks until aneled. The foreign fun-tion is in the API layer.2. The API layer redirets the ommand to the JXTA Amos layer.3. In the JXTA Amos layer the appliation loops and heks for messagesfrom the JXTA layer until the user anels ENTER is pressed.4. The sending end either issues one of the send ommands to send anAmosQL ommand to one or more reeiving ends.5. A foreign funtion is alled in the API layer that alls the the orretommuniation method in the JXTA Amos layer.6. An XML doument is reated that ontains the AmosQL ommand andwhat kind of message it is (i.e. if a reply is needed for the message).Depending on whih ommuniation method is used; a pipe, soket orbidiretional pipe that is onneted to the reeiving end is reated 11and the message is sent down to the JXTA layer.7. The message is sent to the reeiver using a JXTA protool.8. The message is reeived on the reeiving end. The AmosQL ommandis fethed from the XML doument and depending on if a reply isneeded12 then the ommand is sent up to JXTA Amos API layer andthe listen loop waits for the result from the API layer. Otherwise ifno reply is needed then the ommand is sent up to the API layer andignoring any result.9. The API layer here exeutes the AmosQL ommand by using the allininterfae to Amos II.10. Amos II exeutes the AmosQL ommand.11. If a reply was needed then Amos II sends bak the result of the AmosQLommand to the API layer where a result XML doument is reatedand is sent down to the JXTA Amos layer.12. The result doument is sent on bak using the orret pipe, soket orbidiretional pipe.13. The message is sent bak using some JXTA protool.11this happens only the �rst time when sending to another peer, the rest of the timethe already reated pipe, soket or bidiretional pipe is used.12only for the ship ommandUsing Reliable JXTA P2P Communiation Between Mediator Peers

3 ARCHITECTURE 1914. The sending peer reeives the result doument and goes through theXML �le and emits13 the results to Amos II.15. The results are emitted to Amos II using the Callout interfaes resultmethod.16. The results reah Amos II and are shown in the usual way.3.4 Implementation AlternativesThe reason why I deided to use an extra API layer in the middle, as seenin �gure 8 was so that I ould develop and test the JXTAAmos part on itsown without having to go via Amos II to test the di�erent methods. Thislead to muh easier and faster testing and of the ommuniation methods tomake sure they work as they are intended to.JXTA is available in many di�erent programming languages, and theinitial plan was to use JXTA-C[17℄ whih allows to write P2P appliationsthat use JXTA tehnology in the programming language C. But after someresearh about JXTA-C, it turned out that JXTA-C did not support all thedesired features and was not as omplete as the original JAVA version ofJXTA. It was this and the fat that there was not as muh doumentationfor the JXTA-C version than for the JAVA version when this projet began,led to that the implementation was done in the JAVA version of JXTA. TheJXTA version used to implement the system was JXTA J2SE 2.3.2.

13To send a result bak to Amos II from an external appliationUsing Reliable JXTA P2P Communiation Between Mediator Peers

20 4 EVALUATION4 EvaluationThe evaluation of the JXTA system was done by making three di�erent typesof evaluation tests. These tests were made �rst on the JXTA system andafterwards on the Amos II, then the test results were ompared with eahother. The idea of these tests were to evaluate how e�ient the JXTA basedommuniation is ompared to the ommuniation methods used in AmosII, whih is TCP/IP sokets. As mentioned there were three di�erent tests:
• Reliability of JXTA ommuniation
• Lateny
• ThroughputBeause TCP/IP sokets are reliable by default only the two lasts tests(that is lateny and throughput tests) results were ompared with the JXTAommuniations methods.4.1 Test set-upThe tests where set up as follows. The omputers were onneted with eahother using one Ethernet LAN as �gure 9 shows. Computer B was set up asa rendezvous peer in JXTA so that the di�erent JXTA Peers ould �nd eahother and form a peer group.

Figure 9: The test set upBefore the atual tests were made, a �warm up� of the ommuniation wasperformed. The reason why this was done is simply so that the time neededfor a peer to reate a onnetion to another peer would not interfae withthe measurements of the atual tests. The �warm up� onsisted of sending afew round trip messages using both JXTA sokets and JXTA bidiretionalpipes to all other peers. The reason why to send round trip messages was sothat the other peer would also reate a onnetion to the sender.The lateny tests and the throughput tests were mainly measured be-tween omputer A and omputer C, with some ontrol measurements be-tween omputer C and omputer B. The reason for this was that omputerUsing Reliable JXTA P2P Communiation Between Mediator Peers

4 EVALUATION 21C and omputer A had similar CPU speeds whereas omputer B was a bitslower than the other two. The reliability tests were measured using all om-puters beause in these tests the time was not a ritial moment, only theorder of the messages were important and that no messages were lost duringthe send phase of the test.To measure the performane of the JXTA ommuniation, I made a slightmodi�ation to the JXTAAmos layer. Instead of sending/forwarding mes-sages up to the JXTAAPI layer from the JXTAAmos layer, as seen in �gure 8on page 17, the messages only reah the JXTAAmos layer, and proessedthere, and depending of the message type the messages were diretly sentbak to the sender (Steps 1�8, 12�16 in setion 3.3 on page 17).All the measurements were done at the JXTA Amos layer(see �gure 8 onpage 17), whih means that all messages have go through JXTA, and pro-essed at the JXTAAmos layer and then sent bak to the sender dependingon if the message was sent using a send or a ship method.4.2 ReliabilityThese tests were made to test the reliability of the di�erent JXTA ommu-niation methods. The following JXTA methods were tested
• Pipes
• Broadast soket
• JXTA Sokets
• Bidiretional PipesThe �rst two methods: pipes and soket broadast are unreliable butwere tested to hek how many messages were lost and/or reeived in thewrong order.Pseudo ode for the reliability tests:TestReliability() {Send("Initialize Reliability Test");SendMessages(100); // Send 100 Messages numbered 1...100Send("End Reliability Test");Results = GetResults();} A short explanation of the di�erent rows in the pseudo ode:1. a message was sent to the reeiver to start storing messages.2. 100 messages are sent to the reeiver, whih stores the messages it getsin an arrayUsing Reliable JXTA P2P Communiation Between Mediator Peers

22 4 EVALUATION3. a message was sent to the reeiver to stop storing messages.Thereafter the reeived messages are analyzed so that they are in theorret order, the number of messages that were reeived in the wrongorder and the number of lost messages are reported bak.4. A message to retrieve the results from the reeiver is sent.In wrong order Lost messages10 100 10 100Pipe 0 7 4 2Broadast Soket 3 9 5 45JXTA Soket 0 0 0 0Bidiretional Pipes 0 0 0 0Table 1: Reliability tests tableTable 1 shows the result from the reliability tests. The tests were �rstdone by sending 10 numbered messages and then analyzing the results. Af-ter that the tests were re-run but now by sending 100 numbered messages.From table 1 we an see that regular pipes and the broadast soket ommu-niation methods are not suitable for reliable ommuniation between twopeers, beause when using these methods messages are lost and/or arrivein wrong order. This is an be very serious espeially when working withdatabases sine the database is supposed to be onsistent. JXTA sokets andBidiretional pipes in JXTA are reliable and they should be used if reliableommuniation is to be used.4.3 LatenyLateny was measured between two peers to see if there was any di�erenein lateny when using TCP/IP sokets for ommuniation and when usingthe di�erent JXTA implemented methods.Lateny was alulated by �rst measuring the time it took to send anumber of round trip messages, then by using that time to alulate latenylike this.From the test we get the total time it took to send a number of roundtrip messages:
Totaltime = NumberOfMessages ∗ RoundTripT ime (1)Sine the round trip time onsist of lateny in both ways and a small messageproess time on the reeiver. Therefore the round trip time an be writtenas:

RoundTripT ime = 2 ∗ Latency + MessageProcessT ime (2)Using Reliable JXTA P2P Communiation Between Mediator Peers

4 EVALUATION 23whih hanges equation 1 on the faing page into
Totaltime = NumberOfMessages∗ (2∗Latency +MessageProcessT ime)(3)But when the message is small then the message proess time is negligibleompared to the lateny. Then lateny an be alulated the following way:

Latency =
Totaltime

NumberOfMessages ∗ 2
(4)In pseudo ode the lateny alulations looked like this:CalulateLateny() {start = urrentTime();SendRoundtrip(N); //Send N roundtrip messagesend = urrentTime();Lateny = (end - start) / (N*2); //Calulate lateny} A short explanation of the di�erent rows in the pseudo ode:1. Store the starting time.2. Send N round trip messages.3. Store the ending time.4. Calulate the lateny using equation 4.Lateny was measured for JXTA ommuniation methods when usingJXTA sokets and JXTA bidiretional pipes, and also for Amos II ommu-niation, whih uses TCP/IP sokets.JXTA Sokets Bidiretional pipes TCP/IP sokets163 50 2Table 2: Lateny in milliseondsTable 2 shows the results of this test and all the values are in milliseonds.As an be seen from that table, JXTA sokets had the highest lateny (163ms) while JXTA bidiretional pipes only had 1

3
(50 ms) of the lateny forJXTA sokets. The lowest lateny value had TCP/IP sokets with a valueroughly 2 ms.Using Reliable JXTA P2P Communiation Between Mediator Peers

24 4 EVALUATION4.4 ThroughputThroughput was measured for the two reliable ommuniation methods forJXTA (i.e. JXTA sokets and JXTA bidiretional pipes) and then omparedwith TCP/IP sokets whih is the send method that is used in Amos II. Themeasurements were done as follows:1. a message was sent to the reeiver to start a timer.2. lots of messages were sent to the reeiver with a spei� message size.3. a message to stop the timer on the reeiving end was sent and the timeit took to reeive all the messages was returned.4. throughput for the message size is alulated.In pseudo ode the test looked like this:CalulateThroughput(size) {msg = reateMessageWithSize(size);Send("Start timer");repeat N timesSend(msg);Send("Stop timer");time = getReeivedTime();throughput = (N*size) / (time);}

Figure 10: Throughput for JXTA methodsThis was done for 10 di�erent message sizes. The results of the JXTAtests an be seen in �gure 10. The bidiretional pipes originally only sup-port a message size of up to 64 KB so in order to send messages that wereUsing Reliable JXTA P2P Communiation Between Mediator Peers

4 EVALUATION 25larger than 64 Kb message hunking was implemented. From the �gure wean see that JXTA Bidiretional pipes and JXTA sokets have very similarthroughput up to message sizes around 256 Kb. There after the throughputfor JXTA bidiretional pipes beomes higher than the throughput for JXTAsokets.

Figure 11: JXTA throughput ompared to TCPMeasurements in Amos were done to ompare how the JXTA throughputis ompared with the throughput of TCP/IP sokets. Figure 11 shows thethroughput for TCP/IP sokets ompared to the two di�erent JXTA om-muniations methods. From �gure 11 we an learly see that the through-put for TCP/IP sokets is muh muh higher than the two JXTA methodsthroughput.

Figure 12: TCP ompared with JXTA SoketsUsing Reliable JXTA P2P Communiation Between Mediator Peers

26 4 EVALUATIONFigure 12 on the preeding page shows the ratio between TCP/IP soketthroughput and the throughput of the JXTA ommuniation methods. Fromthat �gure we an see that message sizes up to 8 KB have roughly about20 times or higher throughput in TCP/IP sokets than in JXTA. For largermessage sizes than that, 16KB and higher, TCP/IP sokets still have roughlyabout 10 times higher throughput than the JXTA methods.So ompared to TCP/IP sokets JXTA ommuniation methods seemsto have very low throughput. This means that if the appliation whih usesJXTA for ommuniation is used to send a large amount of data at a giventime, it might be better to use TCP/IP sokets instead of JXTA beause ofthe higher throughput and muh lower lateny.4.5 FatorsThere were di�erent fators with some of the JXTA methods of ommu-niation. Firstly the JXTA broadast method for pipes and sokets areunreliable, meaning that there is no guarantees that messages will arrive,and if they do there is no guarantees that they will be in the orret order.To work around this I implemented some broadast methods that are basedon reliable ommuniation whih use JXTA sokets and JXTA bidiretionalpipes.These methods were not tested as thoroughly as the regular send meth-ods beause they use the underlying JXTA sokets/bidiretional pipes forommuniation. The reason for this is that the throughput for the testedmethods an be seen as an upper limit for the throughput. This would leadto that the broadast methods would have less throughput than the simplesend methods.4.6 CommentsThe reason why the other JXTA methods, that is sokets and bidiretionalpipes, are slower than the JXTA pipes are beause that they are built ontop of the pipe servie so they inherit the pipe servies proessing time andadd new proessing time themselves by ensuring reliability et.As mentioned in setion 4.4 on page 24 the bidiretional pipes used inJXTA, support message sizes up to 64KB ompared to JXTA sokets whihsupport any message sizes. The reason for this is that JXTA sokets usesmessage hunking and JXTA bidiretional pipes do not[8℄. To send messageswith size greater than 64Kb, message hunking an be implemented manuallyon top of bidiretional pipes. Before sending the message a simple hek ismade if the message is greater than 64KB, and if it is then the message issplit into 64KB messages and sent one after another. On the reeiving endthe ontent of the split messages are merged before sending them further.Using Reliable JXTA P2P Communiation Between Mediator Peers

5 SUMMARY & CONCLUSIONS 275 Summary & Conlusions5.1 SummaryIn this projet a new ommuniations module for Amos II was implementedwhih uses JXTA P2P Tehnology. The di�erent basi ommuniationsmethods that were implemented are:
• Two send methods that uses the two reliable ommuniation methodsin JXTA. The methods sends a ommand to an other Amos II peerwithout waiting for a result.
• Two �ship� methods that uses the reliable ommuniation methods inJXTA. The methods sends a ommand to an other Amos II peer andwaits for the reeiver to send bak a result.A simple message hunking for JXTA bidiretional pipes were imple-mented also in order to send larger than 64 Kb using the pipes and omparethem with JXTA sokets.The methods were �rst tested so that they worked as they were supposedto and then the performane of these new methods were tested using threedi�erent tests,1. Reliability for the di�erent JXTA ommuniation methods was tested.2. Lateny was measured to see if there was any di�erene in latenywhen using the di�erent methods.3. Throughput of the methods was tested and ompared.The results for the JXTA based ommuniation were then ompared toTCP/IP sokets whih Amos II uses.5.2 ConlusionsFrom the evaluation phase of this projet we an draw some simple onlu-sions. If JXTA based ommuniation is to be used for reliable ommuni-ations then there are two suggestions. Either use JXTA Sokets or JXTAbidiretional pipes sine they are the only ones whih are reliable.From the lateny test results (table 2 on page 23) and throughput testresults (�gure 10 on page 24) we an learly see that both JXTA bidire-tional pipes and JXTA sokets have very similar throughput but JXTA bidi-retional pipes seems to have slightly better throughput for larger messagesizes. This gives us that JXTA bidiretional pipes are better suited for reli-able ommuniation when using large message sizes.But when the throughput of JXTA is ompared with TCP/IP soketommuniation that Amos II uses (�gure 11 on page 25) the results showsUsing Reliable JXTA P2P Communiation Between Mediator Peers

28 5 SUMMARY & CONCLUSIONSthat JXTA has still a long way to go to reah the same values as TCP/IPsokets. The lateny for TCP/IP sokets are also very low, only roughly 2ms as an be seen in table 2 on page 23. Beause of this TCP/IP soketsare still the best thing to use.5.3 LimitationsThere are some limitations on the system that was implemented in thisprojet. Some of the limitations to name a few:
• Objets annot be sent from one peer to another. This was not neededto make the simple tests that were made during the evaluation phaseof this projet.
• At the moment there is no hek for dupliate peer names when joiningthe peer group. A way around this would be to use Amos II name serverto ensure that peers have unique names in the peer group.
• Peers, when initialized, beome members in AmosPeerGroup automat-ially. Peers an't reate any other peer group.5.4 Future WorkJXTA tehnology is available in many languages. It might be a good ideato look more into the C version of JXTA14. This due to the fat that theommuniation between extensions written in C and Amos II is faster thanbetween JAVA extensions and Amos II and that extensions written in Cmight run faster than in JAVA.So it might be a good idea to evaluate that as well beause it seemsthat JXTA-C has been developed further sine this projet began and seemsto have more doumentation about the JXTA-C version projet now thanbefore.Otherwise a good idea might be to wait for a while so that JXTA beomesmore e�etive in its ommuniation handling.

14JXTA-CUsing Reliable JXTA P2P Communiation Between Mediator Peers

REFERENCES 29Referenes[1℄ Amos II Wrappers. http://user.it.uu.se/�udbl/amos/wrappers.html.[2℄ Kristofer Cassel and Tore Rish. An objet-oriented multi-mediatorbrowser. In User Interfaes to Data Intensive Systems, pages 26�35,2001.[3℄ Ian Clarke, Sott G. Miller, Theodore W. Hong, Oskar Sandberg, andBrandon Wiley. Proteting Free Expression Online with Freenet. In-ternet Computing, IEEE, 6(1):40�49, Jan/Feb 2002.[4℄ Daniel Elin and Tore Rish. Amos II Java Interfaes. Tehnial report,Dept. of Information Siene,Uppsala University, Uppsala, Sweden, Aug2000.[5℄ Gnutella website. http://www.gnutella.om/.[6℄ Li Gong. JXTA: a Network Programming Environment. Internet Com-puting, IEEE, 5(3):88�95, May/Jun 2001.[7℄ Martin Jost. A Wrapper for MIDI �les from an Objet-Relatio-nal Mediator System. Tehnial report, Department of InformationSiene,Uppsala University, Uppsala, Sweden, Aug 2000.http://user.it.uu.se/�udbl/publ/MidiWrapper.pdf.[8℄ JXTA v2.3.x: JavaTM Programmer's Guide. www.jxta.org, Apr 2005.[9℄ Projet JXTA homepage. www.jxta.org.[10℄ Timour Kathaounov, Tore Rish, and Simon Zürher. Objet-OrientedMediator Queries to Internet Searh Engines, Sep 2002. Presented atInternational Workshop on E�ient Web-based Information Systems(EWIS-2002), Montpellier, Frane.[11℄ Hui Lin, Tore Rish, and Timour Kathaounov. Adaptive Data Media-tion over XML Data. Journal of Applied System Studies, (JASS), 3(2),2002. Speial Issue on : �WEB Information Systems Appliations�.[12℄ Sott Oaks, Bernard Traversat, and Li Gong. JXTA In a Nutshell.O'Reilly, �rst edition, Sep 2002.[13℄ Projet JXTA: An Open Innovative Collaboration. www.jxta.org, April2001.[14℄ Tore Rish and Vanja Josifovski. Distributed data integration by objet-oriented mediator servers. Conurreny and Computation: Pratie andExperiene, 13(11):933�953, 2001.Using Reliable JXTA P2P Communiation Between Mediator Peers

30 REFERENCES[15℄ Tore Rish, Vanja Josifovski, and Timour Kathaounov. Funtional dataintegration in a distributed mediator system. In Peter M.D. Gray,Larry Kershberg, Peter J.H. King, and Alexandra Poulovassilis, edi-tors, Funtional Approah to Data Management - Modeling, Analyzingand Integrating Heterogeneous Data, hapter 9, pages 211�238. Springer,2003.[16℄ Abraham Silbershatz, Henry F. Korth, and S. Sudarshan. DatabaseSystem Conepts. MGraw-Hill, fourth edition, Jul 2001.[17℄ Bernard Traversat, Mohamed Abdelaziz, Dave Doolin, Mike Duigou,Jean-Christophe Hugly, and Eri Pouyoul. Projet JXTA-C: Enablinga Web of Things. In System Sienes, 2003. Proeedings of the 36thAnnual Hawaii International Conferene on, Jan 2003.[18℄ Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou,Carl Haywood, Jean-Christophe Hugly, Eri Pouyoul, and Bill Yeager.Projet JXTA 2.0 Super-Peer Virtual Network. www.jxta.org, May2003.[19℄ Gio Wiederhold. Mediators in the Arhiteture of Future InformationSystems. Computer, IEEE, 25(3):38�49, Mar 1992.

Using Reliable JXTA P2P Communiation Between Mediator Peers

A APPENDIX: TEST EXPLANATION 31A APPENDIX: Test ExplanationThis appendix goes through what methods were used to make the tests andwhat they do.A.1 Reliability testsThe reliability tests are simply AmosQL funtions that were alled fromAmos II. Here is an example of how the test for regular JXTA pipes lookedlike:1 reate funtion testReliabilityPP(harstring node,2 integer x)3 -> harstring as4 begin5 jsendp(node, "begin="+itoa(x));6 selet jsendp(node, itoa(i))7 from integer i8 where i=iota(1,x);9 result jshippp(node, "end");10 end;The tests for the other ommuniation formats were very similar. The onlydi�erene was the use of a di�erent send and shipmethod. The sendmethodsends a string to the reeiver without waiting for a result whereas the shipmethod sends a string and waits for the reeiver to reply.The �rst send ommand on row 4 initializes the reeiver so it will storethe next X messages. Rows 5�7 sends out X messages to the reeiver. Row8 sends a end ommand to the reeiver whih will analyze the X messagesto hek if any messages were lost or arrived in the wrong order.The ode for the analyze method:1 private String alulateSendTestReply(int [℄sendTest) {2 ArrayList error = new ArrayList();3 for (int i = 0; i < sendTest.length-1; i++) {4 lostMessages.remove(new Integer(sendTest[i℄));56 if (!(sendTest[i℄+1 == sendTest[i+1℄)) {7 boolean b1=false, b2=false;8 if (i-1>=0 && (sendTest[i-1℄+1 == sendTest[i℄)){9 b1=true;10 error.remove(new Integer(sendTest[i-1℄));11 error.remove(new Integer(sendTest[i℄));12 }13 if ((i+2 < sendTest.length) &&Using Reliable JXTA P2P Communiation Between Mediator Peers

32 A APPENDIX: TEST EXPLANATION14 (sendTest[i+1℄+1 == sendTest[i+2℄)){15 b2=true;16 error.remove(new Integer(sendTest[i+1℄));17 error.remove(new Integer(sendTest[i+2℄));18 }19 if(!(b1 && b2) &&20 ! error.ontains(new Integer(sendTest[i+1℄))){21 error.add(new Integer(sendTest[i+1℄));22 }23 } else {24 error.remove(new Integer(sendTest[i+1℄));25 error.remove(new Integer(sendTest[i℄));26 }27 }28 lostMessages.remove(29 new Integer(sendTest[sendTest.length-1℄));30 if (sendTest[sendTest.length-1℄ == sendTest.length) {31 error.remove(new Integer(sendTest.length));32 }3334 // Create reply String35 ...36 }Sine the messages onsists of numbers only and should be ordered, themethod simply loops through the messages and heks that message i is onenumber smaller than message i+1. Any deviations from that are reportedand presented. The method an report that messages are in wrong order insome ases where they are not. The method was written to help me �ndmost of the messages that are in the wrong order not all and by looking atthe message order manually afterwards the number of errors an sometimesbe redued if the method has reported too many errors.A.2 Lateny testsLateny was measured by using the following methods, for TCP/IP soketmeasures this lisp method was used:1 (defun lateny()2 (setq start1 (lok))3 (rptq 1000 (reval�nameserver 1))4 (setq end1 (lok))5 (osql-result (/ (/ (- end1 start1) 1000) 2))6)Using Reliable JXTA P2P Communiation Between Mediator Peers

A APPENDIX: TEST EXPLANATION 33Row 2 stores the starting time while row 3 sends 1000 short round tripmessages to the nameserver. Row 4 stores the ending time and �nally row 5alulates the lateny.The JXTA soket version of the Lateny alulations:1 publi double latSoket(String peer, int numOfMessages) {2 JxtaSoket soket = getSoketToPeerDis(peer);3 double lateny = 0;4 if (soket != null) {5 try {6 PrintWriter out =7 new PrintWriter(soket.getOutputStream(), true);8 BufferedReader in =9 new BufferedReader(10 new InputStreamReader(soket.getInputStream()));1112 String pingPongMsg =13 reateMessageString(JxtaAmos.SHIP, SOCKET,14 "ping-pong");15 long start1=System.nanoTime();16 for (int i = 0; i < numOfMessages; i++) {17 out.println(pingPongMsg);18 String reply = in.readLine();19 }20 long end1 = System.nanoTime();21 lateny = (double) ((end1-start1)/1000000000) /22 (double) numOfMessages;23 } ath (IOExeption e) {24 // TODO Auto-generated ath blok25 e.printStakTrae();26 }27 } else {28 System.out.println("Problem onneting to peer.");29 }30 return lateny;31 }Row 2 gets the soket to the wanted peer, rows 6�10 reates some streamsto use with the soket. Rows 12�14 reates the message string that is sentas a round trip message. Row 15 starts the timer and rows 16�19 sends theround trip message and reeives the answers. Row 20 stops the timer and�nally row 21 alulates the lateny aording to equation 4 on page 23.The JXTA bidiretional pipes version of the lateny alulations:1 publi double latBidi(String peer, int numOfMessages) {Using Reliable JXTA P2P Communiation Between Mediator Peers

34 A APPENDIX: TEST EXPLANATION2 JxtaBiDiPipe outPipe = getBiDiPipeToPeerDis(peer);3 double lateny = 0;4 if(outPipe != null) {5 try {6 long start1, start2, end1, end2;7 start1 = System.nanoTime();8 for (int i = 0; i < numOfMessages; i++) {9 Message pingPongMsg = reateMessage(JxtaAmos.SHIP,10 BIDIPIPE,11 "ping-pong");12 outPipe.sendMessage(pingPongMsg);13 Message result = outPipe.getMessage(rtimeout);14 }15 end1 = System.nanoTime();16 lateny = (double) ((end1-start1)/1000000000) /17 (double) numOfMessages;18 } ath (IOExeption e) {19 e.printStakTrae();20 } ath (InterruptedExeption e) {21 e.printStakTrae();22 }23 } else {24 System.out.println("Problem onneting to peer.");25 }2627 return lateny;28 }This method is very similar as the JXTA soket version. Row 2 gets thebidiretional pipe to the wanted peer. Row 7 starts the timer while rows 8�14 handles the reation of the messages and sending them to the reeiver andgetting the result bak. Row 15 stops the timer and �nally row 16 alulatesthe lateny aording to equation 4 on page 23.A.3 Throughput testsTo tests the throughput in Amos II for TCP/IP sokets the following methodwere used:1 (defun kbps(os ls)2 (setq start1 (lok))3 (rptq os (send-form (buildstring ls) *nsp*))4 (reval�nameserver 1)5 (setq end1 (lok))6 (osql-result (/ (* os (/ (alulateBytes ls) 1024))Using Reliable JXTA P2P Communiation Between Mediator Peers

A APPENDIX: TEST EXPLANATION 357 (- end1 start1)))8)The buildstring methods simply builds a string with a inputted length,while alulateBytes alulates how many bytes the string has. Row 2stores the starting time and row 3 sends the list to the reeiver os times.The round trip message sent on row 4 is simply to make sure that the reeiverhas gotten the list that was sent on row 3. Row 5 stores the ending time androw 6 � 7 alulates the throughput.The JXTA soket version of the throughput measurements:1 publi double kbpsSoketSend(String peer, int numOfMessages,2 int numOfBytes) {3 JxtaSoket soket = getSoketToPeerDis(peer);4 double bytesPerSeond = 0;5 if (soket != null) {6 try {7 PrintWriter out =8 new PrintWriter(soket.getOutputStream(), true);9 String msgString = reateString(numOfBytes);10 long bytesSent = 0;11 String initMesg =12 reateMessageString(JxtaAmos.SEND, NOREPLY,13 "Start measure");14 out.println(initMesg);15 for (int i = 0; i < numOfMessages; i++) {16 String msg = reateMessageString(JxtaAmos.SEND,17 NOREPLY,18 msgString);19 bytesSent += msg.length();20 out.println(msg);21 }22 String endMesg =23 reateMessageString(JxtaAmos.SHIP, SOCKET,24 "End measure");25 out.println(endMesg);26 InputStreamReader isr =27 new InputStreamReader(soket.getInputStream());28 BufferedReader in = new BufferedReader(isr);29 reply = in.readLine();30 double reeivedTime = Double.parseDouble(reply);31 bytesPerSeond = (double)bytesSent/reeivedTime;32 } ath (IOExeption e) {33 e.printStakTrae();34 }Using Reliable JXTA P2P Communiation Between Mediator Peers

36 A APPENDIX: TEST EXPLANATION35 } else {36 System.out.println("Problem onneting to peer.");37 }38 return bytesPerSeond;39 }Row 9 reates a string with the spei�ed length. Rows 11�14 reates andsends the initialization message to the reeiver whih starts a timer on thereeiver. Rows 15�21 sends a string with the spei�ed length the givennumber of times. 22�25 reates and send the stop message to the reeiver tostop the timer. In row 29 the reply is gotten whih ontains the time it tookto reeive the messages and �nally row 31 alulates the throughput of thereeiver.The JXTA bidiretional pipes version of the throughput measurements,whih is similar to the JXTA soket version:1 publi double kbpsBidiSend(String peer, int numOfMessages,2 int numOfKBytes) {3 JxtaBiDiPipe outPipe = getBiDiPipeToPeerDis(peer);4 double bytesPerSeond = 0;5 if(outPipe != null) {6 try {7 String msgString = reateString(numOfKBytes*1024);8 long bytesSent = 0;9 Message initMsg =10 reateMessage(JxtaAmos.SEND, NOREPLY,11 "Start measure");12 outPipe.sendMessage(initMsg);13 for (int i = 0; i < numOfMessages; i++) {14 Message msg[℄ =15 reateBiDiPipeMessages(JxtaAmos.SEND, NOREPLY,16 msgString);17 bytesSent += sendBidiPipeMessages(msg, outPipe);18 }19 Message endMsg =20 reateMessage(JxtaAmos.SHIP, BIDIPIPE,21 "End measure");22 outPipe.sendMessage(endMsg);2324 Message result = outPipe.getMessage(rtimeout);2526 double reeivedTime =27 Double.parseDouble(28 result.getMessageElement("Reply").toString());29 bytesPerSeond = (double)bytesSent/reeivedTime;Using Reliable JXTA P2P Communiation Between Mediator Peers

A APPENDIX: TEST EXPLANATION 3730 } ath (IOExeption e) {31 e.printStakTrae();32 } ath (InterruptedExeption e) {33 e.printStakTrae();34 }35 } else {36 System.out.println("Problem onneting to peer.");37 }3839 return bytesPerSeond;40 }Row 7 reates a string with the spei�ed length. Rows 9�12 reates and sendsthe initialization message to the reeiver whih starts a timer on the reeiver.Rows 13�18 sends a string with the spei�ed length the given number oftimes. The method reateBiDiPipeMessages handles the message hunkingin a simple way, when a string is larger than 64 Kb the method splits it int64 Kb hunks. The sendBidiPipeMessages method sends all the messagesto the reeiver. The reeiver then19�22 reates and send the stop message to the reeiver to stop the timer.In row 24 the reply is gotten whih ontains the time it took to reeive themessages and �nally row 29 alulates the throughput of the reeiver.

Using Reliable JXTA P2P Communiation Between Mediator Peers

