Uppsala Master’s Theses in
Computing Science No. 299
Examensarbete DV3
2005-06-02

ISSN 1100-1836

Using Reliable JXTA P2P Communication
Between Mediator Peers

Teppo Siirila

Information Technology
Computing Science Department
Uppsala University
Box 337
S-751 05 Uppsala
Sweden

Abstract

The main objective of this thesis is to investigate how JXTA tech-
nology can be used for reliable communication between Amos IT me-
diator peers.

JXTA technology is a set of Peer-To-Peer protocols designed that
multiple of devices can communicate with each other in a Peer-To-Peer
fashion. The idea of JXTA is that any kind of device that can com-
municate in some way will be able to participate in a JXTA network.

Amos IT is an object-oriented mediator/wrapper database system
developed at UDBL. Via the wrapper capabilities Amos II can access
and query many external data sources including other Amos IT nodes.
By using mediator systems application design is simplified because the
application need only to communicate with the mediator instead of all
the external data sources.

A series of evaluation tests were made that measured latency and
throughput using both JXTA communication methods and the Amos
IT communication methods, which uses TCP/IP sockets.

Supervisor : Tore Risch
Examinator: Tore Risch

Passed:

Sammanfattning

Detta examensarbete gick ut pa att underséka hur man kan anvéin-
da JXTA teknologi for kommunikation mellan olika Amos II noder.

JXTA teknologi &r en méngd “Peer-To-Peer” protokoll som mdjlig-
gdr att man kan koppla ihop vildigt manga olika apparater som kan
kommunicera pa ett “Peer-To-Peer” satt. Meningen med JXTA &r att
alla apparater som kan kommunicera pa nagot vis ska kunna vara en
del i ett fungerande JXTA néitverk.

Amos II &r ett objekt-orienterat mediator/wrapper databas system
som utvecklas i UDBL gruppen. En “wrapper” &r ett litet program som
oversdtter mellan den externa data kéllans format och ett gemensamt
format som i det har fallet Amos Il anvinder. Genom att anvéinda
“wrappers” kan Amos IT utféra fragor mot manga externa data kallor
samt andra Amos II noders data. En “mediator” dr ett program an-
vinder sig av olika “wrappers” for att utfora fragor mot data i externa
datakillor. Genom att applikationer anvinder sig av “mediatorer” kan
applikationen goras enklare da den inte behover stilla separata fragor
mot flera datakéllor och sedan kombinera deras resultat utan det racker
med att kunna kommunicera med “mediatorn”.

Test métningar gjordes nir systemet var implementerad {or att mé-
ta och jimfora latensen och “throughput” mellan JXTA metoderna och
Amos IT metoderna som anvinder sig av TCP/IP sockets.

Using Reliable JXTA P2P Communication Between Mediator Peers

CONTENTS 3

Contents
1 Introduction 4
1.1 Report overview 5)
2 Background 6
2.1 Databases and Query languages 6
2.2 Mediator/Wrapper 7
2.3 Amos Mediator System 8
2.3.1 External Interfaces 9
24 Peer-to-Peer 10
2.5 JXTA Technology 10
251 Peers. e 12
2.5.2 Peer groups 12
2.5.3 JXTA communication 13
2.5.4 Advertisements 14
255 Serviceso 14
3 Architecture 16
3.1 APIlayer 16
3.2 JXTAAmos layer 16
3.3 Exampleo 17
3.4 Implementation Alternatives 19
4 Evaluation 20
4.1 Testset-up 20
4.2 Reliability 21
43 Latency 22
4.4 Throughput 24
4.5 Factors. 26
4.6 Comments 26
5 Summary & Conclusions 27
5.1 Summary 27
5.2 Conclusions 27
5.3 Limitations 28
54 Future Work 28
6 References 30
A APPENDIX: Test Explanation 31
A.1 Reliability tests 31
A2 Latency tests 32
A.3 Throughput tests o 34

Using Reliable JXTA P2P Communication Between Mediator Peers

4 1 INTRODUCTION

1 Introduction

The use of P2P! networks and applications are increasing and P2P technol-
ogy is used more and more for communication between applications. P2P
applications started with instant messaging systems followed by resource
sharing applications. To make it easier for developers to write P2P appli-
cations, Sun released JXTAJ18] technology in 2001 and it has since then
developed further as an open source project[9]. JXTA technology is a set of
P2P protocols designed in such a way so that a multiple of different devices
can communicate with each other in a P2P fashion. The idea is that any de-
vice with some kind of communication capabilities will be able to participate
in a JXTA P2P network in some way.

Databases are used together with different applications either in a dis-
tributed manner or as a stand alone database. Amos IT1?[15] is an object-
oriented mediator /wrapper[19] database system, developed at UDBL?, which
can act both as a single-user database and as a multi-user server to applica-
tions and other Amos IT peers. It is light weight and very extensible because
of its wrapper capabilities. A wrapper is a piece of software that translates
requests and data to an other data format. So via wrappers a database can
access data from a multiple of different external data sources. Mediators
use these wrappers to access external heterogeneous data sources and make
it possible for applications to use these data sources. The use of mediators
simplifies applications which needs to access several external data sources by
letting the mediator access and query the data. The application needs only
to communicate with the mediator in order to access all the external data
sources.

The main objective of this thesis was to investigate how JXTA technology
can be used for reliable communication between Amos IT mediator peers and
to evaluate if the JXTA communication is efficient and reliable enough for
use in a database system compared to Amos II communication as it is now,
i.e. TCP/IP sockets

The approach to this was first to do some research on how JXTA technol-
ogy works, what kind of methods it supports, how to use JXTA, etc. and to
learn about how Amos IT works and how to use its query language AmosQL.
After that the core JXTA communication methods were implemented incre-
mentally and when those were ready they were made available to Amos II
as foreign functions. When the JXTA communication was made available to
Amos the evaluation test were made.

'Peer-to-Peer
2 Active Mediator Object System
3Uppsala DataBase Laboratory, http://www.it.uu.se/research /group/udbl/

Using Reliable JXTA P2P Communication Between Mediator Peers

1 INTRODUCTION)

1.1 Report overview

The rest of this report is arranged in the following way: In section 2 the
background information is presented. The background information is fol-
lowed by section 3 in where the architecture of the new JXTAAmos system
is described. Section 4 describes the evaluation tests that were made and the
results of the tests. Section 5 contains a brief summary of the conclusions
along with a brief discussion of future work.

The background section there is a brief description of databases and query
languages (section 2.1), Mediator/wrapper systems and Amos II (section 2.3)
and finally P2P and JXTA technology (section 2.5).

Using Reliable JXTA P2P Communication Between Mediator Peers

6 2 BACKGROUND

2 Background

2.1 Databases and Query languages

Databases are simply a collection of data of some kind. This data can be
accessed and modified usually via a DBMS*. A DMBS is a set of programs
and meta-data for accessing the data in a database in an efficient and fast
way. Central to the DBMS approach is that every database contains meta-
data, called schema, that describes the structure of the database. A data
model of a DMBS is the concepts used to describe its schema, i.e. model its
data.

Databases can have different kinds of data models[16], which is how the
database models the meta-data. The following are data models are the most
common ones:

e Relational data model

e Entity-Relational data model®
e Object-Oriented data model
e Object-Relational data model

The most widely used data model is the relational data model, in which
the data and the relation ship between different data is represented by tables.
The E-R model is also widely used. In the E-R model data can be seen as
entities and relationship is simply associations between different entities.

There are also other data models that are used, like Object-oriented data
model which extends the E-R model with methods and more. When using an
object-oriented data model there is no need to flatten out objects into tables
when storing them, the objects can be stored directly. Object-relational data
model combines ideas from object-oriented data model and relational data
model.

Query languages are used to send queries to the DBMS for some partic-
ular data. In the early ages of the databases there were many different kinds
of query languages, but there has emerged a standard, SQL, which many of
todays relational- databases use. SQL which stands for Structured Query
Language. Even though SQL is called a query language, but it can also up-
date and manage the database schema. It was designed at IBM in the late
1970’s and since then has spread to many other databases. Although it has
been made a standard by both ISO% and ANSI?, many database application
from companies have added proprietary features to their version of SQL but
they all support a subset of SQL.

1database-management system

°The E-R model

SInternational Organization for Standardization
"American National Standards Institute

Using Reliable JXTA P2P Communication Between Mediator Peers

2 BACKGROUND 7

2.2 Mediator/Wrapper

In order to make it easier to access and query data from different kinds of
data sources the mediator/wrapper architecture was thought of in 1992[19].

Application

:

Mediator
Server

/\

Wrapper 1 Wrapper n

A Fy

h 4 ¥

DB .. File system

Figure 1: Mediator/Wrapper Architecture

The purpose of the mediator /wrapper architecture is to make it possible
for applications to make use of many heterogeneous data sources in a simple
way. This way applications only need to communicate with one mediator in
order to gain access all the different external data sources and this simplifies
the application design.

The mediator /wrapper architecture has one mediator server and may
use one or possibly more wrappers (see figure 1). The mediator server has a
CDMB® in which the mediator handles the data. The following part illustrates
how a query might go through a mediator/wrapper system.

In the application program, queries are written and sent down to the
mediator. Depending on the query the mediator can split up the query to
smaller parts and send the smaller queries to one or several of its wrappers
or send queries to other mediators which can split it further if there is a need
to do that.

When a query arrives at a wrapper, the wrapper translates the query
to a data specific form and obtains the wanted data from its data source.
After that the wrapper translates the answer back to the CDM and returns
it to the mediator. The mediator then assembles the answer from all the
wrappers/mediators it has gotten an answer from and sends the whole answer
back to the application.

8Common Data Model

Using Reliable JXTA P2P Communication Between Mediator Peers

8 2 BACKGROUND

2.3 Amos Mediator System

Amos II is a distributed object-oriented mediator/wrapper system, deve-
loped at UDBL, it can connect to other Amos II clients using TCP /IP sockets
and to many external data sources using different wrappers. Amos II consists
of a complete lightweight DBMS that is extensible and has a complete query
language called AmosQL which is similar to the object-oriented parts of
SQL:99. Amos II runs on Windows and Linux systems and has a graphical
user-interface written in JAVA which is called GOOVI?[2].

| GOOoVI CAE -
Browser System Client

Embedded

Interfaces ODBC,’JDEIC| Javacallin| Inter-AMOS

AMOS Il Kernel

Wrappers Fielationa1 STEP| XML | Inter-AMOS

NN

| RDBMS | | STEP File| | XML file | | Other AMOS ||| source

Figure 2: Amos Architecture|14]

Figure 2 shows the architecture of an Amos II server. It is split into three
levels. The top level is the application layer, where different applications can
access Amos II via its callin interface or other embeddings. The middle level
is the mediator layer which consists of the main Amos II functionality such
as wrappers. The kernel contains the basic DBMS functionality. The third
and lowest layer consists of the external data sources Amos IT can handle.

Amos IT can access data from three different kind of sources due to its
mediator /wrapper capabilities:

o from Amos II internal database
e from external data sources

e from other Amos II clients.

By being able to do this Amos II can access data from many sources,
mainly because the ability to access data from external data sources. This
makes Amos II appear as a single database system to the user rather than
many single databases. It is also this that makes Amos II very extensible.
To be able to access and query data from a new data source a new wrapper

9Graphical Object-Oriented View Integrator

Using Reliable JXTA P2P Communication Between Mediator Peers

1
2

2 BACKGROUND 9

has to be defined that translates between Amos internal data format and
the new external data format. For example wrappers for XML files[11],
Internet search engines[10], MIDI music files[7] and others|1] have already
been implemented.

2.3.1 External Interfaces

Amos II has external interfaces so it can communicate with external pro-
grams written in JAVA, C or lisp, with the the callout interface[4]. External
applications can also call Amos II via the callin interface.

Callin The callin interface is used if an external application wants to ac-
cess Amos II. As mentioned earlier Amos IT can be either embedded in the
application or have a client/server connection to the application. While the
client /server connection can handle several applications at the same time it
is also hundreds of times slower than the embedded Amos connection.

Amos IT can be accessed in two ways via the callin interface, either by an
embedded query method or the fast-path method. In the embedded query
method a string is passed to Amos II to be dynamically parsed and evaluated.
In the fast-path method specific Amos II methods are called directly by the
application. This method is faster than the embedded query method due to
the need of parsing the query.

Callout The callout interface is used to access external methods in other
languages than AmosQL. The things needed for this to work, is the imple-
mented function, a foreign function in AmosQL that describes how to access
the external method and an optional cost hint of the method. After defining
the foreign function in a similar way then the call to the external method is
as easy as any other call to an Amos function. An example of how to create
a foreign function, assumed that you have the correct JAVA classes:

create function jlisten() -> Charstring cs as
foreign "JAVA:JxtaAmosAPI/listen";

Using Reliable JXTA P2P Communication Between Mediator Peers

10 2 BACKGROUND

2.4 Peer-to-Peer

The evolution of Internet has gone from homogeneous client-server archi-
tecture (see figure 3(a)) to heterogeneous client-server architecture (see fig-
ure 3(b)) and now is taking going more and more towards peer-to-peer (see
figure 3(c)) architecture.

P2P applications communicate differently with each other than client-
server applications. In client-server architecture there is a centralized server
to which many clients can send requests for data, i.e. web server and Internet
browsers. But in P2P architectures the peers communicate directly with
other peers, so there is no need for a central server. This can amongst other
things reduce bandwidth in the net since peers can obtain the information
from other peers and not from a central server.

e

M - Workstation ‘
ol
@w Kiosk

Clients

(a) Client-Server Archi- (b) Web-based Cli- (c) Peer-to-Peer Architecture
tecture ent-Server Architec-
ture

Figure 3: Evolution of Internet architecture[13]

The regular client-server model, where several clients connect to one
server has dominated the Internet structure since the dawn of the Inter-
net, but P2P applications are used more and more in different applications
such as instant messaging clients have used P2P communications to send
messages to other clients.

In the recent years P2P applications like Freenet[3], Gnutella[5] and many
others have made it possible for users to share resources directly with each
other without the need of a central server. JXTA technology wants to change
this so that not only desktop computers use P2P networks and applications
but also other smaller devices as PDAs!, phones and others as seen in
figure 3(c) can be connected together in a P2P fashion.

2.5 JXTA Technology

JXTA technology is a series of P2P protocols designed so that as many
devices as possible can communicate with each other as easily as possible.
When using JXTA technology many different devices can make use of it, like

10Personal Digital Assistant i.e. a hand held computer or a personal organizer

Using Reliable JXTA P2P Communication Between Mediator Peers

2 BACKGROUND 11

PDAs, mobile phones, regular workstations, servers and many other types
of devices.

JXTA technology was first developed at Sun microsystems, Inc, to make
P2P networks and applications more easier to develop. In 2001 the JXTA
project became an open source project when Sun released JXTA version 1.0
with many participants all over the world, either researching about it or
developing application that uses JXTA technology. Anyone who wants can
become involved with the project[9].

JXTA provides methods for peers on the network to find other peers,
communicate with them, forming peer groups, searching for resources, etc.
Lets begin by looking in more detail at a couple of these things. At the mo-
ment JXTA technology defines six different protocols that peers can use[6].

e Peer Discovery Protocol, peers use this protocol to find different ad-
vertisements from other peers, and thus join peer groups, etc.

e Peer Resolver Protocol, this allows peers to search for different re-
sources in the JXTA network, like peers, pipes etc.

e Peer Information Protocol, peers can use this protocol to obtain infor-
mation of other peers, to check that the other peer is alive etc.

e Peer Membership Protocol, is used to assure that a peer is allowed to
join a peer group etc.

e Pipe Binding Protocol is used when binding a pipe advertisement to a
pipe endpoint.

e Endpoint Routing Protocol is used by peer routers to answer queries
from peers that want to know routes to a destination peer.

Sun
JXTA : L
applications JXTA community applications jXTA .
applications

Sun * Indexing
IXTA BGTA iy
services * File sharing

services

IXTA

core

Figure 4: Jxta Architecture[6]

Using Reliable JXTA P2P Communication Between Mediator Peers

12 2 BACKGROUND

Figure 4 on the previous page show the architecture for JXTA systems.
The bottom layer is the core layer. This layer has some basic methods which
are needed for basic P2P applications such as creation of peers, peer groups,
discovery of other peer and communication methods. The second layer is the
service layer. This layer includes network services that might be desired but
not necessary for P2P applications, such as searching, indexing, file sharing.
The application layer is where the developer applications are such as instant
messaging, resource sharing and other applications.

2.5.1 Peers

A peer is a node that communicate in some form with other peers or services
using a JXTA protocol. The idea is that any type of device that can com-
municate in some way can become a peer in the JXTA networks. The peers
in a JXTA network does not have to understand all six JXTA protocols in
order to participate and function in a JXTA network. Many peers with same
interests build up peer groups.

2.5.2 Peer groups

Peer groups are a gathering of peers that have similar interests or similar
needs. JXTA provides methods for creating, joining and leaving peer groups.

Any peer can create a new peer group that either are open to all or
open only to those that meet a certain criteria. JXTA technology does not
describe how or when a peer group should be created. Figure 5 shows an
example of how peer groups can be formed and used.

NetPeerGroup

PeerGroup A L’i ' o p&”D pesriD

pesriD]
PeerGronp C

Physical Network

Fear Peer \’i] - Pear
D W
| F.‘MH“H‘“ H&V@M

Figure 5: peer group example[18]

So to communicate with other peers, the peers must be members of the
same peer group. which leads us into JXTA communication.

Using Reliable JXTA P2P Communication Between Mediator Peers

2 BACKGROUND 13

2.5.3 JXTA communication

There are several ways for peers to communicate with each other in peer
groups. JXTA Pipes are the basic way of communication. They are used to
communicate with other peers and with JXTA services. Pipes are channels
with which peers can send messages to other peers or more exactly to other
peers endpoints. Endpoints are actual input and output channels of a peer.
There are two different kinds of pipes[12]:

e Unicast pipes are pipes where a message can only go in one direction.
Therefore there are two kinds of pipes, input pipes (the receiving end)
and output pipes(the sending end) (see figure 6). Messages sent out
on an output pipe will end up in the listening input pipe.

e Propagated pipes are similar but instead of having one input pipe it
has many. This means that messages which are sent out on the output
pipe will propagate out to all the input pipes that are listening to that
output pipe.

1 QutputPipe
1 InputPipe

Propagate Pipes

Unicast Pipes

Figure 6: pipe example[8]

As mentioned earlier pipes are the base of JXTA communications, this
means that they can be extended to allow other forms of communications
on top of the pipe service. An example of this are bidirectional pipes which
are built on top of the input/output pipe infrastructure. These function in a
similar way that input/output pipes. The difference is that you do not need
two separate pipes to send and receive data to/from. Another difference is
that bidirectional pipes are reliable. Bidirectional pipes use a message based
interface like the regular pipes. There is a limit on the message sizes when
using bidirectional pipes, messages can at most be 64KB large.

Another example of extension of the pipes are JXTA Sockets. These
sockets behave and work almost the same as regular JAVA sockets i.e. they
use a stream based interface to send messages and they also are reliable.
JXTA sockets use automatic message chunking which enables to send larger
messages than 64Kb through JXTA sockets.

Using Reliable JXTA P2P Communication Between Mediator Peers

14 2 BACKGROUND

2.5.4 Advertisements

In order to be able to join a peer group, create a pipe or service etc, the
peer must have access to an advertisement. Advertisements can be seen as
the blueprints of different JXTA objects. These advertisements describe the
resource, what name and id it has, how to find it and everything else needed
to be able to create an instance of the object or join a peer group. They
are represented as XML documents with all the meta information about the
resource. An example of an advertisement for a regular input pipe in JXTA:

<?xml version="1.0"7>
<!DOCTYPE jxta:PipeAdvertisement>
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>
urn:jxta:uuid-05C3A089241E4C91A3D4AA3345548C7110
3E127EDABF437087CFCF1803F6FE3904
</Id>
<Type>
JxtaUnicast
</Type>
<Name>
AmosPeerGroup:AmosPipe:InputPipe:Amos
</Name>
</jxta:PipeAdvertisement>

The wuid string is an identification string for a specific advertisement.
When creating an advertisement there is a choice of creating the advertise-
ment with a specific uuid number or with a random wuid number. But how
do other peers create pipes to others if they do not have its advertisements?
After creating an advertisement for a pipe, by using the advertisement the
peer can create one instance of the object from the advertisement. The peer
can also publish the advertisement so that other peers can find it when they
do a search for advertisements. Publishing means that the advertisement is
propagated out to other peers or to a rendezvous peer so that other peers
that only know about the rendezvous peer can find more advertisements.

2.5.5 Services

Peers of peer groups can provide services to other peers. These services are

simply a set of methods that the provider offers. Examples of services can

be a resource sharing service provided by a resource sharing peer group.
JXTA Services can be divided into:

e Peer Services
are accessible only on the peer that provides the service. If that peer

Using Reliable JXTA P2P Communication Between Mediator Peers

2 BACKGROUND 15

fails in some way the service fails with the peer. The provider must
publish the service advertisement in the peer group to make it possible
for other to make use of it.

e Peer group Services
are running on multiple peers in the peer group, so it does not matter
if one peer fails, the service is accessible from the other peers.

Using Reliable JXTA P2P Communication Between Mediator Peers

16 3 ARCHITECTURE

3 Architecture

This section describes how the new module that was implemented during
this project works. The following figure (figure 7) gives an overview of the
system and how it is built up. The parts that were developed in this project
are the JXTAAmosAPI and JXTAAmos that can be seen in the figure 7.

Jxta Amos API

Jxta Amos

Figure 7: Architecture of the system

The architecture is divided into 4 parts. The top layer is the Amos II level
which has been described in section 2.3 on page 8. Via the callout interface
and foreign functions Amos IT can call functions in the JXTAAmosAPI layer.
The API layer calls the next layer, JXTAAmos level, via standard JAVA
calls. The bottom layer is the JXTA level, which has been described in
section 2.5 on page 10. It is this layer that handles the actual communication
between different JXTAAmos peers, like sending and receiving messages,
searching for other peers and more.

3.1 API layer

The API layer consists of all the foreign functions that Amos II can call,
so this layer only directs the traffic between the Amos II layer and the JX-
TAAmos layer. The reason for this is explained in section 3.4 on page 19.

3.2 JXTAAmos layer

Most of the important methods are in the JXTAAmos layer. It contains
methods like:

e Initialization method. This method initializes the JXTAAmos layer.
Creates or joins the peer group, creates all pipes, sockets that are

Using Reliable JXTA P2P Communication Between Mediator Peers

3 ARCHITECTURE 17

needed and publishes the advertisement so other peers can communi-
cate with this peer.

e Listening. These methods listen for incoming traffic from other peers,
and may send back a result depending on the message. There are
some “listen” methods that listen on the different JXTA communica-
tion channels, i.e JXTA sockets and JXTA bidirectional pipes. These
methods block until they are canceled by pressing ENTER in the ter-
minal.

e Send methods. There are two kind of send methods:
— Send, this is the basic send command. Simply sends a message to
another peer.
— Ship, this method is similar as the basic send command except
this method waits for the receiver to send back a result.

e Search for other peers.

e Message chunking for JXTA bidirectional pipes.

3.3 Example

To explain how the system works, lets look at how the send and ship com-
mand goes through the system and what happens where. Steps 1 — 10 are
the same for the send, ship and broadcast commands, steps 11-16 applies
only to the ship command where a reply is sent back to the sending end.
Figure 8 shows how the different layers communicate with each other.

—

3,8,12

Jxta Amos API _ Jxta Amos API

: Jxta Amos

Figure 8: Example of a send command

The different steps of the communication process:

Using Reliable JXTA P2P Communication Between Mediator Peers

18

3 ARCHITECTURE

10.

11.

12.

13.

. The receiving end starts listening to incoming messages by calling the

foreign function listen, which blocks until canceled. The foreign func-
tion is in the API layer.

The API layer redirects the command to the JXTA Amos layer.

In the JXTA Amos layer the application loops and checks for messages
from the JXTA layer until the user cancels ENTER is pressed.

. The sending end either issues one of the send commands to send an

AmosQL command to one or more receiving ends.

A foreign function is called in the API layer that calls the the correct
communication method in the JXTA Amos layer.

An XML document is created that contains the AmosQL command and
what kind of message it is (i.e. if a reply is needed for the message).
Depending on which communication method is used; a pipe, socket or
bidirectional pipe that is connected to the receiving end is created '!
and the message is sent down to the JXTA layer.

The message is sent to the receiver using a JXTA protocol.

The message is received on the receiving end. The AmosQL command
is fetched from the XML document and depending on if a reply is
needed'? then the command is sent up to JXTA Amos API layer and
the listen loop waits for the result from the API layer. Otherwise if
no reply is needed then the command is sent up to the API layer and
ignoring any result.

The APIT layer here executes the AmosQL command by using the callin
interface to Amos II.

Amos II executes the AmosQL command.

If a reply was needed then Amos II sends back the result of the AmosQL
command to the API layer where a result XML document is created
and is sent down to the JXTA Amos layer.

The result document is sent on back using the correct pipe, socket or
bidirectional pipe.

The message is sent back using some JXTA protocol.

"this happens only the first time when sending to another peer, the rest of the time
the already created pipe, socket or bidirectional pipe is used.
26nly for the ship command

Using Reliable JXTA P2P Communication Between Mediator Peers

3 ARCHITECTURE 19

14. The sending peer receives the result document and goes through the
XML file and emits'® the results to Amos II.

15. The results are emitted to Amos IT using the Callout interfaces result
method.

16. The results reach Amos II and are shown in the usual way.

3.4 Implementation Alternatives

The reason why I decided to use an extra API layer in the middle, as seen
in figure 8 was so that I could develop and test the JXTAAmos part on its
own without having to go via Amos II to test the different methods. This
lead to much easier and faster testing and of the communication methods to
make sure they work as they are intended to.

JXTA is available in many different programming languages, and the
initial plan was to use JXTA-C[17| which allows to write P2P applications
that use JXTA technology in the programming language C. But after some
research about JXTA-C, it turned out that JXTA-C did not support all the
desired features and was not as complete as the original JAVA version of
JXTA. It was this and the fact that there was not as much documentation
for the JXTA-C version than for the JAVA version when this project began,
led to that the implementation was done in the JAVA version of JXTA. The
JXTA version used to implement the system was JXTA J2SE 2.3.2.

13To send a result back to Amos II from an external application

Using Reliable JXTA P2P Communication Between Mediator Peers

20 4 EVALUATION

4 Evaluation

The evaluation of the JXTA system was done by making three different types
of evaluation tests. These tests were made first on the JXTA system and
afterwards on the Amos II, then the test results were compared with each
other. The idea of these tests were to evaluate how efficient the JXTA based
communication is compared to the communication methods used in Amos
I1, which is TCP/IP sockets. As mentioned there were three different tests:

e Reliability of JXTA communication
e Latency

e Throughput

Because TCP/IP sockets are reliable by default only the two lasts tests
(that is latency and throughput tests) results were compared with the JXTA
communications methods.

4.1 Test set-up

The tests where set up as follows. The computers were connected with each
other using one Ethernet LAN as figure 9 shows. Computer B was set up as
a rendezvous peer in JXTA so that the different JXTA Peers could find each
other and form a peer group.

A e [c

Figure 9: The test set up

Before the actual tests were made, a “warm up” of the communication was
performed. The reason why this was done is simply so that the time needed
for a peer to create a connection to another peer would not interface with
the measurements of the actual tests. The “warm up” consisted of sending a
few round trip messages using both JXTA sockets and JXTA bidirectional
pipes to all other peers. The reason why to send round trip messages was so
that the other peer would also create a connection to the sender.

The latency tests and the throughput tests were mainly measured be-
tween computer A and computer C, with some control measurements be-
tween computer C and computer B. The reason for this was that computer

Using Reliable JXTA P2P Communication Between Mediator Peers

4 EVALUATION 21

C and computer A had similar CPU speeds whereas computer B was a bit
slower than the other two. The reliability tests were measured using all com-
puters because in these tests the time was not a critical moment, only the
order of the messages were important and that no messages were lost during
the send phase of the test.

To measure the performance of the JXTA communication, I made a slight
modification to the JXTAAmos layer. Instead of sending/forwarding mes-
sages up to the JXTAAPI layer from the JXTAAmos layer, as seen in figure 8
on page 17, the messages only reach the JXTAAmos layer, and processed
there, and depending of the message type the messages were directly sent
back to the sender (Steps 1-8, 12-16 in section 3.3 on page 17).

All the measurements were done at the JXTA Amos layer(see figure 8 on
page 17), which means that all messages have go through JXTA, and pro-
cessed at the JXTAAmos layer and then sent back to the sender depending
on if the message was sent using a send or a ship method.

4.2 Reliability

These tests were made to test the reliability of the different JXTA commu-
nication methods. The following JXTA methods were tested

e Pipes
e Broadcast socket
e JXTA Sockets

e Bidirectional Pipes

The first two methods: pipes and socket broadcast are unreliable but
were tested to check how many messages were lost and/or received in the
wrong order.

Pseudo code for the reliability tests:

TestReliability() {
Send("Initialize Reliability Test");
SendMessages(100); // Send 100 Messages numbered 1...100
Send("End Reliability Test");
Results = GetResults();

A short explanation of the different rows in the pseudo code:

1. a message was sent to the receiver to start storing messages.

2. 100 messages are sent to the receiver, which stores the messages it gets
in an array

Using Reliable JXTA P2P Communication Between Mediator Peers

22 4 EVALUATION

3. a message was sent to the receiver to stop storing messages.

Thereafter the received messages are analyzed so that they are in the
correct order, the number of messages that were received in the wrong
order and the number of lost messages are reported back.

4. A message to retrieve the results from the receiver is sent.

In wrong order | Lost messages

10 100 10 100
Pipe 0 7 4 2
Broadcast Socket 3 9 5 45
JXTA Socket 0 0 0 0
Bidirectional Pipes | 0 0 0 0

Table 1: Reliability tests table

Table 1 shows the result from the reliability tests. The tests were first
done by sending 10 numbered messages and then analyzing the results. Af-
ter that the tests were re-run but now by sending 100 numbered messages.
From table 1 we can see that regular pipes and the broadcast socket commu-
nication methods are not suitable for reliable communication between two
peers, because when using these methods messages are lost and/or arrive
in wrong order. This is can be very serious especially when working with
databases since the database is supposed to be consistent. JXTA sockets and
Bidirectional pipes in JXTA are reliable and they should be used if reliable
communication is to be used.

4.3 Latency

Latency was measured between two peers to see if there was any difference
in latency when using TCP/IP sockets for communication and when using
the different JXTA implemented methods.

Latency was calculated by first measuring the time it took to send a
number of round trip messages, then by using that time to calculate latency
like this.

From the test we get the total time it took to send a number of round
trip messages:

Totaltime = NumberO f Messages x RoundTripTime (1)

Since the round trip time consist of latency in both ways and a small message
process time on the receiver. Therefore the round trip time can be written
as:

RoundT'ripTime = 2 * Latency + MessageProcessTime (2)

Using Reliable JXTA P2P Communication Between Mediator Peers

4 EVALUATION

23

which changes equation 1 on the facing page into

Totaltime = NumberO f Messages = (2x Latency + M essageProcessTime)

(3)

But when the message is small then the message process time is negligible
compared to the latency. Then latency can be calculated the following way:

Latency =

Totaltime

NumberO f Messages * 2

In pseudo code the latency calculations looked like this:

Calculatelatency() {

start = currentTime();
SendRoundtrip(N); //Send N roundtrip messages
end = currentTime();
Latency = (end - start) / (N*2); //Calculate latency

A short explanation of the different rows in the pseudo code:

1. Store the starting time.

2. Send N round trip messages.

3. Store the ending time.

S

. Calculate the latency using equation 4.

(4)

Latency was measured for JXTA communication methods when using
JXTA sockets and JXTA bidirectional pipes, and also for Amos II commu-
nication, which uses TCP/IP sockets.

JXTA Sockets

Bidirectional pipes

TCP/IP sockets

163

20

2

Table 2: Latency in milliseconds

Table 2 shows the results of this test and all the values are in milliseconds.
As can be seen from that table, JXTA sockets had the highest latency (163

ms) while JXTA bidirectional pipes only had % (50 ms) of the latency for

JXTA sockets. The lowest latency value had TCP/IP sockets with a value

roughly 2 ms.

Using Reliable JXTA P2P Communication Between Mediator Peers

24 4 EVALUATION

4.4 Throughput

Throughput was measured for the two reliable communication methods for
JXTA (i.e. JXTA sockets and JXTA bidirectional pipes) and then compared
with TCP/IP sockets which is the send method that is used in Amos II. The
measurements were done as follows:

1. a message was sent to the receiver to start a timer.
2. lots of messages were sent to the receiver with a specific message size.

3. a message to stop the timer on the receiving end was sent and the time
it took to receive all the messages was returned.

4. throughput for the message size is calculated.
In pseudo code the test looked like this:

CaclulateThroughput (size) {
msg = createMessageWithSize(size);
Send("Start timer");
repeat N times
Send (msg) ;
Send ("Stop timer");
time = getReceivedTime();
throughput = (N*size) / (time);

JXTA Throughput
A00
550 /
500 /
450 /
400 o ¥
350 o n
300 / o Sockets

250 4 Bidirectional Pipes

200 /W/

180
100
0 T T T T T T T I

1T 2 4 8 16 32 B84 128 258 512
Kb Kb Kb Kb Kb Kb Kh Kb Kb Kh

KB/s

IMessage size

Figure 10: Throughput for JXTA methods

This was done for 10 different message sizes. The results of the JXTA
tests can be seen in figure 10. The bidirectional pipes originally only sup-
port a message size of up to 64 KB so in order to send messages that were

Using Reliable JXTA P2P Communication Between Mediator Peers

4 EVALUATION 25

larger than 64 Kb message chunking was implemented. From the figure we
can see that JXTA Bidirectional pipes and JXTA sockets have very similar
throughput up to message sizes around 256 Kb. There after the throughput
for JXTA bidirectional pipes becomes higher than the throughput for JXTA
sockets.

Data Throughput

2000 o TCPAP Sacket
1750 + Sockets
1500 ¥ Bidirectional Pipes

KB/s

v
7
0# U = 7‘?’“““

T T T T T 1

2 4 8 1B 32 B4 128 258 512
kb Kb kKb Kb kKb Kb Kb Kb Kb Kb
Message Size

Figure 11: JXTA throughput compared to TCP

Measurements in Amos were done to compare how the JXTA throughput
is compared with the throughput of TCP/IP sockets. Figure 11 shows the
throughput for TCP/IP sockets compared to the two different JXTA com-
munications methods. From figure 11 we can clearly see that the through-
put for TCP/IP sockets is much much higher than the two JXTA methods
throughput.

TCP compared to JXTA Bidirectional pipes

225

20 —

174 —

15 —

125 —
10 —

75 — — —

JHHHHHHHH

T T
1Kb 2Kb 4kb BKb 16 32 B4 128 256 512
Kb Kb Kb Kb Kb Kb

Times more Throughput

Message Sizes

Figure 12: TCP compared with JXTA Sockets

Using Reliable JXTA P2P Communication Between Mediator Peers

26 4 EVALUATION

Figure 12 on the preceding page shows the ratio between TCP/IP socket
throughput and the throughput of the JXTA communication methods. From
that figure we can see that message sizes up to 8 KB have roughly about
20 times or higher throughput in TCP/IP sockets than in JXTA. For larger
message sizes than that, 16KB and higher, TCP /IP sockets still have roughly
about 10 times higher throughput than the JXTA methods.

So compared to TCP/IP sockets JXTA communication methods seems
to have very low throughput. This means that if the application which uses
JXTA for communication is used to send a large amount of data at a given
time, it might be better to use TCP/IP sockets instead of JXTA because of
the higher throughput and much lower latency.

4.5 Factors

There were different factors with some of the JXTA methods of commu-
nication. Firstly the JXTA broadcast method for pipes and sockets are
unreliable, meaning that there is no guarantees that messages will arrive,
and if they do there is no guarantees that they will be in the correct order.
To work around this I implemented some broadcast methods that are based
on reliable communication which use JXTA sockets and JXTA bidirectional
pipes.

These methods were not tested as thoroughly as the regular send meth-
ods because they use the underlying JXTA sockets/bidirectional pipes for
communication. The reason for this is that the throughput for the tested
methods can be seen as an upper limit for the throughput. This would lead
to that the broadcast methods would have less throughput than the simple
send methods.

4.6 Comments

The reason why the other JXTA methods, that is sockets and bidirectional
pipes, are slower than the JXTA pipes are because that they are built on
top of the pipe service so they inherit the pipe services processing time and
add new processing time themselves by ensuring reliability etc.

As mentioned in section 4.4 on page 24 the bidirectional pipes used in
JXTA, support message sizes up to 64KB compared to JXTA sockets which
support any message sizes. The reason for this is that JXTA sockets uses
message chunking and JXTA bidirectional pipes do not[8]. To send messages
with size greater than 64Kb, message chunking can be implemented manually
on top of bidirectional pipes. Before sending the message a simple check is
made if the message is greater than 64KB, and if it is then the message is
split into 64KB messages and sent one after another. On the receiving end
the content of the split messages are merged before sending them further.

Using Reliable JXTA P2P Communication Between Mediator Peers

5 SUMMARY & CONCLUSIONS 27

5 Summary & Conclusions

5.1 Summary

In this project a new communications module for Amos II was implemented
which uses JXTA P2P Technology. The different basic communications
methods that were implemented are:

e Two send methods that uses the two reliable communication methods
in JXTA. The methods sends a command to an other Amos II peer
without waiting for a result.

e Two “ship” methods that uses the reliable communication methods in
JXTA. The methods sends a command to an other Amos II peer and
waits for the receiver to send back a result.

A simple message chunking for JXTA bidirectional pipes were imple-
mented also in order to send larger than 64 Kb using the pipes and compare
them with JXTA sockets.

The methods were first tested so that they worked as they were supposed
to and then the performance of these new methods were tested using three
different tests,

1. Reliability for the different JXTA communication methods was tested.

2. Latency was measured to see if there was any difference in latency
when using the different methods.

3. Throughput of the methods was tested and compared.

The results for the JXTA based communication were then compared to
TCP/IP sockets which Amos II uses.

5.2 Conclusions

From the evaluation phase of this project we can draw some simple conclu-
sions. If JXTA based communication is to be used for reliable communi-
cations then there are two suggestions. Either use JXTA Sockets or JXTA
bidirectional pipes since they are the only ones which are reliable.

From the latency test results (table 2 on page 23) and throughput test
results (figure 10 on page 24) we can clearly see that both JXTA bidirec-
tional pipes and JXTA sockets have very similar throughput but JXTA bidi-
rectional pipes seems to have slightly better throughput for larger message
sizes. This gives us that JXTA bidirectional pipes are better suited for reli-
able communication when using large message sizes.

But when the throughput of JXTA is compared with TCP/IP socket
communication that Amos IT uses (figure 11 on page 25) the results shows

Using Reliable JXTA P2P Communication Between Mediator Peers

28 5 SUMMARY & CONCLUSIONS

that JXTA has still a long way to go to reach the same values as TCP/IP
sockets. The latency for TCP/IP sockets are also very low, only roughly 2
ms as can be seen in table 2 on page 23. Because of this TCP/IP sockets
are still the best thing to use.

5.3 Limitations

There are some limitations on the system that was implemented in this
project. Some of the limitations to name a few:

e Objects cannot be sent from one peer to another. This was not needed
to make the simple tests that were made during the evaluation phase
of this project.

e At the moment there is no check for duplicate peer names when joining
the peer group. A way around this would be to use Amos I name server
to ensure that peers have unique names in the peer group.

e Peers, when initialized, become members in AmosPeerGroup automat-
ically. Peers can’t create any other peer group.

5.4 Future Work

JXTA technology is available in many languages. It might be a good idea
to look more into the C version of JXTA!'*. This due to the fact that the
communication between extensions written in C and Amos II is faster than
between JAVA extensions and Amos IT and that extensions written in C
might run faster than in JAVA.

So it might be a good idea to evaluate that as well because it seems
that JXTA-C has been developed further since this project began and seems
to have more documentation about the JXTA-C version project now than
before.

Otherwise a good idea might be to wait for a while so that JXTA becomes
more effective in its communication handling.

MIXTA-C

Using Reliable JXTA P2P Communication Between Mediator Peers

REFERENCES 29

References

(1]
2]

3]

[4]

[5]
[6]

7]

8]
9]
[10]

[11]

[12]

[13]

[14]

Amos IT Wrappers. http://user.it.uu.se/ udbl/amos/wrappers.html.

Kristofer Cassel and Tore Risch. An object-oriented multi-mediator
browser. In User Interfaces to Data Intensive Systems, pages 26—35,
2001.

Tan Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, and
Brandon Wiley. Protecting Free Expression Online with Freenet. In-
ternet Computing, IEEE, 6(1):40-49, Jan/Feb 2002.

Daniel Elin and Tore Rish. Amos II Java Interfaces. Technical report,
Dept. of Information Science,Uppsala University, Uppsala, Sweden, Aug
2000.

Gnutella website. http://www.gnutella.com/.

Li Gong. JXTA: a Network Programming Environment. Internet Com-
puting, IEEE, 5(3):88-95, May /Jun 2001.

Martin Jost. A Wrapper for MIDI files from an Object-Relatio-
nal Mediator System. Technical report, Department of Information

Science,Uppsala University, Uppsala, Sweden, Aug 2000.
http://user.it.uu.se/ udbl/publ/MidiWrapper.pdf.

JXTA v2.3.x: Java™ Programmer’s Guide. www.jxta.org, Apr 2005.
Project JXTA homepage. www.jxta.org.

Timour Katchaounov, Tore Risch, and Simon Ziircher. Object-Oriented
Mediator Queries to Internet Search Engines, Sep 2002. Presented at
International Workshop on Efficient Web-based Information Systems
(EWIS-2002), Montpellier, France.

Hui Lin, Tore Risch, and Timour Katchaounov. Adaptive Data Media-
tion over XML Data. Journal of Applied System Studies, (JASS), 3(2),
2002. Special Issue on : “WEB Information Systems Applications”.

Scott Oaks, Bernard Traversat, and Li Gong. JXTA In a Nutshell.
O’Reilly, first edition, Sep 2002.

Project JXTA: An Open Innovative Collaboration. www.jxta.org, April
2001.

Tore Risch and Vanja Josifovski. Distributed data integration by object-
oriented mediator servers. Concurrency and Computation: Practice and
Ezperience, 13(11):933-953, 2001.

Using Reliable JXTA P2P Communication Between Mediator Peers

30

REFERENCES

[15]

[16]

[17]

[18]

[19]

Tore Rish, Vanja Josifovski, and Timour Katchaounov. Functional data
integration in a distributed mediator system. In Peter M.D. Gray,
Larry Kerschberg, Peter J.H. King, and Alexandra Poulovassilis, edi-
tors, Functional Approach to Data Management - Modeling, Analyzing
and Integrating Heterogeneous Data, chapter 9, pages 211-238. Springer,
2003.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database
System Concepts. McGraw-Hill, fourth edition, Jul 2001.

Bernard Traversat, Mohamed Abdelaziz, Dave Doolin, Mike Duigou,
Jean-Christophe Hugly, and Eric Pouyoul. Project JXTA-C: Enabling
a Web of Things. In System Sciences, 2005. Proceedings of the 36th
Annual Howaii International Conference on, Jan 2003.

Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou,
Carl Haywood, Jean-Christophe Hugly, Eric Pouyoul, and Bill Yeager.

Project JXTA 2.0 Super-Peer Virtual Network. www.jxta.org, May
2003.

Gio Wiederhold. Mediators in the Architecture of Future Information
Systems. Computer, IEEE, 25(3):38-49, Mar 1992.

Using Reliable JXTA P2P Communication Between Mediator Peers

A APPENDIX: TEST EXPLANATION 31

© 00 ~J O Ot = W N =

—
o

O© 00 ~J O Ot i W N =

10
11
12
13

A APPENDIX: Test Explanation

This appendix goes through what methods were used to make the tests and
what they do.

A.1 Reliability tests

The reliability tests are simply AmosQL functions that were called from
Amos II. Here is an example of how the test for regular JXTA pipes looked
like:

create function testReliabilityPP(charstring node,
integer x)
-> charstring as
begin
jsendp(node, "begin="+itoa(x));
select jsendp(node, itoa(i))
from integer i
where i=iota(l,x);
result jshippp(node, "end");
end;

The tests for the other communication formats were very similar. The only
difference was the use of a different send and ship method. The send method
sends a string to the receiver without waiting for a result whereas the ship
method sends a string and waits for the receiver to reply.

The first send command on row 4 initializes the receiver so it will store
the next X messages. Rows 5-7 sends out X messages to the receiver. Row
8 sends a end command to the receiver which will analyze the X messages
to check if any messages were lost or arrived in the wrong order.

The code for the analyze method:

private String calculateSendTestReply(int []lsendTest) {
ArraylList error = new ArrayList();
for (int i = 0; i < sendTest.length-1; i++) {
lostMessages.remove (new Integer(sendTest[i]));

if (!'(sendTest[i]+1 == sendTest[i+1])) {
boolean bl=false, b2=false;

if (i-1>=0 && (sendTest[i-1]+1 == sendTest[i])){
bl=true;
error.remove(new Integer(sendTest[i-1]));
error.remove (new Integer(sendTest[i]));

}

if ((i+2 < sendTest.length) &&

Using Reliable JXTA P2P Communication Between Mediator Peers

32 A APPENDIX: TEST EXPLANATION

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

S O = W N~

(sendTest[i+1]+1 == sendTest[i+2])){
b2=true;
error.remove (new Integer(sendTest[i+1]));
error.remove (new Integer(sendTest[i+2]));
3
if (1 (bl && b2) &&
! error.contains(new Integer(sendTest[i+1]))){
error.add(new Integer(sendTest[i+1]));
3
} else {
error.remove (new Integer(sendTest[i+1]));
error.remove (new Integer(sendTest[i]));
}
3
lostMessages.remove (
new Integer(sendTest[sendTest.length-1]));
if (sendTest[sendTest.length-1] == sendTest.length) {
error.remove (new Integer(sendTest.length));

3

// Create reply String

¥

Since the messages consists of numbers only and should be ordered, the
method simply loops through the messages and checks that message 4 is one
number smaller than message i+1. Any deviations from that are reported
and presented. The method can report that messages are in wrong order in
some cases where they are not. The method was written to help me find
most of the messages that are in the wrong order not all and by looking at
the message order manually afterwards the number of errors can sometimes
be reduced if the method has reported too many errors.

A.2 Latency tests

Latency was measured by using the following methods, for TCP/IP socket
measures this lisp method was used:

(defun latency()
(setq startl (clock))
(rptq 1000 (reval@nameserver 1))
(setq endl (clock))
(osql-result (/ (/ (- endl startl) 1000) 2))

Using Reliable JXTA P2P Communication Between Mediator Peers

A APPENDIX: TEST EXPLANATION 33

O© 00 ~J O Ot = W N+~

N DO N DN N DN N = e b e e e e e e
DU R W N = O O© 00~ O O W N = O

27
28
29
30
31

1

Row 2 stores the starting time while row 3 sends 1000 short round trip
messages to the nameserver. Row 4 stores the ending time and finally row 5
calculates the latency.

The JXTA socket version of the Latency calculations:

public double latSocket (String peer, int numOfMessages) {
JxtaSocket socket = getSocketToPeerDisc(peer);
double latency = 0;
if (socket != null) {
try {

¥

PrintWriter out =
new PrintWriter (socket.getOutputStream(), true);
BufferedReader in =
new BufferedReader(
new InputStreamReader(socket.getInputStream()));

String pingPongMsg =
createMessageString(JxtaAmos.SHIP, SOCKET,
"ping-pong") ;
long startl=System.nanoTime();
for (int i = 0; i < numOfMessages; i++) {
out.println(pingPonglsg) ;
String reply = in.readLine();
}
long endl = System.nanoTime();
latency = (double) ((endl-start1)/1000000000) /
(double) numOfMessages;
catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} else {
System.out.println("Problem connecting to peer.");

}

return latency;

}

Row 2 gets the socket to the wanted peer, rows 6-10 creates some streams

to use with the socket. Rows 12-14 creates the message string that is sent

as a round trip message. Row 15 starts the timer and rows 16-19 sends the

round trip message and receives the answers. Row 20 stops the timer and

finally row 21 calculates the latency according to equation 4 on page 23.
The JXTA bidirectional pipes version of the latency calculations:

public double latBidi(String peer, int numOfMessages) {

Using Reliable JXTA P2P Communication Between Mediator Peers

34 A APPENDIX: TEST EXPLANATION

2 JxtaBiDiPipe outPipe = getBiDiPipeToPeerDisc(peer);

3 double latency = 0;

4 if (outPipe != null) {

5 try {

6 long startl, start2, endl, end2;

7 startl = System.nanoTime();

8 for (int i = 0; i < numOfMessages; i++) {

9 Message pingPongMsg = createMessage(JxtaAmos.SHIP,
10 BIDIPIPE,
11 "ping-pong") ;
12 outPipe.sendMessage (pingPonglMsg) ;

13 Message result = outPipe.getMessage(rtimeout);

14 X
15 endl = System.nanoTime();

16 latency = (double) ((endl-start1)/1000000000) /
17 (double) numOfMessages;

18 } catch (I0Exception e) {

19 e.printStackTrace();

20 } catch (InterruptedException e) {

21 e.printStackTrace();

22 3

23 } else {

24 System.out.println("Problem connecting to peer.");
25 X

26

27 return latency;

28}

S O = W N~

This method is very similar as the JXTA socket version. Row 2 gets the
bidirectional pipe to the wanted peer. Row 7 starts the timer while rows 8-
14 handles the creation of the messages and sending them to the receiver and
getting the result back. Row 15 stops the timer and finally row 16 calculates

the latency according to equation 4 on page 23.

A.3 Throughput tests

To tests the throughput in Amos IT for TCP/IP sockets the following method

were used:

(defun kbps(os 1ls)

(setq startl (clock))

(rptq os (send-form (buildstring 1s) #*nsp*))
(reval@nameserver 1)

(setq endl (clock))

(osql-result (/ (x os (/ (calculateBytes 1s) 1024))

Using Reliable JXTA P2P Communication Between Mediator Peers

A APPENDIX: TEST EXPLANATION 35

© 00 ~J O Ot = W N+~

O W W W W KN DN DN DN NN DN NN DN = = e e el e el e
W N = O © 00 O Uik W= O O© OO Otk W N = O

(- endl startl)))
)

The buildstring methods simply builds a string with a inputted length,
while calculateBytes calculates how many bytes the string has. Row 2
stores the starting time and row 3 sends the list to the receiver os times.
The round trip message sent on row 4 is simply to make sure that the receiver
has gotten the list that was sent on row 3. Row 5 stores the ending time and
row 6 — 7 calculates the throughput.

The JXTA socket version of the throughput measurements:

public double kbpsSocketSend(String peer, int numOfMessages,
int numOfBytes) {
JxtaSocket socket = getSocketToPeerDisc(peer);
double bytesPerSecond = 0;
if (socket != null) {
try {
PrintWriter out =
new PrintWriter(socket.getOutputStream(), true);
String msgString = createString(numOfBytes);
long bytesSent = 0;
String initMesg =
createMessageString (JxtaAmos.SEND, NOREPLY,
"Start measure");
out.println(initMesg);

for (int i = 0; i < numOfMessages; i++) {
String msg = createMessageString(JxtaAmos.SEND,
NOREPLY,
msgString) ;

bytesSent += msg.length();

out.println(msg);
}
String endMesg =

createMessageString (JxtaAmos.SHIP, SOCKET,

"End measure");

out.println(endMesg) ;
InputStreamReader isr =

new InputStreamReader(socket.getInputStream());
BufferedReader in = new BufferedReader(isr);
reply = in.readline();
double receivedTime = Double.parseDouble(reply);
bytesPerSecond = (double)bytesSent/receivedTime;

} catch (I0Exception e) {

e.printStackTrace();

Using Reliable JXTA P2P Communication Between Mediator Peers

36 A APPENDIX: TEST EXPLANATION

35
36
37
38
39

© 00 ~J O U = W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

} else {
System.out.println("Problem connecting to peer.");
3

return bytesPerSecond;

¥

Row 9 creates a string with the specified length. Rows 11-14 creates and
sends the initialization message to the receiver which starts a timer on the
receiver. Rows 15-21 sends a string with the specified length the given
number of times. 22-25 creates and send the stop message to the receiver to
stop the timer. In row 29 the reply is gotten which contains the time it took
to receive the messages and finally row 31 calculates the throughput of the
receiver.

The JXTA bidirectional pipes version of the throughput measurements,
which is similar to the JXTA socket version:

public double kbpsBidiSend(String peer, int numOfMessages,
int numOfKBytes) {
JxtaBiDiPipe outPipe = getBiDiPipeToPeerDisc(peer);
double bytesPerSecond = 0;
if (outPipe != null) {
try {
String msgString =
long bytesSent = O;
Message initMsg =
createMessage (JxtaAmos.SEND, NOREPLY,
"Start measure");
outPipe.sendMessage (initMsg) ;

createString (num0fKBytes*1024) ;

for (int i = 0; i < numOfMessages; i++) {
Message msgl[] =
createBiDiPipeMessages(JxtaAmos.SEND, NOREPLY,
msgString) ;
bytesSent += sendBidiPipeMessages(msg, outPipe);

3
Message endMsg =
createMessage (JxtaAmos.SHIP, BIDIPIPE,
"End measure");
outPipe.sendMessage (endMsg) ;

Message result = outPipe.getMessage(rtimeout);

double receivedTime =
Double.parseDouble (
result.getMessageElement ("Reply") .toString());
bytesPerSecond = (double)bytesSent/receivedTime;

Using Reliable JXTA P2P Communication Between Mediator Peers

A APPENDIX: TEST EXPLANATION 37

30
31
32
33
34
35
36
37
38
39
40

} catch (I0Exception e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
System.out.println("Problem connecting to peer.");

3

return bytesPerSecond;

3

Row 7 creates a string with the specified length. Rows 9-12 creates and sends
the initialization message to the receiver which starts a timer on the receiver.
Rows 13-18 sends a string with the specified length the given number of
times. The method createBiDiPipeMessages handles the message chunking
in a simple way, when a string is larger than 64 Kb the method splits it int
64 Kb chunks. The sendBidiPipeMessages method sends all the messages
to the receiver. The receiver then

19-22 creates and send the stop message to the receiver to stop the timer.
In row 24 the reply is gotten which contains the time it took to receive the
messages and finally row 29 calculates the throughput of the receiver.

Using Reliable JXTA P2P Communication Between Mediator Peers

