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Abstract

Indexing nearest neighbor queries

Thanh Truong

In database technology, one very well known problem is K nearest neighbor (KNN).
However, the cost of finding a solution of the KNN problem may be expensive with
the increase of database size. In order to achieve efficient data mining of large
amounts of data, it is important to index high dimensional data to support KNN
search.
Xtree, an index structure for high dimensional data, was investigated and then
integrated into Amos II, an extensible functional Database Management System
(DBMS).The result of the integration is AmosXtree, which has showed that the query
time for KNN search on high dimensional data, is scale well with both database size
and dimensionality.  
To utilize the functionality of AmosXtree, an example is given on how to define an
index structure in searching pictures.
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1. Introduction 
There is a growing need for searching and mining multi dimensional data in large data 

sets. For example, Global Positioning System (GPS) has become an anchor of 

transportation systems, which provides reliable positioning, navigation for aviation, ground, 

and maritime operations. GPS also supplies locating and timing services, which are widely 

used in rescue missions. In such applications, geographic (multi dimensional) data are 

stored and queried over. Another example is mining gene data expression, which aims at 

classifying, and analyzing gene data in order to predict disease and to find a cure for 

illness. The study is increasingly attractive to bio-informatics researchers [5]. The mining 

gene data is one aspect of a broad field known as data mining. 

For mining multi dimensional data, a very well known problem is locating data objects in a 

data space closest to the given query data object. Such problem is called a K nearest 

neighbor problem (KNN). Given a high dimensional data space and a query data object, it 

requires to find K nearest data objects in relation to the query one [3] .  

However, with the increase of database size, the cost of finding a solution of the KNN 

problem may be expensive. Technically, it might result in scanning through the whole 

database one or several times, which becomes a scalability problem if the database is 

large. In order to achieve efficient data mining of large amounts of data it is therefore 

important to index high dimensional data points to support KNN searches. 

In order to tackle the barrier, this Thesis aims at studying state of art index techniques on 

high dimensional data indexing and then integrating one such index technique into an 

extensible Database Management System (DBMS), Amos II [14]. Amos II is an extensible 

functional DBMS where data is represented as functions over which object-oriented and 

functional queries can be specified using the query language AmosQL. In Amos II, multi 

dimensional data can be represented by a datatype Vector and the KNN problem can be 

easily expressed by AmosQL queries of vectors. Moreover, Amos II has interfaces to 

external programs written in programming languages such as ANSII C, Lisp, and Java 

[18]. This ability of Amos II is used in this Thesis to extend the system with an index 

structure for high dimensional data. The chosen index structure is the X+-tree [19] and is 

implemented in C. Compared to the X-tree [15], the X+-tree aims to have better 

performance because it tries to avoid regenerating the tree by limiting the maximum 

number of children nodes of a non-leaf node.  
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After extending Amos II with the X-tree index structure, some experiments were conducted 

to empirically show that query time for KNN searches on high dimensional data with such 

an index on data scales well when both the dimension and the size of the database are 

increasing.   
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2. Background. 
This chapter first discusses the conventional relational database model with a focus on 

data representation and indexing. Then there is an overview of what multi-dimensional 

data is all about. The next subject to be discussed is the scalability problem when the 

number of dimensions increases. Then the applicability of multi-dimensional indexing on a 

common data mining problem is discussed: similarity search and K nearest neighbor 

search.  

The chapter is ended with an overview Amos II [14] the functional and objected oriented 

DBMS used in this Thesis for implementation and experimentation.  

2.1 Database 
The relational database model invented by Codd in 1970 [2] is the most common database 

model used today. It offers a mechanism for storing, manipulating, and retrieving 

information organized as a collection of tables. 

Each table contains a number of records representing rows. A record has a number of 

attributes to represent column values. The attributes (columns) are identified by names 

and associated with a domain specifying of the data representation of attribute values.  

The attributes constituting the primary key of a table is used to uniquely identify a row in 

the table. Tables are linked by a set of common key values also known as foreign keys. A 

foreign key is a reference from a tuple attribute to a key in another table inside the same 

database. Keys are fundamental for expressing relationship between rows in different 

tables.  

In order to retrieve data, queries specify how information is searched from a relational 

database. Relational queries are expressed using the query language Structured Query 

Language (SQL). SQL is used not only for searching data but also to create tables, index 

data, or to insert, update, and delete data, i.e. SQL is a general language for interacting 

with a relational DBMS. 

To speed up database queries and updates requires a data structure defined as a 

database index that enables the DBMS to find the particular data rows specified in a query 

or an update quickly. A database index is similar to the index of book, which is a reference 

to a topic associated with page. Instead of scanning the book (until the last page in the 

worst case), the book reader can use an index to find a specific page to read. Analogously 
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a DBMS finds the rows specified by a query by using database indexes. 

The most common implementations of indexes in relational databases are B-trees [13] or 

dynamic hash tables [9]. Without index, queries require expensive linear table scan 

proportional to the table size. With index, instead of scanning (in the worst case) the whole 

table, particular rows matching the query can be found by traversing an index tree (or hash 

table) down to specific rows referenced by the index. The index search scales much better 

than linear scanning all data. 

2.2 High dimensional data 
Dimension  

Mathematically, the dimension of a data space or object is defined as the number of 

coordinates needed to specify a point in the space.  

For example,  a point P in one dimension data space ( 1-D) can be represented by one 

coordinate x : P (x),  In two dimension data space, the point P is specified by two 

coordinates x and y : P(x,y).              

              

Figure 1 A point P in one dimension and two dimension data space respectively 

 

Preliminaries  

Given data space S where d is the number of dimension of S, n is the number of data 

objects within the space, a data object  xi  in S can be defined as following: 

],...,,[};1|{ 21 xdiiii xxxxnixS =≤≤ =  

In data mining, the dimension of a data set is defined as the number of attributes, which all 

data point in that data set must have [12]. For example, the dimension of spatial data is 

three implying that a physical object in spatial data can be represented with three 

coordinates (also known as Cartesian or 3-D system). In other words, an object in a 3-D 
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system can be specified by x, y, and z values. Extending that, by adding one attribute 

(dimension) such as time to the 3-D space to form 4-D space the new data space is able to 

describe the movement of physical objects.  

Many data sets are of dimensionality larger than one and the understanding the nature of 

such high dimensional data is important to solve data mining problems [10].  

2.2.1 Similarity search 
� Similarity and Dissimilarity 

Similarity is a quantity that expresses the strength of a relationship between two objects. In 

contrast, dissimilarity measures the difference between the two objects [6]. The difference 

or dissimilarity can be measured by distance function for example: Euclidean, Minkowski, 

Maxnorm.  

 

� Relationship between similarity and dissimilarity 

Let denote ijSI , ijDI as the similarity and dissimilarity between two objects i and j 

respectively. The similarity and dissimilarity are normalized so that their values fall in 

between 0 and 1. 

1=DI+SI ijij  

From definition 2, it is natural to use the distance function (measuring dissimilarity) 

implicitly such as Euclidean to evaluate the similarity too. 

In order to apply the distance function or measurement on complex data objects such as 

images [4][17], sequences, video, and shapes, it is quite common to approximate these 

data with high dimensional vectors describing properties of the objects, or also known as 

feature vectors. Color intensity, sharpness, and face geometry are examples of feature 

vectors. A numerical feature vector of n dimensions is the result of transforming selected 

properties of a complex object. By doing the transformation, it makes the processing and 

statistical analysis on these data easier [4]. The reason is that the feature vector is 

supposed to approximate some properties to be searched for. For example, one may want 

to allow efficient search in a database for persons whose face is similar to a given face. 

What one does is to use some relatively expensive face recognition algorithm to compute 

the face geometry in a picture as a feature vector. Then one stores the image together with 



 6 

the feature vector in the database and index the feature vector using a high dimensional 

indexing structure. To find a face in the database similar to a give one first finds the faces 

with similar feature vectors and then applies a more careful face comparison algorithm on 

the found objects. This will scale much better than having to scan the entire database to 

apply the face comparison algorithm. 

In general, the idea of similarity search is to search in the given data space to find data 

objects that are similar to a given object. Given a data space S of n objects represented by 

feature vector v with d is the dimension, and a query point p, the similarity search is 

expected to find the points closest to p. The similarity is measured by a distance function D 

calculated as the distance between the given data point and a point in S. For example, the 

value of the distance function D between two data objects is dist means that they are dist 

similar with each other. Range search is defined as a search that returns points in the 

given range - the given distance from the query point. Range search is sometimes 

ambiguously used with the term similarity search. It is defined as follows: 

 

� Range search - [20] 

Given a data space S, a search that returns all data objects, which are “dist” similar to the 

given search object, is defined as similarity search. The returned data make up 'S : 

( ){ }distxp,Dx=S ii
' ≤∀ :   

In other words, range search finds all points within distance dist from the query point p.  

From the general concept of similarity search, we have another case in which we want to 

find the K (K > 1) data points closest to the given query point p. It is also known as K 

Nearest Neighbor Search problem (K-NNS) defined as follows: 

�  K nearest Neighbor Search (K - NNS) 

K nearest neighbors search is defined as: given a set of S of n data objects and a query 

point p, find a subset SS' ⊆ of nk ≤  data objects such that for any objects Sxi ∈  and 

'SSh −∈ , ( ) ( )hpDxpD i ,, ≤ . 

 S’ is the data space making up from the K data objects that are nearest to the given query 

point p. 

( ) ( ){ }hp,Dxp,DSShx=S i
'

i
' ≤−∈∀ :|  
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Sometimes K nearest neighbor search is given together with a classifier that tries to 

classify the given data point (or a set of unknown classes) by major voting among its K 

nearest neighbors [12]. This is called K nearest neighbor classification in which the given 

object is assigned to the most common class among its neighbors. Intuitively, all neighbors 

equally contribute to determine the class of the query data point. On the other hand, the 

result might be influenced by votes of distant neighbors rather than the nearer neighbors. 

This problem can be limited by weighting the contributions of the neighbors, so that the 

contribution of the nearer neighbors is much more than one from the far neighbors. This 

Thesis does not include such classical classification or the weighted distance approach. 

Instead, it is able to query for K nearest neighbors only. 

 

� Characteristics of KNN search 

It is common to use the nearest neighbor search to classify a given data point based on 

the major voting of its nearest neighbors. However, one may argue on choosing an optimal 

number of neighbors. Which number of neighbors provides enough certainty about the 

class of the given object? 

One drawback of the nearest neighbor search is that the search result does not reflect any 

knowledge of the data space, which could be used to save time in the next search. In other 

words, the search method does not build up any model, which gives valuable information 

about the data space.  

2.3.2 K nearest neighbor algorithm 
The very naive algorithm of K nearest neighbor search is based on first calculating 

distances from the given point p to all other points. The second step are sorting the 

distance and determining the nearest neighbors based on K-th minimum distance. 

Here are steps on how to compute K-nearest neighbors KNN algorithm: 

Determine parameter K = number of nearest neighbors  

For each Sxi ∈ do 

 Calculate ( )pxi,D=p,dist
ix  

End for 

Sort the data objects based on theirs distance to p  
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Return K nearest neighbors based on K-th minimum distance . 

 

A faster alternative is to use a list of nearest neighbors, which is accumulated and updated 

when a possible nearest neighbor is found. This algorithm does neither store all the 

distances nor sort them.  

Start with Minimum Distance MINDIST = ∞  

An empty queue size of K  

For each Sxi ∈ do 

 Calculate ( )pxi,D=p,dist
ix  

 If MINDISTdist pxi
<,  then  

  Push ix to the queue 

  Update pxi
distMINDIST ,=  

 End if 

End for 

Return the queue 

2.3.3 When is the nearest neighbor meaningless? 
It is normal to ask about the nearest neighbor like "the nearest restaurant in town?" or "the 

most similar picture?”. However, a meaningful answer does not always exist and in some 

cases when the answer of such a query is meaningless. The answer is said to be 

meaningless if the distances to the nearest neighbors and distances to other objects are 

very close in resemblance [8]. 

Let 'S denote a subset of S in which the nearest neighbor of p is located. 'S can be 

formalized as :   

( ) ( ){ }minii
' D+xp,Dx=S ∗≤ ε1:  
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With minD  is the distance between p and it’s the nearest neighbor, and ε  is the enlarged 

factor. The Figure 2 shows the nearest neighbor data space enlarged by a givenε . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If too many data objects are locate inside 'S , it means that almost all data points are close 

to the query point even when ε  is small. Hence, it is said that the nearest neighbor search 

is meaningless. The search is meaningless if the query retrieves the nearest neighbors 

from the given query point while many others near neighbors are not far away from the 

nearest one.  

In [8] the author introduced the instability of the nearest neighbor search. They stated that 

the nearest neighbor is unstable for a given ε  if the distance from the query point to the 

most data points is less than ( )ε+1  times the distance from the query point to its nearest 

neighbor.  

Figure 2: The nearest neighbor's data space enlarged by ε  factor 
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2.3 Index structure for high dimensional data 

2.3.1 R-tree - the foundation 
As extension of the classic B-tree index method, the R-tree and its variations are used for 

indexing multi dimensional data. The original R-tree, R+-tree, R*-tree, etc are for low 

dimensional data, which the TV-tree, X-tree, etc for high dimensional data [15]. 

An R-tree works based on the concept of the Minimum Bounding Rectangle (MBR) of an 

object, which is the bounding determined by the upper bound and lower bound in each 

dimension of the object. For example, in 2-D, the MBR of the trapezoid ABCD (see Figure 

3) is in form of ( )highhighlowlow y,x,y,x  or precisely ( )CDAA y,x,y,x  representing for the lower-

left and the upper-right corner of the rectangle. 

 

The idea of the R-tree is to partition the high dimensional data space into a hierarchical 

data structure representing MBRs that are indexed instead of it inner data objects 

themselves. The R-tree can be seen as a hierarchical tree of MBRs. 

The R-tree is similar to the B-tree with the ability to remain balanced but the contents of its 

nodes are different from the B-tree. The R-tree's leaf nodes contain entries, which are in 

the form of (MBR, object pointer) where object pointer is a pointer to a data object and 

MBR is bounding the corresponding object. 

Besides, there are non-leaf nodes (directory nodes) which contain entries of the form 

Figure 3 Trapezoid's MBR 
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(MBR, p) where p is a pointer to a descent node in the next level of the tree. 

 

 

Figure 4: A collection of rectangles depicts a collection of MBRs of objects. The 

corresponding tree is shown in Figure 5. 

Intuitively, there is often the case that some data objects in the data space are covered by 

more than one bounding rectangle. For example in Figure 4: A collection of rectangles, the 

L-shape E is in two rectangles A and B. This phenomenon is called overlap, which is a 

result of the splitting phase during the insertion into an R-tree. When inserting a new data 

object into an R-tree, a leaf node is chosen that has the smallest MBR containing the MBR 

of the data object. If the leaf node is not full then an entry (MBR, object pointer) is inserted. 

Otherwise, the leaf node needs to be split. The split then might cause overlap between two 

node’s MBRs. 

Experiments observed that the overlap in the directory nodes (meaning the rectangles) is 

increasing with the growth of dimensionality of data [15]. Unfortunately, the degree of 

overlap influences on the performance of the search since it might have more than one 

path to traverse down the tree. The cost increases if the search has to follow several 

Figure 4: A collection of rectangles 
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paths. The R-tree therefore is efficient on low dimensional data but higher ones (where 

overlaps occur more often). The X-tree tries to avoid the overlap between MBRs of nodes 

to improve performance for higher dimensionality in order to support efficient processing of 

queries of high dimensionality [15].  

2.3.2 X-tree. 
Inspired from the original R-tree, the X-tree also has data nodes and normal directory 

nodes. A data node contains minimum bounding rectangles (MBRs) together with pointers 

to the actual data objects: (MBR, p) while the directory node consists of MBRs together 

with pointers to sub-MBRs. In addition, the X-tree introduces another type of nodes: super-

nodes. A super-node is large directory node of variable size (a multiple of the usual block 

size). Figure 7 shows an example of an X-tree structure with three kinds of nodes: 

directory node, leaf node, and super node. 

 

Figure 5: Structure of R-tree 
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As mentioned above, when inserting a new entry into the R-tree, if there is no space left in 

a node then the R-tree splits nodes. Like the R-tree, the X-tree also splits when a new 

node is inserted. However, splitting in the tree introduces overlap that would result in an 

inefficient directory structure. Therefore, in the X-tree a super-node is created during 

insertion only if there is no other possibility to avoid overlap extending a directory node 

over the normal directory size. Consequently, the super-node may be large and a linear 

scan on a large super-node can be a problem. In many cases, it is possible to avoid 

creating or extending a super-node by choosing an overlap-minimal split axis [15]. The 

overlap minimal split axis taken over a directory node tries to partition the set of MBRs of 

the node into two small sets such that the two subsets has no or minimal overlap.  

 

When a new entry is added into a leaf node in an R-tree, if the leaf node splits, it causes 

its parent to have to also update its MBR and list of children. If the parent node still has 

space left, it will add a new split node as a new child. Otherwise, the parent node has to be 

split too. It is said that splitting from the leaf node triggers the splitting upwards to the root 

of the tree. In contrast, with the X-tree, if there is no room left in a directory node the 

directory node can extend to be a super-node instead of splitting. Therefore, other nodes 

are intact. Insertion into an X-tree makes the tree change mainly at super-nodes.  

 

Since the original X-tree was proposed [15], there have been several implementations of 

X-trees. One of them is the X+-tree [19]. The X+-tree allows the increase of the size of 

super-nodes in the X-tree to some degree. Technically, in order to avoid overlap, which is 

bad for performance, a super node might grow during the insertion. However, the linear 

scan of a large super node can be a problem. In the X-tree, the size of a super-node can 

be many times larger than size of a normal node. In the X+-tree, the size of super-node is 

at most the size of a normal node multiplied by a given user parameter MAX_X_SNODE. 

When the super-node becomes larger than the upper limit, the super-node has to be split 

into two new nodes.  

Credits of the X+-tree implementation goes to Cheung Ka Leong and Wong Chi Wing from 

the Database Research Group at the Chinese University of Hong Kong [19]. 
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2.3.3 Improved KNN-indexes 
Most of the existing approaches centered on solving the nearest neighbor search on a 

prior built index while expanding the neighborhood around the query point until the number 

of desired closest points is reached. Furthermore, it has been theoretically proven that 

those approaches access a large portion of the data space in high dimensions. Therefore, 

it is still expensive when the dimensionality increases [1]. 

Stefan Berchtold and et al. have introduced another approach, which pre-calculates and 

indexes the result of any nearest neighbor search. It is done by computing the Voronoi cell 

of each data point. The Vornonoi cell of a data point q consists of all potential query points 

p, which has q as the nearest neighbor. Therefore, finding the nearest neighbor of the 

query point p is turned to locating the Voronoi cell in which p locates. However storing 

explicitly the Voronoi cell is complex. The authors proposed to approximate the Voronoi 

cell as an MBR, [16] that can be stored in a multi dimensional index structure. The 

approximation over the data space results in a set of MBRs. The search, which is to in find 

which cell a query point is located, becomes finding in which MBR the query point p is 

located. The search is efficient thanks to the multi dimensional index structure. 

Experiments have shown that the execution time of the new approach is 4 times faster 

than the X-tree [16]. 

 

 

 

 

 

 

 

This approach is not a subject to be investigated here, which focuses on the X+-tree with 

some modifications to make it integrated into Amos II. The pre-calculation solution space 

might be considered as a future work. 

Figure 6: Voronoi cells 
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2.4 Amos II 
Amos II (Active Mediator Object System) [14] is an extensible database system, which has 

a functional database model. The functional database model used in Amos II consists of 

objects, types, and functions. An Amos II database is stored in main memory until it is 

flushed to disk by explicit commands. It is interacted through an object relational and 

functional query language called AmosQL. The database system can be used as a stand-

alone database, client-server database, or a collection of several distributed Amos 

database peers.  

Amos II also supports mining data by providing functions for data analysis, grouped 

aggregation, and data visualization. These all functions center on the datatype Vector that 

can be used to express multi dimensional data typically used in data mining.  

Furthermore, it is possible to access external program from Amos II through a callout 

interface where Amos II functions are implemented in some regular programming 

language (e.g. Java or C). The AmosXtree system presented in this Thesis takes 

advantages of the callout interface of Amos II. In particularly, high dimensional data stored 

in Amos II is indexed with index data constructed, queried, and stored by an X-tree 

implemented as a foreign function in C. 

2.4.1 Types and Objects 

Types in Amos II correspond to entity types in the Entity-relationship (ER) model. The 

types are also related to classes in object oriented (OOP) programming languages. The 

nature of types is arranging and ordering objects into categorizes which have their own set 

of behaviors described by functions.  

Amos II allows the user to declare user defined types besides those included in the system 

as built-in types such as Integer or Real. A user defined type can be declared with create 

type command. It is possible to construct properties along with a new type. Analogous with 

a class in OOP a subtype inherits all properties of its super type. An instance of user 

defined type is and object stored in the database. An object is associated with an object 

identifier (OID). For example, the following code defines the types Album and FamilyAlbum 

followed by the creation of an instances and setting a function value: 

create type Album properties (name Charstring); 

create type FamilyAlbum under Album; 
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create FamilyAlbum instances :pa; 

set name(:pa) = 'Summer-2009'; 

 

User defined types and objects are deleted from database with the delete statement.  

2.4.2 Functions 

Properties and relations between objects are expressed as functions. For example, the 

Album type has an attribute, name. It is modeled as a function name in which an object of 

type Album is argument and returns a string 

create function name(Album) → Charstring as stored . 

 

The above function is stored in the database describing the relation between an Album 

and its name (argument and result). Since it is placed in the database, it is also known as 

a stored function, which is one kind of functions. Other types of functions are derived 

functions, foreign functions, stored procedures, and overloaded functions. Derived 

functions are parameterized views defined by a single query. Foreign functions are 

implemented in some programming languages (ex. Java, C, or Lisp) and provide external 

interfaces, which make Amos II extensible. A foreign function is linked to a symbolic object 

in an Amos II database. The details of external interfaces are addressed in the following 

section. Stored procedures are composed of a sequence of AmosQL statements. In most 

cases, store procedures are used as functions that update the database. Finally, 

overloaded functions are functions having the same symbolic names but different 

signatures.  

2.4.3 External interfaces 

External interfaces allow to call Amos II from other applications (the callin interface) or to 

extend the kernel system (the callout interface). There are supported external interfaces to 

several programming languages, e.g. C, Lisp, and Java. The C interface is on the lower 

level, which is recommended when high performance is required, at the expense of a 

lower programming level.   

In this Thesis work, the X+-tree index structure is implemented in C as foreign functions 

through the callout interface. In section 3.4.1.3, the implementation of the X+-tree 
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extension shows an example of how to use the callout interface. 
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3. The AmosXtree system 
The extension of Amos II with the X+-tree index is called the AmosXtree system. The 

system architecture is composed of these following components: 

 

Figure 7: System architecture of AmosXtree 

The application is some application program or a console application where the user can 

interact with system by issuing AmosQL and retrieve the result in return. Through the 

application the user can create data or import data from somewhere into the database. 

The Amos II database image is a disk area where all database objects, types, and 

functions are stored. The Amos II kernel loads the corresponding Amos database image 

into main memory during the initialization. Changes made during the session are saved to 

disk with an explicit save command. 

The AmosXtree consists of two sub-components the Xtree wrapper and the Xtree storage 

manager. The former contains the implementation of the foreign functions provided by 

AmosXtree. The latter contains code for building an index tree, searching the X-tree, 
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saving the tree, and re-loading it from disk.  

High dimensional data such as feature vectors are stored in the database and indexed by 

calling out to Xtree wrapper. Accordingly, an index structure is built up in main memory and 

an identifier (ID) of the index tree is returned to Amos II. Using that ID, the system can 

determine which index structure it wants to search in a user query. 

The AmosXtree represent the X-tree using a main memory data representation. All data 

can be saves on the disk as a database image file. Each X-tree index is saved in a 

separate index file. All data, including the index trees, are flushed to disk by the save 

command in Amos II. Inversely, the index trees are read from the index files into main 

memory when Amos II is started. The synchronization of the image and index files is 

controlled by a hook facility provided by Amos II. The details of the implementation of 

restoring and saving are described later. 

3.2 Example of use – Indexing picture database  
To illustrate the functionality of AmosXtree an example is given on how to define an index 

structure in searching pictures. Without indexing, searching similar pictures among 

100.000 pictures stored in a database or a directory would require linear scan of tables or 

files. The example shows how to utilize an X-tree index for indexing multi-media objects 

stored in regular files. 

3.2.1 Schema of picture database 
Figure 8 shows an Entity Relationship (ER) schema of the photo database, which is used 

as example in this section. 
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Figure 8: Entity Relationship schema describing photo database 

People often take pictures during the vacation and then categorize them in an album. 

Analogously, there are two types of objects in the database: Picture and Album. In short, a 

picture in the database represents a real picture located in a disk file, e.g. a JPEG file. A 

picture in the database does not contain a large bitmap. Instead, the database stores only 

the name of the JPEG file along with some interested properties (features) such as 

brightness or face geometry extracted from the real picture. These features are extracted 

by a featureExtractor function, which is defined as a foreign function. In the Thesis work, 

the feature extractor is colorHistogramExtractor that simply calculates the distribution of 

color in an image. It is implemented in Java. A stored procedure stores the result of an 

extraction as features of a picture in the database. However, the search over the features 

will not scale up when the database size is large or when the feature vector is complex. 

Therefore, it is important to index the features. The example shows how one can make an 
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index over feature vectors of pictures with AmosXtree. 

In addition, a picture has also a caption property, which is used to describe a picture, and a 

filename property that holds the name of the disk file where it is stored.  

Pictures are categorized in albums where each album has a descriptive title. The 

relationship between pictures and albums is also shown in Figure 8. It is a function album 

storing the album of a given picture. 

The details of the implementation of the schema in Amos II can be seen in Appendix B. It 

includes examples of how to populate the photo database (i.e. importing data from a file, 

extracting features of an image, and indexing a new inserted picture). 

3.2.2 Indexing pictures with AmosXtree 
To create a global feature index represented by an X+-tree the following function is called: 

create function createFeatureIndex() -> Integer xtI D as … 

After creating the feature index, the application defines a picture insertion function to first 

extract the feature vector. In our application a color histogram is extracted from each new 

picture by calling a function colorHistogramExtractor and then insert the returned feature 

vector into the index. These two functions with theirs signatures are declared as: 

create function colorHistogramExtractor (Charstring  filename)-> 
Vector of Number as … ; 

create function addFeatureIndex(Integer xtID, Vecto r of Number, 
Picture p) -> Boolean as … 

The complete implementation of these two functions and the picture insertion function can 

be seen in the Appendix B: The Photo-Album database. 

 AmosXtree also provides ways to write similarity search and KNN search on indexed data. 

The following functions are implemented to search for pictures (see Appendix B: The 

Photo-Album database): 

create function similar (Picture  p, Real distance) -> Bag of 
Object as … 

create function knearest(Picture p, Integer k)-> Ba g of Object as 
… 
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After loading pictures into the database one can search the contents of pictures based on 

some criteria. For example, the following query searches for the six most similar pictures 

compared to a picture with caption “Last summer”: 

select caption(p) 

from Picture p, Picture q 

where p in knearest(q, 6) and caption(q)= "Last sum mer"; 

 

The following query finds the pictures that are similar to a favorite one where the similarity 

is 0.65: 

select caption(p)from Picture p, Picture q 

where p in similar(q, 0.65) and caption(q)="Last su mmer"; 

 

The following query selects titles of albums that have pictures similar to a given one:  

select distinct title(album(p)) 

from Picture p, Picture q 

where p in knearest(q,10) and caption(q)="Last summ er"); 

 

Because feature vectors have been indexed, the search is dramatically faster than without 

index, as will be shown later.  

3.3 Implementation 
Since the original X-tree was proposed, there have been several implementations of X-

trees. Some of them are written in Java, some are in C++, and few of them are in C. 

Therefore, if possible, the core implementation of our X-tree should use existing 

implementations rather starting from scratch. To make it easy to integrate with Amos II, the 

choice of external program should be in C or Java. 

Moreover, regarding the performance, a C program often outperforms Java programs 

since Java byte-codes are compiled or interpreted by the Java Virtual Machine resulting in 

performance penalty. 

The core of the X+-tree implementation in [15] is reused, with changes and additions made 

to data structure and functions. 
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3.3.1 Modules 
The existing modules of the X+-tree implementation were re-organized to simplify the 

introduction of the new code. The AmosXtree system is structured as follows: 

• xtree.h 

This module contains AmosXtree’s interfaces creation, insertion, and search. Furthermore, 

it hosts all macro, data structures, and constants. 

• amosXtree.c 

This module implements the AmosXtree front-end defining the implementation of Amos II                  

foreign functions, binding function, and the main function of the AmosXtree system.  

• xtree.c 

This module consists of implementations of basic X+-tree functionalities such as creation                    

(xtree_make) or insertion (xtree_put ). 

• xpbuild.c 

This module hosts utility functions used mainly to build new index trees. 

• xsearch.c 

This module implements functions for searching X+-tree indexes.        

• xfile.c 

This module contains function to save the X+-tree index trees to disk and function to 

reload  saved X+trees from disk to main memory.  

Besides, there is a module written in Java to extract color histogram form an image.  

• ColorHistogramExtractor.java 

This module contains functions to extract color histogram of an image. The choice of 

programming language is Java because it has built-in functions for processing images 

such as Java.2D package, which allows encoding, and decoding from and to several 

image formats: JPG, BMP, PNG, etc. Converting from other formats to BMP implies 

producing an array of pixels, which is can be used for implementing follow up image 

processing algorithms. 

The Java code of course must be run on the Java Virtual Machine (JVM). Amos II can be 

run with JVM by calling the script javaamos. However, AmosXtree is a C program compiled 
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on Visual C ++ 6.0 compiler. Therefore, in this application Amos II has to callout to both C 

and Java. The solution here is that Amos II callouts to Java through C. In other words, 

Amos II callouts to the foreign function colorHistogramExtractor in C. It in turn redirects to 

a real Java implementation. The following module helps calling Java from C. It is 

suggested by  Michael Havey in his article on Java Developer Journal [11] 

• cj.c 

This module contains functions to call Java from C. Technically; it wraps some functions 

and data structures of Java Native interface (JNI), which allows creating Java Virtual 

Machine (JVM), destroying JVM, and manipulating Java’s classes and objects. On 

Windows, the JVM is included in Java SDK as a dynamic library “jvm.dll” which exposes 

JNI as public exports. Therefore, an executable C program linking jvm.dll makes it possible 

to call from C to Java. 

3.3.2 Node data structure 
The X-tree has three different kinds of nodes: directory nodes, data nodes, and super 

nodes [15]. In the X+-tree implementation these three kinds of nodes are represented 

through a data structure node_type with definition: 

struct node {  

 float *a; 

 float *b; 

 int id; 

 int attribute; 

 int vacancy; 

 struct node *parent; 

 struct node **ptr; 

 int snodeSize; 

 oidtype object; // to hold object handle of Amos I I 

 int valuable; 

}; 

typdef struct node node_type; 
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• The two fields *a, *b are used to determine an MBR of the current node. 

• id is the unique identifier of the node. 

• vacancy holds the number of available entries a node can have. The possible number of 

entries of a node is in between m (min) and M (max). Both m and M can be configured 

through a configuration file. (see 3.5.3 Configuration). 

• parent is a pointer to the node’s parent. The parent of a node is needed when changes 

to a node low in the tree trigger changes upward the tree. For example, inserting a new 

entry to a node causes its parent’s MBR to be updated. 

• ptr holds a pointer to the list of sub-nodes. 

• snodeSize holds the size of the node if the current node is a super node. 

• object holds a reference to an Amos II database object stored in the node. It is 

represented as an Amos II object handle [18]. It is a new attribute added to the original 

node structure of X+-tree. 

The object is assigned when a new node inserted to the index tree. This is defined as the 

Amos II foreign function xtree_put (see Appendix A: The XtreeWrapper interface). It is 

called to index a feature vector of an Amos II object. An entry of a leaf node in the index 

tree references the object in Amos II by holding its object handle. 

a_let(oid_obj, a_getelem(t, 2, FALSE)); 

A node’s object is released with a_free(node->object) when the node is deleted. The node 

marked as deleted shall be ignored in the search. 

3.3.3 Search result structure. 
Search functions are implemented as tail recursive functions in which a search result is 

passed along with the call. The search result is defined as a linked list of structures named 

NN_type where NN means ‘nearest neighbor’. The structure NN_type is used for KNN 

search and similarity search also. 

typedef struct NN { 

 double dist; 

 int oid; 

 struct node *pointer; 
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 struct NN *next; 

 oidtype object; 
 

} NN_type; 

 

NN_type has the following fields: 

• pointer is a pointer to a node in the index tree which matches with the given search 

criteria. 

• dist holds the distance between the found node and the given query data object. 

• next holds the next matching node. 

• object holds the Amos II object stored in the node. See 3.3.2  

3. 4 The Xtree wrapper. 
The Xtree wrapper contains the implementation of foreign functions defined in Amos II. 

The implementation invokes the X+-tree functionalities. The implementation code of a 

foreign function has the following steps: 

� Extract parameter values 

� Call the corresponding X+-tree C function 

� Emit the result tuple as a tuple to Amos II. 

Below is a synopsis of the implementation of the foreign function xtree_knn_search. 

void xtree_knn_search(a_callcontext cxt, a_tuple t)  

{ . . . 

 dcl_oid(oid_iVector); 

 dcl_tuple(tpl_feature); 

 . . . 

 a_newtuple(tpl_feature, size, FALSE); 

 a_getseqelem(t, 1, tpl_feature, FALSE); 

 { 

   queryPoints = (float *) malloc(sizeof(float) * s ize); 
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  for(i = 0 ; i < size; i++) { 

    queryPoints[i] =        
     a_getdoubleelem(a_elt(oid_iVector,i)); 

  } 

  root = a_getintelem(t,0, FALSE); 

  k = a_getintelem(t, 2, FALSE);             

         NN = k_NN_search(root, queryPoints, k); 

         while (NN != NULL && NN->oid != UNDEFINED)  { 

                a_setobjectelem(t, 3, NN->object , FALSE); 

                a_emit(cxt,t,FALSE); 

                NN = NN->next; 

            } 

        }          

    } 

    . . . 

    return; 

}  

Then implementation of a foreign Amos II function must be bound to a corresponding 

symbolic name. The function a_extfunction binds a C function fn to an Amos II symbol 

name:  

a_extfunction(char *name, external_predicate fn); 

 

The bindings are placed in one C function named registerXfunctions in file amosXtree.c 

void register_X_functions() { 

 a_extfunction("xtree_make",xtree_make); 

 a_setpredparam("xtree_make","create a new Xtree");  

   

 a_extfunction("xtree_put",xtree_put); 

 a_setpredparam("xtree_put", 

     "put a pair object/value into Xtree"); 
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            . . . 

 a_extfunction("xtree_save",xtree_save); 

    a_setpredparam("xtree_save","save Xtree"); 

 a_extfunction("xtree_load",xtree_load); 

 a_setpredparam("xtree_load","load Xtree"); 

       . . . 

 a_extfunction("xtree_similarity_search", 

     ”xtree_similarity_search”); 

    a_setpredparam("xtree_similarity_search", 

     "find node(s) that closes in a distance  

     to the given node"); 

 a_extfunction("xtree_knn_search", xtree_knn_search ); 

 a_setpredparam("xtree_knn_search", 

     "find node(s) as KNN to the given node"); 

} 

3.5 The Xtree storage manager. 
The Xtree storage manager is responsible for saving and restoring the index structure. 

This section mainly addresses handling the identifier of the index tree, its configuration, 

and the index files. 

3.5.1 Handling Xtree identifiers 
An index tree is created and manipulated in main memory unless it is explicitly flushed into 

a file on disk. In order to keep track of indexes of a database image, there is a table to 

store the identifiers (IDs) of the index tree:  

create function xtreeIds()-> Bag of Integer as stor ed; 

The ID of an index tree is generated in Amos II and it is then passed to foreign function 

xtree_make to create a new index tree in the main memory. The code below shows the 

creation of a new Xtree’s ID in Amos II. 

create function lastest_xtreeIds() -> Integer l 

as  
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begin 

 if (notany(xtreeIds())) then  set l = 0  

 else   

   set l  = maxagg(xtreeIds()); 

   result  l; 

 end; 

 

/*create index*/ 

create function createIndex() -> Integer p 

as  

begin declare Integer id; 

 set id = lastest_xtreeIds() + 1; 

 if xtree_make(id) then  

 begin  

  add xtreeIds() = id;  

       result id; 

 end; 

end; 

 

The ID will be passed to other foreign functions as a parameter to identify a particular 

index tree. The foreign functions receive a call from Amos II with an ID of the index tree, 

for example insertion into the index tree. The Xtree storage manager needs to find the 

memory address where the corresponding index tree is allocated for the given ID. 

Therefore, there is a relationship between an identifier of a tree and its address in main 

memory. In order to locate the tree in main memory from its ID, the Xtree storage manager 

maintains a linked list in which an entry represents a relationship between a unique ID and 

the corresponding tree address in main memory. The entry has type of ListTree_type 

described below 

typedef struct ListTree { 

 struct ListTree_type *next; 
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 int address; 

 int id; 

} ListTree_type; 

• next : a pointer to another entry of a linked list 

• address: holds memory address of the tree. It is useful to locate the tree. 

• Id: ID of the tree. 

The synopsis code below shows the update of list index trees when an index tree is 

created:  

node_type *root; 

. . . 

// assigns the ID 

(*root).id = a_getintelem(t, 0, FALSE); 

 

// add one entry to the linked list 

updateListTree((*root).id, (int)root); 

// emit the ID to Amos II 

. . . 

 

In addition, there is a requirement that the index tree can be saved to disk. One can later 

reload the saved index tree back to main memory and it must be possible to query the 

loaded index tree. Therefore, it is necessary to save the ID of the index tree in the index 

files. This makes the ID of the tree stored in the database image and IDs stored in index 

files synchronized. 

// load index tree from file 

root = o_xtree_load(filename); 

 

// add an entry to the linked list 

updateListTree((*root).id, (int) root); 

// emit the ID to Amos II 
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. . . 

3.5.2 Saving and restoring index files 

• Hooking functions 

An index tree is created in main memory and is saved to disk with an explicit save 

command. To make database persistent, a function index_rolloutfn to store index trees 

should be automatically called before the database image is saved. In the other direction, 

a function index_rollinfn that loads index files should be implicitly invoked when the 

database image is initialized.  

create function index_rolloutfn(Charstring image) - > Boolean; 

create function index_rollinfn(Charstring image) ->  Boolean; 

Amos II provides a way to hook these two functions into the database system so that the 

index_rolloutfn is called before the database imaged is saved and the index_rollinfn is 

called when the database image is initialized. The hooking is done by using a built-in 

function register_saver in Amos II.  

register_saver(#'index_rolloufnt', #'index_rollinfn ');  

The complete AmosQL code can be seen in Appendix C: Saving and restoring index files 

• Naming index filename. 

Filename of an index tree is made up by concatenating the database image name, 

index tree’s ID, and extension “xt”. 

Filename = image name + ID + “.xt” 

Example: foo1.xt, foo2.xt . . . 

• Managing list of index trees to be saved / loaded. 

When saving, all index trees in main memory should be saved to disk. Amos II goes 

through a list of index tree’s IDs returned by function xtreeIds() (see 3.5.1 Handling Xtree 

identifiers) and calls a foreign function to save the corresponding index tree.  

When initializing the database, each index file whose filename formed with ID in the list 

xtreeIds() is loaded from disk to main memory. 
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3.5.3 Configuration 
The index tree is highly customizable by being configured with parameters. A data 

structure is defined to hold these parameters: typdef struct config. 

typedef struct config { 

 int dim; 

 int m; 

 int M; 

 debugMode; 

 ,,, 

} config_type; 

• m :  Minimum entries of a node 

• M : Maximum entries of a node 

• dim : Number of dimensions 

• debugMode : Debug mode of AmosXtree. If the Debug Mode is off (debug Mode = 0) 

there is no logging to console.  

These parameters are placed in a configuration file named as xtree.config, which can be 

modified easily. When AmosXtree start ups, the configuration file is read into a global 

variable named as master_config. This is a default configuration for all new index trees. 

void initialize(config_type *config) { 

 . . . 

fp = fopen(CONFIG_FILE, "r"); 

fscanf(fp, "m=%d\n", &master_confg->m); 

fscanf(fp, "M=%d\n", &master_confg->M); 

fscanf(fp, "dim=%d\n", &master_confg->dim); 

. . . 

} 

 

The master_config is used to create a new index tree.  

// Makes an Xtree with master config 
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root = o_xtree_make(master_config); 

 

One can modify the configuration file after index trees were saved to disk. Therefore, a 

loaded index tree might have a different configuration compared to others. In other words, 

each index tree can have its own configuration. Technically, AmosXtree maintains a list of 

index tree’s configurations. Recall that, we did manage a list type of ListTree_type in order 

to keep track of index trees. The struct ListTree_type (see 3.5.1 Handling Xtree identifiers) 

is added another field config to host the configuration of the corresponding tree. 

typedef struct ListTree { 

 . . . 

 config_type config; 

} ListTree_type; 

  

After a new index tree is created, its information (configuration, ID, address) is added to 

the list 

updateListTree((*root).id, (int)root, master_config ); 

 

When the index tree is saved to disk, its configuration is also saved in the index file. In the 

other way around, the configuration stored in the index file is read first to construct the 

index tree from the index file. In this way the existing index files can be loaded, and 

modified even if the configuration file xtree.config was modified after the index trees was 

saved. The synopsis code below shows how the configuration is saved in the index file.  

fp = fopen(filename, "w"); 

getConfig((*root).id, &fconfig); 

// Write the ID of the tree 

fprintf(fp, "%d\n", root->id); 

// Write the configuration of the tree to the index  file 

fprintf(fp, "m=%d\n", fconfig.m); 

fprintf(fp, "M=%d\n", fconfig.M); 

fprintf(fp, "dim=%d\n", fconfig.dim); 
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fprintf(fp, "no_histogram=%d\n", fconfig.no_histogr am); 

. . . 

write_inter_node(root, fp, fconfig); 

 

3.5.4 Index files 
For each tree in main memory, there is a corresponding file on disk. Several index files can 

be created after a save command is executed in Amos II.  

 

The index file starts with the ID of the index tree in the first line, it then is followed by its 

configuration (see 3.5.3 Configuration). After the configuration, all nodes are stored. Each 

node is fully stored along with all its attributes. Non-leaf nodes are saved by the 

write_inter_node (in file xfile.c) C function and leaf nodes are saved by the write_leaf_node 

function (in file xfile.c) 
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4. Performance evaluation 
This section describes the performance tests in two cases having index on high 

dimensional data and not having index on data. The experiments are conducted in order to 

prove that the query time of KNN search scales up with the increase of both database size 

and dimensionality. The data used in the experiments is uniformly. The experiments are 

conducted on Microsoft Windows XP SP1, Intel CPU 1.6GHz, 192 MB RAM using the 

Visual C++ 6.0 compiler. 

4.1 Setting up the experiment. 
After colorHistogramExtractor was implemented, the application runs with real pictures. 

However, for performance evaluation purpose it requires a large amount of data and 

therefore these data are simulated. Therefore, the experiments assume having feature 

vectors as the result of extracting interested properties from pictures stored in test data 

files. One test data file consists of many rows where each row is an integer vector 

representing a (simulated) picture. A row is in format <id x1 x2 x3 . . . xd> with d being the 

number of dimensions. The test data provides data files with d from 4 to 20. Data is 

generated at random. 

Setting up the test environment is compulsory to create a clean test environment. For 

example, the command setup_test.cmd is used for setting up the test environment. In both 

cases, the data types Picture and Album and all relevant functions are pre-created and 

saved into the Amos II database image.  

The query times are measured with and without the X+-tree index and then plotted as 

graphs to visualize the scalability. 

4.2 Evaluation 
Two experiments show the scalability of AmosXtree with dimensionality and with database 

size. 

� Scalability with database size 

 The first experiment investigates the scalability of the index when the size of the database 

is increased. Let define K is a number of nearest neighbors and D is the number 

dimensions of the database. The parameters are assigned as K = 5, D = 8, and the 

database size is scaled from 20 to 100 Mbs. 
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Figure 9 compares the query time with index and without index when the database size 

increases. The x-axis shows the increase of database size while y is the search time. The 

query time without index to find K = 5 nearest neighbors increases linearly while the query 

time with index is very close to the x axis.  

 

Figure 9 Query time of KNN queries (using and not using index) 

 

Figure 10 plots the query time with index to have a clear observation about its scalability. 

The y-axis has linear scale on search time while the x-axis has logarithmic scale on size of 

database. 
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Figure 10 Query time with index over the increase of database size 

As expected, the trend of query time in case of using index is close to linear with the 

logarithm of database size which means that it scales well for large databases. By 

contrast, without the index when the database size increases, the query time needed to 

perform the search (KNN) grows linearly. 

 

� Scalability with dimensionality  

The second experiment evaluated KNN queries in two cases using the same number 

(100.000) of data vectors over the different dimensions. Using the same amount of data 

implies that the size of database is linearly increasing with the dimensions.  

The experiment's result presented in Figure 11 used uniformly distributed point data to 

search for K = 5 neighbors. Figure 11 Query time of KNN queries (with and without index) 

on 100000 objects shows the query times with index and without index, respectively. The 

number of dimension varies from 5 to 20. The x-axis presents the dimension while the y-

axis presents the query time in millisecond. In case there is no index on high dimensional 

data (the red line), the query time it took to find K = 5 nearest neighbors is linearly 

increasing with the dimensionality. In contrast, the query time for performing the KNN 

search with indexed data very close to the x-axis, which shows that the X+-tree provides 

good performance compared to without index search over the database size.  
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Figure 11 Query time of KNN queries (with and without index) on 100000 objects 

 

 From Figure 11, it is difficult to see the increase of the query time with index. Figure 12 

shows only the query time with index when dimension increases. In this figure, x-axis has 

logarithmic scale and y-axis has linear scale. While number of dimensions is increasing, 

the query time also increases. Its increase trend is almost linear. On other words, it shows 

that Xtree scales very well when the number of dimensions is less than or 16 (the highest 

dimension used in this experiment). 
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Figure 12 Query time of KNN query using index over 100000 objects 

Empirically, the experiments draw a conclusion that having index on high dimensional data 

can improve the performance of searching on it, particularly in KNN queries. 
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5. Conclusions & Future work 
This Thesis work first studied different index structures for high dimensional data. Then a 

chosen index implementation, the X+-tree, was integrated into the extensible functional 

database system Amos II. The result of this work is a system named as AmosXtree, which 

adds X+-tree indexes to Amos II. 

AmosXtree makes it efficient to search similarity in high dimensional data by using the X+-

tree index structure to index data. AmosXtree uses foreign functions to implement the 

index interfaces. The index structure is implemented in C, which has advantages of good 

performance compared to other languages. Furthermore, the X+-tree index structure was 

shown experimentally to provide very good scalability over both the database size and 

dimensionality.  

 By equipping Amos II with X+-tree, an index structure, on high dimensional data, it fosters 

the creation of applications based on searching high dimensional data stored in Amos II. 

The Thesis work has demonstrated the skeleton for searching similar pictures. This 

provides a useful tool for picture management. However, The Thesis work needs to be 

extended in order to make the demonstration fully complete by using real feature extractor 

function on real picture files rather than simulated ones.   

Other works can be followed up to get then X+-tree index fully integrated into the query 

language. What needed here is query transformation that transparently transforms queries 

to utilize the X+-tree index. Furthermore, it should be possible to put an X+-tree index on 

any parameter of a stored function by a simple system command. Finally, a cost model for 

X+-tree should be provides as functions to aid the cost-based query optimizer.  
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Appendix A: The XtreeWrapper interface 

This section explains the interfaces provided by the Xtree wrapper. First, it introduces User 

interfaces containing functions to create a new X+-tree and to use it. At the end of the 

section, internal interfaces are listed. 

� User interfaces 

• Creating a new X+-tree index: 

createIndex() -> Integer p 

The createFeatureIndex function takes no input parameter and returns ID of the index tree. 

 

• Adding a feature vector into the index 

 addFeatureIndex(Integer xtId, Vector of Real f, Ob ject o) -> 
Boolean 

The addFeatureIndex function takes ID of the index tree, a feature vector of real, and an 

object. If the object is added to the index tree, the function returns TRUE. Otherwise, it 

returns FALSE. 

• Removing an object from an X+-tree index: 

deleteFeatureIndex(Integer xtId, Object o) -> Boole an  

Its input parameters are the index tree's ID, and an object to be deleted from the index. If a 

node is deleted successfully, the function returns TRUE. Otherwise, it returns FALSE. 

 

• Searching similar object given the degree of difference in an X+-tree index: 

similar_search(Integer xtId, Object o, Real distanc e) ->Bag of 
Object 

Input parameters of the similar_search function are the index tree's ID, the object to be 

searched for, and the distance specifying how similar it should be. The search returns a 

bag of objects similar to the given object. 

 

• Searching K nearest neighbors in an X+-tree index:  

knearest_search(Integer xtId, Object o, Integer k) -> Bag of 
Object 
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The knearest_search function takes the index tree's ID, the object to be searched for, and 

the number of neighbors. The output is a bag of objects nearest to the given object.  

 

• Saving X+-tree indexes:  

save “filename” 

The index trees are saved together with the save command of Amos II. See more in 

Appendix C: Saving and restoring index files.  

 

• Loading X+-tree indexes:  

amosXtree  “filename” 

The index trees are loaded when one starts AmosXtree with a database image. If there are 

index files associated with the image, then they will be loaded into main memory and be 

ready to use. See Appendix C: Saving and restoring index files  

 

�  Internal functions. 

/*------------------------------------------------- -------------- 

Internal functions  

--------------------------------------------------- -------------*/ 

/*Create an index tree*/ 

create function xtree_make(Integer xtId) ->Boolean  as foreign 
'xtree_make'; 

 

/*Add a feature vector and its associated object to  the index 
tree*/ 

create function xtree_put(Integer xtId, Vector of N umber f, Object 
o) -> Boolean as foreign 'xtree_put'; 

 

/*Delete a node from the index tree*/ 

create function xtree_delete(Integer xtId, Vector o f Number f) -> 
Boolean as foreign 'xtree_delete'; 
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/*Save the index tree to disk*/ 

create function xtree_save(Integer xtId, Charstring  filename) -> 
Boolean as foreign 'xtree_save'; 

 

/*Load  the index tree from disk*/ 

create function xtree_load(Charstring filename)  

-> Integer xtId as foreign 'xtree_load'; 

 

/*Internal function */ 

create function xtree_knn_search_fn(Integer xtId,  

Vector of Number f, Integer k) -> Bag of Object  

as foreign 'xtree_knn_search_fn'; 

 

create function xtree_similarity_search_fn(Integer xtId, Vector of 
Number f, Real distance)  

-> Bag of Object as foreign 'xtree_similarity_searc h_fn'; 

 

/*Internally manage list ID of Xtree*/ 

create function xtreeIds()-> Bag of Integer as stor ed; 

create function lastest_xtreeIds() -> Integer l 

as  

begin 

 if (notany(xtreeIds())) then  set l= 0       

 else 

   set l = maxagg(xtreeIds());   

 result  l; 

end; 

 

� Implementation of user interfaces. 

/*------------------------------------------------- ------------ 
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Implementation of user interfaces 

--------------------------------------------------- ------------*/ 

/*Create an index tree*/ 

create function createIndex() -> Integer p 

as  

begin 

 declare Integer id; 

 set id = lastest_xtreeIds() + 1; 

 if xtree_make(id) then  

 begin 

   add xtreeIds() = id;  

   result id; 

 end; 

end; 

 

/*Define function to insert feature vector f and co rresponding 
object o in feature index */ 

create function addFeatureIndex(Integer xtId, Vecto r of Real f, 
Object o) ->Boolean as xtree_put(xtId , f, o); 

 

/*Define function to delete feature of an object fr om index*/ 

create function deleteFeatureIndex(Integer xtId,  O bject o)  

->Boolean as xtree_delete(xtId , o); 

 

/*Similar search*/ 

create function similar_search(Integer xId, Object o, Real 
distance) -> Bag of Object  

as xtree_similarity_search_fn(xtId, features(o), di stance); 

 

/*K nearest neighbor search*/ 

create function knearest_search(Integer xtId, Objec t o, Integer k) 
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-> Bag of Object  

as xtree_knn_search_fn(xtId, features(o), k); 
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Appendix B: The Photo-Album database 

� Definitions of schema in AmosQL 

Definition of data type Album and its properties as functions: 

create type Album; 

create function title(Album al)-> Charstring as sto red; 

 
• Definition of  data type Picture and its associated functions 

create type Picture; 

/* feature vector of a picture stored in database*/  

create function features(Picture p)->Vector of Numb er fv as 
stored; 

 

/* assume each image has a filename to disk locatio n*/ 

create function filename(Picture p)->Charstring fn as stored; 

 

/* assume each image has a caption*/ 

create function caption(Picture p)->Charstring cap key as stored; 

 

/* each picture belongs to an album*/ 

create function album(Picture p)->Album a as stored ; 

 

/* create a new album */ 

create function newAlbum(Charstring t) -> Album al 

as 

begin 

 create Album(title) instances al (t); 

 result al;     

end; 
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� Indexing pictures 

• There is a picture index to store the identifier of the index tree associated with data field 
feature.  

 

create function picture_index()->Integer as stored;  

set picture_index() = createIndex(); 

 
• Extracting color histogram of a given image: 
 

create function colorHistogramExtractor(Charstring filename)  

-> Vector of Real as foreign "colorHistogramExtract or 
featureExtractor";    

 

The real implementation of colorHistogramExtractor is in Java. It first reads the image 

given the filename to memory and then calculates the distribution of colors. In this function 

the HUE color, which is the pure spectrum color, is used instead Red, Green, and Blue 

color model. HUE is said to give more accuracy in comparing the distribution of colors in 

an image [6] 

The result is a feature vector of dimension 20.  

// ------------------------------------------------ -- 

// Read image file into the BufferedImage 

// ------------------------------------------------ -- 

BufferedImage image = ImageIO.read(new File(m_filen ame)); 

 

// ------------------------------------------------ -- 

// Grab pixels from the image 

// ------------------------------------------------ -- 

int height = image.getHeight(); 

int width = image.getWidth(); 

PixelGrabber pGrab =  

 new PixelGrabber(image, 0, 0, width, height, true) ; 

pGrab.startGrabbing(); 
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int [] pixels = new int [height* width]; 

pixels = (int[]) pGrab.getPixels(); 

  

// ------------------------------------------------ -- 

// Calculate the distribution of colors 

// ------------------------------------------------ -- 

Color col = null; 

int   hue = 0; 

for (int i = 0; i < (height * width); i++) { 

 col = new Color(pixels[i]); 

 hue = rgb_to_hsv(col.getRed(), col.getGreen(), col .getBlue()); 

 m_histogram[hue / m_bins] ++;    

} 

. . . 

 

 

 

•  Inserting a new picture 

create function newPicture(Album al, Vector im)-> P icture p 

as begin 

 create Picture(filename,  caption , album) instanc es p  

    (im [0], im[1], al ); 

 set features(p) = colorHistogramExtractor(filename (p)); 

 addFeatureIndex(picture_index(), features(p), p); 

 result p; 

 end;  
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� KNN queries with index 

/*KNN search*/ 

create function knearest(Picture p, Integer k) -> B ag of Picture 

as knearest_search(picture_index(), p, k); 

 

/*Example of KNN search*/ 

create function q1(Charstring caption, Integer k) - > Bag of      
Charstring 

as  select caption(p) 

 from Picture p, Picture q 

 where p in knearest(q,k) and caption(q)= caption; 

 

� KNN queries without index 

 

/* Basic functions for kNN */ 

create function kct() -> <Vector of Real x, Picture  pic>  

as select cc, p from Picture p, vector of real cc 

 where cc = features(p); 

 

/* Calculate distances*/ 

create function distances(Vector of Real x,   

 Bag of <Vector of Real, Picture > P)->  

 Bag of <Real distance, Picture pic> 

as   

 select euclid(x, v), pi 

     from Vector of Real v, Picture pi 

 where <v, pi> in P 

; 

/*KNN queries without index*/ 
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create function q4(Charstring caption, Integer k) - >  

 Bag of Charstring 

as  select caption(p1) from Picture p1, Picture p2,  Real dis                                   
 where 

   caption(p2) = caption 

   and <dis, p1> in 

   leastk(distances(features(p2), kct() ), k); 

 

� KNN queries with and without index in related to the measurements 

A KNN query without index calls the function distances to calculate the distances from 

the features of the given picture to features of all other pictures in the database. It will 

not scale when the number of pictures increases (meaning the increase of database 

size) or when the feature vector of picture is complex (meaning the increase of 

dimension of feature vector). In these cases, the function distances take times to 

perform the distance calculation to each feature of other pictures. It results in the linear 

increase of the search time (see Figure 9 Query time of KNN queries (using and not 

using index) and Figure 11 Query time of KNN queries (with and without index) on 

100000 objects).  

 

On another hand, the query with index calls function knearest that takes advantage of 

the Xtree index structure (hierarchal structure of MBRs). It does not perform the distance 

calculation to all other pictures. Instead, it always selects pictures whose distances are 

minimal distances to the query picture. Therefore, it can find K nearest neighbor faster 

without visiting all others. Technically, KNN search on index tree avoids visiting 

unnecessary nodes by choosing a node who’s MBR has a minimal distance to the query 

point to visit first. As expected with the increase of database size and the increase of 

dimension, KNN search with index takes less time than KNN search without index (see 

Figure 9 Query time of KNN queries (using and not using index) and Figure 11 Query 

time of KNN queries (with and without index) on 100000 objects). 
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Appendix C: Saving and restoring index files 

� Saving index files 

The name of an xtree index file is constructed from the ID of the Xtree and the name of the 

database image by the function gen_indexfile:  

create function gen_indexfile(Charstring image, Int eger id) -> 
Charstring as  

begin  

 declare Charstring filename, Charstring indexfile;  

 /*suppose image = foo.dmp. The index filename = fo o1.xt*/ 

 set filename = substring(image, 0, char_length(ima ge) -  

       5); 

 set indexfile = filename + stringify(id) + ".xt"; 

 result indexfile; 

end; 

 

When the save command is issued, the index_rolloutfn is used to save index trees. All 

index trees are saved to disk.  

create function index_rolloutfn(Charstring image) - > Boolean  

as 

begin  

 for each Integer id where id in xtreeids()   

   xtree_save(id, gen_indexfile(image, id)); 

 result TRUE; 

end; 

 
In the function index_rolloutfn, a function xtree_save is called to save each index tree. The 

function xtree_save is defined as  

create function xtree_save(Integer xtId, Charstring  filename)  

-> Boolean as foreign function ‘xtree_save’ 
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The internal function xtree_save takes index tree's ID and a chosen name. It then saves 

the index tree from main memory to the disk. TRUE is returned if no error occurs, 

otherwise FALSE.  

� Restoring index files 

After the initialization, Amos II calls index_rollinfn to load all index files associated with the 

database image. The function index_rollinfn loops through a list of Xtree’s IDs and calls the 

foreign function xtree_load for each ID of them to load the corresponding index file if the 

index file exists on disk. 

create function index_rollinfn(Charstring image) ->  Boolean as 

begin 

 declare Charstring indexfile; 

 for each Integer id where id in xtreeids()   

 begin 

   set indexfile = gen_indexfile(image, id); 

   if file_exists(indexfile) then 

   xtree_load(indexfile); 

 end; 

 result FALSE; 

end; 

 
And the xtree_load is defined as follow 
 

create function xtree_load(Charstring filename) -> Integer xtId as  

foreign function ‘xtree_load’ 

The internal function xtree_load takes the file name of an index file as input parameter. It 

loads the intdex tree from the file and returns the ID of the loaded index tree.  

 
Finally, saving and restoring functions are registered to Amos II. They are automatically 

called from Amos II when Amos II saves or the database is initialized respectively.  

register_saver(#'index_rolloutfn', #'index_rollinfn ' ); 


