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Abstract
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Many applications require storage and indexing of new kinds of data in mainmemory, e.g.
color histograms, textures, shape features, gene sequences, sensor readings, or financial time
series. Even though, many domain index structures were developed, very a few of them are
implemented in any database management system (DBMS), usually only B-trees and hash
indexes. A major reason is that the manual effort to include a new index implementation
in a regular DBMS is very costly and time-consuming because it requires integration with
all components of the DBMS kernel. To alleviate this there are some extensible indexing
frameworks. However, they all require re-engineering the index implementations, which is
a problem when the index has third-party ownership, when only binary code is available,
or simply when the index implementation is complex to re-engineer. Therefore, the DBMS
should allow including new index implementations without code changes and performance
degradation. Furthermore, for high performance the query processor needs knowledge of how to
process queries to utilize the plugged-in index. Moreover, it is important that all functionalities
of a plugged-in index implementation are correct. The extensible main memory database
system (MMDB) Mexima (Mainmemory External Index Manager) addresses these challenges.
It enablestransparent plugging in main-memory index implementations without code changes.
Index specific rewrite rules transform complex queries to utilize the indexes. Automatic test
procedures validate the correctness of them based on user provided index meta-data. Moreover,
the same optimization framework can also optimize complex queries sent to a back-end DBMS
by exposing hidden indexes for its query optimizer. Altogether, Mexima is a complete and
extensible platform for transparently index integration, utilization, and evaluation
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1 Introduction 

Main-memory databases (MMDBs) [12] [30] [46] [80] [64][49] are common 
approaches for many applications such as financial analyses, real-time oper-
ating systems, industrial machine sensors, and scientific applications that re-
quire fast data access, storage, and manipulation. The emergence of such do-
main applications put new requirements on main-memory database systems 
to support new kinds of data, e.g.; color histograms, textures, shape descrip-
tions in image databases, gene sequences in biology databases, sensor read-
ings in machine-log databases, time series data in finance, etc. To efficiently 
access and manipulate such domain data, MMDBs need to include new kinds 
of domain indexes that provide scalable facilities to query and update domain-
oriented data representations.  

Even though many index structures were developed, very a few of them are 
implemented in database systems in practice; most database systems [29] [32] 
provide only B-trees and hash indexes. The reason is that it is very difficult to 
extend a DBMS with new index structures. The manual integration effort is 
very costly and time-consuming since the new index needs to interface with 
most subcomponent of the DBMS kernel. Therefore, for new emerging do-
main applications that need novel index structures, it may not be feasible to 
develop indexes from scratch and integrate them into the DBMS. The DBMS 
index manager should be extensible to enable including new index structures 
without changing the DBMS kernel.  

Existing extensible indexing frameworks [36] [51] [53] [91] support adding 
new indexes but they require re-engineering the index code strictly following 
each particular framework’s coding conventions and API primitives. This may 
still be a daunting task because the index may have third-party ownership, 
perhaps only binary code is available, or simply it is very complex to re-engi-
neer the code. Therefore, one challenge is how to add new index implementa-
tions to a DBMS without code modifications. 

When plugging-in a new index implementation to a DBMS, it is important 
to test that all index functionalities are correct. Correctness means that all in-
dex operations should return exactly the expected results and leave the data-
base in a consistent state after updates or bulk loading. Therefore, another 
challenge is how to automate the test procedures for a new plugged-in index 
implementation.  

Adding a new index to a DBMS requires teaching the query processor prop-
erties of the new index, e.g. its supported access methods and how to rewrite 
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queries to make the index utilized by the query optimizer. Furthermore, com-
plex expression in queries, e.g. for advanced analytics, often hinder the query 
optimizer to utilize its indexes. Therefore, an extensible indexing system has 
a need for extensible query processing in which new index specific rewrite 
rules can be plugged in. Such index specific rewrites improve query perfor-
mance. Extensible query rewrite mechanisms could also improve the perfor-
mance of advanced queries sent to a regular DBMS by transforming queries 
involving complex expressions. Therefore, another challenge is how to plug-
in index specific rewrite-rules in an extensible query processor for utilizing 
the new indexes in queries.  

This Thesis addresses the above challenges of extensible indexing, index 
testing, and index-specific query transformations in a main-memory DBMS. 

The following research questions are investigated:  
1. The overall research question is: How should an extensible index-

ing system be designed to enable transparent inclusion of index 
implementations without code changes in neither the DBMS kernel 
nor the index? 

2. How should the query processor of the extensible indexing system 
be provided with knowledge of the access methods of a new 
plugged-in index to utilize transparently the index in queries? 
In particular: How should the query processor be extensible with 
new index-specific rewrite rules so that the new plugged-in index 
is transparently utilized in queries? 

3. How should the correctness of a plugged-in index be automatically 
validated? In particular, what are the functionalities to test and how 
can the testing be automated?  

4. When data is stored in a back-end database, how should the query 
processor transform complex queries so indexes in the back-end 
DBMS are utilized?  

To answer these questions, we developed an extensible MMDB system called 
Mexima (Main-memory External Index Manager).  

To answer Research Question one, Mexima enables plugging-in different 
kinds of main-memory index implementations without altering or re-engi-
neering their original source code (Paper I). An index extension developer 
takes an existing index implementation, writes a simple extension driver (in-
terface code), and then compiles the whole module as a dynamic library or 
shared object called an index extension. Mexima loads these index exten-
sions at runtime. This inclusion requires little development efforts and no de-
tailed knowledge about the DBMS kernel.  

To answer Research Question two, for data operations on a plugged-in in-
dex, Mexima invokes corresponding index access and update operators (Paper 
I). The index operators that are common for all kinds of indexes are called 
basic access operators (BAOs), i.e. methods for creating, dropping, updating, 
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accessing, and mapping over indexed elements respectively. Moreover, each 
kind of index often has special search functions (SSFs) that utilize index spe-
cific properties for efficient search, e.g., interval search on B-trees [67], and 
K-nearest neighbor and proximity search on R-trees [1] and X-trees [5]. To 
utilize SSFs transparently in queries the system contains an SSF translator 
that transforms query conditions into calls to SSFs. 

Furthermore, when queries involve complex inequality conditions, they 
may hinder the query optimizer from utilizing the presence of indexes. This 
causes expensive scans of entire tables rather than direct index access calls. 
The Algebraic Inequality Query Transformations (AQIT) (Paper II) trans-
forms complex queries involving inequalities into equivalent ones, which are 
more efficient by exposing hidden indexes.  

To answer Research Question three, for each index type, the Mexima tester 
generates a number of queries that automatically test the correctness of the 
index implementation. The test queries use data generators, which are queries 
specified by the index extension developer to generate relevant data for testing 
BAOs and SSFs (Paper I).  

To answer Research Question four, Mexima allows optimizing complex 
numerical queries sent to a back-end relational database (Paper II). The same 
AQIT rules used to utilize plugged-in main-memory indexes can also be used 
for exposing indexes in back-end relational DBMSs. Furthermore, scalable 
execution of rewritten complex numerical queries sent to the back-end rela-
tional database requires translating the numerical expressions into SQL (Paper 
III). This avoids data transfer from the backend database and enables the back-
end query optimizer to utilize indexes.  

This Thesis overview is organized as follows. Chapter 2 presents technol-
ogy background and related work. Chapter 3 describes Mexima’s architecture, 
including its query processing based on rewrite rules. Chapter 4 concludes the 
Thesis and gives some future work discussions. Finally, Chapter 5 summarizes 
papers I-V and states my technical contributions to each of them. 
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2 Background and Related Work 

A database is a collection of information that is organized by a general-pur-
pose software system called a database management system (DBMS) [60]. 
The DBMS enables creation, construction, manipulation, and maintenance of 
databases. A data model is the paradigm used by a DBMS for representing the 
structure of its databases. For example, in the relational data model [18] data-
bases are represented as a set of tables having columns and rows. The database 
is manipulated by queries. In a DBMS, the query processor is responsible for 
translating queries into a query plan, which is a sequence of database opera-
tions executed by the DBMS kernel. The query optimizer, a component of the 
query processor, determines for a given query an optimized query plan likely 
to be the most efficient way to execute it.   

In this Thesis, we focus on two important aspects: database indexing and 
query processing in main-memory database systems. 

2.1 Main-memory database system 
Most major DBMSs are designed to store data on disk and bring disk pages 
into main-memory as needed for processing. This model assumes computers 
with main-memory smaller than the databases. Nowadays, a normal computer 
has enough main-memory to fit most databases entirely. Therefore, to take full 
advantage of modern hardware, a new class of database systems was intro-
duced: main-memory database systems (MMDBs) [4] [12], [29], [30]. 
MMDBs are most commonly used in applications that demand fast data ac-
cess, storage, and manipulation, For example: enterprise applications [89], 
sensor networks [76], industrial data [78], and telecom applications [56]. In 
addition, for applications running on traditional disk-based DBMSs, when 
data is skewed some frequently accessed “hot” data can be kept in a main-
memory database. For this, major DBMS vendors have developed their own 
main-memory database processing integrated with their disk-based DBMSs, 
e.g., Oracle TimesTen [82], Heckaton in SQL Server [10], and MySQL in-
memory tables [58]. Furthermore, in recent years parallel MMDBSs have been 
in focus [37][86][83][62], with commercial products such as SAP HANA [77] 
[89], MySQL Cluster [62], and VoltDB [48]. 

Colum-store systems such as MonetDB [80], VectorWise [64][49], C-Store 
[54]  (or its commercial version Vertica [2] ), SybaseIQ [73], etc., are designed 
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to exploit the large main memories of modern computer systems efficiently 
when processing analytical and aggregate queries overs database in memory-
mapped files. In particular, they partition a database into a collection of indi-
vidual columns that are compressed and stored separately. It enables pro-
cessing only the needed columns, rather than entire rows and discards other 
unneeded columns.  

Even though main-memory database systems have been extensively stud-
ied in the past, the area of extensible indexing and query processing in a main-
memory DBMS is little studied [29] and is the focus of this Thesis.  

The next section discusses why indexing is needed in the context of main-
memory database systems. 

2.2 Indexing 
A DBMS uses indexes to speed up the retrieval of records in response to cer-
tain search conditions [60]. An index associates a given key with a collection 
of addresses of matching records. To avoid physically scanning all records in 
a table for a given search condition on some search key, the DBMS can use 
the index to access only the relevant records. In a relational database, there 
can many indexes created for each table and an index can be associated with 
a single column or several columns. An index is utilized by a query when the 
query optimizer is able to use the index in the execution plan to speed up the 
execution of the query.  

2.2.1 Indexing in MMDBs 
Figure 1 illustrates the memory hierarchy layers when accessing a regular 
disk-based database. The widths of the triangles indicate the storage capacity 
of the layers, while the thicknesses of the arrows indicate the data volume 
transferred between the layers. 
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Figure 1 Memory hierarchy 

The main optimization objective of a disk-based DBMS is to reduce the num-
ber of I/O accesses, which is the primary performance bottleneck. In an 
MMDB, all data is assumed to fit in main-memory so therefore the goals of 
an MMDB are to reduce memory consumption, to optimize memory cache 
usage, and to minimize the number of CPU cycles for maintaining data in 
memory [29].  

In an MMDB, before data can be processed by the CPU it needs to be trans-
ferred into the memory cache as a data block; this is called a cache miss. If 
the same data block is referenced a second time, the access time becomes sub-
stantially faster since no transfer is needed; this is called a cache hit.  When a 
cache miss happens, the computer must wait for other CPU cycle(s) before 
transferring another data block from memory to the cache. Therefore, sequen-
tially reading data blocks is much faster than randomly accessing main-
memory. If there is much data to access, there will be many costly cache 
misses so indexing will improve performance substantially for large main-
memory databases. 

A cache miss is analogous to a buffer pool miss in a disk-based database. 
The difference is that the block size in a disk-based database is substantially 
larger than the memory cache in an MMDB and the performance difference 
between a cache hit and a cache miss is substantially higher for disk-based 
databases. Therefore, the improvement by indexing is higher for disk-based 
databases.  

Even though column-store systems [80] [64] [49] [54] [2] [73] can achieve 
high cache utilization and CPU efficiency when scanning columns, indexes 
on top of column-stores improve the performance with orders of magnitude 
for queries that do not need to scan entire columns [81][14].  

An index entry in an MMDB is a data structure containing pairs (index key, 
list of handles), where the handles refer the records having the same index 
key. A handle can be a physical memory address, or it can be an indirect ref-
erence to physical memory in order to allow flexible memory management 



 17

[72]. Different index data structures organize the index entries in different 
ways, e.g. as B-trees [67], hashing [63][93], R-trees [1], TV-trees [42], etc. 

The next section addresses the necessity of extending DBMSs with new 
domain index structures. 

2.2.2 Extensible indexing 
Figure 2 shows an application matrix proposed by Stonebraker in 1990s [55], 
which categories database applications into four quadrants. It motivates the 
need for DBMSs to support queries over complex data in the upper-right quad-
rant, which is required by many of today’s applications such as multi-media, 
time series, and gene sequences. A key approach to support such new complex 
data types is the ability to include in a DBMS new data structures to represent 
domain data. 

 
Figure 2 Classifications of database applications 

Adding a domain data type to a DBMS also requires supporting new domain 
operators in queries. For example, if an image data type is introduced, there is 
also need for query functions that compute image similarities. Importantly, 
inclusion of new data types requires new kinds of indexes to access the data 
efficiently.  

Figure 3 summaries most index structures invented during 1960-1996 [90]. 
However, very few of them were actually implemented in a DBMS [32]. 

Business
Personal db
Many applications

Multimedia retrieval
Temporal data
Measurements
Customized search

VOD
Text Editor
Simple computations

CAD system
Course planning
Complex computations

Query (SQL)

No Query
(No SQL)

Simple data Complex data
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Figure 3 Summary of indexes invented during 1966 - 1996 

Figure 4 shows what indexes are available today in well-known DBMSs. For 
example, both Oracle and MySQL employ R-trees up to 4D for geometry ob-
jects. In addition, Oracle Spatial engine supports also Linear Quad-trees [71], 
which uses a space-filling-curve technique [94] to decompose spatial data into 
linear-order data suitable for B-trees. Similarly, Microsoft SQL Server Spatial 
[94] and DB2 Spatial Extender [35] also use a space-filling curve to index 
spatial data. Alternatively, some DBMSs support function indexes [40][13], 
which are indexes on the result of a function. The DBMSs compute the result 
of the function for every update and materialize it in a B-tree or a hash table. 
Function indexes thus require computation for every single database update 
or insertion. That makes database updates more expensive and it is inapplica-
ble for ad-hoc queries. 
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Figure 4 Summary of indexes in some DBMSs  

Another approach to improve performance of querying high-dimensional data 
is to use dimensionality reduction techniques such as DFT (Discrete Fourier 
Transform) [70], FFT (Fast Fourier Transform), or DWT (Discrete Wavelet 
Transform) that map from a high-dimensional space to lower dimensions. 
Then DBMSs can apply some low-dimensional index structures (R-trees or 
B-trees) to index the data. However, such reductions are lossy and thus they 
are applicable only on applications where loss of information is acceptable, 
e.g., financial databases [8] and images [7] [21].  

MMDBs have even fewer index structures implemented than disk-based 
databases. For example, the following systems have only hash-based index-
ing: Memcached [4], Redis [74], RamCloud [38], Yahoo! S4 [43], and Piccolo 
[69]. SAP HANA has both CSB+ trees [77] [89]  and hash indexes. H-store 
[68] and its commercial version VoltDB [48] have B-trees and hashing. For 
in-memory tables, MySQL 5.6 and MS SQL 2014 support hashing only. 

The question is why most DBMSs implemented so few indexes, even 
though there is a demand for new kinds of indexing and there are many domain 
indexes. The answer is because it is very challenging to include new indexes 
into a DBMS kernel.  

To simplify adding new indexes to DBMSs, several extensible indexing 
frameworks have been proposed. Generalized Search Trees [36] is a general-
ized template index structure, which provides a single code base for com-
monly invariant properties of B-tree-like search trees while leaving other char-
acteristics to be specified by the user. GiST was realized in some prototype 
systems, e.g., Predator [66] and PostgreSQL [53]. Informix Dynamic Server 
with Universal Data Option (IDS/UDO) [51] simplified GiST’s design while 
SP-GiST [91] extended GiST to include space-partitioning trees. A problem 
with GiST based approaches is that they require implementing the indexes 
completely following the coding conventions of the frameworks. This is still 
a challenging task because the index may have third-party ownership, or per-
haps only binary code is available, or it is very complex to re-implement the 
code. It would be better if one could re-use an existing implementation of an 

Index MySQL 5.6 PostgreSQL 9.5.1 MS SQL 2014 Oracle 12c Release 1

B-tree Yes Yes Yes Yes

Hash Yes* No Yes* No

Bit-map No Yes No Yes

Spatial index Quadratic R-tree R-tree (GiST) No Quadratic R-tree
Quad-tree

Function-based-index No Yes Yes Yes

Notes
• Versions

• Oracle 12c Release 1
• SQL Server 2014
• MySQL 5.6

• Hash index is only available for in-memory tables.
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index without any code changes. This Thesis presents an extensible indexing 
framework to include new main-memory indexes without changing their im-
plementations. 

In order to utilize fully an index implementation it is very important that 
the query optimizer is aware of the presence of the index, its supported access 
methods, and how to process queries so that it is utilized in execution plans.  
The next section discusses this. 

2.3 Query Processing 
Query processing in general is first overviewed and it is then followed by a 
discussion of extensible query processing.  

2.3.1 Overview 
Figure 5 illustrates the steps of a database query processor. 

  
Figure 5 Query processing in a DBMS 

The query processing consists of the five following steps:  

Query

Parser

Parse tree

Calculus generator

Calculus rewriter

Execution plan 
interpreter

Cost-based 
optimizer

Results

Calculus

Calculus

Algebra
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1. A parser constructs a parse tree for the input query doing type checking 
and some semantic checks for the validity of the objects being referred in 
the query. 

2. A calculus generator converts the parse tree into a predicate calculus rep-
resentation, e.g. relational tuple calculus [26] [9] where variables are 
bound to tuples (rows) in tables, or alternatively domain calculus such as 
Datalog [26] where variables are bound to atomic values. Mexima uses 
the domain calculus ObjectLog [92], which is a dialect of Datalog allow-
ing user-defined objects, types, overloading, and foreign functions that al-
low accessing external algorithms and data structures. 

3. A calculus rewriter transforms the calculus expression into an equivalent 
expression to improve performance and enable further optimization. One 
very important rewrite is to expand views to expose indexed columns hid-
den inside views. Mexima enables calculus rewrite rules for transparent 
utilization of new indexes by user-provided index specific rewrite rules 
and algebraic inequality transformations. This contrasts with other exten-
sible indexing frameworks that recommend manually reformulating que-
ries involving complex expressions [61] [11]. 

4. A cost-based optimizer [28] applies some optimization algorithm on the 
transformed calculus expression to produces an execution plan, which is 
a program in physical algebra accessing the database. The optimizer esti-
mates the cost of executing a plan according to some cost model based on 
knowledge about database statistics, internal data representations, and 
search algorithms used in the plan. In Mexima, for given arguments, a 
function accessing a plugged-in index implementation can be associated 
with a cost and a fanout. The cost is an estimate of how expensive it is to 
retrieve the accessed tuples and the fanout estimates the expected number 
of emitted tuples in a results stream. If there is no specified cost, Mexima 
assumes a default cost and fanout based on the signature of the function, 
available index definitions, and some other heuristics. 

5. Finally, the execution plan interpreter executes the plan and iteratively 
emits the result. In Mexima, special search functions supported by a 
plugged-in index are defined as foreign functions called from the execu-
tion plan.  

2.3.2 Extensible query processing 
In order to utilize a new index in queries, Oracle ODCIIndex framework [39] 
allows associating an index operator op with an index access path. Only con-
junctive predicates where terms have the following forms are supported: 

op(…) relop <value expression>, where relop is one of the relational op-
erators: ≤, ≥, <,or >. 
op(…) LIKE <value expression> 
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Oracle provides guidance [61] [11] on how to reformulate a query to utilize 
indexes when it is not exactly matching the above forms. In contrast, Mexima 
automatically transforms a wide range of query forms containing numerical 
expressions into queries that use index specific special search functions 
(SSFs) to utilize index properties. 

In Starburst and DB2 [31], query transformations are driven by a rule en-
gine. Internally, they represent queries by a Query Graph Model (QGM) in 
C++ structures. A rule table stores all rewrite rules and classifies them into 
different query classes. Each query class has different rewrite heuristics. The 
rule engine selects what rules to apply to transform the queries. Similarly, 
Volcano [24], Cascades [25], and Exodus [44] also use rules to transform re-
lational algebra expression into physical operators.  

In contrast, Mexima does not rely on procedural code since rewrite rules 
for SSFs are specified as declarative meta-data stored in index property tables. 
This is possible since the SSF rewriter is designed particularly for index utili-
zation rather than for general relational algebra transformations as [31] [24] 
[25] [44]. Thus, a challenge is how to specify the rewrite rules as meta-data 
on a high-level. In Mexima each rewrite rule specified per index type de-
scribes a mapping from some terms of a query fragment form into an index-
supported SSF function. Unlike Oracle, Mexima supports several query frag-
ment forms. Altogether, the calculus rewriter in Mexima takes into account 
the existence of certain indexes, an extensible set of algebraic rules, and user-
provided index rewrite rules to transform queries. 

2.4 Database testing 
It is critical that all functionalities of an index implementation are correct, 
meaning that query results and the database states after updates are the same, 
regardless of whether the index is used or not. Mexima includes a tester for 
automatic testing of the correctness of the functionalities provided by a 
plugged-in index implementation. 

Testing of DBMS functionality in general has been studied in [23][45][59]. 
The database generator QAGen [23] provides general purpose testing of 
DBMS components. It generates test databases and test queries based on sym-
bolic execution of queries. In [59] an inverse relational algebra generates 
query inputs for given query results. To implement unit testing for the query 
optimizer, the framework in [45] generates test queries based on user-defined 
transformation rules specified as trees of relational algebra operators. The JOB 
benchmark [88] tests the impact of a cost model and compares exhaustive dy-
namic programming with heuristic algorithms when enumerating sub-plans. 
It takes user-provided meta-data or DBMS statistics to generate dataset for 
given input queries. 
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QuEval [47] is a benchmark for testing spatial index implementations sep-
arate from a DBMS. QuEval produces test data sets based on user-provided 
parameters and built-in data generators. New index implementations can be 
developed and added to QuEval following its coding conventions.  

Unlike QuEval, new complex indexes in C/C++ can be plugged into Mex-
ima without any code changes. Furthermore, the Mexima tester generates and 
executes correctness tests of the plugged-in indexes, while the purpose of 
QuEval is to analyze performance of spatial index algorithms implementations 
in QuEval under different configurations.  

2.5 Amos 
Mexima extends the main-memory DBMS Amos [87]. Amos provides a func-
tional and object oriented data model in which objects, types, and functions 
are the essential concepts. Functions are used to define properties, relation-
ships, and computation over objects, which are classified by a type hierarchy 
stored in the database. The functional query language AmosQL supports que-
ries in terms of functions over typed objects, where a signature and an imple-
mentation define a function. The signature declares the input and result pa-
rameter types and names, whereas the implementation defines how to compute 
outputs from inputs and vice versa. There are different kinds of functions. For 
example, a table is called a stored function and a derived function is a param-
eterized view defined by a single query. Furthermore, foreign functions can 
be defined in some external programming language, such as C/C++, Java, Py-
thon, or Lisp. Mexima uses the object-oriented data-model of Amos to repre-
sent index meta-data.  

AmosQL queries are internally represented as ObjectLog [92], which is an 
extension of Datalog with objects, types, overloading, and foreign functions. 
A calculus rewriter transforms ObjectLog expressions to improve perfor-
mance. After the rewrites, a cost-based optimizer produces an execution plan 
sent to the execution plan interpreter.  

Mexima extends the query processor of Amos with calculus rewrite rules 
for transparent utilization of new indexes. It utilizes foreign functions to de-
fine SSFs to enable query transformation of queries into equivalent queries 
calling SSFs.   

Amos represents all data objects internally as physical objects managed by 
a main-memory storage manager. Physical objects allocated inside a main-
memory database image are persistent, which means that they can be saved 
on disk and later restored. A physical object, po, is accessed through an object 
handle, hdl, which is the offset to po from the start of the database image. 
Mexima provides a mechanism to access specialized external index storage 
managers for each index type so that index entries can be stored outside the 
database image.  
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3 Mexima 

This chapter gives an overview of Mexima’s architecture with references to 
the papers on which this Thesis is based. Followed by the general system ar-
chitecture, the second section describes more in details the query processor, 
while the Mexima tester is described in the last sub-section. 

3.1 Architecture 
Figure 6 illustrates the overall architecture of Mexima. The system can used 
either as an extensible main-memory database or as a front-end query proces-
sor to a back-end relational DBMS, or a combination of the two. 

 
Figure 6 Mexima's architecture 

Mexima enables plugging-in different kinds of main-memory index imple-
mentations in C or other programming languages without altering or re-engi-
neering their original source code. An index extension developer can specify 
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meta-data about the plugged-in indexes. The meta-data can be index specific 
rewrite rules to hint the query processor on how to process queries to utilize 
indexes. The meta-data can also be data generators used to verify the correct-
ness of the index. The details are in Paper I.  

In addition, Mexima’s query processor can transform complex queries over 
a back-end relational database so that indexes hidden inside complex expres-
sions are exposed and utilized there, by applying algebraic transformation 
rules. In general, Mexima is a query processor with focus on index utilization. 
The details are mainly in Paper II and partly in Paper III. 

Figure 7 illustrates the software layers of main-memory query processing 
in Mexima. 

   
Figure 7 Mexima software layers 

Queries are compiled by the query processor and executed by the execution 
interpreter. The execution plans call the Mexima core to execute the basic in-
dex operations (BAOs) such as create(), drop(), put(), get(), and map(), as 
well as special search functions (SSFs) for each kind of plugged-in index. The 
extension driver is a plugged-in interface between Mexima and the unchanged 
index implementation.  

Figure 8 shows the details of the Mexima core component, with the Amos 
engine as the gray box. The extension loader loads at run-time the index ex-
tension as a dynamic library or a shared object. The extension loader registers 
the BAO index interfaces as C functions. The index name and its registered C 
functions are stored as meta-data in the BAO table.  
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Figure 8 Mexima core 

When an instance of a plugged-in index is associated with an attribute of a 
main-memory table, for every data update the index interface dispatcher ac-
cesses the index by invoking the corresponding registered BAOs (create(), 
put(), get(),etc.) in the BAO table. Importantly, the index interface dispatcher 
maintains reference counters of index keys and values. This frees the exten-
sion developer from handling garbage collection issues manually. 

Mexima includes an index storage manager for saving the index structures 
on disk and reloading them later when the system starts. This is important for 
main-memory index implementations that do not support persistency. In ad-
dition, if an index implementation has persistency implemented, Mexima pro-
vides save() and restore() hooks to call index persistency functions registered 
in the BAO table. The details of Mexima’s core are presented in Paper I. 

The next section discusses the query processor of Mexima followed by the 
Mexima tester. 

3.2 Query processor 
Figure 9 illustrates Mexima’s query processor.  The calculus rewriter of Amos 
calls the Mexima query rewriter for transparent utilization of new indexes. 
The Mexima query rewriter applies rules to produce an index exposed calculus 
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expression, which is a calculus expression containing query fragments sup-
ported by an index. Without such rewrites, the query optimizer will not detect 
index access paths hidden inside complex expressions. The index extension 
developer populates the index property tables (Figure 8) containing SSF 
translation rules, which are index specific rewrite rules that describe how 
query fragments are translated to a new format that utilizes the index. Com-
plex queries involving numerical expressions over indexed attributes are re-
formulated transparently so that the Mexima query rewriter can apply SSF 
translation rules to expose main-memory index implementation. The details 
are in Paper I and Paper II.  

When the query plan is rewritten to expose a plugged-in index, the cost-
based optimizer generates an execution plan that contains calls to the Mexima 
core to access the index. Paper I describes this in detail. 

  
Figure 9 Query processing in Mexima 

When Mexima is used as a query processor in front of a back-end DBMS, it 
enables transparent query transformation to exploit the presence of indexes in 
the backend DBMS. In this case, the SQL Generator (Paper III) translates the 
index exposed calculus expression into an equivalent shipped SQL query sent 
to the back-end DBSM through JDBC for optimization and evaluation. 
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Figure 10 Mexima Query Rewriter 

Figure 10 shows the Mexima query rewriter in details. For complex numerical 
expressions, the Algebraic Inequality Query Transformations (AQIT) compo-
nent transforms a query into an equivalent one based on a set of algebraic 
inequality rules. AQIT transforms numerical complex inequality expressions 
so that query fragments supported by an index (B-trees in Paper II and high 
dimensional indexes in Paper I) are exposed. 

The index extension developer populates the SSF translation table in which 
each row is an SSF translation rule for a particular index type. For plugged-in 
indexes, the SSF translator rewrites query fragments over indexed attributes 
into SSF calls (Paper I) based on these rules. 

In summary, Mexima’s query processor has the following features: 
 SSF translation rules describe how query fragments are transformed to 

expose SSFs accessing plugged-in main-memory index implementations. 
Mexima currently supports six query fragment forms that can be trans-
formed (Paper I). 

 AQIT transformations enable transforming complex inequality expres-
sions in queries to expose hidden indexes both for main-memory and 
back-end DBMS indexes (Paper I and Paper II). 

 When data is stored in a back-end DBMS, queries having numerical ex-
pressions are translated to SQL queries sent to the back-end for execution 
(Paper III). 
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3.3 The Mexima tester 
The Mexima tester illustrated by Figure 11 automatically generates and runs 
test algorithms based on index meta-data provided by the index extension de-
veloper. The test algorithms require index specific random data generators. 
The system has some built-in random generators to generate keys as numbers 
and vectors of numbers respecting various distributions. User-defined data 
generators can easily be defined in terms of these built-in ones or as new kinds 
of data generators as queries. In addition, test keys stored in files can be de-
clared as meta-data. 

 
 
Figure 11  Mexima tester 

To test the correctness of BAOs, the BAO tester generates two temporary ta-
bles per tested index implementation, an indexed table, and a reference table, 
where the indexed table has an index of the tested kind while the reference 
table has a hash index. The BAO tester populates these two tables by executing 
index key generator queries stored in an index meta-data table producing ran-
dom index keys. The idea is that having the index or not should not change 
query results or table contents. In particular, randomly loading, accessing 
keys, mapping over, and deleting keys should produce the same results with 
or without the index. 
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The validation queries are generated based on SSF translation rules and 
SSF parameter generators specified as index meta-data. The Mexima tester 
validates that executing the same validation queries on the indexed and refer-
ence tables should return the same result when SSF translation rules are ena-
bled or disabled.  

The details about the Mexima tester are presented in Paper I. 
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4 Conclusions and Future Work 

Table 1 positions this Thesis in comparison to existing state-of-the-art exten-
sible indexing framework [36] [39] [51] [53] [91] regarding the following as-
pects of extensible indexing:  

 Code reuse: None of them provides solutions to reuse existing index 
implementations without any code changes. 

 Index utilization query rewrites: Oracle [39] provides limited support 
for rewriting queries to utilize new indexes without changing the 
DBMS core optimizer, while Mexima transparently transforms a large 
class of queries involving complex expressions to utilize plugged-in 
index implementations or indexes in a back-end DBMS.  

 Index validation: Unlike Mexima, none of them has automated vali-
dation of plugged-in indexes.  

Table 1. Summary of extensible indexing framework 

 Requirements
Code 
reuse 

Index utilization 
query rewrites  

Index 
validation 
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xt
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GiST 
in PostgreSQL 9.3.5 [65]

No Not in framework No 

SP-GisT 
version 0.0.1 [79]

No Not in framework No 

Oracle [39] No Limited No 
DB2 
in DB2 Universal Database 7.1, [34][27]

No Not in framework No 

This Thesis Yes Yes  Yes 

In summary, the Mexima framework allows transparent plugging-in of main-
memory index implementations in a main-memory DBMS without code 
changes. The extension developer only writes a simple Mexima driver for the 
universal index operations (BAOs) and some index specific search functions 
(SSFs) that call the unchanged index implementation. Unmodified index im-
plementations allow to easily utilizing highly optimized and complex index 
implementations such as Judy-tries [6]. For future work, more kinds of in-
dexes should be plugged into Mexima than those evaluated so far B-trees [52], 
Linear-Hashing [52], Judy-Tries [6], X-trees [52], and R*-trees [20] (Paper I). 
This may add more requirements to the system. 
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To utilize plugged-in index implementations transparently in queries, the 
Mexima query processor uses SSF translation rules, and algebraic rewrite 
rules to rewrite queries. Future work should investigate how to extend the re-
write capabilities to support more algebraic rules and query fragment forms.  

To validate the correctness of a new index, Mexima calls user-specified 
data generators, SSF translation rules, and query fragment forms that automate 
the correctness tests for a plugged-in index. As a future work, it should be 
investigated how to automate also performance tests of index operations.  

Several experiments were made in Paper I: First, the penalty of calling an 
index implementation by plugging it into Mexima was compared with the 
stand-alone implementation showing that the overhead was less than one mi-
crosecond (µs) per index access. Furthermore, the experiments showed that 
rewrite rules provide substantial query performance improvements. 

Moreover, when Mexima acts as a query processor in front of a DBMS, the 
experiments showed substantial query performance gains by Mexima’s re-
writing of queries to utilize indexes in the back-end DBMS.   

For more future work, we shall investigate how extensible indexing and 
extensible query processing in Mexima can help to improve queries in NoSQL 
databases as discussed in Paper V. In addition, Mexima can be used to im-
prove data access in distributed and parallel environments (Paper IV) to pro-
cess massive stream in which each node is a Mexima node.   

Altogether, Mexima is a complete and extensible platform for index inte-
gration, utilization, and evaluation. 
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5 Technical contributions 

5.1 Paper I 
T. Truong and T. Risch: Transparent inclusion, utilization, and validation of 
main-memory domain indexes, 27th International Conference on Scientific 
and Statistical Data-base Management (SSDBM), San Diego, United States, 
June 29-Juli 1, 2015. 

Summary 
In this paper, we presented the Mexima (Main-memory External Index Man-
ager) system, which is an MMDB where new main-memory index structures 
can be plugged-in without modifying the index implementations or Mexima. 
To utilize plugged-in indexes in queries, the system transparently transforms 
query fragments into index operations based on user-provided index property 
tables containing index meta-data. The Mexima system includes a rule driven 
algebraic query transformation mechanism on complex numerical query ex-
pressions to expose potential utilization of a new index. To validate the cor-
rectness of an index implementation, Mexima generates and executes test que-
ries based on general knowledge about indexing, the index meta-data, and the 
user-provided data generating queries. Several experiments were conducted to 
show that the index exposing rewrite mechanisms substantially improves per-
formance and that the performance penalty of using an index plugged into 
Mexima is low compared to using the corresponding stand-alone C/C++ im-
plementation. Finally, it is shown that the development effort of plugging in 
new indexes to Mexima is very small in comparison to other frameworks. 

This paper partly answers Research Question one, two, and three.  

Contributions 
In 2011, Mexima allowed inclusion of new index structures and was used for 
research and education. Later in 2013, index utilization by transparently query 
rewrites was added whereas the index validation mechanism was designed and 
implemented during the autumn of 2014.  

I am the primary author of the paper. The other authors contributed to dis-
cussion and paper writing. 
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5.2 Paper II 
T. Truong, T. Risch: Scalable Numerical Queries by Algebraic Inequality 
Transformations, 19th International Conference on Database Systems for Ad-
vanced Applications (DASFAA), Bali, Indonesia, April 21-24, 2014. 

Summary 
This paper is based on a real industrial application scenario where data streams 
derived from sensor readings are bulk-loaded into a relational database system 
[78]. The application was prototyped as the Stream Log Analysis System 
(SLAS), which enables historical analyses of logged data streams by SQL que-
ries. These historical queries often contains complex numerical query inequal-
ities e.g. to find suspected deviations from normal behavior of measured sen-
sor values during a time-period. However, such queries are often slow to exe-
cute, because the query optimizer is unable to utilize ordered indexes on some 
attributes hidden inside complex numerical inequalities. In order to speed up 
the queries, they should be reformulated so that the indexes become exposed. 
Therefore, we introduced the query transformation algorithm AQIT (Algebraic 
Query Inequality Transformation) that automatically transforms SQL queries 
involving a class of algebraic inequalities into more scalable SQL queries uti-
lizing ordered indexes.  

AQIT was originally implemented as part of query rewriter in Mexima. 
AQIT is used both when plugging in new main-memory indexes and when 
transforming queries having complex numerical expressions to be sent to a 
back-end DBMS. The experimental results show that the queries execute sub-
stantially faster by a commercial DBMS when AQIT has been applied to pre-
process them. 

This paper partly answers Research Questions two and four.  

Contributions 
In 2011, I prototyped the first algorithm of AQIT that was part of the query 
rewriter in Mexima. Later, I wanted to investigate Mexima, in particular 
AQIT, in a real industrial application described in the paper. Thus, in 2012, I 
developed the SLAS system where Mexima acts as a query processor (also 
known as AQIT query processor) with a relational database back-end. The 
paper was written in the autumn of 2012, later accepted in the beginning of 
2013.  

I am the primary author of the paper. The other authors contributed to dis-
cussion and paper writing. 
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5.3 Paper III 
M.Zhu, S.Stefanova, T.Truong, and T.Risch: Scalable Nu-merical SPARQL 
Queries over Relational Databases, 4th international workshop on linked web 
data management (LWDM 2014), Athens, Greece, March 28, 2014. 

Summary 
In this paper, we investigated the problem of detecting past machine anoma-
lies by querying historical sensor readings stored in a relational database. In 
this scenario, the main-memory database Mexima acts as query processor in 
front of the relational database. It takes anomaly detection queries containing 
numerical expressions, or inequality conditions, or string matching and pro-
duces equivalent SQL queries sent to the back-end database.  

 To enable scalable execution of such queries the numerical expressions 
should be translated into SQL rather than being post-processed in Mexima 
outside of the relational database. This is to avoid post-processing large data 
volumes, which must be transported back from the relational database server 
to Mexima. Furthermore, if the numerical expressions are post-processed, the 
indexes on the back-end database have no impact. 

The paper presents the NUMTranslator algorithm, which translates numer-
ical and other domain calculus operators into corresponding SQL expressions. 
The experiments showed that NUMTranslator substantially improves the 
query performance when the numerical expressions are highly selective.  

This paper partly answers research question four. 

Contributions 
The NUMTranslator algorithm was first developed to enable scalable query 
execution of complex Mexima queries sent to a back-end relational database. 
Later, the NUMTranslator evolved to a part of a bigger system to harvest log 
databases [50]. The paper was written in autumn 2012, and then accepted in 
beginning of 2013.  

I am one of the co-authors of the paper. In particular, I programmed the 
first limited version of the NUMTranslator, which later was fully developed 
as part of the FLOQ system [50]. I helped in paper writing and in data prepa-
ration for the experiments. 

5.4 Paper IV – an application 
Paper IV is an example application of Mexima. 

S.Badiozamany, L.Melander, T.Truong, C.Xu, and T.Risch: Grand Chal-
lenge: Implementation by Frequently Emitting Parallel Windows and User-
Defined Aggregate Functions, Proc. The 7th ACM International Conference 
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on Distributed Event-Based Systems, DEBS 2013, Arlington, Texas, USA, 
June 29 - July 3, 2013. 

Summary 
The paper describes an approach to monitor a soccer game that requires pro-
cessing large volumes of data in real-time and delivers continuously physical 
summaries of the game as it is playing. The approach is based on an extensible 
DSMS in which high-volume data streams can be split and reduced into lower 
volume parallel streams by user-provided queries. Thus, expensive queries 
can be run in a parallel and distributed environment, in which each node is a 
main-memory Mexima database.  

We experimented with plugging-in different indexes for indexing stream 
elements in a window. The application tested Mexima’s performance and 
showed that Mexima can be used in a parallel and distributed environment. 

Contributions 
I am a co-author of the paper. I helped in prototyping the system and strategies. 

5.5 Paper V – future development 
Paper V will put requirements to the future work.  

K.Mahmood, T.Truong, and T.Risch: NoSQL Approach to Large Scale Anal-
ysis of Persisted Streams, 30th British International Conference on Data-
bases, Edinburgh (BICOD), Scotland, July 6-8, 2015. 

Summary 
In this paper, we first addressed some challenges in large scale persisting and 
analysis of numerical streaming logs. In order to investigate further these chal-
lenges, we propose to develop a benchmark that compares NoSQL stores with 
relational databases in storing and analyzing numerical logs. The benchmark 
is designed to serve as a base system for investigating query processing and 
indexing of large-scale numerical logs, in particular, how to reuse advanced 
indexing and query processing techniques in a scenario in which a main-
memory is front-end while NoSQL stores data in the backend. 

Contributions 
I am a co-author of the paper. 
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Summary in Swedish 

Primärminnesdatabaser (PDBSer) [12] [30] [46]  används för ett växande an-
tal applikationer som kräver snabb dataåtkomst, lagring och manipulation, ex-
empelvis applikationer för finansiella analyser, realtidsoperativsystem, sen-
sorsystem i industriella maskiner och mer allmänt i många tekniska och ve-
tenskapliga tillämpningar. Framväxten av denna typ av databastillämpningar 
ställer nya krav på databashanteringssystemen för att stödja nya sorters data, 
såsom färghistogram, texturer, bildmönster, gensekvenser, sensorsekvenser, 
eller tidsserier. För att effektivt komma åt och manipulera sådana domändata 
måste ett databashanteringssystem inkludera nya typer av domänorienterade 
indexstrukturer. 

Trots att en hel del domänorienterade indexstrukturer utvecklats har 
mycket få av dem använts i praktiken, de flesta system [29] [32] använder bara 
B-träd och hash-index. Anledningen är att det är mycket svårt att utvidga ett 
databashanteringssystem med nya indexstrukturer vilket normalt kräver om-
fattande ändringar i dess kärna. Den manuella insatsen för att göra en sådan 
integration är mycket kostsam och tidskrävande eftersom det nya indexet 
måste samverka med de flesta andra delkomponenter i kärnan. Därför skulle 
det vara önskvärt att man kunde göra databashanterarens indexering utbygg-
bar så att man kan implementera och lägga till nya indexstrukturer utan att 
ändra i kärnan. 

Befintliga ramverk för utbyggbar indexering  [36] [51] [53] [91] har stöd 
för att lägga till nya index, men de kräver dock omkodning av index-algorit-
merna där man strikt följer varje enskilt ramverks kodningskonventioner och 
programmeringsgränssnitt. Detta kan vara en svår uppgift då eventuellt bara 
binärkod är tillgänglig, det kan vara mycket komplicerat att förändra koden 
eller äganderätten till indexet kan vara beroende av tredje part. Det skulle så-
ledes vara mycket önskvärt att kunna lägga till nya indeximplementationer 
utan kodändringar. 

När man lägger till en ny indeximplementation i en databashanterare är det 
vidare viktigt att testa att alla indexfunktioner fungerar korrekt. Korrekthet 
innebär här att alla funktioner ska returnera exakt förväntade resultat och 
lämna databasen i ett konsistent tillstånd efter uppdateringar eller databasladd-
ningar. Det är även önskvärt att kunna automatisera testförfarandet för varje 
tillagd indeximplementering.  

Att lägga till ett nytt index i en databashanterare kräver vidare att dess 
frågehanterare har kunskap om egenskaperna för det nya indexet, såsom dess 
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olika sätt att söka data och hur databasfrågor kan transformeras för att fråge-
processorn skall kunna använda indexet effektivt. Komplexa uttryck i frågor, 
t.ex. för exempelvis avancerad analys, hindrar ofta frågeprocessorn från att 
utnyttja indexet. Det är alltså önskvärt med utbyggbar transformering av da-
tabasfrågor så att indexspecifika omskrivningsregler kan kopplas in för att för-
bättra frågeprestanda. Frågeprocessorn behöver dessutom hantera omskriv-
ningsregler för att förbättra prestanda för avancerade frågor som skickas för 
exekvering till en extern vanlig databashanterare för exekvering.  

Denna avhandling behandlar ovanstående utmaningar av utbyggbar index-
ering, index testning och indexspecifika frågetransformationer i ett PDBS. 

Följande frågeställningar undersöks: 
1. Den övergripande forskningsfrågan är: Hur kan ett utbyggbart indexe-

ringssystem utformas för att möjliggöra transparent inkludering av olika 
indeximplementationer utan kodändringar i vare sig databassystemet 
kärna eller i indeximplementationen 

2. Hur kan frågeprocessorn förses med kunskap om ett nytt inkopplat index 
för att transparent kunna använda indexet i databasfrågor? I synnerhet: 
a. Hur kan frågeprocessorn göras utbyggbar med nya indexspecifika 

omskrivningsregler så att ett nytt inkopplat index transparent kan till-
lämpas i frågor? 

3. Hur ska korrektheten av ett inkopplat index automatiskt valideras? I syn-
nerhet, vilka är funktionerna att testa och hur kan testerna automatiseras? 

4. När data lagrats i en extern databas, hur kan frågeprocessorn omvandla 
komplexa frågor så att indexen i den externa databasen kan utnyttjas och 
tillämpas där? 

För att besvara dessa frågor har vi utvecklat ett utbyggbart PDBS som kallas 
Mexima (Main-memory Extern Index Manager). 

För att besvara frågeställning 1 möjliggör Mexima inkoppling av olika ty-
per av primärminnesindex utan att ändra deras ursprungliga källkoder (Paper 
I). En utvecklare tar en existerande implementation av ett index, skriver gräns-
snittkod och kompilerar hela modulen som ett dynamiskt bibliotek. Denna in-
kludering kräver lite utvecklingsarbete och ingen kunskap om databashante-
ringssystemets kärna. 

För att besvara frågeställning 2 kan Mexima anropa relevanta indexoperat-
ioner för en given databasfråga (Paper I). De indexoperationer som finns för 
alla typer av index kallas grundläggande accessoperationer (BAOs). De är me-
toder för att skapa, hämta, uppdatera och traversera indexstrukturens element. 
Dessutom finns det ofta index-specifika sökfunktioner (SSFs) som utnyttjar 
speciella egenskaper hos en indexstruktur för effektiv sökning, exempelvis in-
tervallsökning för B-träd [62] och områdessökning för R-träd [1] och and X-
träd [5]. För att frågeprocessorn skall kunna tillämpa index-specifika sök-
funktioner innehåller Mexima ett system för omskrivning (transformation) av 
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databasfrågor för att identifiera mönster i frågorna där index-specifika sök-
funktioner kan användas. 

När databasfrågor innehåller komplexa uttryck kan de hindra frågeproces-
sorn från att utnyttja förekomsten av index. Detta orsakar dyra genomsök-
ningar av hela tabeller snarare än direkta indexanrop. AQIT  omvandlar kom-
plexa numeriska frågor till motsvarande frågor som är mer effektiva genom 
att exponera dolda index (Paper II). 

För att besvara frågeställning 3 genererar Mexima för varje indextyp ett 
antal testfrågor som automatiskt testar korrektheten av indexets implemente-
ring. Testmodulen drivs av datageneratorer och beskrivningar av indexets 
egenskaper (Paper I). 

För att besvara forskningsfråga 4 tillåter Mexima att komplexa frågor till 
en relationsdatabas först transformeras så att dolda index exponeras (Paper II). 
Samma regler som används för att transformera databasfrågor mot ett primär-
minnesindex används också för att exponera index i externa databaser. En 
skalbar mekanism  för att hantera omskrivna numeriska frågor som skickas till 
en extern relationsdatabas kräver vidare generering av SQL-frågor för att re-
presentera numeriska uttryck (Paper III). 
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Abstract- Main-memory database systems (MMDBs) are viable solutions 
for many scientific applications. Scientific and engineering data often require 
special indexing methods, and there is a large number of domain specific main 
memory indexing implementations developed. However, adding an index 
structure into a database system can be challenging. Mexima (Main-memory 
External Index Manager) provides an MMDB where new main-memory index 
structures can be plugged-in without modifying the index implementations. 
This has allowed to plug-into Mexima complex and highly optimized index 
structures implemented in C/C++ without code changes. To utilize new user-
defined indexes in queries transparently, Mexima automatically transforms 
query fragments into index operations based on index property tables contain-
ing index meta-data. For scalable processing of complex numerical query ex-
pressions, Mexima includes an algebraic query transformation mechanism 
that reasons on numerical expressions to expose potential utilization of in-
dexes. The index property tables furthermore enable validating the correctness 
of an index implementation by executing automatically generated test queries 
based on index meta-data. Experiments show that the performance penalty of 
using an index plugged into Mexima is low compared to using the correspond-
ing stand-alone C/C++ implementation. Substantial performance gains are 
shown by the index exposing rewrite mechanisms. 
 
Keywords 
Domain Indexing, Extensible Databases, Query Processing, Automatic Test-
ing. 
 

1 Introduction 
Indexing is a key factor for scalable database query processing. Most DBMSs 
support one or several indexing structures, such as B-trees and hashing. It is 
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well recognized that many scientific applications involving, e.g., data mining, 
temporal queries, and spatial analyzes, require customized indexing to im-
prove performance, which motivates the need for extensible indexing frame-
works [1][16][26]. These frameworks allow implementing new indexing al-
gorithms by strictly following framework specific coding conventions and 
primitives, which requires knowledge about DBMS internals. To include a 
new domain indexing structure into a DBMS can also be challenging because 
of third party ownership, having only binary code available, or simply being 
very challenging to re-engineer. 

There are many domain-indexing algorithms developed for main-memory, 
for example, T-Trees [31], Cache Sensitive B+-Trees [34], Fast Architecture 
Sensitive Trees [32], and Adaptive Radix Trees [33]. The issue addressed in 
this paper is how to include a new main-memory domain indexing structure 
into a DBMS with minimal effort. The generalized extensible indexing frame-
work Mexima (Main-memory eXternal Index Manager) enables plugging-in 
main-memory index implementations in an MMDB without changing their 
implementations. 

When using Mexima the index extension developer needs not have 
knowledge about the DBMS internals, since there is a clean separation be-
tween the database kernel and a plugged-in domain index implementation. 
Only a simple interface that bridges Mexima with the untouched index imple-
mentation needs to be developed. Another important issue with domain index-
ing is how to extend the query processor so that the plugged-in index algo-
rithms are utilized in a scalable and transparent way in queries. To utilize a 
new index without re-formulating queries, Mexima supports automatic query 
transformations based on user-provided index property tables populated by 
the index extension developer to specify meta-data about the index. 

Basic access operators (BAOs) of an index are operators available for all 
kinds of indexes, i.e. methods for creating, dropping, updating, accessing, and 
mapping over indexed elements. In addition, each kind of index usually has 
special search functions (SSFs) to utilize index specific properties for efficient 
search, e.g., interval search on B-trees, and K-nearest neighbor and proximity 
search on R-trees and X-trees. To utilize SSFs transparently in queries the 
system must rewrite query conditions into calls to SSFs, for which Mexima 
allows the index extension developer to declare SSF translation rules that 
specify the rewrites. 

For example, spatial proximity search can be expressed in queries using an 
index sensitive function (ISF), such as distance(). The following query com-
pares indexed color histograms with a given one. Here, ? denotes query pa-
rameter: 

SELECT name FROM Images i 
WHERE distance(i.colorHistogram, ?) <= 0.11; 
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If there is a spatial index on i.colorHistogram, Mexima translates the query 
into an SSF call, rather than scanning all images to apply the ISF distance(). 

If an indexed attribute is hidden inside expressions, the query processor 
cannot directly apply the SSF translation rules and fails to utilize the index. 
For example, in the following similarity query the index on i.colorHistogram 
is hidden inside a numerical expression, which prohibits a direct translation 
into an SSF call: 

SELECT name FROM Images i 
WHERE  1/ (distance(i.colorHistogram ,  ? ) + 1 >= ?; 

To expose indexes hidden inside numerical expressions Mexima transparently 
reformulates queries to call SSFs in order to utilize indexes in numerical query 
expressions. 

An important aspect when plugging-in a new index implementation is to 
test that the index functionality is correct. Mexima has built-in automatic tests 
procedures for both BAOs and SSFs. Mexima utilizes index meta-data stored 
in the index property tables to generate test queries. This is a form of model-
based testing [19] where a model of index properties stored in Mexima is used 
for automatically generating and executing test queries. For this, the index 
extension developer specifies as meta-data index-specific data generating que-
ries expressed in terms of an extensible library of built-in data generating func-
tions. 

In summary, our contributions are: 
1. The extensible indexing system, Mexima, allows inclusion of com-

plex main-memory domain-specific index implementations in an 
MMDB without code changes. In addition, Mexima makes the 
plugged-in main-memory index data structures persistent. 

2. In order to transparently utilize a new index in queries, the SSF 
translator rewrites query fragments over indexed attributes into 
SSF calls. The rewrites are driven by user populated index property 
tables containing SSF translation rules that describe the operations 
supported by the index. 

3. Complex queries involving numerical expression over indexed at-
tributes are automatically reformulated so that the SSF translator 
can rewrite them. 

4. To validate correct functionality of a domain index, Mexima gen-
erates automatic test procedures driven by meta-data stored in the 
index property tables.  

5. The experimental evaluation investigates the overhead of using 
main-memory index extensions in queries via Mexima compared 
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to directly executing hard-coded C/C++ implementations1. Fur-
thermore, the substantial impact of the query rewrites is investi-
gated. 

The following main-memory index structures have been plugged-into Mex-
ima: Main memory B-trees [30], Linear-Hashing [30], Judy-Tries [2], X-trees 
[30], and R*-trees [7]. 

The paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 defines some terminology. Section 4 presents the architecture of Mex-
ima in detail. Section 5 presents queries used to illustrate Mexima’s query 
processor in Section 5. Section 7 discusses Mexima’s model-based test gen-
erators for both BAOs and SSFs. Section 8 shows our experimental results and 
evaluations. Finally, Section 9 concludes and outlines future work. 

2 Related Work 
Several index structures beyond B-trees and hash tables have been developed 
for domain-specific data, for example: R-trees [14], Quad-trees [10], KD-trees 
[23], and Tries [11]. Very few of them were implemented in DBMSs, even 
though the necessity of including new and domain-specific index structures as 
database indexes has been observed [1][16][26]. Some extensible indexing 
frameworks have been proposed for both commercial DBMSs and database 
research prototypes e.g, Oracle [27], Gist [16], and SP Gist [1]. Extensible 
indexing can be divided into three stages, as illustrated by Figure 1: 

 
Figure 1. History of extensible indexing frameworks 

Stage 1: 
In DBMSs without support for extensible indexing all index structures have 
to be implemented and integrated with the DBMS kernel. This requires writ-
ing access method (AM) code and tightly integrating it with other components 

                               
1 Even though MEXIMA supports Java as well, here we assume C/C++ as implementation 
languages. 
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in the kernel, such as the storage manager, the query optimizer, and the query 
executor. 

Stage 2: 
GiST (Generalized Search Trees) [16] is a template index structure for disk-
based search trees, i.e., B-trees and R-tree-like indexes. GiST reduces the im-
plementation effort by providing implementation code for commonly invari-
ant properties of search trees and leaving other characteristics to be specified 
as user-defined index extensions. GiST itself is part of the DBMS kernel. The 
index extension developer writes extension code as user defined functions fol-
lowing GiST’s conventions, without need to integrate the access method code 
with DBMS internals. 

Stage 3: 
To improve performance and simplify the index implementations, the GiST 
approach was generalized in IDS/UDO [17] and later in SP-GiST [1] to sup-
port spatial indexes. In IDS/UDO, the main idea is to redesign and separate 
the GiST implementation to reduce the number of calls to user-defined func-
tions. Furthermore, unlike GiST, IDS/UDO and SP-GiST dynamically load 
the index implementation at runtime. The extended GiST system is divided 
into three sub-components [17]: the GiST core, the access method extensions 
(AME) for index-specific accesses, and the data type adaptor (DTA) for ma-
nipulating index keys. The GiST core is part of the DBMS kernel and provides 
interfaces to the AME for each new kind of index. The AME is written by the 
index extension developer following GiST’s coding conventions. It interacts 
with the GiST core through a set of C interfaces and callback functions. The 
AME developer needs to supply 11 such callback functions. In addition, the 
developer must supply DTA code. SP-GiST (Space Partitioning GiST) is a 
framework for space-partitioning trees [1] supporting a wide range space par-
tition algorithms. 

Mexima: 
While all Gist-based approaches require re-engineering the index code in 
terms of the Gist coding conventions, Mexima allows using existing main-
memory index implementations or binary code without any code modifica-
tions. An index structure implemented by a third party without knowledge of 
DBMS kernel functionality can be integrated with the DBMS though Mexima 
by writing some simple interface code. For index implementations without 
support for persistence, Mexima provides transparent storage persistence. 
Thus, Mexima makes inclusion of main-memory index implementations pos-
sible with very limited implementation efforts. 

Oracle’s extensible indexing is an SQL-based framework for integrating 
domain-specific indexing schemes [26]. The index developer provides opera-
tions in C, C++, Java, or SQL/PSQL for index creation, index update, and 
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index-scans following the complex Oracle Data Cartridge Interface 
(ODCIIndex) interfaces and coding conventions [26]. By contrast, Mexima 
allows including new index implementations without changing any code. 

While the approaches above address how to add index implementations to 
DBMS kernels, another critical issue is how to extend the query processor so 
that it can transparently utilize the new index structures without forcing users 
to reformulate queries. For example, in order to utilize a new index in queries, 
Oracle’s ODCIIndex allows associating an ISF with an index access path [26]. 
Conjunctive predicates where terms have the following forms are supported: 

isf(…) relop <value expression>, where relop is one of the relational 
operators: ≤, ≥, <,or >. 
isf(…) LIKE <value expression> 

Oracle provides guidance [3] [21] on how to reformulate a query to utilize 
indexes when it is not exactly matching the above forms. 

Rather than manual query reformulations, Mexima transforms a wide range 
of query forms containing index sensitive functions and numerical expressions 
into queries that contain SSF calls utilizing domain index structures. 

Starburst and DB2 [22] contains an internal rule engine for transformations 
of queries represented by a Query Graph Model (QGM) in C++ structures. 
Rewrite rules are stored in a rule table, and classified into different classes. 
Each class of rewrite rules has different rewrite heuristics. These rules rely 
heavily on a rich function library in C++ to exploit and manipulate queries 
representing QGMs.  A rule engine is responsible for selecting rules to be ex-
ecuted along with controls how rules are fired. Similarly, Volcano [13], Cas-
cades [12], and Exodus [5] also use rules to transform relational algebra ex-
pression into physical operators. 

Rather than procedural code, in Mexima the SSF rewrites are specified as 
declarative index meta-data stored in the index property tables. This is possi-
ble since the SSF rewriter is designed particularly for index utilization rather 
than for general query transformations as [5] [12] [13] [22]. 

QuEval [20] is a framework for performance evaluating spatial index im-
plementations. Based on parameters specified for each evaluated spatial index 
implementation, built-in data generators produce data sets for performance 
evaluations. By contrast, the purpose of Mexima’s test generator is to auto-
matically generate correctness tests based on index specific meta-data and 
queries. Furthermore, unlike QuEval, new complex indexes in C/C++ can be 
plugged into Mexima without code changes. 

The database generator QAGen [15] provides general purpose testing of 
DBMS components. It generates test databases and test queries based on sym-
bolic execution of queries. In [4] an inverse relational algebra generates query 
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inputs for given query results. To implement unit testing for the query opti-
mizer, the framework in [8] generates test queries based on user-defined trans-
formation rules specified as trees of relational algebra operators. 

In conclusion, no other system provides inclusion, validation, and utiliza-
tion of unchanged complex index implementations plugged into an extensible 
main-memory DBMS.  

3 Preliminaries 
The terminology used in the rest of the paper is defined along with require-
ments on an index implementation for being suitable to be plugged into Mex-
ima. 

3.1 Terminology  
Figure 2 illustrates the components of an index extension: 
• The index implementation (a) is the code implementing the index struc-

ture. It is left unchanged when plugged into Mexima. 
• The index API (b) is the provided public interface to the index implemen-

tation. 
• The index driver (c) is the implementation of the BAOs and SSFs of an 

index calling the index API. Properties of the index driver are stored as 
meta-data in the index property tables. 

 
Figure 2. Index extension components 

The above components are implemented by two kinds of developers:  
• The index developer, who fully understands the algorithms and data struc-

tures used in the index implementation, develops the index code and API 
independent of Mexima.  

• The index extension developer, who has sufficient understanding of the 
index and Mexima APIs but no knowledge of the index implementation 
and the DBMS kernel, develops the index driver. 

Finally, the end-user defines indexes on tables and uses them in queries with-
out concern for how they are implemented. 

ab

c
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3.2 Prerequisites for index implementations 
Mexima is designed bearing in mind the motto: It should not be necessary to 
be a database kernel expert to introduce a new domain index. An index im-
plementation should thus meet the following two criterion:  
• The candidate index implementation should be written in a regular pro-

gramming language such as C, C++, or Java. In order to achieve high per-
formance, C or C++ is preferable, for example to be able to plug in highly 
optimized C code such as the Judy-tries package [2]. 

• The candidate index implementation should provide APIs for the func-
tionality of the BAOs and optional SSFs. Missing mandatory BAOs, e.g. 
mapping over indexed elements, may need to be implemented in the 
driver.  

4 Mexima 
Figure 3 shows the software layers of Mexima. Query processing uses the 
query processor of Amos II [29] to call operations that access the Mexima 
core. The Mexima core calls implementations of the BAOs and SSFs in the 
extension driver of an index extension. 

 
Figure 3. Mexima architecture 

In the next section, we elaborate the implementation by first describing aspects 
of the query processing in Amos II followed by presentation of Mexima core. 

4.1 Amos II 
Figure 4 illustrates the details of Mexima, including how in utilizes the Amos 
II engine. 

Amos II provides an object-oriented and functional query language, 
AmosQL. The parser translates a query into an object calculus representation 
[18] in ObjectLog, which is an extension of Datalog with objects, types, over-
loading, and foreign functions. Then the calculus rewriter transforms the un-
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optimized object calculus expression to improve performance. After the re-
writes, the cost-based optimizer produces an execution plan sent to the execu-
tion plan interpreter. Mexima extends the query processor with calculus re-
write rules for transparent utilization of new indexes. 

AmosQL functions can be defined as foreign functions implemented in 
some regular programming language, e.g. C or Java. In Mexima SSFs are 
specified as foreign functions to enable query transformation of user queries 
into equivalent queries calling them. By contrast, BAOs are standard opera-
tions on domain indexes implemented as C functions called from the Mexima 
core when executing the operations. 

In Amos II all data is stored in a continuous memory block called the da-
tabase image. The storage manager is responsible for allocation and de-allo-
cation of physical objects inside the database image. All data in a database are 
internally represented as physical objects managed by the storage manager. 
Physical objects allocated inside the image are persistent, which means that 
they can be saved on disk and later restored. A physical object, po, is accessed 
through an object handle, hdl, which is an indirect pointer to po. Amos II uses 
reference counting to manage memory allocation and automatic real-time gar-
bage collection. When the reference counter of an object po in the image 
reaches zero, it is passed to the garbage collector and thereafter the memory 
occupied by po is marked as available for other memory allocation. Mexima 
extends the storage manager of Amos II with specialized external index stor-
age managers for each index type. The garbage collector is called by the Mex-
ima core when executing index updates. 
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Figure 4. Mexima details 

4.2 Mexima core components 
We now discuss in detail the components of the Mexima core. To illustrate 
the functionality, we shall use an external index structure package named IDS 
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The extension loader loads at run-time the index extension IDS as a dynamic 
library or shared object (step 1). It calls the initialization function (step 2) 
a_initialize_extension() of the index driver when the index extension has been 
loaded to register the index interfaces as C functions with Mexima (step 3). 
The index name IDS and its registered C functions are stored in Mexima’s 
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Figure 5. Extension loader’s steps 

The five mandatory BAOs registered in step 3 are: create(), drop(), put(), de-
lete(), get(), and map(), where create() creates a new index while drop() re-
moves it, put() inserts a key/value pair while get() retrieves it, and delete() 
removes it. The BAO map() scans the index by applying a specified mapper 
function on each index entry. 

Some indexes require transforming the keys into integers used as actual 
keys, e.g. hashing or space filling curves. This is specified by the optional 
BAO compute_key() while the optional BAO compare_key() compares two 
computed keys for (in)equality. 

For the representation of keys there are two variants supported: 
• The index extension stores boxed keys, which are object handles managed 

by the storage manager. The data type of object handles is unsigned inte-
ger, so any index extension supporting integers can store boxed keys. In 
this case, the BAO compare_key() is not needed in Mexima, since com-
parisons of handles is built-in.  

• If an index stores unboxed keys, i.e. the key values themselves, com-
pare_key() compares keys, while compute_key() unboxes them.  

Index interface dispatcher 
When the end-user has placed an index of type IDS on an attribute of a table, the in-
dex interface dispatcher (Figure 4) accesses the index by invoking the correspond-
ing registered BAOs (create(), put(), get(),etc.,) in the BAO table. 

The index interface dispatcher is also responsible for maintaining reference 
counters of boxed keys and values so that the extension developer need not 
know about garbage collection. 

Index storage manager 
If the index implementation has storage facilities to persist index structures 

and has registered to Mexima the optional persistency BAOs save() and re-
store(), the index storage manager will invoke them upon saving and restoring 
the database. 
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If an index implementation is not persistent, i.e. it is all implemented in 
main-memory; Mexima automatically serializes and de-serializes the index 
entries. To save the index on disk, the index storage manager scans over the 
index entries using the BAO map() and streams them to disk. Only the primary 
index is made persistent, since, when restoring a table by streaming its rows 
from disk, the index storage manager also builds the secondary indexes. In 
case the index implementation does not balance the index structure on inser-
tion, the restored index structure may become unbalanced, and the extension 
developer can then register a bulk loader and hook it to restore(). 

Internally, the index storage manager relies on two system hooks executed 
at different states of the system: the before-image-roll-out hook is executed 
when a database is saved, and the after-image-initialized hook is executed 
when a database is restored. The index storage manager keeps track of all cre-
ated indexes to save and restore them. 

Mexima Query Rewriter 
In order to utilize a new index in queries, the Mexima query rewriter trans-
forms them to expose the SSFs of the new index. The index property table 
contains the necessary meta-data to do the transformations. This is further de-
scribed in Section 6 below. 

Mexima Tester 
In order to validate that an index implementation is correct, the Mexima tester 
automatically generates and runs tests based on meta-data in the index prop-
erty tables, as described in Section 7. 

4.3 Implementation of an SSF 
The index driver bridges Mexima and an index extension by implementing 
BAOs and SSFs. SSFs are defined as foreign functions that also can be used 
in queries. For example, if the index type IDS supports range search, it can be 
implemented by the SSF foreign function IDS_select_range() registered as 
follows in the initialization function of the index driver: 

1 // Definition of the foreign function’s signature: 

2 a_amosql("create function IDS_select_range(Function tbl, Integer pos, Num-
ber lower, Number upper)-> Object as foreign 'IDS-range-search';"); 

3 // Bind C function IDS_range_search address to the symbol 'IDS-range-search': 

a_extfunction("IDS-range-search",  IDS_range_search); 

Here:  
• The signature of the foreign function IDS_select_range() is defined by the 

a_amosql() call. In the signature the parameter pos is the indexed position 
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on the function tbl representing an indexed table, while lower and upper 
define the range in a search. 

• a_extfunction() associates the address of the C-function implementing the 
SSF with a symbol used in the signature definition. 

The first two arguments tbl and pos are bound when the SSF is called in a 
query. The remaining arguments, here lower and upper, are called SSF pa-
rameters. They are different for different SSFs and are bound in queries re-
written by the SSF translator based on meta-data in the index property tables. 
Even though the user can also call an SSF with explicit parameters specified 
in queries, this is not recommended since it makes the index access non-trans-
parent. 

The following snippet shows the C implementation of IDS_range_search() 
in the index driver of the IDS: 

1 void IDS_range_search(m_context cxt){ 

2 a_handle tbl = a_arg(cxt,0);   // Table handle 
3 int pos = a_int_arg(cxt,1);   // Indexed pos  
4 int l = a_int_arg(cxt,2); // lower range 
5 int u = a_int_arg(cxt,3); // upper range 
6 IDShead *ind=(IDShead *)mexima_identifier(pos, tbl,ids_type); 
7 IDScomparer cmp = mexima_get_comparer(pos, tbl, ids_type); 
8 // call the map function of IDS-API:  
9 IDSmap(ind->root, l, u, 
10 (IDSmapper)rangemapper, cmp, cxt);} 

// the function rangemapper() is defined as: 
11 int rangemapper(IDSitem *kv,m_context cxt){ 
12 a_bind(cxt, 4, kv->value); 
13 a_emit(cxt);} 

The IDS_range_search() accesses the first four function parameters from the 
binding context cxt on lines 2-5. Lines 2 and 4-5 dereference the handles to 
get integer values2. Line 6 assigns the pointer ind to the index structure on 
position pos of table tbl. Line 7 retrieves the compare function of the IDS 
registered in the BAO table. On line 9 the index API IDSmap() iterates over 
the index ind and calls the function rangemapper(kv, cxt), defined on lines 11-
13, on each index key/value pair kv. On line 12, the row (value part) of kv is 
bound to the result (5th parameter). Finally, the macro a_emit() emits a result 
tuple to Mexima. 

                               
2 The system raises an error if the parameters are not integers. 
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5 Illustrative Query Examples 
In this section, we present a database schema and queries to serve as examples 
when discussing Mexima’s query processor. 

In the table images(id, hist) each row represents an image identified by id. 
Search on table image often requires comparing images. However, it is expen-
sive to compare images bit by bit. The most common technique is approxi-
mating an image with its features. Thus, a comparison between images be-
comes the cheaper comparison between the images’ features. In our example, 
the features on an image are represented by its color histogram stored in the 
attribute hist as a vector of numbers. 

To speed up search on table images, there is a B-tree index on column id 
and an X-tree index [27] on column hist. X-trees supports efficient proximity 
search of high-dimensional data. Main-memory implementations of B-trees 
and X-trees [30] are plugged-in to Mexima. 

In the following example, we use the ObjectLog representation into which 
the queries are translated to illustrate the query processing. 

Q1: find images q whose identifiers are between 30 and 100. In this case, 
there is no input parameter: 

Q1(q):-  

1 images(q, hist_q) AND 

2 q >= 30 AND 

3 q <= 100  

Q2: For a given image x find the images q whose feature vectors are closer 
than epsilon (eps = 0.11). In the query, the function distance() computes the 
Euclidean distance of two vectors. 

Q2(x, q) :-  

1 images(x,  hist_x) AND 

2 images(q,  hist_q) AND 

3 distance (hist_x, hist_q) <= 0.11  

Q3: find the k = 10 closest images compared to a given image bound to x. We 
use the ‘knn’ function to return the k nearest neighbors in table ‘images’ to the 
input color histogram of x. knn() uses the table ‘images’ that maps from an 
object identifier to its feature vectors. 
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Q3(x, q) :-  

1 images(x, hist_x) AND 

2 images(q, hist_q)  AND 

3 (q, hist_q) in knn(hist_x, 10, #’images’)  

Q4: We note that the distance() function used in Q2 expresses the distance 
between vectors, but not similarity. To define similarity, we define query Q4 
using the following formula: 11 + ,)݁ܿ݊ܽݐݏ݅݀ (ݍ >  ݈݀ℎݏ݁ݎℎݐ

Q4 finds images q that are 90 percent similar to a given image bound to x: 
Q4(x, q):-  

1 images(x,  hist_x) AND 

2 images(q, q) AND 

3 1/(1+distance(hist_x, hist_q)) >= 0.90  

 

6 Mexima Query Rewriter 
This section presents the SSF Translator. It transforms a query into an equiv-
alent one where SSF calls are exposed to the query optimizer. If this transfor-
mation is not done, the optimizer is unable to utilize the index. 

The system also does other rewrite tasks not related to indexing, e.g.: view 
expansion, elimination of common sub-expressions, and compile-time evalu-
ation, which are not focus of this paper. 

6.1 SSF translation rules 
An SSF translation rule describes how query fragments are translated to a new 
format to expose SSFs. The translation rules can rewrite conjunctions in que-
ries having terms of one the following query fragment forms: 



 17

Form (i): P(…iv,..) AND (iv r1 expression)       AND  

                                       (iv r2 expression)       AND 

                                      . . .                               

                                    (iv rn expression) 

Here, iv is a variable bound to an indexed column of table P(…). We say iv is 
an indexed variable. ri are comparison operators in the set relop, ri ∈ relop, 
where relop ={=, <, >, >=, <=}. 

For example, the following fragment in Q1 is of Form (i):  
images(q, hist_q) AND q >= 30 AND q <= 100.  

Form (ii): P(…iv,..) AND   isf(…,iv, …) r1 expression AND 

                                             isf(…,iv, …) r2 expression AND  

                                              . . . 

                                              isf(…,iv, …) rn expression 

Here, iv is an indexed variable occurring in parameter position of an index 
sensitive function isf(). 

For example, the following fragment in Q2 is of Form (ii):  
images(q, hist_q) AND distance(hist_x, hist_q) <= 0.11  

Form (iii): P(…,iv,…) AND (..,iv,..) in isf(…..,P,..) 

Here the isf() is an index sensitive function that takes a table P as argument 
and emits a set of rows. For example, Form (iii) occurs in Q3: 

images(q, hist_q) AND (q,hist_q) in knn(hist_x,  10, #’images’) 
If a query contains some fragment that matches any of Form (i), (ii), or (iii), 

the query has the potential of being supported by the index on iv. If this is the 
case, the query fragment should be transformed into a format where the index 
is exposed through an SSF call. For each kind of index, the index developer 
can define SSF translation rules, which transform query fragments that match 
Form (i), (ii), or (iii), into the corresponding SSF call. The SSF translation 
rules are defined as rows in the SSF translation table. Table 1 is an example 
of translation rules for B-trees and X-trees indexes. 
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Table 1 SSF translation table 

# itype pr ISF Relops SSF pf 
1 B-tree 1 Nil >=, <= btree_select_range F 
2 B-tree 2 Nil <= btree_select_open F 
3 X-tree 1 distance <= xt_proximity_search T 
4 X-tree 2 Knn nil xt_knn_search F 

Each row represents an SSF translation rule. It has the attributes itype, pr, isf, 
relops, ssf, and pf where: 
• itype is a user-defined index type. 
• pr is the translation rule priority for a given itype. 
• isf() is an index sensitive function.  isf is nil in Form (i). 
• relops is a set of allowed relational operators in {=, <, >, >=, <=}. relops 

is nil in Form (iii). The system knows how to infer open inequalities from 
closed ones. 

• ssf() is a special search function supported by the index type. 
• pf is the prune and filter flag. When it is true (T), the Mexima query re-

writer applies the two-step paradigm [24], in which the prune step first 
prunes irrelevant data by calling the SSF to return a small set of candidates 
and then the filter step applies the original condition to carefully examine 
each candidate. Here it is important that pruning is done before the filter-
ing. 

For a given query fragment of Form (i), (ii), or (iii), the system finds the 
matching SSF translation rules. Form (i) matches SSF translation rules where 
isf is empty, Form (ii) matches rules where both isf and relops are non-empty, 
while Form (iii) matches rules where there is an isf but no relops. If more than 
one rule matches, the priority pr determines which one. If pr is nil and more 
than one rule applies, the system will pick one of the matching rules. 

In Table 1 the translation rules TR1 – TR2 together define query fragments 
where B-trees interval search should be used, while TR3 define when X-trees 
proximity search should be used. The proximity search requires pruning so pf 
is true. Lastly, TR4 defines the translation from the ISF knn() to the SSF 
xt_knn_search(). 

If an SSF translation rule for index type itype matches a query fragment of 
Form (i), (ii), or (iii) where iv the indexed variable, the SSF translator will 
replace  P(.., iv, …), isf(…), and relops with the corresponding SSF defined by 
the rule. If the index translator finds no applicable translation rule, the query 
is kept intact. 

For example, by applying rule TR1 on Q1, it is translated into calling the 
SSF btree_select_range(): 

TQ1(q):-  
1 (q,_) in btree_select_range( #’images’, 0, 30,100)  
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Analogously, applying rule TR3 on Q2 yields the transformed query TQ2: 
TQ2(x, q):- 

1 image(x, hist_x) 
AND 

2 (q, hist_q) in  xtree_proximity_search(#’images’, 
                              1, hist_x, 0.11) SAND 

3 distance (hist_x, hist_q) <= 0.11  

Since TR3 has the prune and filter flag set, line 2 in TQ2 prunes away most 
images and then line 3 filters them with the full condition. The operator SAND 
is an order-preserving conjunction. TQ2 exposes the X-trees index on column 
hist by the SSF xtree_proximity_search(). 

Finally, applying rule TR4 on Q3 yields the transformed query TQ3 that 
exposes the X-trees index by the SSF xt_knn_search(): 

TQ3(x, q):-  

1 image(x,  hist_x)                                                                      AND 
 

2 (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10) 
 

For query Q4, neither of Form (i), (ii), or (iii) match since the ISF distance() 
is hidden inside the numerical expression. We next discuss our general solu-
tion for this case. 

6.2 Extended Algebraic Query Inequality Transformation 
The AQIT algorithm [28] translates a class of numerical expressions with in-
equalities over variables indexed by B-trees into query fragments of Form (i). 
The translations use a set of algebraic inequality transformations. AQIT can 
transform conjunctive query fragments having terms of Form (iv): 
Form (iv) P(…iv,..) AND F(iv) relop expression 

Here iv is an indexed variable and F(iv) is an expression consisting of a com-
bination of transformable functions T. Currently T ∈  {+, -, /, *, power, sqrt, 
abs} and the set can be extended. AQIT tries to reformulate the query condi-
tion into an equivalent equivalent condition iv relop’ F’(expression) of Form 
(i) where the index is exposed to the query optimizer. The algebraic inequality 
transformations in AQIT automatically determine relop’ and F’(expression).  
If AQIT fails to transform the condition, the original query is retained. 
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However, AQIT cannot translate numerical expressions as in Q4 because 
the ISF distance() is hidden inside the expression. Therefore, in Mexima, 
AQIT is generalized to translate inequalities over ISFs into query fragments 
of Form (ii). The extended AQIT automatically transforms conjunctive frag-
ments with terms of Form (v): 
Form (v) P(…,iv,…) AND  F(isf(…,iv, …)) relop expression 

Here F(isf(…,iv,…)) is an expression consisting of a combination of trans-
formable functions T, and relop is an inequality comparison. The extended 
AQIT tries to reformulate the query fragment into isf(…,iv,…) relop’ F’(ex-
pression)  of Form (ii) where the index on iv is exposed. 

For Q4, the system first applies the following algebraic inequality transfor-
mation: 

(A/x >= B ∧ A >0 ∧ B >0)⇔ x <= A/B  
The query will be transformed to TQ4-intermediate0: 

TQ4-intermediate0(x, q):-  

1 images(x,  hist_x) AND 

2 images(q,  hist_q) AND 

3 (1+ distance (hist_x, hist_q)) <= 1/ 0.9  

Then, the system applies the transformation: 
x + A <= B ⇔ x <= B – A 
The query will be transformed to TQ4-intermediate1: 

TQ4-intermediate1 (x, q):-  

1 images(x, hist_x) AND 

2 images(q, hist_q) AND 

3 distance (hist_x, hist_q) <= 1/0.9 -1  

TQ4-intermediate1 matches Form (ii), which allows the SSF translator to ap-
ply translation rule TR3.  This transformation produces the final TQ4: 

TQ4 (x, q):-  

1 images(x,  hist_p) AND 

2 (q, hist_q) in  xtree_proximity_search( 
                            ‘image’, 1, hist_p, (1/0.9 - 1)) 

AND 

3 1/(1+distance (hist_p, hist_q)) >= 0.9  
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7 Mexima Tester 
To validate that a plugged-in index implementation is correct, Mexima pro-
vides automatic testing procedures of BAOs and SSFs. Both BAOs and SSFs 
are tested based on meta-data in the index property tables. For each index type, 
a number of test queries are automatically generated and executed. The test 
queries use data generators, which are queries specified by the extension de-
veloper that generate index keys for testing BAOs and SSFs. 

The system has a library of predefined data generators implemented as for-
eign functions calling the C++ library random.h to support randomly gener-
ated numbers and vectors of numbers respecting various distributions. New 
data generators can easily be defined is terms of these as queries. 

For example, the built-in data generator uniform_int(n,l,u) generates n in-
tegers in range [l,u]. For complete testing, the result set always includes the 
border values l and u. The data generator uniform_vec_real(n,d,l,u) generates 
a set of n vectors of dimension d where each element is a real number in the 
range [l,u], including l and u. 

7.1 The BAO Tester 
The BAO tester automatically tests that the BAOs of an index implementation 
are correct, i.e. correct behavior of put(), get(), delete(), map(), and drop(). It 
also provides a function to produce a report of the execution times of each 
BAO.  

The BAO tester is based on data generators specified as queries stored in 
the index key generator table (Table 2). The extension developer populates 
the table and specifies how index keys to be tested are generated. Based on 
the generated keys, the BAO tester runs a number of built-in algorithms de-
scribed below to test basic index functionality. 

Table 2 Index key generator table 

# Idxtype Index key type Index KeyGenerators 
1 B-tree Number select uniform_int(1000,0,10000) 
2 X-tree Vector-Number select uniform_vec_real(1000,5,0,1)  
3 X-tree Vector-Number select CSV_file_rows(“colorhisto-

gram.csv”) 

In Table 2 the first row specifies a correctness test of B-tree indexes by gen-
erating 1000 uniformly distributed integer keys in range 0-10000. The 2nd row 
specifies a correctness test for X-trees by generating 1000 uniformly distrib-
uted vectors of real numbers of dimension 5 in range [0, 1]. The last row tests 
X-trees by reading index keys from a file “colorHistogram.csv”.  

Based on the index key generator table, the BAO tester will run the follow-
ing tests: 
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• Lookup tests that all inserted keys are also stored in the index. 
• Mapping tests that the mapper iterates over all inserted key/values. 
• Deletion tests that iteratively deleting one key at the time works.  
• Remaining verifies that no keys are remaining after all keys have been 

deleted individually.  
• Dropping tests that the drop() operation removes all key/values. 

The result of the BAO tester is an error report that specifies for each test case, 
which BAO functionality failed. 

The BAO tester does the following: 
1. Create two tables, the indexed table: I_Table(k, v), and the refer-

ence table:  R_Table(k, v). On column I_Table.k the system puts 
an index of type IDS, idx(I_Table.k), while on column R_Table.k  
there is a hash index idx(R_Table.k). 

2. For each test case, the BAO tester first calls the key generator. For 
each generated key k and a corresponding random number v, it in-
serts a row (k,v) into both I_Table and R_Table using put(k,v).  

3. For lookup, the BAO-tester iterates though the R_Table to test cor-
rectness of put() and get(). For each key/value in R_Table it tests 
that the result of accessing the key in I_Table calling  get() returns 
the same value.  

4. For mapping the BAO tester iterates over each (k,v) in I_Table us-
ing map() and tests that the key/value pair is present in R_Table.  

5. For deletion, the BAO tester uses map() to iterate over all (k,v) in 
I_Table calling delete(k) followed by get(k) to check that each 
value is actually deleted.  

6. For remaining, the system verifies that the table is empty after step 
5. 

7. For dropping, the table is repopulated, then drop() is called, and 
eventual remaining keys are reported. 

7.2 The SSF tester 
The purpose of the SSF tester is to validate that the result from an SSF is 
correct. Based on user-defined generators of SSF parameters, the system au-
tomatically generates test queries for each SSF translation rule of an index 
type IDS. The tests are based on that the SFF translation rules provide trans-
parent rewrites of a generated test query to utilize the index through the SSF. 
When an index is defined for some attribute and can be utilized by some SSF 
translation rules in a test query, the query should return the same result as 
when there is no index or no matching SSF translation rule. 

In order to test an SSF, the user needs to specify data generators for SSF 
parameters as queries stored in the SSF parameter generator table (Table 3). 
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Table 3 SSF parameter generator table 

# Index 
type 

SSF name SSF parameter generator SSF Parame-
ter types 

1 B-tree btree_se-
lect_range 

select l, u  
from Number l, Number u  
where  
l in uniform_int(100, 0,10000) 
and 
u in uniform_int(100, 0,10000)

(Number, 
Number) 

2 B-tree btree_se-
lect_open 

select  u  
from Number u  
where u in uniform_int(100, 
0,10000) 

(Number) 

3 X-tree xtree-prox-
imity-search. 

select x, d  
from Vector of Number x,   
         Number d  
where  
         x in  uniform_vec_real( 
                 100,5,0,1) and 
         d in uniform_real(100, 
                0, 1.4)

(Vector of 
Number, 
Number) 

4 X-tree xtree_knn-se-
arch 

select x, k  
from Vector of Number x,   
         Number k  
where  
         x in uni-
form_vec_real(100, 
                 5,0,1)  and 

       k in uniform_int(0,5)

(Vector of 
Number, 
Number) 

In Table 3 the first row tests btree_select_range() by generating the two SSF 
parameters as 100 pairs of random integers in range [0, 1000]. The 2nd test 
case validates btree_select_open() by 100 random numbers in range [0,1000]. 
The 3rd  test case validates X-trees proximity search by generating 100 pairs 
(x,d) where x is a 5D vector of random numbers in range [0,1] and d is a 
random number in range [0,1.4]. The fourth test case validates KNN search 
with an X-tree by generating 100 pairs (x,k) where k is the number of closest 
neighbors to be tested. There can be several test cases specified per SSF. 

For each test case in the SSF parameter generator table (Table 3), the SSF 
tester generates one SSF validation query VQ for each SSF translation rule TR 
in the SSF translation table (Table ). The generated validation query VQ con-
tains a query fragment of form Fm matching the TR. 

The SSF translator will rewrite the VQ using the translation rule TR when 
VQ contains query fragments of form Fm matching the TR. In order to guar-
antee that no other TR matches VQ, all other translation rules matching Fm are 
temporarily turned off when executing VQ. For each index type, this test pro-
cedure validates both the TRs and the SSFs. 
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Meta-data to generate each VQ is obtained by joining the SSF translation 
rule table (Table ), the SSF parameter generator table (Table 3), and the index 
key generator table (Table 2), to get for each test case the index key type, the 
SSF name, the SSF parameter generator, and the SSF parameter types, respec-
tively. For each test case and TR, two queries VQi and VQr are generated. VQi 
is a query over I_Table, which is rewritten by the chosen TR to call the SSF. 
VQr is the same query over the R_Table. If the SSF is correct, both queries 
should return the same result. Depending on which form Fm is matching TR 
the validation queries are generated as follows: 

Case 1: TR matches Form (i). 
Assume the SSF parameters types in the SSF parameter generator table are 
T1,.., Tm (Table 3), that IT is the index key type in the index key generator table 
(Table 2), that SPG is the SSF parameter generator (Table 3) for parameters 
p1,…,pm, and that ri are the relops in Form (i). Then the validation query VQi 
has the following format: 

select iv, v 
from IT iv, Number v, 
             T1  p1, T2 p2,.., Tm  pm  
where I_Table(iv, v)                      and 
            (p1, p2, …,pm) in (SPG)   and 
            (iv r1 p1)                           and 
            (iv r2 p2)                           and 
            . . . 
            (iv rm pm);                             

For example, the automatically generated validation query VQi for test case 1 
in Table 3 is: 

select iv, v 
from Number iv, Number v, Number  p1, Number p2 
where I_Table(iv, v) and  
          (p1, p2) in (select l, u from Number l, Number u  
                            where l in uniform_int(100, 0,10000) and  
                             u in uniform_int(100,0,10000)) and 
            iv >= p1 and  iv <= p2; 

Case 2: TR matches Form (ii). 
VQi has the following format, assuming the ISF() has arity j. 
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select iv, v 
from IT iv, Number v, 
           T1 p1, T2 p2,.., Tm  pm,, 
           Tj res 
where I_table(iv, v)                      and 
         (p1, p2, …,pm)  in (SPG)      and 
        res = ISF (iv, p1,..,pj-1)          and 
        (res r1 pj)                               and 
          . . . 
         (res rm pm);

For example, the generated validation query VQi for test case 3 in Table 3 is: 
select iv, , v  
from Vector of Number iv, Number v, Vector of Number p1, 
          Number p2, Number res  
where I_Table(iv, v) and 
           (p1, p2) in (select x, d from Number x, Number d  
                             where x in uniform_vec_real(100,5,0,1) and 
                               d in uniform_real(100,0, 1.4)) and 
            res = distance(iv, p1) and  res<= p2; 
Case 3: When TR matches Form (iii) the generator validation query has the 

form: 
select  iv, v 
from IT iv, Number v, 
           T1 p1, T2 p2,.., Tm  pm,, 
where I_table(iv,v)               and 
  (p1, p2, …,pm)  in (SPG)     and 
   (iv,v) in ISF (p1,..,pm, I_Table)

For example, the generated validation query VQi for test case 4 in Table 3 is: 
select iv, v  

    from Vector of Number iv, Number v, Vector of Number p1, 
             Number p2 
    where I_Table(iv, v) and 

           (p1, p2) in (select x, k from Number x, Number k  
                            where x in uniform_vec_real(100,5,0,1) and k in  
                             uniform_int(0,5)) and 

            (iv,v) in knn(p1, p2, #’images’); 

The BAO and SSF testers are run on all chosen index implementations to val-
idate that they were correct. One bug in the R* package [7] and two bugs in 
the X-tree implementation [30] were found by the SSF tester. 
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8 Experiments 
We measured the performance of using Mexima for main memory implemen-
tations of B-trees [30], Linear-Hashing [30], Judy-Tries [2], X-trees [30], and 
R*-trees [7]. 

We conducted experiments in several perspectives. First, in Experiment A 
we compared the coding effort of the different index implementations based 
on disk-based GiST and SP-GiST with the corresponding main-memory index 
extensions in Mexima w.r.t. code size.  

In Experiment B, we compared the execution times of calling a plugged-in 
index through the BAOs put(), get(), map(), and delete() with the execution 
times of the corresponding stand-alone implementations in C/C++. The abso-
lute time difference was calculated as overhead. The overhead of both boxed 
and unboxed keys were investigated.  

In Experiment C, the importance for scalability of using SSF translation 
rules is investigated. The queries were run with and without SSF translation 
enabled.  

All performance experiments were repeated 10 times, from which the av-
erage figures were calculated after removing outlier results if any. 

The experiments were run under Windows 7 on an Intel (R) Core(TM) i5 
760 @2.80GHz 2.93 GHz CPU with 4GB RAM, using the Visual Studio 10 
32 bits C compiler. 

Experiment A – Code size   
Table 4 shows the number of C/C++ code lines of different index interface 
implementations in PostgreSQL version 9.3.5 
(http://www.postgresql.org/ftp/source/v9.3.5/) and SP-GiST version 0.0.1 
[25], compared to the corresponding Mexima drivers. We excluded comments 
in the comparisons. The compared code is what an index extension developer 
needs to provide to interface the DBMS extensibility frameworks. 

Table 4 Number of code lines' 

 GiST SP-GiST Mexima Factor
B-tree 5031 -- 116 43
KD-tree -- 572 118 5
R-tree 1133 -- 120 9.5
Trie -- 580 120 5

In PostgreSQL, the GiST-based B-tree was implemented as a fully separate 
module from the GiST core, while parts of the R-tree implementation are pre-
sent in the GiST core. Thus, the number of code lines for R-trees with GiST 
is underestimated in the table.  

Table 4 shows that the code size of including a main-memory index imple-
mentation in Mexima is 5–43 times smaller than the corresponding disk based 
index plug-in with GiST.  
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Notice that the Gist based index implementations are specially designed to 
follow the Gist coding conventions, while with the Mexima framework all 
used index implementation code is left unchanged, including memory alloca-
tion, which is particularly complex in Judy-tries. 

To conclude, Mexima provides introduction of domain indexes with rela-
tively little coding effort for the interface between the untouched domain in-
dex implementation and the Mexima kernel. This allows to plug-in very com-
plex main-memory index implementations with small efforts. 

Experiment B – Mexima BAO overhead 
The purpose of this experiment is to investigate the performance overhead of 
plugging-in an existing index implementation in Mexima. Figure 6 illustrates 
how the execution time is spent in different layers of a plugged-in index im-
plementation.  

Here: 
• op: time spent to call algebra operations on an indexed table to add, delete, 

access, or map. 
• mc: time spent to dispatch and call the BAO function in an algebra oper-

ation. This includes time spent for type checking and automatic garbage 
collection. 

• ed: time spent in the index extension drivers for BAOs and SSFs.  
• st: time spent on actually running the untouched index implementation 

code. This is the actual work to manipulate the index, i.e. the time to run 
the stand-alone C/C++ implementation. 

• In the experiment, we measured the execution times for the different index 
implementations both when plugging-in the implementation into Mexima 
and when running the implementation as a stand-alone C/C++ program. 
The total execution time for using a plugged-in index implementation is 
tot = op + mc + ed + st. The Mexima overhead, o, of calling a plugged-
in index implementation is calculated as o= op + mc + ed. 

 
Figure 6. Execution layers 
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In the experiments, the performance of B-tree, Linear Hashing, and Judy-Trie 
implementations were measured for a database of size S with uniformly dis-
tributed random key/value pairs. The execution times of put(), get(), and de-
lete() per call were measured by loading the database and then measuring the 
time of doing 1000 random inserts, lookups, and random deletes, respectively. 
The time to call map() was measured by iterating over the indexed table and 
dividing the total time with S. The time for generating data and populating the 
reference tables were excluded in all measurements. 

Table 5 shows the average Mexima overheads o in microseconds for the 
BAOs put(), get(), delete(), and map(). The database size S was 5 million 
key/value pairs. The total overhead was measured with both boxed keys bo 
and unboxed keys o. The standard deviations in all cases were less than 0.03 
µs. The overhead of Mexima is well below one µs per call and particularly 
low for unboxed keys, so unboxed keys are used in all remaining experiments. 
Table 5 furthermore breaks down the percentages of how the overhead o is 
spent in the different layers op, mc, and ed. 

Table 5 Mexima overhead for different BAO calls (µs) 

BAO Index bo  o  %op %mc %ed 
Put LH 0.89 0.56 51.7% 36.2% 12.1% 

B-tree 0.89 0.53 52.3% 35.8% 11.9% 
Judy-trie 0.87 0.54 52% 35.3% 11.7% 

Get LH 0.57 0.26 37.2% 47.1% 15.7% 
B-tree 0.59 0.23 36.6% 47.6% 15.7% 
Judy-trie 0.57 0.22 36% 48% 16% 

Map LH 0.21 0.07 32.1% 50.9% 17% 
B-tree 0.19 0.07 34.4% 49.2% 16.4 
Judy-trie 0.23 0.07 33.7% 49.7% 16.6% 

Delete LH 0.65 0.42 45% 41.3% 13.7% 
B-tree 0.64 0.42 43.3% 42.5% 14.2% 
Judy-trie 0.63 0.41 43.4% 42.5% 14.1% 

Figure 7 shows insert times in microseconds of different index implementa-
tions with unboxed keys compared with the corresponding stand-alone imple-
mentations for different database sizes. 
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Figure 7. Put () overhead 

Analogously, Figure 8, Figure 9, and Figure 10 show lookup, delete, and map 
time per call with unboxed keys. 

As expected, stand-alone index implementations were faster than their cor-
responding plug-in indexes using the same implementation because of the 
Mexima overhead. The overhead is not dependent on the database size for any 
of the methods as shown in Figure 7, Figure 8, Figure 9, and Figure 10. The 
system carefully makes sure that an index is not accessed more than once in 
an operation, as that would make the overhead larger as the database grows. 
For unboxed keys, the overhead is less than 0.6 µs and depends on the index 
driver implementation of the BAO, not the database size. 
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Figure 8. Get() overhead 

 
Figure 9. Delete() 

The ease of plugging-in index implementations in Mexima without code 
changes with very low overhead shows that Mexima is an excellent tool for 
comparing domain index implementations. In particular not changing the in-
dex implementation allows to easily comparing highly optimized and complex 
domain-index implementations such as Judy-tries with other implementations. 

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ex
ec

ut
io

n 
tim

e 
( m

ic
ro

se
co

nd
s)

Data size (milions)

LH ST-LH Btree ST-Btree Judy ST-Judy

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ex
ec

ut
io

n 
tim

e 
( m

ic
ro

se
co

nd
s)

Data size (milions)LH ST-LH Btree

ST-Btree Judy ST-Judy



 31

For example, Figure 7, Figure 8, and Figure 10 show that Judy-tries are better 
than B-trees for inserts and lookups, but not for mapping. 

 
Figure 10. Map() 
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Figure 11. Q1 Range search 

In Figure 12 the performance of 2D KNN-search is investigated for X-trees 
and R*-trees. Query Q3 (Form (ii)) is used with the relation Images populated 
with 2D point vectors from a real data set [9], which is a collection of Califor-
nia road points. We enlarged the original data set to different data sizes by 
randomly generating points from 1.S to 14.S with S=210480 with the same 
range distribution as the origin. When SSF translation is enabled, Q3 with k 
=10 scaled substantially better since the index was utilized.  We also notice 
that the X-tree implementation performed as good as the R*-tree implementa-
tions for the given 2D database. 
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Figure 12. Q3 Knn 

In Figure 13 the performance of high dimension 9D proximity search for Q2 
(Form (iii)) is measured with the X-tree implementation, with and without SSF 
translation rules enabled. In this experiment, we used the ColorHist database 
[6]. The database comprises of 9D (3 x 3) - color histograms extracted from 
S=70000 images provided by the Corel Image Database. As for the road 
points, we enlarged the size of the database from 1.S to 14.S. 

 
Figure 13. Proximity search 
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Figure 14 shows the scalability improvement by rewriting similarity queries 
for Q4 (Form (v)) using the X-tree implementation and the ColorHist data-
base. 

 
Figure 14. Similarity search 

From experiment C, we conclude that SSF translation rules are critical for 
scalability of Mexima’s extensible indexing, because they make the indexes 
be utilized in queries. To evaluate the quality of domain index implementa-
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mentations, as in Experiment C, are critical. 
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tion rule that describes parameters for the query processor matching different 
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developer. The index key generator table contains queries that generate index 
keys to be tested for correct BAO behavior. The SSF parameter generator 
table contains queries that generate arguments of the SSF operators to be 
tested. Based on these two tables and the SSF translation table, Mexima auto-
matically generates and executes test queries for the new index. 

To show that existing index implementations can be transparently plugged 
into Mexima, five different main-memory index implementations were eval-
uated without changing their source code. In particular, the very complex 
Judy-trie index implementation [2] was included and compared with a text-
book B-tree implementation. 

The overhead of Mexima for BAOs of the different plugged-in index im-
plementations was evaluated, showing that the current Mexima implementa-
tion has overhead in the sub-µs range per BAO call. 

The importance of SSF translations was investigated for chosen index im-
plementations showing the SSF translation rules provide scalable performance 
of declarative queries over tables indexed by plugged-in domain indexes.      

The ease of plugging-in index implementations in Mexima without code 
changes and with very low overhead shows that Mexima is an excellent tool 
for comparing domain index implementations. In particular not changing the 
index implementation allows to easily utilizing highly optimized and complex 
domain-index implementations such as Judy-tries. 

For future work, other kind’s indexes will be plugged into Mexima to meet 
the specific requirements from other application domains. This is likely to put 
additional requirements on Mexima’s query processor. Furthermore, also in-
dex performance measurements can be automated by extending the Mexima’s 
tester to include performance tests.  

Altogether, Mexima provides a complete and extensible platform for do-
main index integration and evaluation, as required in many scientific applica-
tions. 
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Abstract 
To enable historical analyses of logged data streams by SQL queries, the 
Stream Log Analysis System (SLAS) bulk loads data streams derived from sen-
sor readings into a relational database system. SQL queries over such log data 
often involve numerical conditions containing inequalities, e.g. to find sus-
pected deviations from normal behavior based on some function over meas-
ured sensor values. However, such queries are often slow to execute, because 
the query optimizer is unable to utilize ordered indexed attributes inside nu-
merical conditions. In order to speed up the queries they need to be reformu-
lated to utilize available indexes. In SLAS the query transformation algorithm 
AQIT (Algebraic Query Inequality Transformation) automatically transforms 
SQL queries involving a class of algebraic inequalities into more scalable SQL 
queries utilizing ordered indexes. The experimental results show that the que-
ries execute substantially faster by a commercial DBMS when AQIT has been 
applied to preprocess them. 

 
 

1 Introduction 
We first introduce a real-world scenario application under investigation in the 
Smart Vortex project [15], which requires queries involving numerical expres-
sions. A factory operates some machines. On each machine, there are a num-
ber of sensors to measure different physical properties, e.g. power consump-
tion, pressure, temperature, etc. The sensors generate logs of measurements 
per machine that carry a time stamp ts, a machine identifier m, a sensor iden-
tifier s, a measured value mv, and a measurement class mc for the kind of 
measurements made by the sensor. Examples of measurement classes are oil 
pressures of hydraulic filters and pressures of gear pumps. The logs are ana-
lyzed by bulk loading them into a relational DBMS. To speed up performance 
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when analyzing sensors of the same kind on many different machines, there is 
one table for each measurement class of each kind of physical property. To 
avoid repetition of unchanged sensor readings, each measured value mv on 
machine m is associated with a valid time interval bt and et indicating the 
begin time and end time for mv, computed from the log time stamp ts when 
the data is bulk loaded. Hence, the measurement of class mc=MC on machines 
m will be stored in the table measuresMC(m, s, bt, et,  mv). These tables will 
contain large volumes of log data from many sensors of the same kind on 
different machines. 

After the data streams have been loaded into measuresMC(), the user can 
issue offline historical queries to find errors on machines in the past by looking 
for abnormal values of mv. This often requires search conditions containing 
inequalities inside numerical expression. In our scenario, in order to improve 
the performance of inequality queries over mv, a B-tree index is added on each 
measuresMC.mv, denoted idx(measuresMC.mv). The following are typical 
numerical query conditions on tables measuresA, and measuresB to identify 
faulty behaviors of machines: 
• C1: Were the measurements of class A higher than a threshold v0 = 15.6? 

We ex-press the condition as 1ܥሺ݉ݒሻ:݉ݒ >  .ݒ
• C2: Were the measurements of class A higher than r1 = 300 above the 

expected value v1 = 15.6? We express the condition a	2ܥሺ݉ݒሻ:݉ݒ ଵݒ− >  .ଵݎ
• C3: Were the measurements of class B outside the range r2 = 11 from the 

ideal value v1 = 20?  We express the condition as 3ܥሺ݉ݒሻ: ݒ݉| − |ଵݒ  .ଶݎ<
• C4: Were the measurements of class B outside the range r3=20% from v1 

= 20? We express the condition as 4ܥሺ݉ݒሻ: ቚ ଵ௩ି௩భቚ >  .ଷݎ

The above conditions can be expressed in SQL. Relational databases can han-
dle SQL query conditions of type C1 efficiently, since there is an ordered in-
dex idx(measuresA.mv). However, in C2-C4 the inequalities are not defined 
directly over the attribute mv but through some numerical expressions, which 
makes the query optimizer not utilizing the indexes and hence the queries will 
execute slowly. We say that the indexes idx(measuresA.mv) and 
idx(measuresB.mv) are not exposed in C2-C4. To speed up such queries, the 
DBMS vendors recommend that the user reformulate them [11], which often 
requires rather deep knowledge of low-level index operations. 

To transform automatically a class of queries involving inequality expres-
sions into more efficient queries where indexes are exposed, we have devel-
oped the query transformation algorithm AQIT (Algebraic Query Inequality 
Transformation). We show that AQIT substantially improves performance for 
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queries with conditions of type C2-C4, exemplified by analyzing logged ab-
normal behavior in our scenario. Without the proposed query transformations, 
the DBMS will do a full scan, not utilizing any index. 

AQIT transforms queries with inequality conditions on single indexed at-
tributes to utilize range search operations over B-tree indexes. In general, 
AQIT can transform inequality conditions of form F(mv) ψ ε, where mv is a 
variable bound to an indexed attribute A, F(mv) is an expression consisting of 
a combination of transformable functions T, currently T ∈ {+, -, /, *, power, 
sqrt, abs}, and ψ is an inequality comparison ψ ∈ {≤, ≥, <, >}. AQIT tries to 
reformulate inequality conditions into equivalent conditions, mv ψ’ F’(ε) that 
makes the index on attribute A, idx(A) exposed to the query optimizer. AQIT 
has a strategy to automatically determine ψ’ and F’(ε).  If AQIT fails to trans-
form the condition, the original query is retained. For example, AQIT is cur-
rently not applicable on multivariable inequalities, which are subjects for fu-
ture work. 

In summary, our contributions are: 
• We introduce the algebraic query transformation strategy AQIT on a class 

of numerical SQL queries. AQIT is transparent to the user and does not 
require manual reformulation of queries. We show that it substantially im-
proves query performance. 

• The prototype system SLAS (Stream Log Analysis System) implements 
AQIT as a SQL pre-processor to a relational DBMS. Thus, it can be used 
on top of any relational DBMS. Using SLAS we have evaluated the per-
formance improvements of AQIT on log data from industrial equipment 
in use. 

This paper is organized as follows. Section 2 discusses related work. Section 
3 presents some typical SQL queries where AQIT improves performance. Sec-
tion 4 gives an overview of SLAS and its functionality. Section 5 presents the 
AQIT algebraic transformation algorithm on inequality expressions. Section 
6 evaluates the scalability of applying AQIT for a set of benchmark queries 
based on the scenario database, along with a discussion of the results. Section 
7 gives conclusions and follow-up future work. 

2 Related Work 
The recommended solution to utilize an index in SQL queries involving arith-
metic expressions is to manually reformulate the queries so that index access 
paths are exposed to the optimizer [5] [11] [13]. However, it may be difficult 
for the database user to do such reformulations since it requires knowledge 
about indexing, the internal structure of execution plans, and how query opti-
mization works. There are a number of tools [11] [16], which point out ineffi-
cient SQL statements but do not automatically rewrite them. In contrast, AQIT 
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provides a transparent transformation strategy, which automatically trans-
forms queries to expose indexes, when possible. If this is not possible, the 
query is kept intact. 

Modern DBMSs such as Oracle, PostgreSQL, DB2, and SQL Server sup-
port function indexes [8] [10], which are indexes on the result of a complex 
function applied on row-attribute values. When an insertion or update hap-
pens, the DBMS computes the result of the function and stores the result in an 
index.  The disadvantage of function indexes compared to the AQIT approach 
is that they are infeasible for ad hoc queries, since the function indexes have 
to be defined beforehand. In particular, function indexes are very expensive 
to build in a populated database, since the result of the expression must be 
computed for every row in the database. By contrast, AQIT does not require 
any pre-computations when data is loaded or inserted into the database. There-
fore, AQIT makes the database updates more efficient, and simplifies database 
maintenance. 

Computer algebra systems like Mathematica [1] and Maple [4] and con-
straints database systems [7] [9] also transform inequalities. However, those 
systems do not have knowledge about database indexes as AQIT. The current 
implementation is a DBMS independent SQL pre-processor that provides the 
index specific query rewritings. 

FunctionDB [2] also uses an algebraic query processor. However, the pur-
pose of FunctionDB is to enable queries to continuous functions represented 
in databases, and it provides no facilities to expose database indexes. 

Extensible indexing [6] aims at providing scalable query execution for new 
kinds of data by introducing new kinds of indexes. However, it is up to the 
user to reformulate the queries to utilize a new index. By contrast, our ap-
proach provides a general mechanism for utilizing indexes in algebraic ex-
pressions, which complements extensible indexing. In the paper, we have 
shown how to expose B-tree indexes by algebraic rewrites. Other kinds of 
indexes would require other algebraic rules, which is a subject of future work. 

3 Example Queries 
A relational database that stores both meta-data and logged data from ma-
chines has the following three tables: 
• machine(m, mm) represents meta-data about each machine installation 

identified by m where mm identifies the machine model. There is a sec-
ondary B-tree index on mm. 

• sensor(m, s, mc, ev, ad, rd) stores meta-data about each sensor installation 
s on each machine m. To identify different kinds of measurements, e.g oil 
pressure, filter temperature etc., the sensors are classified by their meas-
urement class, mc. Each sensor has some tolerance thresholds, which can 
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be an absolute or relative error deviation, ad or rd, from the expected value 
ev. There are secondary B-tree indexes on ev, ad, and rd. 

• measuresMC(m, s, bt, et, mv) enables efficient analysis of the behavior of 
different kinds of measurements over many machine installations over 
time. The table stores measurements mv of class MC for sensor installa-
tions identified by machine m and sensor s in valid time interval [bt,et). 
By storing bt and et temporal interval overlaps can be easily expressed in 
SQL [3] [14]. There are B-tree indexes on bt, et, and mv. 

We use the abnormality thresholds @thA for queries determining deviations 
in table measuresA, @thB for queries determining absolute deviation in table 
measuresB, and @thRB for queries determining relative deviation in table 
measuresB. We shall discuss these thresholds in Section 6  in details. 

The following queries Q1, Q2, and Q3 identify abnormalities: 
Query Q1 finds when and on what machines, the pressure reading of class 

A was higher than @thA from its expected value: 
1 SELECT      va.m, va.bt, va.et 
2 FROM   measures A va, sensor s 
3 WHERE  va.m = s.m AND va.s = s.s AND va.mv > s.ev + @thA. 

AQIT has no impact for query Q1 since the index idx(measuresA.mv) is al-
ready exposed. 

Query Q2 identifies abnormal behaviors based on absolute deviations: 
When and for what machines did the pressure reading of class B deviate more 
than @thB from its expected value? AQIT translates the query into the fol-
lowing SQL query T2: 

  Q2: 

1 SELECT  vb.m, vb.bt, vb.et  

2 FROM    measuresB vb, sensor s 

3 WHERE vb.m =s.m                 AND  

                 vb.s=s.s                     AND 

4               abs(vb.mv - s.ev) > @thB 

5 

T2: 

SELECT vb.m, vb.bt, vb.et 

FROM   measuresB vb, sensor s  

WHERE vb.m=vb.m                AND 

             vb.s=s.s                      AND 

            ((vb.mv > @thB + s.ev) OR 

              (vb.mv < - @thB + s.ev)) 

In T2 lines 4-5 expose the ordered index idx(measuresB.mv). 
Query Q3 identifies two different abnormal behaviors of the same machine 

at the same time based on two different measurement classes and relative de-
viations: When and for which machines were the pressure readings of class A 
higher than @thA from its expected value at the same time as the pressure 
reading of class B were deviating @thRB % from its expected value? After 
the AQIT transformation Q3 becomes T3: 
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Q3: 

1 SELECT   va.m,greaest(va.bt,vb.bt) 

2                   least(va.et, vb.et) 

 3 FROM measuresA va,measuresB vb, 

4             sensor sa, sensor sb 

5 WHERE   va.m=sa.m                 AND 

6                 va.s=sa.s                    AND 

7                 vb.m=sb.m                AND 

8                 vb.s=sb.s                   AND 

9                 va.m=vb.m                AND 

10.              va.bt<=vb.et              AND 

11                va.et>=vb.bt             AND 

12     va.mv - sa.ev > @thA          AND 

13.    abs((vb.mvsb.ev)/sb.ev)>@thRB 

14 

15 

16 

T3: 

SELECT  va.m,greatest(va.bt, vb.bt), 

                least(va.et, vb.et)  

FROM measuresA va, measuresB vb, 

           sensor sa, sensor sb 

WHERE  .va.m=sa.m                  AND 

               va.s=sa.s                      AND 

               vb.m=sb.m                   AND 

               vb.s=sb.s                      AND 

              va.m =vb.m                   AND 

              va.bt<=vb.et                  AND 

              va.et>=vb.bt                  AND 

              va.mv >@thA + sa.ev     AND 

           ((vb.mv>(1+@thRB)*sb.ev  

                    AND  sb.ev >0)  

             OR  (vb.mv<(1+@thRB)*sb.ev 

                    AND  sb.ev<0) 

             OR  (vb.mv<(-@thRB+1)*sb.ev 
                 AND  sb.ev>0)  

             OR  (vb.mv>(-@thRB+1)*sb.ev 

                    AND  sb.ev<0) 

Lines 10-11 in Q3 selects temporal overlap of the time interval [va.bt, va.et] 
with [vb.bt, vb.et]. The functions greatest(va.bt, vb.bt) and least(va.et, vb.et) 
return the maximum and minimum values of their two arguments, respec-
tively. These functions are supported by Oracle, MySQL, DB2 and Post-
greSQL but not by SQL Server [14]. Therefore, we defined greatest(x, y) and 
least(x, y) as user defined functions for SQL Server. 

In T3 line 13 exposes idx(measuresA.mv) and lines 14-16 expose 
idx(measuresB.mv). 

4 Stream log analysis system (SLAS) 
Figure 1 illustrates the architecture of SLAS. It uses a datastream management 
system, DSMS, to process raw streams of measurements from different ma-
chines. The log writer receives from the DSMS a stream of tuples with format 
(mc, m, s, ts, mv) specified as a continuous query.  The log writer produces 
once per system determined time interval a CSV file of tuples (m, s, bt, et, mv) 
for each measurement class mc to be loaded into the corresponding table 
measuresMC. Here, [bt,et) is the valid time interval for mv, computed from ts. 
When the log writer has written a CSV file it notifies the log loader for meas-
urement class mc, which bulk loads the new log file rows into the correspond-
ing measurement log table measuresMC. 



 8

In order to limit and customize the amount of log data stored in the DBMS 
the log deleter continuously deletes log data from the DBMS according to user 
specified configuration parameters.  

The user can analyze the stored data streams by issuing historical SQL que-
ries over loaded log data through the AQIT processor. The strategy used by 
AQIT to improve numerical SQL queries is the focus of this paper. 

 
Figure 1. Stream Log Analyse System 

Figure 2 illustrates the query processing of AQIT. An SQL query is first 
parsed into an internal query in a Datalog dialect [12]. The AQIT rewriter 
transforms the Datalog query into an equivalent index exposed query. The SQL 
Generator transforms the index exposed Datalog query into an equivalent 
shipped SQL query sent to the back-end DBSM through JDBC for optimiza-
tion and evaluation. 
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Figure 2.  AQIT Preprocessor 

5 Algebraic Query Inequality Transformation 
To explain the AQIT transformations we need the following definitions: 

Definition 1: A source predicate r(…) of a query is a predicate that represents 
access to a relation named r. 
Definition 2: If there is a B-tree index idx(r.a) on some attribute a of a source 
predicate  r(…a…), we say that r is an indexed predicate. 
Definition 3: If there is an occurrence of a variable v representing idx(r.a) in 
an indexed predicate r(…v…) of a query, we say that v is an indexed variable 
in the query. 
Definition 4: If there is an inequality ψ (v,x) where v is an indexed variable, 
we say that the indexed variable v is exposed by the inequality predicate ψ. 

In this section, we use Q1 and Q2 to show how AQIT works. First the parser 
translates Q1, and Q2 into the following Datalog queries DQ1 and DQ2: 

DQ1(m,bt,et) 

  measuresA(m,s,bt,et,mv)          AND    

  sensor(m,s,_,_,ev,_,_)               AND 

DQ2(m,bt,et) 

  measuresA(m,s,bt,et,mv)        AND 

  sensor(m,s,_,_,ev,_,_)             AND 

  v1 = mv – ev AND 

SQL query

Query Parser

SQL 
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DataLog
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  v1 = ev + @thA                        AND    

  mv > v1 

  v2 = abs(v1)  AND 

  v2 > @thA 

Here, the source predicates measuresA(m,s,bt,et,mv) and 
measuresB(m,s,bt.et,mv) represent relational tables for two different measure-
ment classes. For both tables there is a B-tree index on mv to speed up com-
parison and proximity queries, and therefore measuresA() and measuresB() 
are indexed predicates and the variable mv is an indexed variable. In Q1, the 
index idx(measuresA.mv) is already exposed because there is a comparison 
between measuresA.mv and variable v1, so AQIT will have no effect. 

In Q2, the index idx(measuresB.mv) is not exposed by the inequality pred-
icate v2 > @thB since the inequality is defined over a variable v2, which is 
not bound to the indexed attribute measuresB.mv. Here AQIT transforms the 
predicates to expose the index idx(measuresB.mv) so in T2 idx(measuresB.mv) 
is exposed in both OR branches. 

5.1 AQIT Overview 
The AQIT algorithm takes a Datalog predicate as input and returns another 
semantically equivalent predicate that exposes one or several indexes, if pos-
sible. AQIT is a fixpoint algorithm that iteratively transforms the predicate to 
expose hidden indexes until no further indexes can be exposed. The full 
pseudo code can be found in [17]. 

The transformations are made iteratively by the function transform_pred() 
in Listing 1. At each iteration, it invokes three functions, called chain(), ex-
pose(), and substitute(). chain() finds some path between an indexed variable 
and an inequality predicate that can be exposed, expose() transforms the found 
path so that the index becomes exposed, and substitute() replaces the terms in 
the original predicate with the new path. 

Listing 1 Transform predicate 
function transform_pred(pred):
input:   A predicate pred 
output:  A transformed predicate or the original 
pred 
begin 

 
if pred is disjunctive then 
 
  
 

set failure = false 
/*result list of transformed branches*/ 
set resl = null           
do /*transform each branch*/  
 
 
set b = the first not transformed branch in 
pred 
set nb = transform_pred(b)/*new branch*/ 
if  nb not null then add nb to resl  
else  set failure = true  
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until failure or no more branch of pred to try 
 if not failure then  
  /*return a disjunction from resl*/ 
     return  orify(resl) 
 end if  

else if pred is conjunctive then
 
 

set path = chain(pred) 
if path not null then  
 
 
 

set exposedpath = expose(path)  
if  exposedpath not null then  
     return substitute(pred, path, exposed-
path)                
end if  

end if  
end if 
return pred  

end  

Chain: The chain() algorithm tries to produce a path of predicates that links 
one indexed variable with one inequality predicate. If there are multiple in-
dexed variables a simple heuristic is applied. It sorts the indexed variables 
decreasingly based on selectivities of the indexed attributes, which can be ob-
tained first from the backend DBMS. The path must be a conjunction of trans-
formable terms that represent expressions transformable by AQIT. Each trans-
formable term in a path has a single common variable with adjacent terms. 
Such a chain of connected predicates is called an index inequality path (IIP). 
Query DQ2 has the following IIP called Q2-IIP from the indexed variable mv 
to the inequality v2 > @thB, where the functions ‘–‘ and ‘abs’ are transform-
able: 

Q2-IIP: measuresB(m, s, bt, et, mv)   v1=mv - ev  v2=abs(v1)  v2>@thB. 

In this case Q2-IIP is the only possible IIP, since there are no other unexposed 
index variables in the query after Q2-IIP has been formed. The following 
graph illustrates Q2-IIP, where nodes represent predicates and arcs represent 
the common variable of adjacent nodes: 

 
Figure 3. Q2-IIP 

v1= mv -ev

measuresB(m, s bt, et, mv)
v2=abs(v1)

v2 > @thB
mv

v1

v2
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An IIP starts with an indexed origin predicate and ends with an inequality 
destination predicate. The origin node in an IIP is always an indexed predicate 
where the outgoing arc represents one of the indexed variables. 

chain() is a backtracking algorithm trying to extend partial IIPs consisting 
of transformable predicates from an indexed variable until some inequality 
predicate is reached, in which case the IIP is complete. The algorithm will try 
to find one IIP per indexed variable. If there are several common variables 
between transformable terms, chain() will try each of them until a complete 
IIP is found. If there are other not yet exposed ordered indexes for some source 
predicates, the other IIPs may be discovered later in the top level fixpoint it-
eration. 

The chain() procedure successively extends the IIP by choosing new trans-
formable predicates q not on the partial IIP such that one of q’s arguments is 
the variable of the right-most outgoing arc (mv in our case) of the partial IIP. 
For DQ2 only the predicate v1=mv-ev can be chosen, since mv is the outgoing 
arc variable and ‘–‘ is the only transformable predicate in DQ2 where mv is 
an argument. When there are several transformable predicates, chain() will try 
each of them in turn until the IIP is complete or the transformation fails. 

An IIP through a disjunction is treated as a disjunction of IIPs with one 
partial IIP per disjunct in Listing 1. In this case, the index is considered utilized 
if all partial IIPs are complete. 

Expose: The expose() procedure is applied on each complete IIP in order to 
expose the indexed variable.  The indexed variable is already exposed if there 
are no intermediate nodes between the origin node and the destination node in 
the IIP. For example, the IIP for Q1 is Q1-IIP: measuresA(m, s, bt, et, mv)  
mv>v1. Here the indexed variable mv is already exposed to the inequality. 
Therefore, in this case expose() returns the input predicate unchanged. 

The idea of expose() is to shorten the IIP until the index variable is exposed 
by iteratively combining the two last nodes through the algebraic rules in Ta-
ble 4 into larger destination nodes while keeping the IIP complete. To keep 
the IIP complete the incoming variable of the last node must participate in 
some inequality predicate. As an example, the two last nodes in Q2-IIP in 
Figure 3 are combined into a disjunction in Figure 4. Here the following al-
gebraic rule is applied: R10: |x| > y  (x > y ∨ x < - y). 

 
Figure 4. Q2-IIP after the first reduction 

v1= mv -ev

measuresB(m, s bt, et, mv)

v1> @thB
OR  v1<-@thB

mv

v1
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The algebraic rule R10 exposes a variable x hidden inside abs() of an inequal-
ity. The following table shows how R10 is applied on the two last nodes in 
Figure 3 to form the new predicate in Figure 4. 

Table 1 Applying R10 

Before After 

v2 = abs(v1)  AND v2 > @thB (v1 > @thB OR v1 < -@thB) 

By iteratively exposing each variable on the IIP, the indexed variable (and the 
index) will possibly be exposed. For example, Q2-IIP in Figure 4 is reduced 
into Figure 5 by applying the algebraic rules R3: x - y > z  x > y+ z and R4: 
x - y < z  x < y+ z. 

 
Figure 5. Q2-IIP after the second reduction 

The following two tables show how rules R3 and R4 have been applied: 

Table 2 Applying R3 
Before After 

v1 = mv –ev           AND 
v1 > @thB 

v3 = ev + @thB     AND 
 mv > v3 

Table 3 Applying R4 
Before After 

v1 = mv –ev AND 
v1 < -@thB 

v4 = ev -@thB AND 
mv < v4 

The new variables v3 and v4 are created when applying the rewrite rules to 
hold intermediate values.   

In Figure 5 there are no more intermediate nodes and the index 
idx(measuresB.mv) is exposed, so expose() succeeds. 

expose() may fail if there is no applicable algebraic rule when trying to 
combine some two last nodes, in which case the chain() procedure will be run 
again to find a next possible IIP until as many indexed variables as possible 
are exposed. 

Substitute: When expose() has succeeded, substitute() updates the original 
predicate by replacing all predicates in the original IIP, except its origin, with 

measuresB(m, s bt, et, mv)

mv> v3  
OR mv < v4

mv
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the new destination predicate in the transformed IIP [17]. For Q2 this will 
produce the final transformed Datalog query: 

DQ2(m,bt,et)  measuresB(m,s,bt,et,mv)  AND 

           sensor(m, s, _,_,ev,_,_)                     AND 

           v3  =  ev + @thB                              AND  

           v4 = ev -@thB                                  AND 

          (mv < v4 OR mv >  v3) 

The Datalog query is the translated by the SQL Generator into SQL query T2. 

5.2 Inequality Transformation Rules 
Table 4 the algebraic rewrite rules currently used by AQIT are listed. The list 
can be extended for new kinds of algebraic index exposures. In the rules, x, y, 
and z are variables and ψ denotes any of the inequality comparisons ≥, ≤,<, or 
>, while ψ--1 denotes the inverse of ψ. CP denotes a positive constant (CP > 
0), while CN denotes a negative constant (CN < 0). Each rule shows how to 
expose the variable x hidden inside an algebraic expression to some inequality 
expression. 

Table 4 Algebraic inequality transformations 

R1 
(x + y)  ψ z   ⇔ x ψ (z – y) 

R2 
(y + x) ψ z  ⇔ x ψ (z – y) 

R3 
(x - y) ψ z ⇔ x ψ (z + y) 

R4 
(y - x) ψ z ⇔ x ψ  -1 (y – z ) 

R5 
(x * CP) ψ z ⇔ (x ψ z/CP) 

R6 
(x * CN) ψ z ⇔ (x ψ -1  z/CN) 

R7 
x/y ψ z ∧  y!= 
0 

⇔ (x ψ y*z ∧ y > 0) ∨ (x ψ  -1 z*y ∧ y < 0) 

R8 
y/x ψ z ⇔ (y/z ψ x ∧ x*z > 0)  

∨ (y/z ψ-1 x ∧ x*z < 0) 
∨  (y = 0 ∧ 0 ψ  z) 

R9 
|x| ≤ y   ⇔ (x ≤ y ∧ x  ≥ - y) 

R10 
|x| ≥ y ⇔ (x  ≥ y ∨ x ≤ - y) 



 15

R11 ψ y ⇔ x ψ y2  

R12 
xy ψ z ⇔ (x ψ ∧ y  > 0)  

∨  (x ψ  -1  ∧ y < 0) 
∨  (x ψ z ∧ y = 0) 

R13 
(x+ y)/x ψ  z ⇔ (1+ y/x) ψ  z 

R14 
|(x - y) / y | > z ⇔ (x > (z + 1)* y ∧ y > 0) ∨ (x < (z + 1)* 

y ∧  y < 0) 
∨ (x < (- z+ 1)* y ∧ y > 0)∨ (x > (- z + 
1)* y ∧  y < 0) 

6 Experiment Evaluation 
We experimentally compared the performance of a number of typical queries 
finding different kinds of abnormalities based on 16000 real log files from two 
industrial machines. To simulate data streams from a large number of ma-
chines, 8000 log files were constructed by pairing the real log files two-by-
two and then time-stamping their events based on off-sets from their first time-
stamps. This produces realistic data logs and enables scaling the data volume 
by using an increasing number of log files. 

6.1 Setup 
To investigate the impact of AQIT on the query execution time, we run the 
SLAS system with SQL Server™ 2008 R2 as DBMS on a separate server 
node. The DBMS was running under Windows Server 2008 R2 Enterprise on 
8 processors of AMD Opteron ™ Processor 6128, 2.00 GHz CPU and 16GB 
RAM. The experiments were con-ducted with and without AQIT prepro-
cessing. 

6.2 Data 
Figure 6 is a scatter plot from a small sampled time interval of pressure read-
ings of class A. This is an example of an asymmetric measurement series with 
an initial warm-up period of 581.1 seconds. 

x

y
z

y
z
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Figure 6. Pressure measured of class A 

 
Figure 7 Pressure measured of class B 

The abnormal behavior in this case is that the measured values are larger than 
the expected value (17.02) within a threshold. When the deviation threshold 
is 0 all measurements are abnormal, while when the threshold is 359.44 no 
measurements are abnormal. For example, Q1 finds when a sensor reading of 
class A is abnormal based on threshold @thA that can be varied. 

Figure 7 plots pressure readings of measurements of class B over a small sam-
pled time interval. Here the abnormality is determined by threshold @thB, 
indicating absolute differences between a reading and the expected value 
(20.0), as specified in Q2. When the threshold is 0 all measurements are ab-
normal, while when the threshold is 20.0 no measurements are abnormal. 

In addition, the abnormality of measurements of class B is determined by 
threshold @thRB as in Q3, indicating relative difference between a reading 
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and the expected value. When the relative deviation threshold is 0%, no meas-
urements are abnormal, while when the threshold is 100% all measurements 
are abnormal. 

 
Figure 8. Thresholds and selectivity mappings 

6.3 Benchmark queries 
We measured the impact of index utilization exposed by AQIT by varying the 
abnormality thresholds @thA for queries determining deviations in 
measuresA, and the thresholds @thB  and @thRB for queries determining de-
viations in measuresB. The larger the threshold values the fewer abnormalities 
will be detected. We also defined three other benchmark queries Q4, Q5, and 
Q6. All the detailed SQL and Datalog formulations before and after AQIT for 
the benchmark queries are listed in [18]. 

• Q4 identifies when the pressure readings of class B deviates more than 
@thB for the machines in a list machine-models of varying length. Here, 
if a query spans many machine models the impact of AQIT should de-
crease since many different index keys are accessed. 
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Q4:  

SELECT   vb.m, vb.bt, vb.et 

FROM      measuresB vb, sensor s,  

                 machine ma 

WHERE  vb.m = s.m                           AND

              va.s=s.s                                  AND

              vb.m = ma.m                          AND

              ma.mm in@machine-models AND

              abs(vb.mv - s.ev) > @thB 

T4:  

SELECT vb.m, vb.bt, vb.et  

FROM   measuresB vb, sensor s,  

             machine ma  

WHERE vb.m = s.m                    AND 

              va.s=s.s                          AND 

              vb.m = ma.m                  AND    

ma.mm in @machine-models      AND 

             (vb.mv > @thB + s.ev  

              OR vb.mv < - @thB + s.ev) 

 

• Q5 identifies when the pressure reading of class B deviates more than 
@thB for two specific machine models using a temporal join. The query 
involves numerical expressions over two indexed variables, which are 
both exposed by AQIT. See [18] for details. 

• Query Q6 is a complex query that identifies a sequence of two different 
abnormal behaviors of the same machine happening within a given time 
interval, based on two different measurement classes. On what machines 
the pressure readings of class B were out-of-bounds more than @thB 
within 5 seconds after the pressure readings of class A were higher than 
@thA from the expected value. Here, both idx(measuresA.mv) and 
idx(measuresB.mv) are exposed by AQIT. See [18] for de-tails. 

6.4 Performance measurements 
To measure performance based on different selectivities of indexed attributes, 
in Figure 8 we map the threshold values to the corresponding measured index 
selectivities of idx(measuresA.mv) and idx(measuresB.mv). 100% of the ab-
normalities are detected when any of the thresholds is 0 and thresholds above 
the maximum threshold values (@thA=359.44, @thB=20.0, and 
@thRB=100%) detect 0% abnormalities. 

Experiment A varies the database size from 5GB to 25GB while keeping the 
selectivities (abnormality percentages) at 5% and a list of three different ma-
chine models in Q4.  

Figure 9 shows the performance of example queries Q2, Q3, Q4, Q5, and Q6 
(without AQIT) and their corresponding transformed queries T2, T3, T4, T5, 
and T6 (with AQIT) when varying the database size from 5 to 25 GB. The 
original queries without AQIT are substantially slower since no indexes are 
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exposed and the DBMS will do full scans, while for transformed queries the 
DBMS backend can utilize the exposed indexes. 

Experiment B varies index selectivities of idx(measuresA.mv) and 
idx(measuresB.mv) while keeping the database size at 25 GB and selecting 
three different machine models in Q4. We varied the index selectivities from 
0% to 100%. Figure 10 presents execution times of the all benchmark queries 
with and without AQIT. 

Without AQIT, the execution times for Q2 - Q6 stay constant when varying 
the selectivity since no index is utilized and the database tables are fully 
scanned. 

 
Figure 9. All queries while changing DB size 
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Figure 10. All queries while changing selectivities  

Figure 10 shows that AQIT has more effect the lower the selectivity, since 
index scans are more effective for selective queries. For non-selective queries 
the indexes are not useful. When all rows are selected the AQIT transformed 
queries are slightly slower than original ones; the reason being that they are 
more complex. In general AQIT does not make the queries significantly 
slower. 

Experiment C varies the number machine models in Q4 from 0 to 25 while 
keeping the database size at 25 GB and the selectivity at 5%, as illustrated by 
Figure 11. It shows that when the list is small the transformed query T4 scales 
much better than the original query Q4. However, when the list of machine 
increases, T4 is getting slower. The reason is that the index idx(measuresB.mv) 
is accessed once per machine model, which is faster for fewer models. 

 
Figure 11. Execution times of Query 4 when varying the list of machine models 
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The experiments A, B, and C show that AQIT improves the performance of 
the benchmark queries substantially and will never make the queries  
significantly slower. In general AQIT exposes hidden indexes while the 
backend DBMS decides whether to utilize them or not. 

7 Conclusion & Future work 
In order to improve the performance of queries involving complex inequality 
expression, we investigated and introduced the general algebraic query trans-
formation algorithm AQIT.  It transforms a class of SQL queries so that in-
dexes hidden inside numerical expressions are exposed to the back-end query 
optimizer. 

From experiments, which were made on a benchmark consisting of real log 
data streams from industrial machines, we showed that the AQIT query trans-
formation substantially improves query execution performance. 

We presented our general system architecture for analyzing logged data 
streams, based on bulk loading data streams into a relational database. Im-
portantly, looking for abnormal behavior of logged data streams often requires 
inequality search conditions and AQIT was shown to improve the perfor-
mance of such queries. 

We conclude that AQIT improves substantially the query performance by 
exposing indexes without making the queries significantly slower. 

Since inequality conditions also appear in spatial queries we plan to extend 
AQIT to support transforming spatial query conditions as well user defined 
indexing. We also acknowledge that the inequality conditions could be more 
complex with multiple variables and complex mathematical expression, which 
will require other algebraic rules. 
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ABSTRACT 
We present an approach for scalable processing of SPARQL queries to RDF 
views of numerical data stored in relational databases (RDBs). Such queries 
include numerical expressions, inequalities, comparisons, etc. inside FIL-
TERs. We call such FILTERs numerical expressions and the queries - numer-
ical SPARQL queries. For scalable execution of numerical SPARQL queries 
over RDBs, numerical operators should be pushed into SQL rather than exe-
cuting the filters as post-processing outside the RDB; otherwise the query ex-
ecution is slowed down, since a lot of data is transported from the RDB server 
and furthermore indexes on the server are not utilized. The NUMTranslator 
algorithm converts numerical expressions in numerical SPARQL queries into 
corresponding SQL expressions. We show that NUMTranslator improves sub-
stantially the scalability of SPARQL queries based on a benchmark that anal-
yses numerical logs stored in an RDB. We compared the performance of our 
approach with the performance of other systems processing SPARQL queries 
to RDF views of RDBs and show that NUMTranslator improves substantially 
the scalability of numerical queries compared to the other systems’ ap-
proaches. 

 
Keywords 

SPARQL queries; RDF views of relational databases; numerical expressions; 
query rewrites; query optimization 
 

1 Introduction 
The Semantic Web provides uniform data representation for integrating data 
from different data sources by using established well-known formats like 
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RDF, RDFS, OWL, and the standard query language SPARQL. Semantic 
Web seems promising to integrate and search industrial data [2]. 

Our application scenario is from the industrial domain, where sensors on 
machines such as trucks, pumps, kilns, etc., produce large volumes of log data. 
Such log data describes measured values of certain components at different 
times and can be used for analyzing machine behavior. Furthermore, the geo-
graphic locations of machines are often widely distributed and maintained lo-
cally in autonomous RDBs called log databases. We are developing the FLOQ 
(Federated LOg database Query) system, which is a system for historical anal-
yses over federations of autonomous log databases using SPARQL queries. 
To discover abnormal machine behaviors, a user of FLOQ defines SPARQL 
queries to these log databases. FLOQ processes a SPARQL query by first 
finding the relevant log databases containing the desired data, then sending 
local SPARQL queries to them, and finally collecting the local query results 
to obtain the final result. 

In this paper we concentrate on scalable historical analyses by SPARQL 
queries of log data stored in a single relational database. Suspected abnormal 
machine behaviors are discovered and analyzed by specifying numerical 
SPARQL queries to an RDF view of the RDB. The queries analyze log data 
through numerical FILTERs containing numerical operators [11]. For exam-
ple, query Q1 retrieves the machine identifiers m for which a sensor has meas-
ured values mv of measurement class A higher than the expected values ev by 
a threshold value @thA during the time from bt to time et. Here <prod> de-
notes the URI for the RDF view of the RDB. 

 

In FLOQ, SPARQL queries to RDBs are processed by generating a local ex-
ecution plan containing calls to one or several SQL queries sent to a back-end 
RDBMS for evaluation. SPARQL queries that cannot be completely pro-
cessed by SQL are instead partially processed by an execution plan interpreter 
in FLOQ. However, in order for the SQL queries to return the minimal re-
quired data, it is desirable that as much as possible of the SPARQL query is 
translated to SQL [8]. 

In FLOQ numerical SPARQL queries are defined over an automatically 
generated RDF view over an RDB expressed in ObjectLog [6], which is a 
Datalog dialect that supports objects for representing URIs and typed literals 

Q1: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresA  log:mA_BySensor  ?sensor. 
       ?measuresA  log:mA/bt        ?bt. 
       ?measuresA  log:mA/et        ?et. 
       ?measuresA  log:mA/m         ?m. 
       ?measuresA  log:mA/mv        ?mv. 
       ?sensor     log:sensor/ev    ?ev. 
       FILTER (?mv > (?ev + @thA))         }  
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[9], disjunctive queries for UNION expressions, and foreign predicates to rep-
resent numerical operators in queries. The SPARQL queries are parsed into 
ObjectLog queries to the RDF view. Internally representing queries in Object-
Log permits domain calculus query transformations and optimizations before 
generating the execution plan. Calls to tuple calculus SQL query strings are 
made as foreign predicates. Foreign predicates are also used for accessing 
URIs in the execution plan. Doing all processing in the RDB is complicated, 
and requires implementing SPARQL operators not supported by SQL as 
RDB-specific UDFs. We show that ObjectLog query transformations enable 
scalable execution by the RDBMS. 

Numerical SPARQL queries contain variables bound to numbers and calls 
to numerical functions and operators. For scalable execution, it is important 
that such numerical expressions are pushed into corresponding SQL expres-
sions and executed on the RDBMS server, which is the subject of this paper. 
The NUMTranslator algorithm converts numerical SPARQL queries into 
SQL queries where numerical expressions are pushed into SQL. For example, 
Q1 is converted into SQL query SQL1, where the numerical expression in the 
SPARQL FILTER is translated into a corresponding SQL expression. 

 

A particular problem is that SPARQL and ObjectLog are domain calculus lan-
guages where variables can be bound to numbers, while SQL is a tuple calcu-
lus language where variables have to be bound to tuples in relations.  The 
NUMTranslator algorithm translates domain calculus expressions into corre-
sponding SQL tuple calculus expressions after having applied domain calcu-
lus transformation on the ObjectLog representation. 

We show that NUMTranslator improves substantially the query perfor-
mance for numerical SPARQL queries compared to other approaches used by 
other systems. 

In summary the contributions are: 
1. We propose a table driven approach to translate numerical domain 

calculus operators into numerical SQL tuple calculus operators.   
2. We present the NUMTranslator algorithm that extracts numerical 

ObjectLog expressions and translates them into corresponding nu-
merical SQL expressions. 

3. We compare the performance of numerical SPARQL queries to 
RDF views of RDBs with and without applying NUMTranslator, 

SQL1: 
SELECT m.m, bt, et  
FROM MeasuresA m, SENSOR s  
WHERE m.m=s.m AND  
               m.s=s.s    AND  
               m.mv > s.ev + @thA                                           
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and show that the algorithm substantially improves the query per-
formance.  

4. We compare the performance of our approach with the perfor-
mance of other systems processing SPARQL queries over RDF 
views of RDBs and show substantially better performance. 

The rest of this paper is organized as follows: Section 2 presents a scenario 
where the approach is applicable. Section 3 overviews the system architecture. 
Section 4 describes the NUMTranslator algorithm. Section 5 discusses perfor-
mance experiments. Section 6 describes related work. Conclusions and future 
work are described in section 7. 

2 Motivating Scenario 
We present a common scenario from an industrial setting where it is desirable 
to analyze historical log data in order to find abnormal machine behavior. Log 
data from embedded sensors is stored in a relational log database. 

Figure 1 shows the schema of the RDB storing log data measured by sen-
sors embedded in machine installations. Table Machine(m, mm) stores meta-
data about each machine installation, i.e. machine identifier and model name. 
The table Sensor(m, s, sm, mc, ev, ad, rd) stores information about each sensor 
installation, i.e. the machine installation m where a sensor s is embedded, sen-
sor model name sm, the kind of measurement (measurement class) mc, ex-
pected sensor value ev, absolute error ad and relative error rd. The attribute 
mc, measurement class is used to identify different kind of measurements, e.g. 
oil pressure, temperature, etc. The tables MeasuresA(m, s, bt, et, mv) and 
MeasuresB(m, s, bt, et, mv)  store log data of kind A and B read from sensors 
s embedded in machine installations m. The begin time bt and the ending time 
et for a sensor reading are also stored, while the measured value for a certain 
time stamp is denoted by mv. The columns m, (m, s), and (m, s, bt) are primary 
keys in the tables Machine, Sensor, and MeasuresA and MeasuresB, respec-
tively. The column m in tables MeasuresA, MeasuresB, and Sensor references 
the column m in the table Machine as foreign key. Furthermore, columns (m, 
s) in tables MeasuresA and MeasuresB reference columns (m, s) in table Sen-
sor as a composite foreign key. 

 

 
 

Figure 1 RDB schema for log data 

The RDF view of the RDB is illustrated by the RDF graph in Figure 2. 

Machine(m, mm) 
Sensor(m, s, sm, mc, ev, ad, rd) 
MeasuresA(m, s, bt, et, mv) 
MeasuresB(m, s, bt, et, mv)
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Figure 2. RDF grahp of the RDF view for the example RDB 

Next we define two more typical numerical SPARQL queries to the log data-
base, Q2 and Q3, that discover abnormal machine behaviors. Query Q2 iden-
tifies a potential failure by retrieving for machine models M_1, M_2, and M_3 
those machineid where, during the time interval (bt, et), the measured value 
mv was above 75% of the allowed deviation @thA from the expected value 
ev. 

 

Query Q3 identifies abnormal behaviors of machines of a measurement class 
based on absolute deviations: when and for which machine identifiers did the 

mA/mv

mA/bt

mA/et

mA/mmA/s

mB/m

mB/s

mB/bt

mB/et

mB/mv

sensor/ev

sensor/s

sensor/m

machine/mmachine/mm

mB_atMachine

mA_atMachine

mA_bySensor
sensor_ofMachine

mB_bySensor
Sensor

MeasuresB

MeasuresA

Machine

xsd:string xsd:int

xsd:floatxsd:int

xsd:int

....

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

Q2: 
SELECT ?machineid ?bt ?et 
FROM <prod> 
WHERE{?measuresA log:mA_bySensor  ?sensor. 
      ?measuresA log:mA/bt        ?bt. 
      ?measuresA log:mA/et        ?et. 
      ?measuresA log:mA/mv        ?mv. 
      ?measuresA log:mA_atMachine ?machineid. 
      ?machineid log:machine/mm   ?mm. 
      FILTER (?mm in ('M_1','M_2','M_3')).  
      ?sensor    log:sensor/ev    ?ev. 
      FILTER (?mv > (?ev + 0.75*@thA))    } 
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pressure reading of class B deviate more than @thB from its expected value 
ev? 

 

3 FLOQ Overview and Query Processing 
Figure 3 illustrates processing of numerical SPARQL queries by FLOQ. 

 
Figure 3. FLOQ query processor 

The RDF view over the RDB is automatically generated based on the database 
schema and ontology mapping tables in FLOQ. 

The used mappings conform to the direct mapping recommended by W3C 
[10]. 

We define a unique RDFS class for each relational table, except for link 
tables [10] representing set-valued properties as many-to-many relationships. 
In addition, RDF properties are defined for each column in a table. For exam-
ple, the RDFS class with the URI <log:mA> represents the table MeasuresA, 

SQL

SPARQL query

FLOQ

RDF view

Query processor

NUMTranslator

RDB

Q3: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresB  log:mB/bt       ?bt. 
       ?measuresB  log:mB/et       ?et. 
       ?measuresB  log:mB/mv       ?mv. 
       ?measuresB  log:mB_bySensor ?sensor. 
       ?sensor     log:sensor/m    ?m. 
       ?sensor     log:sensor/ev   ?ev. 
       BIND ((?mv-?ev) as ?temp). 
       FILTER (abs(?temp) > @thB)       } 
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while <log:mA/bt> and <log:mA/et> represent the columns bt and et in 
MeasuresA, respectively. 

The RDF view is defined in terms of: 
• Source predicates R(a1, a2, …, an) that represent the content of each refer-

enced relational database table R where the tuple (a1, …, an) represents a 
row in R. 

• URI-constructor predicates that construct URIs to identify rows in tables.  
• Mapping tables that map relational schema elements to RDF concepts. 

The complete RDF view definitions can be found in [9]. The query processing 
steps in FLOQ are shown in Figure 4. 

 
Figure 4. Query processing steps 

The SPARQL parser first transforms the SPARQL query into an ObjectLog 
expression where each triple pattern in the query becomes a reference to the 
RDF view of the RDB. Then the ObjectLog transformer generates a simplified 
disjunctive normal form (DNF) predicate. The NUMTranslator algorithm per-
forms the extractor and finalizer steps. The extractor collects from conjunc-
tions predicates that can be translated to SQL, called access filters. The query 
decomposer then optimizes the query, producing a query execution plan where 
access filters are called. The finalizer traverses the execution plan to translate 
the extracted predicates in the access filters into SQL expressions. When the 
execution plan is interpreted, the generated SQL statements are sent to the 

SQL

SPARQL query

SPARQL parser

RDB

Query Decomposer

Finalizer

Extractor

ObjectLog transformer

Post-processing
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RDB for execution. The non-extracted predicates are not translated to SQL 
and have to be processed outside the RDB by post-processing operators. For 
example, such operators are URI-constructors and numerical expressions not 
supported by the SQL engine. 

4 The NUMTranslator Algorithm 
The NUMTranslator uses a table-driven approach to define which SPARQL 
operators to extract and translate into corresponding SQL operators and func-
tions. Table 1 defines the SPARQL to SQL operator translations:  

Table 1 SPARQL to SQL operators to translate  

In Table 1 there is one row for each SPARQL operator or function (column 
SPARQL) that can be translated into SQL. The column SQL defines the corre-
sponding SQL operator or function. A value in the column INFIX is true when 
the corresponding SQL operator is an infix operator op on operands x and y, 
i.e. x op y (e.g. x+y); otherwise it is an SQL function on format f(x,y,..). The 
column FUNCTION is true when the operator is a non-Boolean function re-
turning a value. 

4.1 The NUMTranslator extractor 
The extractor is applied on each ObjectLog conjunction in the simplified pred-
icate received by the ObjectLog transformer. The extractor collects predicates 
that can be translated to SQL. Such predicates are i) source predicates SPs 
representing RDB tables, and ii) non-source predicates (NSPs) that are de-
fined in Table 1 as translatable to SQL.   

Figure 5 shows the ObjectLog representation of Q1 after it has been trans-
formed by the ObjectLog transformer. 

SPARQL SQL INFIX FUNCTION

> > True False
< < True False
= = True False
!= <> True False
+ + True True
- - True True

ABS ABS False True
UCASE UPPER False True

etc.
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Figure 5. ObjectLog of query Q1 

In this case all predicates in Q1 are translatable to SQL since MeasuresA and 
Sensor are SPs, and  > and + are NSPs defined in Table 1. 

The steps of the extractor are the following: 
1. Initialize a variable Xpreds for the first found SP, denoted R1, in 

the conjunction and bind a variable Rest to the other predicates.  
2. Iteratively extract from Rest the predicates that have some common 

variable with some extracted predicate in Xpreds, which are either 
SPs or NSPs defined in Table 1. 

3. Construct an access filter of all extracted predicates in Xpreds since 
those can be fully translated to SQL. 

4. While there are some remaining SP, R2, in Rest, re-initialize Xpreds 
by R2 and Rest by the remaining predicates, and repeat steps 2-3. 

5. Finally, construct a conjunction of the access filters and Rest. 
For example, for Q1 the predicates in Xpreds are extracted in the following 
order: 

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.  
2. >(mv, v36) (line 2) since > is defined in Table 1 and the variable 

mv is common with the extracted MeasuresA. 
3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP having common 

variables (m and s) with MeasuresA(). 
4. V36 = ev + @thA (line 3) since + is defined in Table 1 and the 

variable ev is common with the extracted Sensor predicate. 

Then the following conjunctive access filter F1 is formed by the predicates in 
Xpreds: 
   F1(m,s,bt,et,mv,ev):- 
1  MeasuresA(m, s, bt, et, mv)      and 

2  Sensor(m, s, _, _, ev, _, _)     and 

3  v36= ev + @thA                   and 

4  mv > v36 

No non-translatable predicates remain in Rest. 

4.2 Query decomposition 
To optimize the query produced by the extractor, the query decomposer uses 
cost-based optimization [6] to produce an optimized execution plan. Based on 

Q1(m, bt, et):-
1 MeasuresA(m, s, bt, et, mv) and
2 mv > v36 and
3 v36 = ev + @thA and
4 Sensor(m, s, _, _, ev, _, _)
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heuristics and statistic of the queried RDB, execution cost and selectivities of 
access filter are estimated. Default cost parameters are used by the optimizer 
to estimate the execution cost and selectivities of predicates if no statistic is 
available. The decomposer will then reorder the access filters and the post 
processed predicates to generate an optimized execution plan. We do not fur-
ther elaborate the query decomposer here. 

4.3 The NUMTranslator finalizer 
The finalizer translates access filters in the decomposed execution plan into 
calls to an SQL interface operator, sql that sends generated SQL strings to the 
back-end RDB for execution. 

ObjectLog numerical expressions are translated into SQL numerical ex-
pressions by recursively replacing all ObjectLog domain variables that repre-
sent numerical expressions with their bound expressions. For example, the 
variable v36 in line 4 in F1 doesn’t represent a relational column and is re-
placed by its bound expression in line 3, and then the obtained expressions is 
mv > ev + @thA. Thus for Q1 the execution plan P1 becomes the following: 

 
Figure 6. Execution plan P1 with NUMTranslator 

The execution plan contains an algebra expression where the apply operator γ 
fn(..) calls the foreign predicate sql(ds, q, result) implemented in Java. The 
foreign predicate sql sends an SQL query q to the RDBMS data source ds for 
execution and iteratively returns bindings of tuples, result.  

If NUMTranslator had not been applied, all numerical operators would 
have to be post-processed, which would slow down the query execution since 
filtering cannot be made in the database server. 

For example, if NUMTranslator is turned off, for Q1 the following execu-
tion plan P2 is produced that doesn’t contain any numerical SQL operators 
corresponding to numerical SPARQL operators, which are instead post-pro-
cessed: 

(m, bt, et)

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA
m, SENSOR s WHERE m.mv > s.ev + @thA AND
m.m=s.m AND m.s=s.s", (m, bt, et))
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Figure 7. Execution plan P2 without NUMTranslator 

Comparing the two execution plans P1 and P2 it can be seen that the sql op-
erator in P2 retrieves much more data than P1, so if NUMTranslator is turned 
off lots of data needs to be filtered out outside the RDB server. Furthermore, 
the utilization of indexes on the SQL numerical expression by the back-end 
database server makes significant performance difference. We show in the 
next section that applying NUMTranslator substantially improves the query 
performance of numerical SPARQL queries. 

5 Performance Measurements 
We compared the performance for executing the numerical queries Q1, Q2, 
and Q3 in FLOQ with and without applying NUMTranslator. Furthermore, 
we compared the query performance of FLOQ with the query performance of 
D2RQ [1] for Q1, Q2, and Q3, for the same back-end relational database. We 
tried to run the queries with both ontop [7] and Virtuoso [3] as well, but none 
of our numerical SPARQL queries could be run, indicating that those systems 
do not provide full support for processing numerical SPARQL queries. 

All experiments are carried out on a MS SQL Server 2008 R2 installed on 
a server machine with 8 AMD OpteronTM 6128 processors, 2.00 GHz CPU 
and 16GB RAM. The RDB is populated by loading sensor data into the MS 
SQL server. B-tree indexes are created on the columns mm, mv, bt, et, ev, ad, 
and rd to speed up the queries. 

All measurements were taken both for cold and warm runs. The cold runs 
were made immediately after the RDBMS server was started, which implied 
that there were no data cached in the buffer pool and the executed query wasn’t 
optimized by the RDBMS. Thus a measured query execution time for a cold 
run includes the time for i) reading data from disk, ii) SQL query optimization 
on the RDBMS server, iii) communication, and iv) post-processing of data on 
the client. The warm runs were made after a query was executed once. Since 
the back-end RDBMS has a statement cache a same SQL query executed twice 
will be optimized the first time it is run. Therefore, warm executions do not 
include RDBMS query optimization time. 

(v36)

(mv)

(m, bt, et)

(ev)

γ >(mv, v36)

γ +(ev, @thA)

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND
m.s=s.s", (m, s, bt, et, mv, ev))
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The plotted values are mean values of three measurements. The standard 
deviation is less than 10% in all cases. To investigate the SQL query produced 
by all the other systems we use the system profiling tool of MS SQL server 
when running a query.  

The following notations are used in the performance diagrams:   
• NUMTranslator: FLOQ with NUMTranslator turned on, i.e. the SPARQL 

numerical expressions are translated into corresponding SQL expressions. 
• Naive: FLOQ with NUMTranslator turned off, i.e. the SPARQL numeri-

cal expressions are not translated into corresponding SQL numerical ex-
pressions.  

• D2RQ: D2RQ version [0.8.1] configured with the system’s default map-
pings. 

Figure 8, Figure 9, and Figure 10 show the execution times for both cold and 
warm runs for Q1, Q3, and Q2 while scaling the databases size from 1 GB to 
15 GB. 

 
Figure 8. Execution times for Q1 

 
Figure 9. Execution times for Q3 
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Figure 8 and Figure 9 show that NUMTranslator substantially improves the 
query execution scalability compared to Naïve for numerical SPARQL queries 
like Q1 and Q3 with highly selective numerical FILTERs: 0.04% for Q1 and 
3% for Q3. In these cases pushing the numerical FILTERs to SQL is more 
profitable than filtering large data amounts on the client. The performance of 
D2RQ is worse than Naïve since D2RQ sends to the RDBMS an SQL query 
that doesn’t contain numerical expressions, and is a much more complex query 
with more joins. Furthermore, Q3 had to be manually changed for D2RQ to 
remove the BIND operator, since otherwise D2RQ wouldn’t return correct re-
sult.  

Measurement results for Q2 are shown in Figure 10. For Q2 the results for 
NUMTranslator and Naïve are presented in a separate diagram, since they are 
very close. It can be seen on Figure 10 that NUMTranslator doesn’t improve 
the query performance for non-selective queries like Q2 where the FILTER 
selects 43% of the data. In this case pushing the numerical SPARQL filters to 
be executed to the RDBMS server doesn’t make a significant difference com-
pared to post-filtering data on the client.  

D2RQ performs worse for Q2 since it doesn’t translate any of the FILTERs 
and it furthermore generates a very complex SQL query with many joins. 

 
Figure 10. Execution times for Q2 
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In general, the experiments show that NUMTranslator substantially improves 
the query performance of numerical SPARQL queries where the numerical 
FILTERs have high selectivity. 

6 Related Work 
Virtuoso RDF Views [3] and D2RQ [1] are other systems that process 
SPARQL queries to RDF views of RDBs. These systems implement compil-
ers that translate SPARQL directly to SQL. By contrast, FLOQ first generates 
ObjectLog queries to a declarative RDF view of the RDB, and then transforms 
the SPARQL queries to SQL by logical transformations. 

We didn’t find any publication of how D2RQ compiles numerical 
SPARQL queries into SQL and the documentation for Virtuoso’s SQL gener-
ation is very limited [3]. However, by using the profiling tool of the RDBMS 
and the debug logging of Virtuoso we were able to analyze what queries were 
actually sent to the RDBMS, showing that neither of those systems translates 
numerical SPARQL expressions into corresponding SQL expressions. 

The ontop system [7] also enables SPARQL queries to RDF views of RDBs 
by translating SPARQL to Datalog programs, which are rewritten and trans-
lated to SQL. A difference to ontop is the table driven NUMTranslator algo-
rithm, which makes it very easy to extend for new operators. Furthermore, 
FLOQ generates execution plans containing calls to SQL intermixed with ex-
pressions interpreted in the client. This enables FLOQ to interpret in the client 
SPARQL operators not available in SQL. In addition NUMTranslator trans-
lates the domain calculus SPARQL queries into tuple calculus SQL queries 
by substituting variables with their bound expressions. 

7 Conclusions and Future Work 
We presented the FLOQ system where the NUMTranslator algorithm uses a 
table driven approach to translate numerical domain calculus SPARQL ex-
pressions into corresponding numerical SQL expressions. This enables scala-
ble processing of numerical SPARQL queries to RDF views over RDBs. 

The approach was evaluated on a benchmark scenario in an industrial set-
ting where logged data stored in an RDB was analyzed using numerical 
SPARQL queries. We compared the performance of the SPARQL queries 
with and without applying NUMTranslator. The experiments show that 
NUMTranslator substantially improves the query performance of numerical 
SPARQL queries in particular when the numerical expressions inside FIL-
TERs are highly selective. 
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We also compared our approach with other systems that translate SPARQL 
queries to SQL. Only D2RQ could execute our queries, but substantially 
slower since D2RQ does not employ an approach similar to NUMTranslator. 

As our next step, we will investigate numerical SPARQL queries searching 
large numbers of distributed log databases combined through an ontology. 
Another issue is creating benchmarks based on randomly generating SPARQL 
queries [5]. Furthermore, query processing and mediation strategies over other 
back-ends than RDBs [4] in our setting should be investigated. 
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ABSTRACT 
Our implementation of the DEBS 2013 Challenge is based on a scalable, par-
allel, and extensible DSMS, which is capable of processing general continu-
ous queries over high volume data streams with low delays. A mechanism to 
provide user defined incremental aggregate functions over sliding windows of 
data streams provide real-time processing by emitting results continuously 
with low delays. To further eliminate delays caused by time critical opera-
tions, the system is extensible so that functions can be easily written in some 
external programming language. The query language provides user defined 
parallelization primitives where the user can express queries specifying how 
high volume data streams are split and reduced into lower volume parallel data 
streams. This enables expensive queries over data streams to be executed in 
parallel based on application knowledge. Our OS-independent implementa-
tion was tested on several computers and achieves the real-time requirement 
of the challenge on a regular PC. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Parallel databases, Query pro-
cessing  

Keywords 
Parallel data stream processing; continuous queries; spatial-temporal window 
operators. 

1 Introduction 
Monitoring a soccer game requires a system than can process, in real-time, 
large volumes of data to dynamically determine physical properties as they 
appear. This requires a system having the following properties: 
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• To keep up with the very high data flow the system must deliver high 
throughput while processing expensive computations over high volume 
data. 

• Response in real-time requires continuous delivery of query results with 
low latency. 

• Continuous identification of physical phenomena, such as moving balls 
and players, requires complex spatio-temporal algebraic computations 
over windows. 

Our EPIC (Extensible, Parallel, Incremental, and Continuous) DSMS provides 
very high throughput and low latency through parallelization, extensibility, 
and user defined incremental aggregation of windowed data streams. The high 
level query language provides numerical data representations and data stream 
windows as first class objects, which simplifies complex numerical computa-
tions over streaming data and enables automatic query optimization. To pro-
vide very high performance of low level numerical and byte processing func-
tions the system is easily extensible with user defined functions over streams 
and numerical data, which allows accessing external systems and plugging in 
time-critical user algorithms. 

EPIC extends the SCSQ system [9] with several kinds of data stream win-
dows and incremental evaluation of user-defined aggregate functions over the 
windows. In particular the window operator FEW (Frequently Emitting Win-
dowizer) decouples the frequency of emitted tuples from a window’s slide.  

To process expensive queries with high-throughput and low latency the 
system provides application specific stream parallelization functions where 
general distribution queries specify how to parallelize and reduce outgoing 
data streams. 

2 The EPIC Approach 
First FEW and its incremental user-define aggregation are presented in sec-
tions 2.1 and 2.2, and then the solution is outlined in section 2.3. 
Figure 1 shows the overall data stream flow of the implementation. The thick-
ness of the arrows in all data flow diagrams in this paper correspond to the 
relative volume of the data streams. Each node in the dataflow diagram is a 
separate OS process, called a query processing node, in which a partial con-
tinuous execution plan is running. The topology of the dataflow diagram is 
completely expressed in the query language where it is possible to specify 
continuous sub-queries running in parallel [9]. The system automatically cre-
ates OS processes running the execution plans of the sub-queries and the com-
munication channels between them (local TCP). In the Grand Challenge im-
plementation, the query processing nodes all run on the same computer and 
the OS is responsible for assigning CPUs to the processes. The system can 
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also distribute query processing nodes over several computers but those fea-
tures are not used here. 

 
Figure 1. High-level data stream flow.  

2.1 Frequently Emitting Windowizer, FEW 
EPIC provides window forming operators that support several kinds of win-
dows, including time, count, and predicate windows [5][2][7]. The windows 
are formed by window functions mapping streams to streams of objects of 
type Window. For example, the window function  
tWindowize(Stream s, Number length, Number stride) -> Stream of Window 
ws 
forms a stream ws of timed windows over a stream s where windows of length 
time units (seconds) slide every stride time units. To avoid copying, the win-
dows are represented by pointers to their first and last elements. When a win-
dow slides the pointers are updated.  

A naive implementation of tWindowize() would emit tuples only when the 
formed windows slide. This causes substantial delays, in particular for large 
windows. For example, when forming a 10 minutes window, it is not practical 
to wait 10 minutes for the aggregation to be emitted. To be able to emit aggre-
gation results before a complete window is formed, we have introduced a win-
dow function having a parameter ef, the emit frequency: 
fewtWindowize(Stream s, Number length, Number stride, Number ef) -> 
Stream of Window pw 
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The window forming function fewtWindowize() forms partial time win-
dows, pw, every ef time units. The emitted partial windows are landmark sub-
windows of the elements of the window being formed.  When the formed win-
dow is complete it is emitted as well before it slides, and then the landmark is 
reset to the start time of the newly slided window. 

The FEW windows are required when: 
• The results must be emitted before the window is formed. 
• The results must be emitted more often than the slide (not used in this 

application). 

2.2 User-defined incremental window aggregate functions 
The windowing mechanism in EPIC supports incrementally evaluated user 
defined aggregate functions [1][8]. These are defined by associating init(), 
add(), and remove() functions with a user defined aggregate function: 
• init() -> Object o_new creates a new aggregation object, o_new, which is 

used for accumulating changes in a window.  
• add(Object o_cur, Object e) -> Object o_nxt takes the current aggregation 

object o_cur and the current stream element e and returns the updated ag-
gregation object o_nxt. 

• remove(Object o_cur, Object e_exp) -> Object o_nxt removes from the 
current aggregation object o_cur the contribution of an element e_exp that 
has expired from a window. It returns the updated o_nxt. 

A user defined aggregate function is registered with the system function: 
aggregate_function(Charstring agg_name, Charstring initfn, Charstring 
addfn, Charstring removefn) -> Object 

For example, the following shows how to define the aggregate function 
mysum() over windows of numbers: 

create function initsum() -> Number s as 0; 
create function addsum(Number s_cur, Number e) -> Number s_nxt as res 
+ e; 
create function removesum(Number s_cur, Number e_exp) -> Number 
s_nxt as s_cur – e_exp; 
These functions are registered to the system as the aggregate function 

mysum() by the function call: 
aggregate_function(‘mysum’,’initsum’,’addsum’,’removesum’); 
After the registration mysum() can be used in CQs as: 
select mysum(w) from Window w where w in fewtWindowize(s, 10, 2, 1); 
In this simple example the aggregation object is a single number. It can also 

be arbitrary objects, including dictionaries (temporary tables) holding sets of 
rows, which is used in the Challenge implementation to incrementally main-
tain complex spatio-temporal aggregations. 
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2.3 Solution outline 
In Figure 1 the Event Reader node reads the full-game CSV file and produces 
the Game stream consisting of events for both balls and players. The Event 
Reader then scales the time stamps by subtracting the start time. It also trans-
forms the position, velocity, and acceleration values to metric scales. To avoid 
the Event Reader becoming a bottleneck it is implemented as a foreign func-
tion in C. To speed up the communication we use binary representation of all 
events communicated between query processing nodes, while the input and 
output log files use the CSV format. 

The Interrupt Reader node produces the Interrupt stream, which contains 
referee interruptions, by reading and transforming the provided game inter-
ruptions files.  

The DEBS Splitter node merges the two input streams based on the time 
stamps in the streams and produces parallel input streams for the different 
queries. It also filters out those event stream tuples of the Game stream that 
are in-between game interruptions. The nodes Q1 Front End, Q2/Q4 Ball Hit-
ter, and Q3 Front End receive parallel data streams required for the four Grand 
Challenge queries Q1-Q4. Q2 and Q4 share some downstream computations 
executed by Q2/Q4 Ball Hitter node. 

In EPIC the splitstream() system function provides customizable distribu-
tion and transformation of stream tuples. The user can provide customizable 
splitting logic as a distribution query over an incoming tuple that specifies 
how a tuple is to be distributed, filtered and transformed. 

The distribution query for the DEBS Splitter in Listing 1 is passed as an 
argument to splitstream().  

 
Listing 1 DEBS Splitter distribution query 

select i, ev from Integer i 
where (i = 0 and isPlayer(ev)) or 
           (i = 1) or 
           (i = 2 and isPlayer(ev)); 

The result of the query are pairs (i, ev) specifying that an incoming event ev is 
to be sent to output stream number i. In the DEBS splitter distribution query 
three output streams enumerated by i are specified. They produce the corre-
sponding streams Q1 Input, Q2/Q4 Input, and Q3 Input. The Boolean function 
isPlayer(v) returns true if v is a player sensor reading. 

To speed up the processing, shared computations are made in separate 
nodes. In Figure 1 the Q1 Front End and the Q3 Front End nodes perform 
stream preprocessing and reduction for queries 1 and 3, respectively, while 
the Q2/Q4 Ball Hitter node detects hits to the ball needed by queries 2 and 4.  
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2.3.1 Query Q1: Running Analysis 
Figure 2 shows the topology of Q1. The aggregated running statistics for dif-
ferent time windows are computed in parallel based on the common current 
running statistics produced by the Q1 Front End node. The stream containing 
player sensor readings is sent to the Q1 Front End node (see Listing 1), which 
produces the running statistics. The running statistics is then broadcasted to 
four other nodes to compute the aggregated running statistics of different time 
window lengths. 

 
Figure 2. Query 1 data stream flow 

2.3.1.1 Incremental maintenance of running statistics 
In order to make the result more reliable for the current running statistics, we 
first create a 1 s tumbling window and then calculate the statistics for each 
player over that window. The window length 1 s was chosen experimentally 
to produce stable results. Both running and aggregate statistics utilize user de-
fined aggregate functions to maintain arrays of the two types of statistics for 
each player. 

2.3.1.2 Current running statistics 
For each incoming player sensor reading in the current 1 s window, the fol-
lowing statistics tuple for each player is incrementally maintained in an array: 
(ts_start, ts_stop, pid, left_x_start, left_y_start, left_x_stop, left_y_stop, 
right_x_start, right_y_start, right_y_stop, right_y_stop, sum_speed, count) 
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The time stamp ts_start stores the first time when a sensor reading of player 
pid arrives to the current window, while ts_stop stores the last sensor reading. 
The elements left_x_start, left_y_start, right_x_start, and right_y_start are the 
position readings of the left and right foot of the player at time ts_start, while 
left_x_stop, left_y_stop, right_x_stop, and right_y_stop are the corresponding 
foot position readings at time ts_stop. To incrementally calculate the average 
velocity the elements sum_speed and count are also included. ts_start, 
left_x_start, left_y_start, right_x_start, and right_y_start are updated only 
when the first sensor reading of the player pid arrives to the window, while all 
the other elements are updated every time a sensor reading of pid arrives. Here, 
no remove function is needed for the aggregation, since we are maintaining a 
stream of tumbling windows where the statistic will be re-initialized every 
time the window tumbles.  

With the statistics above, the current running statistics for a given player is 
calculated as the Euclidian distance between the average position of the first 
and last update during the time window. 

2.3.1.3 Aggregate running statistics 
We have chosen to log the result tuple of Q1 in CSV format every 1 s since 
the current running statistics are not emitted more often than once per second. 
Four FEW time windows were defined for aggregating running statistics with 
lengths 1 minute, 5 minutes, 20 minutes, and the entire game. All windows 
slide and emit results every 1 s. FEW is critical for early emission while the 
first windows are being formed. 

Aggregate running statistics over the window are incrementally maintained 
in an array similar to current running statistics. 

The stream from the Q1 Front End node contains the elements ts_start, 
ts_stop, player_id, intensity, distance, and speed. The difference ts_stop – 
ts_start is used to incrementally maintain the duration of a player being in the 
corresponding running intensity class. Analogously, the moving distance is 
maintained for the corresponding intensity classes by incrementally associat-
ing the incoming distance with the right intensity. 

2.3.2 Query Q2: Ball Possession 
Figure 3 shows the data flow of queries Q2 and Q4 combined. The Q2/Q4 
input stream consists of player, ball, and interrupt sensor readings. The Q2/Q4 
Ball Hitter computes the Ball Hitter and the Ball streams. The Ball Hitter 
stream contains ball hitter events, which occur when a player pid at timestamp 
ts hits the ball. The Ball stream contains Ball Hitter events interleaved with 
ball sensor readings.  The Q2/Q4 Ball Hitter node emits the Ball stream to the 
Shot on Goals query processing node, which executes the final stages of query 
Q4. The Ball Hitter stream contains only ball hitter events and is sent to the 
Player Possession node, which calculates and broadcasts the same Player Ball 
Possession stream to four Team Possession query processing nodes. The Team 
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Possession nodes log every 10 s statistics of team ball possessions for the two 
teams with the different window lengths: 1 minute, 5 minutes, 20 minutes, and 
a landmark window of the entire game. As an alternative, we also measured 
reporting team possessions every 1 s resulting in the same latency and 
throughput.  

 
Figure 3. Query 2 and Query 4 data stream flow 

2.3.2.1 The Q2/Q4 Ball Hitter query processing node 
In order to compute a stream of ball hitters, we maintain acceleration of the 
ball ballacc, its position bx, by, bz, the shortest distance from a player to the 
ball sdist, and the player pid.  

For every input ball sensor reading, the Q2/Q4 Ball Hitter node incremen-
tally updates the ball acceleration and the ball position accordingly. When a 
player sensor reading arrives, it incrementally maintains sdist.  

A ball hitter event is emitted when both the following criteria hold: 
• C1: The ball acceleration reaches a predefined threshold: ballacc > 55 m 

/ s2. 
• C2: The shortest distance sdist is within the player’s proximity: sdist < 1 

m. 

There are 36*200 player sensor readings per second. In addition, after being 
hit, the ball acceleration remains high for a while, in particular before the ball 
leaves the player’s proximity. Therefore, the two conditions C1 and C2 will 
hold for a short period of time within which several ball hitter events could be 
reported for the same actual ball hit by the player. To avoid generating false 
ball hitter events, we employ a dropping policy to drop player sensor readings 
occurring significantly later than the last report time. The dropping policy is 
expressed by the following query condition over a player sensor reading v: 
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ts(v)-lrts > epsilon; 

Here, lrts is the latest timestamp when a ball hitter event was reported, and 
epsilon is the minimum time period between two reports. Because Q4 is more 
sensitive to the ball hitter events, we have empirically tuned this parameter to 
0.2 s to get the best possible accuracy of Q4. 

2.3.2.2 The Player Possession query processing node 
The Player Possession node emits the Player Ball Possession (PBP) stream 
consisting of the variables fts, pid, and hits, which state that the player pid 
possessed the ball hits times, starting from first time the player hits the ball, 
fts. 

The Player Possession node increases the variable hits if a ball hitter event 
bhe is from the same player pid. Otherwise, it will emit ball possession events 
for player pid and then reset the variables. The total possession time is the 
interval between the timestamps bhe and fts. 

2.3.2.3 The Team Possession query processing nodes 
There are four Team Possession nodes, each with different window length: 1 
minute, 5 minutes, 20 minutes, and a landmark of the whole game. For the 
received Player Ball Possession stream they compute team possession statis-
tics as follows: 
• Incrementally calculate the sum of the ball possessions of all players in 

each team when a corresponding player ball possession arrives. 
• When a report is logged, the following two percentages are calculated: ܲ = 	 ܣ	݉ܽ݁ܶ݉ݑݏܣ݉ܽ݁ܶ݉ݑݏ +  			ܤ݉ܽ݁ܶ	݉ݑݏ

ܲ = 	 ܣ	݉ܽ݁ܶ݉ݑݏܤ݉ܽ݁ܶ݉ݑݏ +  			ܤ݉ܽ݁ܶ	݉ݑݏ
Here FEW windows are used to frequently report while the first windows are 
being formed. For example, the results must be regularly delivered every 10 s 
while the team possession landmark window is being formed.  

2.3.3 Query 4: Shot on Goal 
The Shot on Goal node receives three different kinds of events in the Ball 
stream: 
• A ball hitter event marks a shot and contains a time stamp and the pid of 

the shooting player. 
• A ball event contains the current ball sensor reading. 
• An interrupt event indicates a game interruption. It is good practice to re-

set the shot detection when an interruption occurs. 
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Q4 shares detection of a ball hit with Q2. However, the logic for detecting 
a shot is slightly different for the two queries: Q2 is specified stricter than 
needed for Q4. To share computations this stricter logic is also used for Q4. 

The operation of Q4 is straightforward; it is an iteration over the Ball stream 
to keep track of the state of a shot: 
1. Wait for the next ball hitter event. 
2. Check ball events until the ball has travelled one meter. 
3. Return ball events as long as the ball is approaching the opposite team’s 

goal. 

The calculation of the ball direction uses basic linear algebra over the ball 
sensor readings. 

Gravity is accounted for to an extent. The expected time for the ball to 
travel to the goal line is multiplied twice with the acceleration constant g, and 
added to the height of the goal bar. The actual ball trajectory is not considered, 
but the current calculation should be an adequate approximation. 

Using the Q2 requirements for detecting a ball hit has the draw-back that 
some events are not detected, such as the header at 12:19 in the second half 
our example Game stream, since the ball is more than one meter away from 
any sensor. Whether that is technically a “shot” is questionable. 

Curve balls need special attention. For example, at 26:07 in the first half 
there is a curve ball goal. In this case the direction of the ball is pointing out-
side the goal posts, while the ball later curves inwards and comes to rest inside 
the goal.  

To handle curve balls we have introduced a state pending, indicating that a 
shot is not yet dismissed, but could later be become a shot on goal. The model 
adds two meters of margin on both sides of the goal posts and the shot is con-
sidered pending if it points in the direction of the margin area. 

Bounces are considered as long as the direction of the bounce is within the 
negative distance of the goal bar plus gravity. While the instructions do not 
account for bounces at all, this limit should add some correctness to the alge-
bra.  

Shots that are bounces, which we detect, are not included in the provided 
list of shots on goal. In the second half of the game there are four shots on goal 
that are bounces. They are at 4:11, 19:39, 24:36 and 29:29. Setting the bounce 
threshold to zero, i.e. not considering bounces creates a result in accordance 
to the specification. Viewing the video makes it apparent that the specification 
is not correct in this regard. 

2.3.4 Query 3: Heat Map 
In Query 3 a grid on the field is formed where the cells are numbered in row 
order, for example from 0 to 6399 in a 64 X 100 grid. Given the position of a 
player (x,y), the function cell_id(x,y,grid_size) returns the corresponding cell 
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number for a given grid size. Query results for lower resolution grids are com-
puted by aggregating the results for the higher resolution grids. Thus we in-
crementally maintain the results only for the highest resolution.  

Note that the results of longer windows cannot be built on top of the results 
from a shorter window. This is due to the 1 s stride parameter in all the queries. 
For example, the 5 minute window can’t be built on top of the results produced 
by the 1 minute window, since the 5 minute window needs to remove the con-
tributions made to the statistics by the expired elements, i.e. the elements with 
the time stamp ts – 300 s, where ts is the current time stamp.  Those elements 
are too old to be in the 1 minute window. Nevertheless, the definition of longer 
windows in terms of shorter ones could have been utilized if the stride was 
one minute instead of the one second stride in the Challenge specification 

2.3.4.1 Q3 Front End 
Figure 4 shows the dataflow diagram for query Q3. As specified in Listing 1 
the Q3 Input Stream contains all player sensor readings. The Q3 Front End 
node produces the One Second HeatMap (OSHM) stream by forming 1 s tum-
bling windows over the incoming tuples. Thereby incremental user defined 
aggregate functions are used to maintain statistics per second in a table 
heamap1s(pid, cell_id, ts, cnt) local per window. Here ts is the latest time 
stamp player pid has been present in the cell identified by cell_id cell identifier 
in the highest resolution grid (64 X 100). cnt is the total number of sensor 
readings for player pid in the cell in the current window. 

 
Figure 4. Query 3 data stream flow. 

The OSHM stream is produced by emitting all the rows accumulated in the 
table during the past second. 
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The Q3 Front End significantly reduces the stream volume by summarizing 
it. It receives 200 tuples per second from 36 sensors, in total 7200 tuples/sec-
ond. It emits at maximum the total number of cells all the players have been 
present in the highest grid resolution during one second, which is about 70 
tuples per second, i.e. a factor 10 reduction in stream flow. 

2.3.4.2 Q3 query nodes 
The OSHM stream is broadcasted to four Q3 query nodes Q3 1 Min, Q3 5 Min, 
Q3 10 Min, and Q3 Landmark. These nodes run parallel CQs over time win-
dows with lengths 1, 5, 10 minutes, and whole game, respectively. The win-
dows are formed by the FEW window specification fewtWindowize(oshm, 
length, 1, 1), where length is 60s, 300s, 600s  and the whole game duration, 
respectively. The stride and the emit frequency are both 1 s. The emit fre-
quency is needed so that sub-windows are emitted while the window is being 
formed the first time.  

Similar to Q3 Front End, the Q3 query nodes incrementally maintain user 
defined aggregates by updating the following local tables inside each window 
as the input stream elements arrive: 

heatmap(pid, cell_id, ts, cnt)  
sensor_count(pid, total_cnt 

In table heatmap, the attribute cell_id is the cell player pid has been present 
in, ts is the latest time player pid was in the cell, cnt is the number of times the 
player has been present in the cell. To enable translation of cnt into percent-
ages per cell, the Q3 query nodes also maintain total_cnt per player, which 
stores the total number of position reports in all cells for a given player during 
the window in question. 

Since Q3 query nodes only maintain the statistics for the highest resolution 
in a given window length, at reporting time they compute lower resolutions 
by aggregating grid cells per player to fill the bigger cells in the higher reso-
lutions. 

The Q3 query nodes log the output CSV streams to files. Since each Q3 
query nodes cover all grid settings in a given window size, the produced log 
files contains output stream elements for more than one grid setting. We use 
the following grid identifiers to tag streams per grid: 6400 for 64 X 100, 1600 
for 32 X 50, 400 for 16*25, and 104 for 8 X 13 grid setting.  

The size of these log files is huge (ca 400,000 rows/s) since they cover all 
movements between grid cells over several very long windows. Here it be-
comes important to use SSD as storage medium, which is fast at writing big 
blocks in parallel, while disk arm movements for writing different log files 
has been observed to slow down the entire system throughput with a factor of 
around two. 
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3 Performance 
We measured the performance of our implementation based on both through-
put and delay. The throughput was measured as the total execution time per 
query and for all queries in parallel over the entire game. The latency was 
measured by propagating the system wall clock of the entry time of the latest 
event contributing to each result tuple. The delay was calculated by subtract-
ing the propagated entry time from the wall time when a result tuple is deliv-
ered. The throughput is measured per query while the latency is measured per 
output stream. 

We ran our experiments on a VMware virtual machine with Windows 
Server 2008 R2 x64, running on a laptop with the following specifications: 
Dell Latitude E6530, CPU: Intel Core i7-3720QM @2.60 GHz, RAM: 8 GB, 
Hard Disk Device: ST500LX003-1AC15G, OS: Windows 7 64-bit. 
Figure 5 illustrates the throughput of the individual queries as well as all que-
ries running together. Queries Q1, Q2, and Q4 take around 5 minutes to finish 
separately, while Q3 takes considerably longer time, which is mainly due to 
intensive report computations in the Q3 query nodes. To investigate the log 
writing time, Q3 and the all queries columns have a watermark indicating how 
much time it takes to execute them without logging to disk, showing that this 
takes around 35 % of the Q3 alone time and 25 % of all queries together. We 
also investigated whether it would be favorable to parallelize the logging of 
the result stream for Q3 query nodes, but that turned out to be slower in our 
current environment. 

Since all queries run in parallel according to the dataflow diagrams, running 
all of them together takes approximately the same time as running the slowest 
one, Q3. 

Figure 6 shows the average delay per output stream while running all que-
ries together. Notice that Q2 and Q4 are time critical queries since they imme-
diately report real-time phenomena. By contrast Q1 and Q3 report delayed 
statistics aggregated over time. 

The VMware virtual machine containing our implementation of the Grand 
Challenge can be downloaded from http://udbl2.it.uu.se/DEBS/. There is also 
a zip archive that can be run on any Windows machine. 

4 Related Work 
In the stream processing community, there has been a lot of work for devel-
oping query languages over data streams [5] [7] introduced a formal specifi-
cation of different kinds of windows over data streams and provided a taxon-
omy of window variants. The notation of report (emit) frequency was pro-
posed in SECRET [2] without any actual implementation. SECRET is a de-
scriptive model to help users understand the result of window-based queries 
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from different stream processing engines. Esper [4] also allows a report fre-
quency but does not have user defined window aggregate functions. Further-
more Esper’s sliding window model is different from FEW because the slides 
are triggered by window content changes rather than explicitly specified time 
periods.  

To efficiently calculate the aggregate result over long windows with small 
strides, [6] and [1] use delta computations to reduce the latency and the 
memory usage. The focus of [8] is to extend a DSMS with online data mining 
facilities by user defined aggregate functions over windows. The implemen-
tation described in this paper shows that EPIC is general enough to define very 
complicated user defined aggregations as functions while in [1] and [8] the 
aggregates are defined as updates. 

5 Conclusions 
We have addressed the Grand Challenge by expressing continuous queries in 
a high level language that supports incremental evaluation of aggregate func-
tions over windows and frequently emitting windowing. We meet the real-
time requirements of the real-time queries on a virtual machine running on a 
laptop. The extensibility of the query engine was used for supporting high 
throughput and low latency of time critical operations. 

 
Figure 5. Performance. 
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Figure 6. Delays. 
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ABSTRACT 
A potential problem for persisting large volume of streaming logs with con-
ventional relational databases is that loading large volume of data logs pro-
duced at high rates is not fast enough due to the strong consistency model and 
high cost of indexing. As a possible alternative, state-of-the-art NoSQL data 
stores that sacrifice transactional consistency to achieve higher performance 
and scalability can be utilized. In this paper, we describe the challenges in 
large scale persisting and analysis of numerical streaming logs. We propose 
to develop a benchmark comparing relational databases with state-of-the-art 
NoSQL data stores to persist and analyze numerical logs. The benchmark will 
investigate to what degree a state-of-the-art NoSQL data store can achieve 
high performance persisting and large-scale analysis of data logs. The bench-
mark will serve as basis for investigating query processing and indexing of 
large-scale numerical logs. 

Keywords. NoSQL data stores, numerical stream logs, data stream archival. 

1 Introduction 
The data rate and volume of streams of measurements can become very high. 
This becomes a bottleneck when using relational databases for large-scale 
analysis of streaming logs [1][2][3][4]. Persisting large volumes of streaming 
data at high rates requires high performance bulk-loading of data into a data-
base before analysis. The loading time for relational databases may be time 
consuming due to full transaction-al consistency [5] and high cost of indexing 
[6]. In contrast to relational DBMSs, NoSQL data stores are designed to per-
form simple tasks with high scalability [7]. For providing high performance 
updates and bulk-loading, NoSQL data stores generally sacrifice strong con-
sistency by providing so called eventual consistency compared with the ACID 
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transactions of regular DBMSs. Therefore, NoSQL data stores could be uti-
lized for analysis of streams of numerical logs where full transactional con-
sistency is not required. 

Unlike NoSQL data stores, relational databases provide advanced query 
languages and optimization technique for scalable analytics. It has been 
demonstrated in [8] that indexing is a major factor for providing scalable per-
formance, giving relational databases a performance advantage compared to a 
NoSQL data store to speed up the analytical task. Like relational databases, 
some state-of-the-art NoSQL data stores (e.g. MongoDB), also provide a 
query language and both primary and secondary indexing, which should be 
well suited for analyzing persisted streams. 

To understand how well NoSQL data stores are suited for persisting and 
analyzing numerical stream logs, we propose to develop a benchmark com-
paring state-of-the-art relational databases with state-of-the-art NoSQL data 
stores. Using the bench-mark as test bed, we will then investigate techniques 
for scalable query processing and indexing of numerical streams persisted 
with NoSQL data stores. 

2 Application Scenario 
The Smart Vortex EU project [1] serves as a real world application context, 
which involves analyzing stream logs from industrial equipment. In the sce-
nario, a factory operates some machines and each machine has several sensors 
that measure various physical properties like power consumption, pressure, 
temperature, etc. For each machine, the sensors generate logs of measure-
ments, where each log record has timestamp ts, machine identifier m, sensor 
identifier s, and a measured value mv. Relational databases are used to analyze 
the logs by bulk-loading them in table measures (m, s, ts, mv) which contains 
a large volume of data logs from many sensors of different machines [3][4].  

Since the incoming sensor streams can be very large in volume, it is im-
portant that the measurements are bulk-loaded fast. After stream logs have 
been loaded into the database, the user can perform queries to detect anomalies 
of sensor readings. The following query analyzes the values of mv from sensor 
logs for a given time interval and parameterized threshold. 
SELECT *  FROM measures  
WHERE  m = ? AND s = ?AND 
  ts > ? AND 

 ts < ? AND mv > @th 

In order to provide scalable performance of the query, we need an index on 
the composite key of m, s, ts and a secondary B-tree index on mv.  
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3 Challenges in Analyzing Large Scale Persisted 
Streams 

Analysis of large-scale stream logs in the above application scenario poses the 
follow-ing challenges (C1 to C6) in utilizing relational and NoSQL data 
stores. 

 C1. Bulk-loading: In relational DBMSs, the high cost of maintaining the 
indexes and full transactional consistency can degrade the bulk-loading per-
formance of large volume of data logs. The loading performance of a rela-
tional DBMS from a major commercial vendor, called DB-C and a popular 
open source relational database, called DB-O for 6GB of data logs is shown 
in Figure 1 It took more than 1 hour in a high performance commodity ma-
chine for the state-of-the-art commercial DBMS, DB-C to bulk-load data logs 
consisting of around 111 million sensor measurements. Some of the data logs 
consist of more than a billion sensor measurements, which require high-per-
formance bulk-loading. To boost up the performance, weak consistency level 
of a NoSQL or relational database can be utilized. 

 
Figure 1. Bulk-loading performance of 6GB logs. 

 
Figure 2. Index and database size of 6GB of logs. 

C2. Index size: Figure 2 shows the index and database sizes for 6GB of 
stream logs loaded into the two DBMSs. The size of the index created in both 
relational DBMSs was larger than the size of the original logs. For high per-
formance and scalable analysis of typical stream logs, hundreds of gigabytes 
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of memory is required in our application. It is interesting to see whether the 
state-of-the-art NoSQL data store can provide memory efficient indexing 
strategies. Novel indexing techniques can also be incorporated in order to pro-
vide a memory efficient indexing for analyzing persisted streams. 

 C3. Indexing strategies: Unlike relational databases and MongoDB, most 
NoSQL data stores do not provide both primary and secondary indexing, 
which are essential to scalable processing of queries over data logs. Some 
NoSQL data stores such as Hbase, Cassandra, Memcached, Voldemort, and 
Riak do not provide full secondary indexing, which is needed for queries hav-
ing inequalities over non-key attributes. CouchDB has secondary index, but 
queries have to be written as map-reduce view [7], not transparently utilizing 
indexes.  

C4. Query processing: Unlike relational databases, most NoSQL data 
stores do not provide a query optimizer. Some NoSQL data stores, e.g. Mon-
goDB, provide a query language that is able to transparently utilize indexes. 
However, the sophistication of query optimizer still needs to be investigated 
for scalable analysis of data logs. 

C5. Advanced analytics: Relational DBMS features for advanced analyt-
ics such as joins or numerical expressions is limited in NoSQL data stores. 
Therefore, it needs to be investigated how advanced numerical analytics over 
large-scale data logs could be performed by NoSQL data stores.  

C6. Parallelization of data: NoSQL data stores have the ability to distrib-
ute data over many machines, which can provide parallel query execution. 
However, typical queries for analyzing data logs can generate lots of interme-
diate results that need to be transferred over the network between nodes, which 
can be a performance bottleneck. Therefore, the performance of both horizon-
tal and vertical partitioning of distributed NoSQL data stores can be investi-
gated for query execution over numerical logs. 

4 Proposed Work 
There are several investigations that can be performed for large-scale analysis 
of numerical stream logs. 

Stream log analysis benchmark: Typical TPC benchmarks [9] such as 
TPC-C, TPC-DS, and TPC-H are targeted towards OLTP or decision support, 
not for log analysis. To benchmark data stream management systems, the Lin-
ear Road Benchmark (LRB) [10] is typically used. However, LRB does not 
include the performance of persisted streams. Analysis of large-scale data logs 
often requires scalable queries (e.g. [3][4]) over persisted numerical logs, 
which should be the focus the benchmark. In the benchmark, several state-of-
the-art NoSQL data stores should be compared with relational DBMSs to in-
vestigate at what degree NoSQL data stores are suitable for persisting and an-
alyzing large scale numerical data streams. The performance of bulk-loading 
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capacities of the databases w.r.t. indexing and relaxed consistency should be 
investigated in the benchmark. The queries should be fundamental to log anal-
yses and targeted to discover the efficiency of query processing and utilization 
of primary and secondary index of the data logs. The benchmark should ana-
lyze and compare the performance differences of loading with relaxed con-
sistency, index utilization, and query execution for both NoSQL and relational 
databases, which can provide the important insights into challenges C1, C3, 
C4, and C6.  

Query processing: Supporting advanced analytics using a complete query 
language with a NoSQL data store requires the development of query pro-
cessing techniques to compensate for the limitation of the NoSQL query lan-
guages, for example lack of join and numerical operators. The push-down of 
query operators as generated parallel server side scripts should be investi-
gated. Furthermore, it should be investigated how domain indexing strategies 
[11] in a main memory client-side database (e.g. Amos II [12] developed at 
UDBL of Uppsala University and [13]) can improve performance of numeri-
cal data log analyses of data retrieved from back-end NoSQL databases. These 
can provide the insights of the challenges C2 and C5. 
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