
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1352

Main-Memory Query Processing
Utilizing External Indexes

THANH TRUONG

ISSN 1651-6214
ISBN 978-91-554-9509-1
urn:nbn:se:uu:diva-280374

Dissertation presented at Uppsala University to be publicly examined in 2446, ITC,
Lägerhyddsvägen 2, Uppsala, Uppsala, Wednesday, 4 May 2016 at 13:15 for the degree of
Doctor of Philosophy. The examination will be conducted in English. Faculty examiner:
Professor Martin Kersten (National research institute for mathematics and computer science
in the Netherlands (CWI)).

Abstract
Truong, T. 2016. Main-Memory Query Processing Utilizing External Indexes. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1352. 45 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9509-1.

Many applications require storage and indexing of new kinds of data in mainmemory, e.g.
color histograms, textures, shape features, gene sequences, sensor readings, or financial time
series. Even though, many domain index structures were developed, very a few of them are
implemented in any database management system (DBMS), usually only B-trees and hash
indexes. A major reason is that the manual effort to include a new index implementation
in a regular DBMS is very costly and time-consuming because it requires integration with
all components of the DBMS kernel. To alleviate this there are some extensible indexing
frameworks. However, they all require re-engineering the index implementations, which is
a problem when the index has third-party ownership, when only binary code is available,
or simply when the index implementation is complex to re-engineer. Therefore, the DBMS
should allow including new index implementations without code changes and performance
degradation. Furthermore, for high performance the query processor needs knowledge of how to
process queries to utilize the plugged-in index. Moreover, it is important that all functionalities
of a plugged-in index implementation are correct. The extensible main memory database
system (MMDB) Mexima (Mainmemory External Index Manager) addresses these challenges.
It enablestransparent plugging in main-memory index implementations without code changes.
Index specific rewrite rules transform complex queries to utilize the indexes. Automatic test
procedures validate the correctness of them based on user provided index meta-data. Moreover,
the same optimization framework can also optimize complex queries sent to a back-end DBMS
by exposing hidden indexes for its query optimizer. Altogether, Mexima is a complete and
extensible platform for transparently index integration, utilization, and evaluation

Keywords: Database indexing, query processing, index structures, main-memory, index
validation

Thanh Truong, Department of Information Technology, Division of Computing Science, Box
337, Uppsala University, SE-75105 Uppsala, Sweden.

© Thanh Truong 2016

ISSN 1651-6214
ISBN 978-91-554-9509-1
urn:nbn:se:uu:diva-280374 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280374)

Dedication

This humble thesis work is dedicated to:
My parents ba Minh and má Thảo

For all your supports and encouragements

My wife Diễm

For being with me through the hardest times

My lovely daughters Anna and Lisa

List of Papers

This Thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I T. Truong and T. Risch: Transparent inclusion, utilization, and valida-

tion of main-memory domain indexes, 27th International Conference
on Scientific and Statistical Database Management (SSDBM), San Di-
ego, United States, June 29-Juli 1, 2015.
I am the primary author of this paper.

II T. Truong, T. Risch: Scalable Numerical Queries by Algebraic Ine-
quality Transformations, 19th International Conference on Database
Systems for Advanced Applications (DASFAA), Bali, Indonesia, April
21-24, 2014.
I am the primary author of this paper.

III M.Zhu, S.Stefanova, T.Truong, and T.Risch: Scalable Numerical
SPARQL Queries over Relational Databases, 4th international work-
shop on linked web data management (LWDM 2014), Athens, Greece,
March 28, 2014.
I am one of the co-authors of this paper.

IV S.Badiozamany, L.Melander, T.Truong, C.Xu, and T.Risch: Grand
Challenge: Implementation by Frequently Emitting Parallel Windows
and User-Defined Aggregate Functions, Proc. The 7th ACM Interna-
tional Conference on Distributed Event-Based Systems, DEBS 2013,
Arlington, Texas, USA, June 29 - July 3, 2013
I am one of the co-authors of this paper.

V K.Mahmood, T.Truong, and T.Risch: NoSQL Approach to Large
Scale Analysis of Persisted Streams, 30th British International Con-
ference on Databases, Edinburgh (BICOD), Scotland, July 6-8, 2015.
I am one of the co-authors of this paper.

Reprints of Paper I, Paper II, Paper III, Paper IV, and Paper V were made with
permission from the respective publishers.

Contents

1 Introduction ... 11

2 Background and Related Work .. 14
2.1 Main-memory database system ... 14
2.2 Indexing .. 15

2.2.1 Indexing in MMDBs .. 15
2.2.2 Extensible indexing .. 17

2.3 Query Processing .. 20
2.3.1 Overview .. 20
2.3.2 Extensible query processing .. 21

2.4 Database testing .. 22
2.5 Amos ... 23

3 Mexima .. 24
3.1 Architecture ... 24
3.2 Query processor .. 26
3.3 The Mexima tester .. 29

4 Conclusions and Future Work ... 31

5 Technical contributions ... 33
5.1 Paper I ... 33
5.2 Paper II .. 34
5.3 Paper III .. 35
5.4 Paper IV – an application .. 35
5.5 Paper V – future development .. 36

Summary in Swedish .. 37

Bibliography ... 40

Abbreviations

DBMS Database Management System
Mexima Main-memory External Index Manager
BAO Basic access operator
SSF Special search function
ISF Index sensitive function
MMDB Main-memory database system

Acknowledgements

Many people helped to make this PhD possible. First and foremost, my super-
visor Prof. Tore Risch. I appreciate your contributions of time, ideas, and
funding to my Ph.D. Your enthusiasm for database research inspired and mo-
tivated me. It was countless time you caught my sloppy code, or pointed out
that my arguments were either weak, or wrong. Honestly, several times I
walked out of your office door and thought that I would never come back.
However, I did bounce back thanks to your encouragements. It does not matter
how much I was struggling along the way. It is important that I am finishing
strong.

I would like to say many thanks to Anders Berglund for accepting me to
MSc studies at Uppsala University, where I have met so many interesting peo-
ple and friends. Your acceptance brought me on a very long journey that lasts
several cold and dark winters and bright summers in Uppsala. There is no way
I can pick up Rikssvenska but at least I think that surströmming is not that
horrible.

To my fellow members in UDBL group, you guys made my PhD time here
more memorable: Kjell Orsborn, thank you for assisting me in teaching as-
signments. Erik Zeilter, and Manivasakan Sabesan, thank you for literally
alerting me to some obstacle I might encounter along the way. I am also thank-
ful to Lars Melander, and Andrej Andrejev, whom I did not talk much with
but I enjoyed our technical discussions during these years. Cheng Xu, I am
grateful for your contribution to the accepted paper that we co-authored in
2013. Sobhan Badiozamany, you deserve my thanks for sharing your opinions
in various things including research ideas, life in Sweden, and various things.
Thanks you for giving me rides from Ultuna to Flogsta after playing futsal
very late in 2014. Silvia Stefanova, I am thankful for your friendship and talks
whenever we had break or lunch together. Minpengzhu, we have talked a lot
regarding research, life, and other non-serious matters. I have learnt something
from your determination, focus, and hard-works. As a side note, you have not
ever said yes to a fika or beer somewhere in town. I will keep on asking you
then.

To Matteo Magnani, thanks you for your friendship, your humor, and your
Italian dishes that I gladly tasted every time. I also want to thank Yunyun Zhu
for coordinating our language meetings. Yes, Lillemor Arronson, jag är tack-
sam för ditt hjälp varje gång vi träffas. I would like to thank Seif Alwan for
your hospitality every time I come by and for listening to me complaining of

work and study. Ulrika Andersson, I want to thank you for your excellent sup-
port regarding working matters.

In regards to Vietnamese friends, I thank you for dinners, gatherings, in
addition, soccer that we played together.

To all, whom I had the privilege of making friends with, we might not be
able to talk or see each other often but you made my life more colorful and
enjoyable. I am thankful for that.

I would like to thank my family for all their love and encouragement. For
my parents ba Minh and má Thảo who raised me with curiosity for science
and supported me in all decisions I made. You are my lifetime friends, sources
of inspiration, and the ones whom I seek words of wisdoms from. To my sis-
ters Thuỷ, Thư and my brother Thái, you might not interest in what I was
doing these years but I am indebted to your caring and concern.

And Diễm. I have taken a long pause to think before I write this but I still
do not know where I should begin. You are just amazing as my best friend,
and the love of my life. We share not only dreams, goals, but also disappoint-
ments that life has thrown to us. Without your love, support, and encourage-
ment, I would not have done my PhD. I am sure that our life will turn to a new
chapter soon after this. Thank you for always being there for me.

Finally, Anna and Lisa, you girls are God’s blessing to us and I thank him
for it every day.

 11

1 Introduction

Main-memory databases (MMDBs) [12] [30] [46] [80] [64][49] are common
approaches for many applications such as financial analyses, real-time oper-
ating systems, industrial machine sensors, and scientific applications that re-
quire fast data access, storage, and manipulation. The emergence of such do-
main applications put new requirements on main-memory database systems
to support new kinds of data, e.g.; color histograms, textures, shape descrip-
tions in image databases, gene sequences in biology databases, sensor read-
ings in machine-log databases, time series data in finance, etc. To efficiently
access and manipulate such domain data, MMDBs need to include new kinds
of domain indexes that provide scalable facilities to query and update domain-
oriented data representations.

Even though many index structures were developed, very a few of them are
implemented in database systems in practice; most database systems [29] [32]
provide only B-trees and hash indexes. The reason is that it is very difficult to
extend a DBMS with new index structures. The manual integration effort is
very costly and time-consuming since the new index needs to interface with
most subcomponent of the DBMS kernel. Therefore, for new emerging do-
main applications that need novel index structures, it may not be feasible to
develop indexes from scratch and integrate them into the DBMS. The DBMS
index manager should be extensible to enable including new index structures
without changing the DBMS kernel.

Existing extensible indexing frameworks [36] [51] [53] [91] support adding
new indexes but they require re-engineering the index code strictly following
each particular framework’s coding conventions and API primitives. This may
still be a daunting task because the index may have third-party ownership,
perhaps only binary code is available, or simply it is very complex to re-engi-
neer the code. Therefore, one challenge is how to add new index implementa-
tions to a DBMS without code modifications.

When plugging-in a new index implementation to a DBMS, it is important
to test that all index functionalities are correct. Correctness means that all in-
dex operations should return exactly the expected results and leave the data-
base in a consistent state after updates or bulk loading. Therefore, another
challenge is how to automate the test procedures for a new plugged-in index
implementation.

Adding a new index to a DBMS requires teaching the query processor prop-
erties of the new index, e.g. its supported access methods and how to rewrite

 12

queries to make the index utilized by the query optimizer. Furthermore, com-
plex expression in queries, e.g. for advanced analytics, often hinder the query
optimizer to utilize its indexes. Therefore, an extensible indexing system has
a need for extensible query processing in which new index specific rewrite
rules can be plugged in. Such index specific rewrites improve query perfor-
mance. Extensible query rewrite mechanisms could also improve the perfor-
mance of advanced queries sent to a regular DBMS by transforming queries
involving complex expressions. Therefore, another challenge is how to plug-
in index specific rewrite-rules in an extensible query processor for utilizing
the new indexes in queries.

This Thesis addresses the above challenges of extensible indexing, index
testing, and index-specific query transformations in a main-memory DBMS.

The following research questions are investigated:
1. The overall research question is: How should an extensible index-

ing system be designed to enable transparent inclusion of index
implementations without code changes in neither the DBMS kernel
nor the index?

2. How should the query processor of the extensible indexing system
be provided with knowledge of the access methods of a new
plugged-in index to utilize transparently the index in queries?
In particular: How should the query processor be extensible with
new index-specific rewrite rules so that the new plugged-in index
is transparently utilized in queries?

3. How should the correctness of a plugged-in index be automatically
validated? In particular, what are the functionalities to test and how
can the testing be automated?

4. When data is stored in a back-end database, how should the query
processor transform complex queries so indexes in the back-end
DBMS are utilized?

To answer these questions, we developed an extensible MMDB system called
Mexima (Main-memory External Index Manager).

To answer Research Question one, Mexima enables plugging-in different
kinds of main-memory index implementations without altering or re-engi-
neering their original source code (Paper I). An index extension developer
takes an existing index implementation, writes a simple extension driver (in-
terface code), and then compiles the whole module as a dynamic library or
shared object called an index extension. Mexima loads these index exten-
sions at runtime. This inclusion requires little development efforts and no de-
tailed knowledge about the DBMS kernel.

To answer Research Question two, for data operations on a plugged-in in-
dex, Mexima invokes corresponding index access and update operators (Paper
I). The index operators that are common for all kinds of indexes are called
basic access operators (BAOs), i.e. methods for creating, dropping, updating,

 13

accessing, and mapping over indexed elements respectively. Moreover, each
kind of index often has special search functions (SSFs) that utilize index spe-
cific properties for efficient search, e.g., interval search on B-trees [67], and
K-nearest neighbor and proximity search on R-trees [1] and X-trees [5]. To
utilize SSFs transparently in queries the system contains an SSF translator
that transforms query conditions into calls to SSFs.

Furthermore, when queries involve complex inequality conditions, they
may hinder the query optimizer from utilizing the presence of indexes. This
causes expensive scans of entire tables rather than direct index access calls.
The Algebraic Inequality Query Transformations (AQIT) (Paper II) trans-
forms complex queries involving inequalities into equivalent ones, which are
more efficient by exposing hidden indexes.

To answer Research Question three, for each index type, the Mexima tester
generates a number of queries that automatically test the correctness of the
index implementation. The test queries use data generators, which are queries
specified by the index extension developer to generate relevant data for testing
BAOs and SSFs (Paper I).

To answer Research Question four, Mexima allows optimizing complex
numerical queries sent to a back-end relational database (Paper II). The same
AQIT rules used to utilize plugged-in main-memory indexes can also be used
for exposing indexes in back-end relational DBMSs. Furthermore, scalable
execution of rewritten complex numerical queries sent to the back-end rela-
tional database requires translating the numerical expressions into SQL (Paper
III). This avoids data transfer from the backend database and enables the back-
end query optimizer to utilize indexes.

This Thesis overview is organized as follows. Chapter 2 presents technol-
ogy background and related work. Chapter 3 describes Mexima’s architecture,
including its query processing based on rewrite rules. Chapter 4 concludes the
Thesis and gives some future work discussions. Finally, Chapter 5 summarizes
papers I-V and states my technical contributions to each of them.

 14

2 Background and Related Work

A database is a collection of information that is organized by a general-pur-
pose software system called a database management system (DBMS) [60].
The DBMS enables creation, construction, manipulation, and maintenance of
databases. A data model is the paradigm used by a DBMS for representing the
structure of its databases. For example, in the relational data model [18] data-
bases are represented as a set of tables having columns and rows. The database
is manipulated by queries. In a DBMS, the query processor is responsible for
translating queries into a query plan, which is a sequence of database opera-
tions executed by the DBMS kernel. The query optimizer, a component of the
query processor, determines for a given query an optimized query plan likely
to be the most efficient way to execute it.

In this Thesis, we focus on two important aspects: database indexing and
query processing in main-memory database systems.

2.1 Main-memory database system
Most major DBMSs are designed to store data on disk and bring disk pages
into main-memory as needed for processing. This model assumes computers
with main-memory smaller than the databases. Nowadays, a normal computer
has enough main-memory to fit most databases entirely. Therefore, to take full
advantage of modern hardware, a new class of database systems was intro-
duced: main-memory database systems (MMDBs) [4] [12], [29], [30].
MMDBs are most commonly used in applications that demand fast data ac-
cess, storage, and manipulation, For example: enterprise applications [89],
sensor networks [76], industrial data [78], and telecom applications [56]. In
addition, for applications running on traditional disk-based DBMSs, when
data is skewed some frequently accessed “hot” data can be kept in a main-
memory database. For this, major DBMS vendors have developed their own
main-memory database processing integrated with their disk-based DBMSs,
e.g., Oracle TimesTen [82], Heckaton in SQL Server [10], and MySQL in-
memory tables [58]. Furthermore, in recent years parallel MMDBSs have been
in focus [37][86][83][62], with commercial products such as SAP HANA [77]
[89], MySQL Cluster [62], and VoltDB [48].

Colum-store systems such as MonetDB [80], VectorWise [64][49], C-Store
[54] (or its commercial version Vertica [2]), SybaseIQ [73], etc., are designed

 15

to exploit the large main memories of modern computer systems efficiently
when processing analytical and aggregate queries overs database in memory-
mapped files. In particular, they partition a database into a collection of indi-
vidual columns that are compressed and stored separately. It enables pro-
cessing only the needed columns, rather than entire rows and discards other
unneeded columns.

Even though main-memory database systems have been extensively stud-
ied in the past, the area of extensible indexing and query processing in a main-
memory DBMS is little studied [29] and is the focus of this Thesis.

The next section discusses why indexing is needed in the context of main-
memory database systems.

2.2 Indexing
A DBMS uses indexes to speed up the retrieval of records in response to cer-
tain search conditions [60]. An index associates a given key with a collection
of addresses of matching records. To avoid physically scanning all records in
a table for a given search condition on some search key, the DBMS can use
the index to access only the relevant records. In a relational database, there
can many indexes created for each table and an index can be associated with
a single column or several columns. An index is utilized by a query when the
query optimizer is able to use the index in the execution plan to speed up the
execution of the query.

2.2.1 Indexing in MMDBs
Figure 1 illustrates the memory hierarchy layers when accessing a regular
disk-based database. The widths of the triangles indicate the storage capacity
of the layers, while the thicknesses of the arrows indicate the data volume
transferred between the layers.

 16

Figure 1 Memory hierarchy

The main optimization objective of a disk-based DBMS is to reduce the num-
ber of I/O accesses, which is the primary performance bottleneck. In an
MMDB, all data is assumed to fit in main-memory so therefore the goals of
an MMDB are to reduce memory consumption, to optimize memory cache
usage, and to minimize the number of CPU cycles for maintaining data in
memory [29].

In an MMDB, before data can be processed by the CPU it needs to be trans-
ferred into the memory cache as a data block; this is called a cache miss. If
the same data block is referenced a second time, the access time becomes sub-
stantially faster since no transfer is needed; this is called a cache hit. When a
cache miss happens, the computer must wait for other CPU cycle(s) before
transferring another data block from memory to the cache. Therefore, sequen-
tially reading data blocks is much faster than randomly accessing main-
memory. If there is much data to access, there will be many costly cache
misses so indexing will improve performance substantially for large main-
memory databases.

A cache miss is analogous to a buffer pool miss in a disk-based database.
The difference is that the block size in a disk-based database is substantially
larger than the memory cache in an MMDB and the performance difference
between a cache hit and a cache miss is substantially higher for disk-based
databases. Therefore, the improvement by indexing is higher for disk-based
databases.

Even though column-store systems [80] [64] [49] [54] [2] [73] can achieve
high cache utilization and CPU efficiency when scanning columns, indexes
on top of column-stores improve the performance with orders of magnitude
for queries that do not need to scan entire columns [81][14].

An index entry in an MMDB is a data structure containing pairs (index key,
list of handles), where the handles refer the records having the same index
key. A handle can be a physical memory address, or it can be an indirect ref-
erence to physical memory in order to allow flexible memory management

 17

[72]. Different index data structures organize the index entries in different
ways, e.g. as B-trees [67], hashing [63][93], R-trees [1], TV-trees [42], etc.

The next section addresses the necessity of extending DBMSs with new
domain index structures.

2.2.2 Extensible indexing
Figure 2 shows an application matrix proposed by Stonebraker in 1990s [55],
which categories database applications into four quadrants. It motivates the
need for DBMSs to support queries over complex data in the upper-right quad-
rant, which is required by many of today’s applications such as multi-media,
time series, and gene sequences. A key approach to support such new complex
data types is the ability to include in a DBMS new data structures to represent
domain data.

Figure 2 Classifications of database applications

Adding a domain data type to a DBMS also requires supporting new domain
operators in queries. For example, if an image data type is introduced, there is
also need for query functions that compute image similarities. Importantly,
inclusion of new data types requires new kinds of indexes to access the data
efficiently.

Figure 3 summaries most index structures invented during 1960-1996 [90].
However, very few of them were actually implemented in a DBMS [32].

Business
Personal db
Many applications

Multimedia retrieval
Temporal data
Measurements
Customized search

VOD
Text Editor
Simple computations

CAD system
Course planning
Complex computations

Query (SQL)

No Query
(No SQL)

Simple data Complex data

 18

Figure 3 Summary of indexes invented during 1966 - 1996

Figure 4 shows what indexes are available today in well-known DBMSs. For
example, both Oracle and MySQL employ R-trees up to 4D for geometry ob-
jects. In addition, Oracle Spatial engine supports also Linear Quad-trees [71],
which uses a space-filling-curve technique [94] to decompose spatial data into
linear-order data suitable for B-trees. Similarly, Microsoft SQL Server Spatial
[94] and DB2 Spatial Extender [35] also use a space-filling curve to index
spatial data. Alternatively, some DBMSs support function indexes [40][13],
which are indexes on the result of a function. The DBMSs compute the result
of the function for every update and materialize it in a B-tree or a hash table.
Function indexes thus require computation for every single database update
or insertion. That makes database updates more expensive and it is inapplica-
ble for ad-hoc queries.

 19

Figure 4 Summary of indexes in some DBMSs

Another approach to improve performance of querying high-dimensional data
is to use dimensionality reduction techniques such as DFT (Discrete Fourier
Transform) [70], FFT (Fast Fourier Transform), or DWT (Discrete Wavelet
Transform) that map from a high-dimensional space to lower dimensions.
Then DBMSs can apply some low-dimensional index structures (R-trees or
B-trees) to index the data. However, such reductions are lossy and thus they
are applicable only on applications where loss of information is acceptable,
e.g., financial databases [8] and images [7] [21].

MMDBs have even fewer index structures implemented than disk-based
databases. For example, the following systems have only hash-based index-
ing: Memcached [4], Redis [74], RamCloud [38], Yahoo! S4 [43], and Piccolo
[69]. SAP HANA has both CSB+ trees [77] [89] and hash indexes. H-store
[68] and its commercial version VoltDB [48] have B-trees and hashing. For
in-memory tables, MySQL 5.6 and MS SQL 2014 support hashing only.

The question is why most DBMSs implemented so few indexes, even
though there is a demand for new kinds of indexing and there are many domain
indexes. The answer is because it is very challenging to include new indexes
into a DBMS kernel.

To simplify adding new indexes to DBMSs, several extensible indexing
frameworks have been proposed. Generalized Search Trees [36] is a general-
ized template index structure, which provides a single code base for com-
monly invariant properties of B-tree-like search trees while leaving other char-
acteristics to be specified by the user. GiST was realized in some prototype
systems, e.g., Predator [66] and PostgreSQL [53]. Informix Dynamic Server
with Universal Data Option (IDS/UDO) [51] simplified GiST’s design while
SP-GiST [91] extended GiST to include space-partitioning trees. A problem
with GiST based approaches is that they require implementing the indexes
completely following the coding conventions of the frameworks. This is still
a challenging task because the index may have third-party ownership, or per-
haps only binary code is available, or it is very complex to re-implement the
code. It would be better if one could re-use an existing implementation of an

Index MySQL 5.6 PostgreSQL 9.5.1 MS SQL 2014 Oracle 12c Release 1

B-tree Yes Yes Yes Yes

Hash Yes* No Yes* No

Bit-map No Yes No Yes

Spatial index Quadratic R-tree R-tree (GiST) No Quadratic R-tree
Quad-tree

Function-based-index No Yes Yes Yes

Notes
• Versions

• Oracle 12c Release 1
• SQL Server 2014
• MySQL 5.6

• Hash index is only available for in-memory tables.

 20

index without any code changes. This Thesis presents an extensible indexing
framework to include new main-memory indexes without changing their im-
plementations.

In order to utilize fully an index implementation it is very important that
the query optimizer is aware of the presence of the index, its supported access
methods, and how to process queries so that it is utilized in execution plans.
The next section discusses this.

2.3 Query Processing
Query processing in general is first overviewed and it is then followed by a
discussion of extensible query processing.

2.3.1 Overview
Figure 5 illustrates the steps of a database query processor.

Figure 5 Query processing in a DBMS

The query processing consists of the five following steps:

Query

Parser

Parse tree

Calculus generator

Calculus rewriter

Execution plan
interpreter

Cost-based
optimizer

Results

Calculus

Calculus

Algebra

 21

1. A parser constructs a parse tree for the input query doing type checking
and some semantic checks for the validity of the objects being referred in
the query.

2. A calculus generator converts the parse tree into a predicate calculus rep-
resentation, e.g. relational tuple calculus [26] [9] where variables are
bound to tuples (rows) in tables, or alternatively domain calculus such as
Datalog [26] where variables are bound to atomic values. Mexima uses
the domain calculus ObjectLog [92], which is a dialect of Datalog allow-
ing user-defined objects, types, overloading, and foreign functions that al-
low accessing external algorithms and data structures.

3. A calculus rewriter transforms the calculus expression into an equivalent
expression to improve performance and enable further optimization. One
very important rewrite is to expand views to expose indexed columns hid-
den inside views. Mexima enables calculus rewrite rules for transparent
utilization of new indexes by user-provided index specific rewrite rules
and algebraic inequality transformations. This contrasts with other exten-
sible indexing frameworks that recommend manually reformulating que-
ries involving complex expressions [61] [11].

4. A cost-based optimizer [28] applies some optimization algorithm on the
transformed calculus expression to produces an execution plan, which is
a program in physical algebra accessing the database. The optimizer esti-
mates the cost of executing a plan according to some cost model based on
knowledge about database statistics, internal data representations, and
search algorithms used in the plan. In Mexima, for given arguments, a
function accessing a plugged-in index implementation can be associated
with a cost and a fanout. The cost is an estimate of how expensive it is to
retrieve the accessed tuples and the fanout estimates the expected number
of emitted tuples in a results stream. If there is no specified cost, Mexima
assumes a default cost and fanout based on the signature of the function,
available index definitions, and some other heuristics.

5. Finally, the execution plan interpreter executes the plan and iteratively
emits the result. In Mexima, special search functions supported by a
plugged-in index are defined as foreign functions called from the execu-
tion plan.

2.3.2 Extensible query processing
In order to utilize a new index in queries, Oracle ODCIIndex framework [39]
allows associating an index operator op with an index access path. Only con-
junctive predicates where terms have the following forms are supported:

op(…) relop <value expression>, where relop is one of the relational op-
erators: ≤, ≥, <,or >.
op(…) LIKE <value expression>

 22

Oracle provides guidance [61] [11] on how to reformulate a query to utilize
indexes when it is not exactly matching the above forms. In contrast, Mexima
automatically transforms a wide range of query forms containing numerical
expressions into queries that use index specific special search functions
(SSFs) to utilize index properties.

In Starburst and DB2 [31], query transformations are driven by a rule en-
gine. Internally, they represent queries by a Query Graph Model (QGM) in
C++ structures. A rule table stores all rewrite rules and classifies them into
different query classes. Each query class has different rewrite heuristics. The
rule engine selects what rules to apply to transform the queries. Similarly,
Volcano [24], Cascades [25], and Exodus [44] also use rules to transform re-
lational algebra expression into physical operators.

In contrast, Mexima does not rely on procedural code since rewrite rules
for SSFs are specified as declarative meta-data stored in index property tables.
This is possible since the SSF rewriter is designed particularly for index utili-
zation rather than for general relational algebra transformations as [31] [24]
[25] [44]. Thus, a challenge is how to specify the rewrite rules as meta-data
on a high-level. In Mexima each rewrite rule specified per index type de-
scribes a mapping from some terms of a query fragment form into an index-
supported SSF function. Unlike Oracle, Mexima supports several query frag-
ment forms. Altogether, the calculus rewriter in Mexima takes into account
the existence of certain indexes, an extensible set of algebraic rules, and user-
provided index rewrite rules to transform queries.

2.4 Database testing
It is critical that all functionalities of an index implementation are correct,
meaning that query results and the database states after updates are the same,
regardless of whether the index is used or not. Mexima includes a tester for
automatic testing of the correctness of the functionalities provided by a
plugged-in index implementation.

Testing of DBMS functionality in general has been studied in [23][45][59].
The database generator QAGen [23] provides general purpose testing of
DBMS components. It generates test databases and test queries based on sym-
bolic execution of queries. In [59] an inverse relational algebra generates
query inputs for given query results. To implement unit testing for the query
optimizer, the framework in [45] generates test queries based on user-defined
transformation rules specified as trees of relational algebra operators. The JOB
benchmark [88] tests the impact of a cost model and compares exhaustive dy-
namic programming with heuristic algorithms when enumerating sub-plans.
It takes user-provided meta-data or DBMS statistics to generate dataset for
given input queries.

 23

QuEval [47] is a benchmark for testing spatial index implementations sep-
arate from a DBMS. QuEval produces test data sets based on user-provided
parameters and built-in data generators. New index implementations can be
developed and added to QuEval following its coding conventions.

Unlike QuEval, new complex indexes in C/C++ can be plugged into Mex-
ima without any code changes. Furthermore, the Mexima tester generates and
executes correctness tests of the plugged-in indexes, while the purpose of
QuEval is to analyze performance of spatial index algorithms implementations
in QuEval under different configurations.

2.5 Amos
Mexima extends the main-memory DBMS Amos [87]. Amos provides a func-
tional and object oriented data model in which objects, types, and functions
are the essential concepts. Functions are used to define properties, relation-
ships, and computation over objects, which are classified by a type hierarchy
stored in the database. The functional query language AmosQL supports que-
ries in terms of functions over typed objects, where a signature and an imple-
mentation define a function. The signature declares the input and result pa-
rameter types and names, whereas the implementation defines how to compute
outputs from inputs and vice versa. There are different kinds of functions. For
example, a table is called a stored function and a derived function is a param-
eterized view defined by a single query. Furthermore, foreign functions can
be defined in some external programming language, such as C/C++, Java, Py-
thon, or Lisp. Mexima uses the object-oriented data-model of Amos to repre-
sent index meta-data.

AmosQL queries are internally represented as ObjectLog [92], which is an
extension of Datalog with objects, types, overloading, and foreign functions.
A calculus rewriter transforms ObjectLog expressions to improve perfor-
mance. After the rewrites, a cost-based optimizer produces an execution plan
sent to the execution plan interpreter.

Mexima extends the query processor of Amos with calculus rewrite rules
for transparent utilization of new indexes. It utilizes foreign functions to de-
fine SSFs to enable query transformation of queries into equivalent queries
calling SSFs.

Amos represents all data objects internally as physical objects managed by
a main-memory storage manager. Physical objects allocated inside a main-
memory database image are persistent, which means that they can be saved
on disk and later restored. A physical object, po, is accessed through an object
handle, hdl, which is the offset to po from the start of the database image.
Mexima provides a mechanism to access specialized external index storage
managers for each index type so that index entries can be stored outside the
database image.

 24

3 Mexima

This chapter gives an overview of Mexima’s architecture with references to
the papers on which this Thesis is based. Followed by the general system ar-
chitecture, the second section describes more in details the query processor,
while the Mexima tester is described in the last sub-section.

3.1 Architecture
Figure 6 illustrates the overall architecture of Mexima. The system can used
either as an extensible main-memory database or as a front-end query proces-
sor to a back-end relational DBMS, or a combination of the two.

Figure 6 Mexima's architecture

Mexima enables plugging-in different kinds of main-memory index imple-
mentations in C or other programming languages without altering or re-engi-
neering their original source code. An index extension developer can specify

Windows: dynamic libaries
Unix/OSX: shared objects

Index extension 1

Index extension 2

Index extension 3

Mexima

Input queries

DBMS

Index exposed
queries

Extending main-memory indexes

Tran
sfo

rm
in

g q
u

eries to
 u

tilize in
d

exe
s in

 D
B

M
Ss

 25

meta-data about the plugged-in indexes. The meta-data can be index specific
rewrite rules to hint the query processor on how to process queries to utilize
indexes. The meta-data can also be data generators used to verify the correct-
ness of the index. The details are in Paper I.

In addition, Mexima’s query processor can transform complex queries over
a back-end relational database so that indexes hidden inside complex expres-
sions are exposed and utilized there, by applying algebraic transformation
rules. In general, Mexima is a query processor with focus on index utilization.
The details are mainly in Paper II and partly in Paper III.

Figure 7 illustrates the software layers of main-memory query processing
in Mexima.

Figure 7 Mexima software layers

Queries are compiled by the query processor and executed by the execution
interpreter. The execution plans call the Mexima core to execute the basic in-
dex operations (BAOs) such as create(), drop(), put(), get(), and map(), as
well as special search functions (SSFs) for each kind of plugged-in index. The
extension driver is a plugged-in interface between Mexima and the unchanged
index implementation.

Figure 8 shows the details of the Mexima core component, with the Amos
engine as the gray box. The extension loader loads at run-time the index ex-
tension as a dynamic library or a shared object. The extension loader registers
the BAO index interfaces as C functions. The index name and its registered C
functions are stored as meta-data in the BAO table.

Query

Query Processor

Execution interpreter

Mexima core

Extension driver

Index implementation

Mexima

Index extension

Amos

 26

Figure 8 Mexima core

When an instance of a plugged-in index is associated with an attribute of a
main-memory table, for every data update the index interface dispatcher ac-
cesses the index by invoking the corresponding registered BAOs (create(),
put(), get(),etc.) in the BAO table. Importantly, the index interface dispatcher
maintains reference counters of index keys and values. This frees the exten-
sion developer from handling garbage collection issues manually.

Mexima includes an index storage manager for saving the index structures
on disk and reloading them later when the system starts. This is important for
main-memory index implementations that do not support persistency. In ad-
dition, if an index implementation has persistency implemented, Mexima pro-
vides save() and restore() hooks to call index persistency functions registered
in the BAO table. The details of Mexima’s core are presented in Paper I.

The next section discusses the query processor of Mexima followed by the
Mexima tester.

3.2 Query processor
Figure 9 illustrates Mexima’s query processor. The calculus rewriter of Amos
calls the Mexima query rewriter for transparent utilization of new indexes.
The Mexima query rewriter applies rules to produce an index exposed calculus

 27

expression, which is a calculus expression containing query fragments sup-
ported by an index. Without such rewrites, the query optimizer will not detect
index access paths hidden inside complex expressions. The index extension
developer populates the index property tables (Figure 8) containing SSF
translation rules, which are index specific rewrite rules that describe how
query fragments are translated to a new format that utilizes the index. Com-
plex queries involving numerical expressions over indexed attributes are re-
formulated transparently so that the Mexima query rewriter can apply SSF
translation rules to expose main-memory index implementation. The details
are in Paper I and Paper II.

When the query plan is rewritten to expose a plugged-in index, the cost-
based optimizer generates an execution plan that contains calls to the Mexima
core to access the index. Paper I describes this in detail.

Figure 9 Query processing in Mexima

When Mexima is used as a query processor in front of a back-end DBMS, it
enables transparent query transformation to exploit the presence of indexes in
the backend DBMS. In this case, the SQL Generator (Paper III) translates the
index exposed calculus expression into an equivalent shipped SQL query sent
to the back-end DBSM through JDBC for optimization and evaluation.

Input query

Query Parser

Parse tree

Calculus generator

Calculus rewriter

Execution plan
interpreter

Cost-based optimizer

Index exposed Calculus

SQL
Generator

Shipped
SQL

DBMS

Mexima

Mexima Query
Rewriter

Calculus

Algebra

Mexima core

 28

Figure 10 Mexima Query Rewriter

Figure 10 shows the Mexima query rewriter in details. For complex numerical
expressions, the Algebraic Inequality Query Transformations (AQIT) compo-
nent transforms a query into an equivalent one based on a set of algebraic
inequality rules. AQIT transforms numerical complex inequality expressions
so that query fragments supported by an index (B-trees in Paper II and high
dimensional indexes in Paper I) are exposed.

The index extension developer populates the SSF translation table in which
each row is an SSF translation rule for a particular index type. For plugged-in
indexes, the SSF translator rewrites query fragments over indexed attributes
into SSF calls (Paper I) based on these rules.

In summary, Mexima’s query processor has the following features:
 SSF translation rules describe how query fragments are transformed to

expose SSFs accessing plugged-in main-memory index implementations.
Mexima currently supports six query fragment forms that can be trans-
formed (Paper I).

 AQIT transformations enable transforming complex inequality expres-
sions in queries to expose hidden indexes both for main-memory and
back-end DBMS indexes (Paper I and Paper II).

 When data is stored in a back-end DBMS, queries having numerical ex-
pressions are translated to SQL queries sent to the back-end for execution
(Paper III).

SSF Translator

MEXIMA Query Rewriter

Index exposed queries

SSF translation table

Rule 1

Rule 2

. . .

Algebraic Query Inequality
Transformation

Algebraic inequality rules

Algebraic rule 1

Algebraic rule 2

. . .

Queries in ObjectLog expression

 29

3.3 The Mexima tester
The Mexima tester illustrated by Figure 11 automatically generates and runs
test algorithms based on index meta-data provided by the index extension de-
veloper. The test algorithms require index specific random data generators.
The system has some built-in random generators to generate keys as numbers
and vectors of numbers respecting various distributions. User-defined data
generators can easily be defined in terms of these built-in ones or as new kinds
of data generators as queries. In addition, test keys stored in files can be de-
clared as meta-data.

Figure 11 Mexima tester

To test the correctness of BAOs, the BAO tester generates two temporary ta-
bles per tested index implementation, an indexed table, and a reference table,
where the indexed table has an index of the tested kind while the reference
table has a hash index. The BAO tester populates these two tables by executing
index key generator queries stored in an index meta-data table producing ran-
dom index keys. The idea is that having the index or not should not change
query results or table contents. In particular, randomly loading, accessing
keys, mapping over, and deleting keys should produce the same results with
or without the index.

For testing correctness of SSFs, the SSF tester generates and executes val-
idation queries, which test the following:
 When an SSF is used,a query result has to be the same as with non-indexed

naive scans.
 The SSF rewrite rules are correct.

Generates and executes
validation queries

Populates and executes
BAO operations

SSF tester

MEXIMA Tester

SSF translation rule table**

Rule 1

Rule 2

. . .

BAO tester

Index key generator table**

Index key generator 1

Index key generator 2

. . .

SSF parameter generator table**

SSF parameter generator 1

SSF parameter generator 2

. . .

Notes:
**Index extension developers populate these tables

Reference table

Key 1

Key 2

. . .

Value 1

Value 2

Temporary tables

Indexed table

Key 1

Key 2

. . .

Value 1

Value 2

 30

The validation queries are generated based on SSF translation rules and
SSF parameter generators specified as index meta-data. The Mexima tester
validates that executing the same validation queries on the indexed and refer-
ence tables should return the same result when SSF translation rules are ena-
bled or disabled.

The details about the Mexima tester are presented in Paper I.

 31

4 Conclusions and Future Work

Table 1 positions this Thesis in comparison to existing state-of-the-art exten-
sible indexing framework [36] [39] [51] [53] [91] regarding the following as-
pects of extensible indexing:

 Code reuse: None of them provides solutions to reuse existing index
implementations without any code changes.

 Index utilization query rewrites: Oracle [39] provides limited support
for rewriting queries to utilize new indexes without changing the
DBMS core optimizer, while Mexima transparently transforms a large
class of queries involving complex expressions to utilize plugged-in
index implementations or indexes in a back-end DBMS.

 Index validation: Unlike Mexima, none of them has automated vali-
dation of plugged-in indexes.

Table 1. Summary of extensible indexing framework

 Requirements
Code
reuse

Index utilization
query rewrites

Index
validation

E
xt

en
si

bl
e

in
de

xi
ng

fr

am
ew

or
k

GiST
in PostgreSQL 9.3.5 [65]

No Not in framework No

SP-GisT
version 0.0.1 [79]

No Not in framework No

Oracle [39] No Limited No
DB2
in DB2 Universal Database 7.1, [34][27]

No Not in framework No

This Thesis Yes Yes Yes

In summary, the Mexima framework allows transparent plugging-in of main-
memory index implementations in a main-memory DBMS without code
changes. The extension developer only writes a simple Mexima driver for the
universal index operations (BAOs) and some index specific search functions
(SSFs) that call the unchanged index implementation. Unmodified index im-
plementations allow to easily utilizing highly optimized and complex index
implementations such as Judy-tries [6]. For future work, more kinds of in-
dexes should be plugged into Mexima than those evaluated so far B-trees [52],
Linear-Hashing [52], Judy-Tries [6], X-trees [52], and R*-trees [20] (Paper I).
This may add more requirements to the system.

 32

To utilize plugged-in index implementations transparently in queries, the
Mexima query processor uses SSF translation rules, and algebraic rewrite
rules to rewrite queries. Future work should investigate how to extend the re-
write capabilities to support more algebraic rules and query fragment forms.

To validate the correctness of a new index, Mexima calls user-specified
data generators, SSF translation rules, and query fragment forms that automate
the correctness tests for a plugged-in index. As a future work, it should be
investigated how to automate also performance tests of index operations.

Several experiments were made in Paper I: First, the penalty of calling an
index implementation by plugging it into Mexima was compared with the
stand-alone implementation showing that the overhead was less than one mi-
crosecond (µs) per index access. Furthermore, the experiments showed that
rewrite rules provide substantial query performance improvements.

Moreover, when Mexima acts as a query processor in front of a DBMS, the
experiments showed substantial query performance gains by Mexima’s re-
writing of queries to utilize indexes in the back-end DBMS.

For more future work, we shall investigate how extensible indexing and
extensible query processing in Mexima can help to improve queries in NoSQL
databases as discussed in Paper V. In addition, Mexima can be used to im-
prove data access in distributed and parallel environments (Paper IV) to pro-
cess massive stream in which each node is a Mexima node.

Altogether, Mexima is a complete and extensible platform for index inte-
gration, utilization, and evaluation.

 33

5 Technical contributions

5.1 Paper I
T. Truong and T. Risch: Transparent inclusion, utilization, and validation of
main-memory domain indexes, 27th International Conference on Scientific
and Statistical Data-base Management (SSDBM), San Diego, United States,
June 29-Juli 1, 2015.

Summary
In this paper, we presented the Mexima (Main-memory External Index Man-
ager) system, which is an MMDB where new main-memory index structures
can be plugged-in without modifying the index implementations or Mexima.
To utilize plugged-in indexes in queries, the system transparently transforms
query fragments into index operations based on user-provided index property
tables containing index meta-data. The Mexima system includes a rule driven
algebraic query transformation mechanism on complex numerical query ex-
pressions to expose potential utilization of a new index. To validate the cor-
rectness of an index implementation, Mexima generates and executes test que-
ries based on general knowledge about indexing, the index meta-data, and the
user-provided data generating queries. Several experiments were conducted to
show that the index exposing rewrite mechanisms substantially improves per-
formance and that the performance penalty of using an index plugged into
Mexima is low compared to using the corresponding stand-alone C/C++ im-
plementation. Finally, it is shown that the development effort of plugging in
new indexes to Mexima is very small in comparison to other frameworks.

This paper partly answers Research Question one, two, and three.

Contributions
In 2011, Mexima allowed inclusion of new index structures and was used for
research and education. Later in 2013, index utilization by transparently query
rewrites was added whereas the index validation mechanism was designed and
implemented during the autumn of 2014.

I am the primary author of the paper. The other authors contributed to dis-
cussion and paper writing.

 34

5.2 Paper II
T. Truong, T. Risch: Scalable Numerical Queries by Algebraic Inequality
Transformations, 19th International Conference on Database Systems for Ad-
vanced Applications (DASFAA), Bali, Indonesia, April 21-24, 2014.

Summary
This paper is based on a real industrial application scenario where data streams
derived from sensor readings are bulk-loaded into a relational database system
[78]. The application was prototyped as the Stream Log Analysis System
(SLAS), which enables historical analyses of logged data streams by SQL que-
ries. These historical queries often contains complex numerical query inequal-
ities e.g. to find suspected deviations from normal behavior of measured sen-
sor values during a time-period. However, such queries are often slow to exe-
cute, because the query optimizer is unable to utilize ordered indexes on some
attributes hidden inside complex numerical inequalities. In order to speed up
the queries, they should be reformulated so that the indexes become exposed.
Therefore, we introduced the query transformation algorithm AQIT (Algebraic
Query Inequality Transformation) that automatically transforms SQL queries
involving a class of algebraic inequalities into more scalable SQL queries uti-
lizing ordered indexes.

AQIT was originally implemented as part of query rewriter in Mexima.
AQIT is used both when plugging in new main-memory indexes and when
transforming queries having complex numerical expressions to be sent to a
back-end DBMS. The experimental results show that the queries execute sub-
stantially faster by a commercial DBMS when AQIT has been applied to pre-
process them.

This paper partly answers Research Questions two and four.

Contributions
In 2011, I prototyped the first algorithm of AQIT that was part of the query
rewriter in Mexima. Later, I wanted to investigate Mexima, in particular
AQIT, in a real industrial application described in the paper. Thus, in 2012, I
developed the SLAS system where Mexima acts as a query processor (also
known as AQIT query processor) with a relational database back-end. The
paper was written in the autumn of 2012, later accepted in the beginning of
2013.

I am the primary author of the paper. The other authors contributed to dis-
cussion and paper writing.

 35

5.3 Paper III
M.Zhu, S.Stefanova, T.Truong, and T.Risch: Scalable Nu-merical SPARQL
Queries over Relational Databases, 4th international workshop on linked web
data management (LWDM 2014), Athens, Greece, March 28, 2014.

Summary
In this paper, we investigated the problem of detecting past machine anoma-
lies by querying historical sensor readings stored in a relational database. In
this scenario, the main-memory database Mexima acts as query processor in
front of the relational database. It takes anomaly detection queries containing
numerical expressions, or inequality conditions, or string matching and pro-
duces equivalent SQL queries sent to the back-end database.

 To enable scalable execution of such queries the numerical expressions
should be translated into SQL rather than being post-processed in Mexima
outside of the relational database. This is to avoid post-processing large data
volumes, which must be transported back from the relational database server
to Mexima. Furthermore, if the numerical expressions are post-processed, the
indexes on the back-end database have no impact.

The paper presents the NUMTranslator algorithm, which translates numer-
ical and other domain calculus operators into corresponding SQL expressions.
The experiments showed that NUMTranslator substantially improves the
query performance when the numerical expressions are highly selective.

This paper partly answers research question four.

Contributions
The NUMTranslator algorithm was first developed to enable scalable query
execution of complex Mexima queries sent to a back-end relational database.
Later, the NUMTranslator evolved to a part of a bigger system to harvest log
databases [50]. The paper was written in autumn 2012, and then accepted in
beginning of 2013.

I am one of the co-authors of the paper. In particular, I programmed the
first limited version of the NUMTranslator, which later was fully developed
as part of the FLOQ system [50]. I helped in paper writing and in data prepa-
ration for the experiments.

5.4 Paper IV – an application
Paper IV is an example application of Mexima.

S.Badiozamany, L.Melander, T.Truong, C.Xu, and T.Risch: Grand Chal-
lenge: Implementation by Frequently Emitting Parallel Windows and User-
Defined Aggregate Functions, Proc. The 7th ACM International Conference

 36

on Distributed Event-Based Systems, DEBS 2013, Arlington, Texas, USA,
June 29 - July 3, 2013.

Summary
The paper describes an approach to monitor a soccer game that requires pro-
cessing large volumes of data in real-time and delivers continuously physical
summaries of the game as it is playing. The approach is based on an extensible
DSMS in which high-volume data streams can be split and reduced into lower
volume parallel streams by user-provided queries. Thus, expensive queries
can be run in a parallel and distributed environment, in which each node is a
main-memory Mexima database.

We experimented with plugging-in different indexes for indexing stream
elements in a window. The application tested Mexima’s performance and
showed that Mexima can be used in a parallel and distributed environment.

Contributions
I am a co-author of the paper. I helped in prototyping the system and strategies.

5.5 Paper V – future development
Paper V will put requirements to the future work.

K.Mahmood, T.Truong, and T.Risch: NoSQL Approach to Large Scale Anal-
ysis of Persisted Streams, 30th British International Conference on Data-
bases, Edinburgh (BICOD), Scotland, July 6-8, 2015.

Summary
In this paper, we first addressed some challenges in large scale persisting and
analysis of numerical streaming logs. In order to investigate further these chal-
lenges, we propose to develop a benchmark that compares NoSQL stores with
relational databases in storing and analyzing numerical logs. The benchmark
is designed to serve as a base system for investigating query processing and
indexing of large-scale numerical logs, in particular, how to reuse advanced
indexing and query processing techniques in a scenario in which a main-
memory is front-end while NoSQL stores data in the backend.

Contributions
I am a co-author of the paper.

 37

Summary in Swedish

Primärminnesdatabaser (PDBSer) [12] [30] [46] används för ett växande an-
tal applikationer som kräver snabb dataåtkomst, lagring och manipulation, ex-
empelvis applikationer för finansiella analyser, realtidsoperativsystem, sen-
sorsystem i industriella maskiner och mer allmänt i många tekniska och ve-
tenskapliga tillämpningar. Framväxten av denna typ av databastillämpningar
ställer nya krav på databashanteringssystemen för att stödja nya sorters data,
såsom färghistogram, texturer, bildmönster, gensekvenser, sensorsekvenser,
eller tidsserier. För att effektivt komma åt och manipulera sådana domändata
måste ett databashanteringssystem inkludera nya typer av domänorienterade
indexstrukturer.

Trots att en hel del domänorienterade indexstrukturer utvecklats har
mycket få av dem använts i praktiken, de flesta system [29] [32] använder bara
B-träd och hash-index. Anledningen är att det är mycket svårt att utvidga ett
databashanteringssystem med nya indexstrukturer vilket normalt kräver om-
fattande ändringar i dess kärna. Den manuella insatsen för att göra en sådan
integration är mycket kostsam och tidskrävande eftersom det nya indexet
måste samverka med de flesta andra delkomponenter i kärnan. Därför skulle
det vara önskvärt att man kunde göra databashanterarens indexering utbygg-
bar så att man kan implementera och lägga till nya indexstrukturer utan att
ändra i kärnan.

Befintliga ramverk för utbyggbar indexering [36] [51] [53] [91] har stöd
för att lägga till nya index, men de kräver dock omkodning av index-algorit-
merna där man strikt följer varje enskilt ramverks kodningskonventioner och
programmeringsgränssnitt. Detta kan vara en svår uppgift då eventuellt bara
binärkod är tillgänglig, det kan vara mycket komplicerat att förändra koden
eller äganderätten till indexet kan vara beroende av tredje part. Det skulle så-
ledes vara mycket önskvärt att kunna lägga till nya indeximplementationer
utan kodändringar.

När man lägger till en ny indeximplementation i en databashanterare är det
vidare viktigt att testa att alla indexfunktioner fungerar korrekt. Korrekthet
innebär här att alla funktioner ska returnera exakt förväntade resultat och
lämna databasen i ett konsistent tillstånd efter uppdateringar eller databasladd-
ningar. Det är även önskvärt att kunna automatisera testförfarandet för varje
tillagd indeximplementering.

Att lägga till ett nytt index i en databashanterare kräver vidare att dess
frågehanterare har kunskap om egenskaperna för det nya indexet, såsom dess

 38

olika sätt att söka data och hur databasfrågor kan transformeras för att fråge-
processorn skall kunna använda indexet effektivt. Komplexa uttryck i frågor,
t.ex. för exempelvis avancerad analys, hindrar ofta frågeprocessorn från att
utnyttja indexet. Det är alltså önskvärt med utbyggbar transformering av da-
tabasfrågor så att indexspecifika omskrivningsregler kan kopplas in för att för-
bättra frågeprestanda. Frågeprocessorn behöver dessutom hantera omskriv-
ningsregler för att förbättra prestanda för avancerade frågor som skickas för
exekvering till en extern vanlig databashanterare för exekvering.

Denna avhandling behandlar ovanstående utmaningar av utbyggbar index-
ering, index testning och indexspecifika frågetransformationer i ett PDBS.

Följande frågeställningar undersöks:
1. Den övergripande forskningsfrågan är: Hur kan ett utbyggbart indexe-

ringssystem utformas för att möjliggöra transparent inkludering av olika
indeximplementationer utan kodändringar i vare sig databassystemet
kärna eller i indeximplementationen

2. Hur kan frågeprocessorn förses med kunskap om ett nytt inkopplat index
för att transparent kunna använda indexet i databasfrågor? I synnerhet:
a. Hur kan frågeprocessorn göras utbyggbar med nya indexspecifika

omskrivningsregler så att ett nytt inkopplat index transparent kan till-
lämpas i frågor?

3. Hur ska korrektheten av ett inkopplat index automatiskt valideras? I syn-
nerhet, vilka är funktionerna att testa och hur kan testerna automatiseras?

4. När data lagrats i en extern databas, hur kan frågeprocessorn omvandla
komplexa frågor så att indexen i den externa databasen kan utnyttjas och
tillämpas där?

För att besvara dessa frågor har vi utvecklat ett utbyggbart PDBS som kallas
Mexima (Main-memory Extern Index Manager).

För att besvara frågeställning 1 möjliggör Mexima inkoppling av olika ty-
per av primärminnesindex utan att ändra deras ursprungliga källkoder (Paper
I). En utvecklare tar en existerande implementation av ett index, skriver gräns-
snittkod och kompilerar hela modulen som ett dynamiskt bibliotek. Denna in-
kludering kräver lite utvecklingsarbete och ingen kunskap om databashante-
ringssystemets kärna.

För att besvara frågeställning 2 kan Mexima anropa relevanta indexoperat-
ioner för en given databasfråga (Paper I). De indexoperationer som finns för
alla typer av index kallas grundläggande accessoperationer (BAOs). De är me-
toder för att skapa, hämta, uppdatera och traversera indexstrukturens element.
Dessutom finns det ofta index-specifika sökfunktioner (SSFs) som utnyttjar
speciella egenskaper hos en indexstruktur för effektiv sökning, exempelvis in-
tervallsökning för B-träd [62] och områdessökning för R-träd [1] och and X-
träd [5]. För att frågeprocessorn skall kunna tillämpa index-specifika sök-
funktioner innehåller Mexima ett system för omskrivning (transformation) av

 39

databasfrågor för att identifiera mönster i frågorna där index-specifika sök-
funktioner kan användas.

När databasfrågor innehåller komplexa uttryck kan de hindra frågeproces-
sorn från att utnyttja förekomsten av index. Detta orsakar dyra genomsök-
ningar av hela tabeller snarare än direkta indexanrop. AQIT omvandlar kom-
plexa numeriska frågor till motsvarande frågor som är mer effektiva genom
att exponera dolda index (Paper II).

För att besvara frågeställning 3 genererar Mexima för varje indextyp ett
antal testfrågor som automatiskt testar korrektheten av indexets implemente-
ring. Testmodulen drivs av datageneratorer och beskrivningar av indexets
egenskaper (Paper I).

För att besvara forskningsfråga 4 tillåter Mexima att komplexa frågor till
en relationsdatabas först transformeras så att dolda index exponeras (Paper II).
Samma regler som används för att transformera databasfrågor mot ett primär-
minnesindex används också för att exponera index i externa databaser. En
skalbar mekanism för att hantera omskrivna numeriska frågor som skickas till
en extern relationsdatabas kräver vidare generering av SQL-frågor för att re-
presentera numeriska uttryck (Paper III).

 40

Bibliography

[1] A. Guttman: R-trees: A dynamic index structure for spatial searching, Proc. SIG-
MOD Conf., pp 47–57, 1984.

[2] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier,
Lyric Doshi, and Chuck Bear. The vertica analytic database: C-store 7 years later.
In Proceedings of the Very Large Data Bases Endowment (PVLDB), 5(12):1790–
1801, 2012.

[3] Aravind Menon. 2012. Big data @ facebook. In Proceedings of the 2012 work-
shop on Management of big data systems (MBDS '12). ACM, New York, NY,
USA, 31-32.
DOI=http://dx.doi.org/10.1145/2378356.2378364

[4] B. Fitzpatrick and A. Vorobey. Memcached: a distributed memory object cach-
ing system. 2003. [Online]. Available: http://memcached.org/.

[5] B. Stefan, A.K. Daniel, H-P. Kriegel: The X-tree : An Index Structure for High-
Dimensional Data, Proc. 22nd of Very Large Databases Conference., Bombay,
India, pp. 28-39, 1996.

[6] Baskins, D. Judy home page. http://judy.sourceforge.net/ (Accessed at 2003).
[7] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and

W. Equitz. 1994. Efficient and effective querying by image content. J. Intell.
Inf. Syst. 3, 3-4 (July 1994), 231-262.
DOI=http://dx.doi.org/10.1007/BF00962238

[8] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast
subsequence matching in time-series databases. Proc. of the 1994 ACM SIG-
MOD international conference on Management of data (SIGMOD '94), Richard
Thomas Snodgrass and Marianne Winslett (Eds.). ACM, New York, NY, USA,
419-429.
DOI=http://dx.doi.org/10.1145/191839.191925

[9] Codd, E. F.: Relational completeness of database sublanguages. J. Communica-
tions of the ACM. 13(6), pp 377-387, 1970

[10] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL serv-
er's memory-optimized OLTP engine. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (SIGMOD '13). ACM,
New York, NY, USA, 1243-1254.
DOI=http://dx.doi.org/10.1145/2463676.2463710

[11] D. Benoit, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin: Automatic
SQL tuning in Oracle 10g, Proc. of Thirtieth international conference on Very
large data bases-Volume 30, pp 1098-1109, 2004.

[12] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, and D. A.
Wood. 1984. Implementation techniques for main memory database systems.
In Proceedings of the 1984 ACM SIGMOD International Conference on Man-
agement of data.

 41

[13] D.J-H. Hwang. Function-Based Indexing for Object-Oriented Databases, PhD
Thesis, Massachusetts Institute of Technology, 1994, 26-32.

[14] Daniel Abadi, Peter Boncz, and Stavros Harizopoulos. 2013. The Design and Im-
plementation of Modern Column-Oriented Database Systems. Now Publishers
Inc., Hanover, MA, USA

[15] David B. Lomet, Sudipta Sengupta, and Justin J. Levandoski. 2013. The Bw-
Tree: A B-tree for new hardware platforms. In Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013) (ICDE '13). IEEE
Computer Society, Washington, DC, USA, 302-313.
DOI=http://dx.doi.org/10.1109/ICDE.2013.6544834

[16] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 1 (3rd
Ed.): Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA.

[17] Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (June
1979), 121-137.
DOI=http://dx.doi.org/10.1145/356770.356776.

[18] E. F. Codd. 1970. A relational model of data for large shared data banks. Com-
mun. ACM 13, 6 (June 1970), 377-387.
DOI=http://dx.doi.org/10.1145/362384.362685

[19] E. G. Coffman, Jr. and J. Eve. 1970. File structures using hashing functions.
Commun. ACM 13, 7 (July 1970), 427-432
DOI=http://dx.doi.org/10.1145/362686.362693

[20] Efficient and Lightweight In-Memory Implementation of R*-Tree:
http://www.ics.uci.edu/~salsubai/rstartree.html.

[21] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduc-
tion: applications to image and text data. Proc. of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining (KDD '01).
ACM, New York, NY, USA, 245-250.
DOI=http://dx.doi.org/10.1145/502512.502546

[22] F. Färber, N. May, W. Lehner, P. Große, I. Mller, H. Rauhe, and J. Dees, The sap
hana database – an architecture overview. IEEE Data Eng. Bull., 2012.

[23] F. Haftmann, D. Kossmann and E. Lo: A framework for efficient regression tests
on database applications, The Very large data bases Journal, 16(1), pp. 145-164,
2007

[24] G. Goetz, W. J. McKenna: The Volcano optimizer generator: Extensibility and
efficient search, Proc. of IEEE Conference on Data Engineering. pp. 209-218,
1993.

[25] G. Goetz: The cascades framework for query optimization, IEEE Data Engineer-
ing Bulletin. 18(3), pp 19-29, 1995.

[26] Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book. Prentice Hall, Upper Saddle River, NJ, USA (2009).

[27] George Baklarz and Bill Wong. 2000. The Db2 Universal Database V7.1 for
Unix, Linux, Windows, and Os/2 with CD-ROM (4th ed.). Prentice Hall PTR,
Upper Saddle River, NJ, USA.

[28] Graefe, G.: Query evaluation techniques for large databases. J. ACM Computing
Surveys (CSUR). 25(2):73-169, 1993.

[29] H Zhang, G Chen, BC Ooi, KL Tan, M Zhang: “In-memory big data manage-
ment and processing: A survey”, IEEE, 2015

[30] H. Garcia-Molina and K. Salem. 1992. Main Memory Database Systems: An
Overview. IEEE Trans. on Knowl. and Data Eng. 4, 6 (December 1992), 509-
516.
DOI=http://dx.doi.org/10.1109/69.180602

 42

[31] H. Pirahesh, T.C. Leung, & W. Hasan: A rule engine for query transformation
in Starburst and IBM DB2 C/S DBMS. Proc. of IEEE Conference on Data En-
gineering, pp. 391-400, 1997.

[32] Hans-Peter Kriegel and Martin Pfeifle and Marco Pötke and Thomas Seidl, The
Paradigm of Relational Indexing: A Survey, The Paradigm of Relational Index-
ing: A Survey, 2003, In BTW, volume 26 of LNI. GI, pp 285—304, Springer.

[33] Henrich A., Six H.-W., Widmayer P.: ‘The LSD-Tree: Spatial Access to Multi-
dimensional Point and Non-Point Objects’, Proc. 15th Conf. on Very Large
Data Bases Conference, Amsterdam, The Netherlands, pp. 45-53, 1989.

[34] http://www.ibm.com/developerworks/data/library/techarticle/dm-0312stolze/,
Accessed January, 2016.

[35] IBM DB2 Spatial Extender User's Guide and Reference, Version 7 (2001).
[36] J Hellerstein. M., J. F. Naughton, and A. Pfeffer: Generalized search trees for

database systems, Proc. of The Very large data bases Conference., pp 562-573,
1995.

[37] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A.
Baransi, S. Kumar et al., Efficient implementation of sorting on multi-core simd
cpu architecture, in PVLDB ’08, 2008.

[38] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazi` eres,
S. Mitra, A. Narayanan et al., The case for ramclouds: Scalable high-performance
storage entirely in dram, OSR, 2010.

[39] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S. DeFazio: Extensible
indexing: a framework for integrating domain-specific indexing schemes into
oracle8i. Proc. of IEEE Conference on Data Engineering., pp 91–100, 2000. 

[40] J.Gray, A. Szalay, and G. Fekete. Using Table Valued Functions in SQL Server
2005 to Implement a Spatial Data Library, Technical Report, Microsoft Re-
search Advanced Technology Division 2005.

[41] K.Mahmood, T.Truong, and T.Risch: NoSQL Approach to Large Scale Analysis
of Persisted Streams, 30th British International Conference on Databases, Edin-
burgh (BICOD), Scotland, July 6-8, 2015.

[42] King Ip Lin, H. V. Jagadish, and Christos Faloutsos. 1994. The TV-tree: an in-
dex structure for high-dimensional data. The VLDB Journal 3, 4 (October
1994), pp 517-542.

[43] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream com-
puting platform,” in ICDMW ’10, 2010.

[44] M. Carey, et al: The architecture of the EXODUS extensible DBMS, Proc. 1986
international workshop on Object-oriented database systems, IEEE Computer
Society Press, 1986.

[45] M. Elhamali and L. Giakoumakis: Unit-testing Query Transformation Rules,
Proc. of 1st International Workshop on Testing Database Systems, 2008

[46] M. H. Eich, “Mars: The design of a main memory database machine,” in Data-
base Machines and Knowledge Base Machines, ser. The Kluwer International
Series in Engineering and Computer Science. Springer US, 1988.

[47] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze, V. Köppen, and G. Saake.
2013: QuEval: beyond high-dimensional indexing à la carte, Proc. of the Very
large data bases Endowment, 6(14), pp 1654-1665, 2013.

[48] M. Stonebraker and A. Weisberg, “The voltdb main memory dbms,” IEEE Data
Eng. Bull., 2013.

[49] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative scans: dynamic
bandwidth sharing in a DBMS. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 723–734, 2007.

 43

[50] M.Zhu, S.Stefanova, T.Truong, and T.Risch: Scalable Numerical SPARQL Que-
ries over Relational Databases, 4th international workshop on linked web data
management (LWDM 2014), Athens, Greece, March 28, 2014.

[51] Marcel Kornacker. 1999. High-Performance Extensible Indexing. Proc. of the
25th International Conference on Very Large Data Bases (VLDB '99), Malcolm
P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Mi-
chael L. Brodie (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 699-708.

[52] Mexima homepage,
http://www.it.uu.se/research/group/udbl/mexima

[53] Michael Stonebraker and Greg Kemnitz. 1991. The POSTGRES next genera-
tion database management system. Commun. ACM 34, 10 (October 1991), 78-
92.
DOI=http://dx.doi.org/10.1145/125223.125262

[54] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel R. Madden,
Elizabeth J. O’Neil, Patrick E. O’Neil, Alexander Rasin, Nga Tran, and Stan B.
Zdonik. C-Store: A Column-Oriented DBMS. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 553–564, 2005.

[55] Michael Stonebraker, Dorothy Moore, and Paul Brown. 1998. Object-Relational
Dbmss: Tracking the Next Great Wave (2nd ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[56] Mikael Ronström: Design and Modelling of a Parallel Data Server for Telecom
Applications, PhD Thesis, Linköping University Dissertation No 520, 1998

[57] MongoDB Inc., “Mongodb,” 2009. [Online]. Available:http://www.mon-
godb.org/

[58] MSQL, The MEMORY storage engine. 2016. [Online]. Available:
http://www.mysql.com/

[59] N. Bruno, S. Chaudhuri and D. Thomas: Generating Queries with Cardinality
Constraints for DBMS Testing, IEEE Transactions on Knowledge and Data En-
gineering, 18(12), pp 1721-1725, 2006.

[60] Navathe, Ramez Elmasri, Shamkant B. (2010). Fundamentals of database sys-
tems (6th ed.). Upper Saddle River, N.J.: Pearson Education. pp. 652–660.

[61] Oracle Inc: Query Optimization in Oracle Database 10g Release 2.
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-general-
query-optimization-10gr-130948.pdf, 2005.

[62] Oracle, “Mysql cluster,” 2016. [Online]. Available: http://www.mysql.com/
[63] Per-Ake Larson. 1988. Linear hashing with separators—a dynamic hashing

scheme achieving one-access. ACM Trans. Database Syst. 13, 3 (September
1988), 366-388. DOI=http://dx.doi.org/10.1145/44498.44500

[64] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper- pipelin-
ing query execution. In Proceedings of the biennial Conference on Innovative
Data Systems Research (CIDR), 2005.

[65] PostgreSQL version 9.3.5
http://www.postgresql.org/ftp/source/v9.3.5/

[66] Praveen Seshadri. 1998. PREDATOR: a resource for database research. SIG-
MOD Rec. 27, 1 (March 1998), 16-20.
DOI=http://dx.doi.org/10.1145/273244.273251

 44

[67] R. Bayer and E. McCreight. 1970. Organization and maintenance of large or-
dered indices. In Proceedings of the 1970 ACM SIGFIDET (now SIGMOD)
Workshop on Data Description, Access and Control (SIGFIDET '70). ACM,
New York, NY, USA, 107-141.
DOI=http://dx.doi.org/10.1145/1734663.1734671

[68] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden et al., “H-store: A high-performance, distributed main memory trans-
action processing system,” in PVLDB ’08, 2008

[69] R. Power and J. Li, “Piccolo: Building fast, distributed programs with partitioned
tables,” in OSDI ’10, 2010

[70] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. 1993. Efficient Simi-
larity Search In Sequence Databases. Proc. of the 4th International Conference
on Foundations of Data Organization and Algorithms (FODO '93), David B.
Lomet (Ed.). Springer-Verlag, London, UK, 69-84, 1993.

[71] Ravi Kanth V Kothuri, Siva Ravada, and Daniel Abugov. 2002. Quadtree and
R-tree indexes in oracle spatial: a comparison using GIS data. In Proceedings of
the 2002 ACM SIGMOD international conference on Management of data
(SIGMOD '02). ACM, New York, NY, USA, 546-557.
DOI=http://dx.doi.org/10.1145/564691.564755

[72] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S. McKinley.
2013. Taking off the gloves with reference counting Immix. In Proceedings of
the 2013 ACM SIGPLAN international conference on Object oriented program-
ming systems languages & applications (OOPSLA '13). ACM, New York, NY,
USA, 93-110.
DOI=http://dx.doi.org/10.1145/2509136.2509527

[73] Roger MacNicol and Blaine French. Sybase IQ multiplex - designed for analytics.
In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 1227–1230, 2004.

[74] S. Sanfilippo and P. Noordhuis, “Redis,” 2009.
[Online]. Available: http://redis. io

[75] S.Badiozamany, L.Melander, T.Truong, C.Xu, and T.Risch: Grand Challenge:
Implementation by Frequently Emitting Parallel Windows and User-Defined Ag-
gregate Functions, Proc. The 7th ACM International Conference on Distributed
Event-Based Systems, DEBS 2013, Arlington, Texas, USA, June 29 - July 3,
2013.

[76] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
2005. TinyDB: an acquisitional query processing system for sensor networks.
ACM Trans. Database Syst. 30, 1 (March 2005), 122-173.
DOI=http://dx.doi.org/10.1145/1061318.1061322

[77] SAP, SAP HANA, 2010. [Online]. Available: http://www.saphana.com/
[78] Smart Vortex Project - http://www.smartvortex.eu/
[79] SP-GiST: https://www.cs.purdue.edu/spgist/
[80] Stratos Idreos, Fabian Gro!en, Niels Nes, Stefan Manegold, Sjoerd Mullender,

and Martin L Kersten. MonetDB: Two Decades of Research in Column-oriented
Database Architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[81] StratosIdreos.DatabaseCracking:Towards Auto-tuning Database Kernels. CWI,
PhD Thesis, 2010.

[82] T. Lahiri, M. A. Neimat, and S. Folkman. Oracle TimesTen: An In-Memory
Database for Enterprise Applications. IEEE Data Engineering Bulletin 36(2): 6-
-13 (2013).

[83] T. Muhlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper, and T. Neumann,
Instant loading for main memory databases, in PVLDB’13, 2013.

 45

[84] T. Truong and T. Risch: Transparent inclusion, utilization, and validation of main
memory domain indexes, 27th International Conference on Scientific and Statis-
tical Database Management (SSDBM), San Diego, United States, June 29-Juli 1,
2015.

[85] T. Truong, T. Risch: Scalable Numerical Queries by Algebraic Inequality Trans-
formations, 19th International Conference on Database Systems for Advanced
Applications (DASFAA), Bali, Indonesia, April 21-24, 2014.

[86] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner,
Simd-scan: Ultra fast in-memory table scan using on-chip vector processing
units, in PVLDB ’09, 2009.

[87] T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Dis-
tributed Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis
(eds.): Functional Approach to Data Management - Modeling, Analyzing and In-
tegrating Heterogeneous Data, Springer, ISBN 3-540-00375-4,2004.

[88] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How good are query optimizers, really? In Proc.
VLDB Endow. 9, 3 (November 2015), 204-215.
DOI=http://dx.doi.org/10.14778/2850583.2850594

[89] Vishal Sikka, Franz Färber, Anil Goel, and Wolfgang Lehner. 2013. SAP
HANA: the evolution from a modern main-memory data platform to an enter-
prise application platform. Proc. VLDB Endow. 6, 11 (August 2013), 1184-
1185.
DOI=http://dx.doi.org/10.14778/2536222.2536251

[90] Volker Gaede and Oliver Günther. 1998. Multidimensional access methods.
ACM Comput. Surv. 30, 2 (June 1998), 170-231.
DOI=10.1145/280277.280279

[91] W. G. Aref and I. F. Ilyas: An extensible index for spatial databases, Proc. of
Statistical and Scientific Database Management, pp 49–58, 2001.

[92] W. Litwin and T.Risch: Main Memory Oriented Optimization of OO Queries
Using Typed Datalog with Foreign Predicates, IEEE Transactions on
Knowledge and Data Engineering, 4(6), 1992.

[93] Witold Litwin. 1988. Linear Hashing: a new tool for file and table addressing..
In Readings in database systems, Michael Stonebraker (Ed.). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA 570-581.

[94] Yi Fang, Marc Friedman, Giri Nair, Michael Rys, and Ana-Elisa Schmid. 2008.
Spatial indexing in Microsoft SQL server 2008. Proc. of the 2008 ACM SIG-
MOD international conference on Management of data (SIGMOD '08). ACM,
New York, NY, USA, 1207-1216.
DOI=http://dx.doi.org/10.1145/1376616.1376737.

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1352

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-280374

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2016

Paper I

 1

Paper I

Thanh Truong and Tore Risch. 2015. Transparent inclusion, utilization, and
validation of main memory domain indexes. In Proceedings of the 27th In-
ternational Conference on Scientific and Statistical Database Management

(SSDBM '15). ACM, New York, NY, USA,
DOI=http://dx.doi.org/10.1145/2791347.2791375

Copyright notice:

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on serv-
ers or to redistribute to lists, requires prior specific permission and/or a fee.

SSDBM '15, June 29 - July 01, 2015, La Jolla, CA, USA
ACM 978-1-4503-3709-0/15/06

Re-print with permission.

The paper is reformatted for typographic consistency.

 2

Transparent inclusion, utilization, and vali-
dation of main memory domain indexes

Thanh Truong, Tore Risch

Department of Information Technology
Box 337, SE-751 05, Sweden
Uppsala University, Sweden

{thanh.truong,tore.risch}@it.uu.se

Abstract- Main-memory database systems (MMDBs) are viable solutions
for many scientific applications. Scientific and engineering data often require
special indexing methods, and there is a large number of domain specific main
memory indexing implementations developed. However, adding an index
structure into a database system can be challenging. Mexima (Main-memory
External Index Manager) provides an MMDB where new main-memory index
structures can be plugged-in without modifying the index implementations.
This has allowed to plug-into Mexima complex and highly optimized index
structures implemented in C/C++ without code changes. To utilize new user-
defined indexes in queries transparently, Mexima automatically transforms
query fragments into index operations based on index property tables contain-
ing index meta-data. For scalable processing of complex numerical query ex-
pressions, Mexima includes an algebraic query transformation mechanism
that reasons on numerical expressions to expose potential utilization of in-
dexes. The index property tables furthermore enable validating the correctness
of an index implementation by executing automatically generated test queries
based on index meta-data. Experiments show that the performance penalty of
using an index plugged into Mexima is low compared to using the correspond-
ing stand-alone C/C++ implementation. Substantial performance gains are
shown by the index exposing rewrite mechanisms.

Keywords
Domain Indexing, Extensible Databases, Query Processing, Automatic Test-
ing.

1 Introduction
Indexing is a key factor for scalable database query processing. Most DBMSs
support one or several indexing structures, such as B-trees and hashing. It is

 3

well recognized that many scientific applications involving, e.g., data mining,
temporal queries, and spatial analyzes, require customized indexing to im-
prove performance, which motivates the need for extensible indexing frame-
works [1][16][26]. These frameworks allow implementing new indexing al-
gorithms by strictly following framework specific coding conventions and
primitives, which requires knowledge about DBMS internals. To include a
new domain indexing structure into a DBMS can also be challenging because
of third party ownership, having only binary code available, or simply being
very challenging to re-engineer.

There are many domain-indexing algorithms developed for main-memory,
for example, T-Trees [31], Cache Sensitive B+-Trees [34], Fast Architecture
Sensitive Trees [32], and Adaptive Radix Trees [33]. The issue addressed in
this paper is how to include a new main-memory domain indexing structure
into a DBMS with minimal effort. The generalized extensible indexing frame-
work Mexima (Main-memory eXternal Index Manager) enables plugging-in
main-memory index implementations in an MMDB without changing their
implementations.

When using Mexima the index extension developer needs not have
knowledge about the DBMS internals, since there is a clean separation be-
tween the database kernel and a plugged-in domain index implementation.
Only a simple interface that bridges Mexima with the untouched index imple-
mentation needs to be developed. Another important issue with domain index-
ing is how to extend the query processor so that the plugged-in index algo-
rithms are utilized in a scalable and transparent way in queries. To utilize a
new index without re-formulating queries, Mexima supports automatic query
transformations based on user-provided index property tables populated by
the index extension developer to specify meta-data about the index.

Basic access operators (BAOs) of an index are operators available for all
kinds of indexes, i.e. methods for creating, dropping, updating, accessing, and
mapping over indexed elements. In addition, each kind of index usually has
special search functions (SSFs) to utilize index specific properties for efficient
search, e.g., interval search on B-trees, and K-nearest neighbor and proximity
search on R-trees and X-trees. To utilize SSFs transparently in queries the
system must rewrite query conditions into calls to SSFs, for which Mexima
allows the index extension developer to declare SSF translation rules that
specify the rewrites.

For example, spatial proximity search can be expressed in queries using an
index sensitive function (ISF), such as distance(). The following query com-
pares indexed color histograms with a given one. Here, ? denotes query pa-
rameter:

SELECT name FROM Images i
WHERE distance(i.colorHistogram, ?) <= 0.11;

 4

If there is a spatial index on i.colorHistogram, Mexima translates the query
into an SSF call, rather than scanning all images to apply the ISF distance().

If an indexed attribute is hidden inside expressions, the query processor
cannot directly apply the SSF translation rules and fails to utilize the index.
For example, in the following similarity query the index on i.colorHistogram
is hidden inside a numerical expression, which prohibits a direct translation
into an SSF call:

SELECT name FROM Images i
WHERE 1/ (distance(i.colorHistogram , ?) + 1 >= ?;

To expose indexes hidden inside numerical expressions Mexima transparently
reformulates queries to call SSFs in order to utilize indexes in numerical query
expressions.

An important aspect when plugging-in a new index implementation is to
test that the index functionality is correct. Mexima has built-in automatic tests
procedures for both BAOs and SSFs. Mexima utilizes index meta-data stored
in the index property tables to generate test queries. This is a form of model-
based testing [19] where a model of index properties stored in Mexima is used
for automatically generating and executing test queries. For this, the index
extension developer specifies as meta-data index-specific data generating que-
ries expressed in terms of an extensible library of built-in data generating func-
tions.

In summary, our contributions are:
1. The extensible indexing system, Mexima, allows inclusion of com-

plex main-memory domain-specific index implementations in an
MMDB without code changes. In addition, Mexima makes the
plugged-in main-memory index data structures persistent.

2. In order to transparently utilize a new index in queries, the SSF
translator rewrites query fragments over indexed attributes into
SSF calls. The rewrites are driven by user populated index property
tables containing SSF translation rules that describe the operations
supported by the index.

3. Complex queries involving numerical expression over indexed at-
tributes are automatically reformulated so that the SSF translator
can rewrite them.

4. To validate correct functionality of a domain index, Mexima gen-
erates automatic test procedures driven by meta-data stored in the
index property tables.

5. The experimental evaluation investigates the overhead of using
main-memory index extensions in queries via Mexima compared

 5

to directly executing hard-coded C/C++ implementations1. Fur-
thermore, the substantial impact of the query rewrites is investi-
gated.

The following main-memory index structures have been plugged-into Mex-
ima: Main memory B-trees [30], Linear-Hashing [30], Judy-Tries [2], X-trees
[30], and R*-trees [7].

The paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 defines some terminology. Section 4 presents the architecture of Mex-
ima in detail. Section 5 presents queries used to illustrate Mexima’s query
processor in Section 5. Section 7 discusses Mexima’s model-based test gen-
erators for both BAOs and SSFs. Section 8 shows our experimental results and
evaluations. Finally, Section 9 concludes and outlines future work.

2 Related Work
Several index structures beyond B-trees and hash tables have been developed
for domain-specific data, for example: R-trees [14], Quad-trees [10], KD-trees
[23], and Tries [11]. Very few of them were implemented in DBMSs, even
though the necessity of including new and domain-specific index structures as
database indexes has been observed [1][16][26]. Some extensible indexing
frameworks have been proposed for both commercial DBMSs and database
research prototypes e.g, Oracle [27], Gist [16], and SP Gist [1]. Extensible
indexing can be divided into three stages, as illustrated by Figure 1:

Figure 1. History of extensible indexing frameworks

Stage 1:
In DBMSs without support for extensible indexing all index structures have
to be implemented and integrated with the DBMS kernel. This requires writ-
ing access method (AM) code and tightly integrating it with other components

1 Even though MEXIMA supports Java as well, here we assume C/C++ as implementation
languages.

Hash

B+-Tree

Storage, Buffer, Log

Query Processing

GiST

R-tree

R*-tree

SR-tree

R-tree

Hash

B+-Tree

Storage, Buffer, Log

Query Processing

Code to
integrate
new AM
with internal
components

Hash

B+-Tree

Storage, Buffer, Log

Query Processing

GiST

R-tree

R*-tree

SR-tree

Stage 1
Stage 2 Stage 3

 6

in the kernel, such as the storage manager, the query optimizer, and the query
executor.

Stage 2:
GiST (Generalized Search Trees) [16] is a template index structure for disk-
based search trees, i.e., B-trees and R-tree-like indexes. GiST reduces the im-
plementation effort by providing implementation code for commonly invari-
ant properties of search trees and leaving other characteristics to be specified
as user-defined index extensions. GiST itself is part of the DBMS kernel. The
index extension developer writes extension code as user defined functions fol-
lowing GiST’s conventions, without need to integrate the access method code
with DBMS internals.

Stage 3:
To improve performance and simplify the index implementations, the GiST
approach was generalized in IDS/UDO [17] and later in SP-GiST [1] to sup-
port spatial indexes. In IDS/UDO, the main idea is to redesign and separate
the GiST implementation to reduce the number of calls to user-defined func-
tions. Furthermore, unlike GiST, IDS/UDO and SP-GiST dynamically load
the index implementation at runtime. The extended GiST system is divided
into three sub-components [17]: the GiST core, the access method extensions
(AME) for index-specific accesses, and the data type adaptor (DTA) for ma-
nipulating index keys. The GiST core is part of the DBMS kernel and provides
interfaces to the AME for each new kind of index. The AME is written by the
index extension developer following GiST’s coding conventions. It interacts
with the GiST core through a set of C interfaces and callback functions. The
AME developer needs to supply 11 such callback functions. In addition, the
developer must supply DTA code. SP-GiST (Space Partitioning GiST) is a
framework for space-partitioning trees [1] supporting a wide range space par-
tition algorithms.

Mexima:
While all Gist-based approaches require re-engineering the index code in
terms of the Gist coding conventions, Mexima allows using existing main-
memory index implementations or binary code without any code modifica-
tions. An index structure implemented by a third party without knowledge of
DBMS kernel functionality can be integrated with the DBMS though Mexima
by writing some simple interface code. For index implementations without
support for persistence, Mexima provides transparent storage persistence.
Thus, Mexima makes inclusion of main-memory index implementations pos-
sible with very limited implementation efforts.

Oracle’s extensible indexing is an SQL-based framework for integrating
domain-specific indexing schemes [26]. The index developer provides opera-
tions in C, C++, Java, or SQL/PSQL for index creation, index update, and

 7

index-scans following the complex Oracle Data Cartridge Interface
(ODCIIndex) interfaces and coding conventions [26]. By contrast, Mexima
allows including new index implementations without changing any code.

While the approaches above address how to add index implementations to
DBMS kernels, another critical issue is how to extend the query processor so
that it can transparently utilize the new index structures without forcing users
to reformulate queries. For example, in order to utilize a new index in queries,
Oracle’s ODCIIndex allows associating an ISF with an index access path [26].
Conjunctive predicates where terms have the following forms are supported:

isf(…) relop <value expression>, where relop is one of the relational
operators: ≤, ≥, <,or >.
isf(…) LIKE <value expression>

Oracle provides guidance [3] [21] on how to reformulate a query to utilize
indexes when it is not exactly matching the above forms.

Rather than manual query reformulations, Mexima transforms a wide range
of query forms containing index sensitive functions and numerical expressions
into queries that contain SSF calls utilizing domain index structures.

Starburst and DB2 [22] contains an internal rule engine for transformations
of queries represented by a Query Graph Model (QGM) in C++ structures.
Rewrite rules are stored in a rule table, and classified into different classes.
Each class of rewrite rules has different rewrite heuristics. These rules rely
heavily on a rich function library in C++ to exploit and manipulate queries
representing QGMs. A rule engine is responsible for selecting rules to be ex-
ecuted along with controls how rules are fired. Similarly, Volcano [13], Cas-
cades [12], and Exodus [5] also use rules to transform relational algebra ex-
pression into physical operators.

Rather than procedural code, in Mexima the SSF rewrites are specified as
declarative index meta-data stored in the index property tables. This is possi-
ble since the SSF rewriter is designed particularly for index utilization rather
than for general query transformations as [5] [12] [13] [22].

QuEval [20] is a framework for performance evaluating spatial index im-
plementations. Based on parameters specified for each evaluated spatial index
implementation, built-in data generators produce data sets for performance
evaluations. By contrast, the purpose of Mexima’s test generator is to auto-
matically generate correctness tests based on index specific meta-data and
queries. Furthermore, unlike QuEval, new complex indexes in C/C++ can be
plugged into Mexima without code changes.

The database generator QAGen [15] provides general purpose testing of
DBMS components. It generates test databases and test queries based on sym-
bolic execution of queries. In [4] an inverse relational algebra generates query

 8

inputs for given query results. To implement unit testing for the query opti-
mizer, the framework in [8] generates test queries based on user-defined trans-
formation rules specified as trees of relational algebra operators.

In conclusion, no other system provides inclusion, validation, and utiliza-
tion of unchanged complex index implementations plugged into an extensible
main-memory DBMS.

3 Preliminaries
The terminology used in the rest of the paper is defined along with require-
ments on an index implementation for being suitable to be plugged into Mex-
ima.

3.1 Terminology
Figure 2 illustrates the components of an index extension:
• The index implementation (a) is the code implementing the index struc-

ture. It is left unchanged when plugged into Mexima.
• The index API (b) is the provided public interface to the index implemen-

tation.
• The index driver (c) is the implementation of the BAOs and SSFs of an

index calling the index API. Properties of the index driver are stored as
meta-data in the index property tables.

Figure 2. Index extension components

The above components are implemented by two kinds of developers:
• The index developer, who fully understands the algorithms and data struc-

tures used in the index implementation, develops the index code and API
independent of Mexima.

• The index extension developer, who has sufficient understanding of the
index and Mexima APIs but no knowledge of the index implementation
and the DBMS kernel, develops the index driver.

Finally, the end-user defines indexes on tables and uses them in queries with-
out concern for how they are implemented.

ab

c

 9

3.2 Prerequisites for index implementations
Mexima is designed bearing in mind the motto: It should not be necessary to
be a database kernel expert to introduce a new domain index. An index im-
plementation should thus meet the following two criterion:
• The candidate index implementation should be written in a regular pro-

gramming language such as C, C++, or Java. In order to achieve high per-
formance, C or C++ is preferable, for example to be able to plug in highly
optimized C code such as the Judy-tries package [2].

• The candidate index implementation should provide APIs for the func-
tionality of the BAOs and optional SSFs. Missing mandatory BAOs, e.g.
mapping over indexed elements, may need to be implemented in the
driver.

4 Mexima
Figure 3 shows the software layers of Mexima. Query processing uses the
query processor of Amos II [29] to call operations that access the Mexima
core. The Mexima core calls implementations of the BAOs and SSFs in the
extension driver of an index extension.

Figure 3. Mexima architecture

In the next section, we elaborate the implementation by first describing aspects
of the query processing in Amos II followed by presentation of Mexima core.

4.1 Amos II
Figure 4 illustrates the details of Mexima, including how in utilizes the Amos
II engine.

Amos II provides an object-oriented and functional query language,
AmosQL. The parser translates a query into an object calculus representation
[18] in ObjectLog, which is an extension of Datalog with objects, types, over-
loading, and foreign functions. Then the calculus rewriter transforms the un-

Query

Query Processing

Operations

Mexima core

Extension driver

Index implementation

Mexima

Index extension

Amos II

BAOs + SSFs

 10

optimized object calculus expression to improve performance. After the re-
writes, the cost-based optimizer produces an execution plan sent to the execu-
tion plan interpreter. Mexima extends the query processor with calculus re-
write rules for transparent utilization of new indexes.

AmosQL functions can be defined as foreign functions implemented in
some regular programming language, e.g. C or Java. In Mexima SSFs are
specified as foreign functions to enable query transformation of user queries
into equivalent queries calling them. By contrast, BAOs are standard opera-
tions on domain indexes implemented as C functions called from the Mexima
core when executing the operations.

In Amos II all data is stored in a continuous memory block called the da-
tabase image. The storage manager is responsible for allocation and de-allo-
cation of physical objects inside the database image. All data in a database are
internally represented as physical objects managed by the storage manager.
Physical objects allocated inside the image are persistent, which means that
they can be saved on disk and later restored. A physical object, po, is accessed
through an object handle, hdl, which is an indirect pointer to po. Amos II uses
reference counting to manage memory allocation and automatic real-time gar-
bage collection. When the reference counter of an object po in the image
reaches zero, it is passed to the garbage collector and thereafter the memory
occupied by po is marked as available for other memory allocation. Mexima
extends the storage manager of Amos II with specialized external index stor-
age managers for each index type. The garbage collector is called by the Mex-
ima core when executing index updates.

 11

Figure 4. Mexima details

4.2 Mexima core components
We now discuss in detail the components of the Mexima core. To illustrate
the functionality, we shall use an external index structure package named IDS
through our discussion and examples. It indexes integers only.

The extension loader
The extension loader loads at run-time the index extension IDS as a dynamic
library or shared object (step 1). It calls the initialization function (step 2)
a_initialize_extension() of the index driver when the index extension has been
loaded to register the index interfaces as C functions with Mexima (step 3).
The index name IDS and its registered C functions are stored in Mexima’s
BAO table (step 4).

Query Execution
Plan Interpreter

Storage
manager

AMOS II

Mexima
query
rewriter

MEXIMA core

BAO table

Cost-based
optimizer

Calculus
generator

Calculus
rewriter

. . .
Parser

Exension loader

Index storage manager

Index
interface
dispatcher

Create

Put

Map

. . .

Windows: dynamic libaries
Unix/OSX: shared objects

Index extension 1

Index extension 2

Index extension 3. . .

Interfaces = BAOs + SSFs

Mexima tester

Index
property
tables

 12

Figure 5. Extension loader’s steps

The five mandatory BAOs registered in step 3 are: create(), drop(), put(), de-
lete(), get(), and map(), where create() creates a new index while drop() re-
moves it, put() inserts a key/value pair while get() retrieves it, and delete()
removes it. The BAO map() scans the index by applying a specified mapper
function on each index entry.

Some indexes require transforming the keys into integers used as actual
keys, e.g. hashing or space filling curves. This is specified by the optional
BAO compute_key() while the optional BAO compare_key() compares two
computed keys for (in)equality.

For the representation of keys there are two variants supported:
• The index extension stores boxed keys, which are object handles managed

by the storage manager. The data type of object handles is unsigned inte-
ger, so any index extension supporting integers can store boxed keys. In
this case, the BAO compare_key() is not needed in Mexima, since com-
parisons of handles is built-in.

• If an index stores unboxed keys, i.e. the key values themselves, com-
pare_key() compares keys, while compute_key() unboxes them.

Index interface dispatcher
When the end-user has placed an index of type IDS on an attribute of a table, the in-
dex interface dispatcher (Figure 4) accesses the index by invoking the correspond-
ing registered BAOs (create(), put(), get(),etc.,) in the BAO table.

The index interface dispatcher is also responsible for maintaining reference
counters of boxed keys and values so that the extension developer need not
know about garbage collection.

Index storage manager
If the index implementation has storage facilities to persist index structures

and has registered to Mexima the optional persistency BAOs save() and re-
store(), the index storage manager will invoke them upon saving and restoring
the database.

Extension loader
(step 1) Load-extension IDS

(step 2) Init extension
a_initialize_extension(void *)

(step 3) Define index type IDS
Define_index()

BAO table

Mexima core

(step 4) Register IDS’s
interfaces

 13

If an index implementation is not persistent, i.e. it is all implemented in
main-memory; Mexima automatically serializes and de-serializes the index
entries. To save the index on disk, the index storage manager scans over the
index entries using the BAO map() and streams them to disk. Only the primary
index is made persistent, since, when restoring a table by streaming its rows
from disk, the index storage manager also builds the secondary indexes. In
case the index implementation does not balance the index structure on inser-
tion, the restored index structure may become unbalanced, and the extension
developer can then register a bulk loader and hook it to restore().

Internally, the index storage manager relies on two system hooks executed
at different states of the system: the before-image-roll-out hook is executed
when a database is saved, and the after-image-initialized hook is executed
when a database is restored. The index storage manager keeps track of all cre-
ated indexes to save and restore them.

Mexima Query Rewriter
In order to utilize a new index in queries, the Mexima query rewriter trans-
forms them to expose the SSFs of the new index. The index property table
contains the necessary meta-data to do the transformations. This is further de-
scribed in Section 6 below.

Mexima Tester
In order to validate that an index implementation is correct, the Mexima tester
automatically generates and runs tests based on meta-data in the index prop-
erty tables, as described in Section 7.

4.3 Implementation of an SSF
The index driver bridges Mexima and an index extension by implementing
BAOs and SSFs. SSFs are defined as foreign functions that also can be used
in queries. For example, if the index type IDS supports range search, it can be
implemented by the SSF foreign function IDS_select_range() registered as
follows in the initialization function of the index driver:

1 // Definition of the foreign function’s signature:

2 a_amosql("create function IDS_select_range(Function tbl, Integer pos, Num-
ber lower, Number upper)-> Object as foreign 'IDS-range-search';");

3 // Bind C function IDS_range_search address to the symbol 'IDS-range-search':

a_extfunction("IDS-range-search", IDS_range_search);

Here:
• The signature of the foreign function IDS_select_range() is defined by the

a_amosql() call. In the signature the parameter pos is the indexed position

 14

on the function tbl representing an indexed table, while lower and upper
define the range in a search.

• a_extfunction() associates the address of the C-function implementing the
SSF with a symbol used in the signature definition.

The first two arguments tbl and pos are bound when the SSF is called in a
query. The remaining arguments, here lower and upper, are called SSF pa-
rameters. They are different for different SSFs and are bound in queries re-
written by the SSF translator based on meta-data in the index property tables.
Even though the user can also call an SSF with explicit parameters specified
in queries, this is not recommended since it makes the index access non-trans-
parent.

The following snippet shows the C implementation of IDS_range_search()
in the index driver of the IDS:

1 void IDS_range_search(m_context cxt){

2 a_handle tbl = a_arg(cxt,0); // Table handle
3 int pos = a_int_arg(cxt,1); // Indexed pos
4 int l = a_int_arg(cxt,2); // lower range
5 int u = a_int_arg(cxt,3); // upper range
6 IDShead *ind=(IDShead *)mexima_identifier(pos, tbl,ids_type);
7 IDScomparer cmp = mexima_get_comparer(pos, tbl, ids_type);
8 // call the map function of IDS-API:
9 IDSmap(ind->root, l, u,
10 (IDSmapper)rangemapper, cmp, cxt);}

// the function rangemapper() is defined as:
11 int rangemapper(IDSitem *kv,m_context cxt){
12 a_bind(cxt, 4, kv->value);
13 a_emit(cxt);}

The IDS_range_search() accesses the first four function parameters from the
binding context cxt on lines 2-5. Lines 2 and 4-5 dereference the handles to
get integer values2. Line 6 assigns the pointer ind to the index structure on
position pos of table tbl. Line 7 retrieves the compare function of the IDS
registered in the BAO table. On line 9 the index API IDSmap() iterates over
the index ind and calls the function rangemapper(kv, cxt), defined on lines 11-
13, on each index key/value pair kv. On line 12, the row (value part) of kv is
bound to the result (5th parameter). Finally, the macro a_emit() emits a result
tuple to Mexima.

2 The system raises an error if the parameters are not integers.

 15

5 Illustrative Query Examples
In this section, we present a database schema and queries to serve as examples
when discussing Mexima’s query processor.

In the table images(id, hist) each row represents an image identified by id.
Search on table image often requires comparing images. However, it is expen-
sive to compare images bit by bit. The most common technique is approxi-
mating an image with its features. Thus, a comparison between images be-
comes the cheaper comparison between the images’ features. In our example,
the features on an image are represented by its color histogram stored in the
attribute hist as a vector of numbers.

To speed up search on table images, there is a B-tree index on column id
and an X-tree index [27] on column hist. X-trees supports efficient proximity
search of high-dimensional data. Main-memory implementations of B-trees
and X-trees [30] are plugged-in to Mexima.

In the following example, we use the ObjectLog representation into which
the queries are translated to illustrate the query processing.

Q1: find images q whose identifiers are between 30 and 100. In this case,
there is no input parameter:

Q1(q):-

1 images(q, hist_q) AND

2 q >= 30 AND

3 q <= 100

Q2: For a given image x find the images q whose feature vectors are closer
than epsilon (eps = 0.11). In the query, the function distance() computes the
Euclidean distance of two vectors.

Q2(x, q) :-

1 images(x, hist_x) AND

2 images(q, hist_q) AND

3 distance (hist_x, hist_q) <= 0.11

Q3: find the k = 10 closest images compared to a given image bound to x. We
use the ‘knn’ function to return the k nearest neighbors in table ‘images’ to the
input color histogram of x. knn() uses the table ‘images’ that maps from an
object identifier to its feature vectors.

 16

Q3(x, q) :-

1 images(x, hist_x) AND

2 images(q, hist_q) AND

3 (q, hist_q) in knn(hist_x, 10, #’images’)

Q4: We note that the distance() function used in Q2 expresses the distance
between vectors, but not similarity. To define similarity, we define query Q4
using the following formula: 11 + ,)݁ܿ݊ܽݐݏ݅݀ (ݍ > ݈݀ℎݏ݁ݎℎݐ

Q4 finds images q that are 90 percent similar to a given image bound to x:
Q4(x, q):-

1 images(x, hist_x) AND

2 images(q, q) AND

3 1/(1+distance(hist_x, hist_q)) >= 0.90

6 Mexima Query Rewriter
This section presents the SSF Translator. It transforms a query into an equiv-
alent one where SSF calls are exposed to the query optimizer. If this transfor-
mation is not done, the optimizer is unable to utilize the index.

The system also does other rewrite tasks not related to indexing, e.g.: view
expansion, elimination of common sub-expressions, and compile-time evalu-
ation, which are not focus of this paper.

6.1 SSF translation rules
An SSF translation rule describes how query fragments are translated to a new
format to expose SSFs. The translation rules can rewrite conjunctions in que-
ries having terms of one the following query fragment forms:

 17

Form (i): P(…iv,..) AND (iv r1 expression) AND

 (iv r2 expression) AND

 . . .

 (iv rn expression)

Here, iv is a variable bound to an indexed column of table P(…). We say iv is
an indexed variable. ri are comparison operators in the set relop, ri ∈ relop,
where relop ={=, <, >, >=, <=}.

For example, the following fragment in Q1 is of Form (i):
images(q, hist_q) AND q >= 30 AND q <= 100.

Form (ii): P(…iv,..) AND isf(…,iv, …) r1 expression AND

 isf(…,iv, …) r2 expression AND

 . . .

 isf(…,iv, …) rn expression

Here, iv is an indexed variable occurring in parameter position of an index
sensitive function isf().

For example, the following fragment in Q2 is of Form (ii):
images(q, hist_q) AND distance(hist_x, hist_q) <= 0.11

Form (iii): P(…,iv,…) AND (..,iv,..) in isf(…..,P,..)

Here the isf() is an index sensitive function that takes a table P as argument
and emits a set of rows. For example, Form (iii) occurs in Q3:

images(q, hist_q) AND (q,hist_q) in knn(hist_x, 10, #’images’)
If a query contains some fragment that matches any of Form (i), (ii), or (iii),

the query has the potential of being supported by the index on iv. If this is the
case, the query fragment should be transformed into a format where the index
is exposed through an SSF call. For each kind of index, the index developer
can define SSF translation rules, which transform query fragments that match
Form (i), (ii), or (iii), into the corresponding SSF call. The SSF translation
rules are defined as rows in the SSF translation table. Table 1 is an example
of translation rules for B-trees and X-trees indexes.

 18

Table 1 SSF translation table

itype pr ISF Relops SSF pf
1 B-tree 1 Nil >=, <= btree_select_range F
2 B-tree 2 Nil <= btree_select_open F
3 X-tree 1 distance <= xt_proximity_search T
4 X-tree 2 Knn nil xt_knn_search F

Each row represents an SSF translation rule. It has the attributes itype, pr, isf,
relops, ssf, and pf where:
• itype is a user-defined index type.
• pr is the translation rule priority for a given itype.
• isf() is an index sensitive function. isf is nil in Form (i).
• relops is a set of allowed relational operators in {=, <, >, >=, <=}. relops

is nil in Form (iii). The system knows how to infer open inequalities from
closed ones.

• ssf() is a special search function supported by the index type.
• pf is the prune and filter flag. When it is true (T), the Mexima query re-

writer applies the two-step paradigm [24], in which the prune step first
prunes irrelevant data by calling the SSF to return a small set of candidates
and then the filter step applies the original condition to carefully examine
each candidate. Here it is important that pruning is done before the filter-
ing.

For a given query fragment of Form (i), (ii), or (iii), the system finds the
matching SSF translation rules. Form (i) matches SSF translation rules where
isf is empty, Form (ii) matches rules where both isf and relops are non-empty,
while Form (iii) matches rules where there is an isf but no relops. If more than
one rule matches, the priority pr determines which one. If pr is nil and more
than one rule applies, the system will pick one of the matching rules.

In Table 1 the translation rules TR1 – TR2 together define query fragments
where B-trees interval search should be used, while TR3 define when X-trees
proximity search should be used. The proximity search requires pruning so pf
is true. Lastly, TR4 defines the translation from the ISF knn() to the SSF
xt_knn_search().

If an SSF translation rule for index type itype matches a query fragment of
Form (i), (ii), or (iii) where iv the indexed variable, the SSF translator will
replace P(.., iv, …), isf(…), and relops with the corresponding SSF defined by
the rule. If the index translator finds no applicable translation rule, the query
is kept intact.

For example, by applying rule TR1 on Q1, it is translated into calling the
SSF btree_select_range():

TQ1(q):-
1 (q,_) in btree_select_range(#’images’, 0, 30,100)

 19

Analogously, applying rule TR3 on Q2 yields the transformed query TQ2:
TQ2(x, q):-

1 image(x, hist_x)
AND

2 (q, hist_q) in xtree_proximity_search(#’images’,
 1, hist_x, 0.11) SAND

3 distance (hist_x, hist_q) <= 0.11

Since TR3 has the prune and filter flag set, line 2 in TQ2 prunes away most
images and then line 3 filters them with the full condition. The operator SAND
is an order-preserving conjunction. TQ2 exposes the X-trees index on column
hist by the SSF xtree_proximity_search().

Finally, applying rule TR4 on Q3 yields the transformed query TQ3 that
exposes the X-trees index by the SSF xt_knn_search():

TQ3(x, q):-

1 image(x, hist_x) AND

2 (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10)

For query Q4, neither of Form (i), (ii), or (iii) match since the ISF distance()
is hidden inside the numerical expression. We next discuss our general solu-
tion for this case.

6.2 Extended Algebraic Query Inequality Transformation
The AQIT algorithm [28] translates a class of numerical expressions with in-
equalities over variables indexed by B-trees into query fragments of Form (i).
The translations use a set of algebraic inequality transformations. AQIT can
transform conjunctive query fragments having terms of Form (iv):
Form (iv) P(…iv,..) AND F(iv) relop expression

Here iv is an indexed variable and F(iv) is an expression consisting of a com-
bination of transformable functions T. Currently T ∈ {+, -, /, *, power, sqrt,
abs} and the set can be extended. AQIT tries to reformulate the query condi-
tion into an equivalent equivalent condition iv relop’ F’(expression) of Form
(i) where the index is exposed to the query optimizer. The algebraic inequality
transformations in AQIT automatically determine relop’ and F’(expression).
If AQIT fails to transform the condition, the original query is retained.

 20

However, AQIT cannot translate numerical expressions as in Q4 because
the ISF distance() is hidden inside the expression. Therefore, in Mexima,
AQIT is generalized to translate inequalities over ISFs into query fragments
of Form (ii). The extended AQIT automatically transforms conjunctive frag-
ments with terms of Form (v):
Form (v) P(…,iv,…) AND F(isf(…,iv, …)) relop expression

Here F(isf(…,iv,…)) is an expression consisting of a combination of trans-
formable functions T, and relop is an inequality comparison. The extended
AQIT tries to reformulate the query fragment into isf(…,iv,…) relop’ F’(ex-
pression) of Form (ii) where the index on iv is exposed.

For Q4, the system first applies the following algebraic inequality transfor-
mation:

(A/x >= B ∧ A >0 ∧ B >0)⇔ x <= A/B
The query will be transformed to TQ4-intermediate0:

TQ4-intermediate0(x, q):-

1 images(x, hist_x) AND

2 images(q, hist_q) AND

3 (1+ distance (hist_x, hist_q)) <= 1/ 0.9

Then, the system applies the transformation:
x + A <= B ⇔ x <= B – A
The query will be transformed to TQ4-intermediate1:

TQ4-intermediate1 (x, q):-

1 images(x, hist_x) AND

2 images(q, hist_q) AND

3 distance (hist_x, hist_q) <= 1/0.9 -1

TQ4-intermediate1 matches Form (ii), which allows the SSF translator to ap-
ply translation rule TR3. This transformation produces the final TQ4:

TQ4 (x, q):-

1 images(x, hist_p) AND

2 (q, hist_q) in xtree_proximity_search(
 ‘image’, 1, hist_p, (1/0.9 - 1))

AND

3 1/(1+distance (hist_p, hist_q)) >= 0.9

 21

7 Mexima Tester
To validate that a plugged-in index implementation is correct, Mexima pro-
vides automatic testing procedures of BAOs and SSFs. Both BAOs and SSFs
are tested based on meta-data in the index property tables. For each index type,
a number of test queries are automatically generated and executed. The test
queries use data generators, which are queries specified by the extension de-
veloper that generate index keys for testing BAOs and SSFs.

The system has a library of predefined data generators implemented as for-
eign functions calling the C++ library random.h to support randomly gener-
ated numbers and vectors of numbers respecting various distributions. New
data generators can easily be defined is terms of these as queries.

For example, the built-in data generator uniform_int(n,l,u) generates n in-
tegers in range [l,u]. For complete testing, the result set always includes the
border values l and u. The data generator uniform_vec_real(n,d,l,u) generates
a set of n vectors of dimension d where each element is a real number in the
range [l,u], including l and u.

7.1 The BAO Tester
The BAO tester automatically tests that the BAOs of an index implementation
are correct, i.e. correct behavior of put(), get(), delete(), map(), and drop(). It
also provides a function to produce a report of the execution times of each
BAO.

The BAO tester is based on data generators specified as queries stored in
the index key generator table (Table 2). The extension developer populates
the table and specifies how index keys to be tested are generated. Based on
the generated keys, the BAO tester runs a number of built-in algorithms de-
scribed below to test basic index functionality.

Table 2 Index key generator table

Idxtype Index key type Index KeyGenerators
1 B-tree Number select uniform_int(1000,0,10000)
2 X-tree Vector-Number select uniform_vec_real(1000,5,0,1)
3 X-tree Vector-Number select CSV_file_rows(“colorhisto-

gram.csv”)

In Table 2 the first row specifies a correctness test of B-tree indexes by gen-
erating 1000 uniformly distributed integer keys in range 0-10000. The 2nd row
specifies a correctness test for X-trees by generating 1000 uniformly distrib-
uted vectors of real numbers of dimension 5 in range [0, 1]. The last row tests
X-trees by reading index keys from a file “colorHistogram.csv”.

Based on the index key generator table, the BAO tester will run the follow-
ing tests:

 22

• Lookup tests that all inserted keys are also stored in the index.
• Mapping tests that the mapper iterates over all inserted key/values.
• Deletion tests that iteratively deleting one key at the time works.
• Remaining verifies that no keys are remaining after all keys have been

deleted individually.
• Dropping tests that the drop() operation removes all key/values.

The result of the BAO tester is an error report that specifies for each test case,
which BAO functionality failed.

The BAO tester does the following:
1. Create two tables, the indexed table: I_Table(k, v), and the refer-

ence table: R_Table(k, v). On column I_Table.k the system puts
an index of type IDS, idx(I_Table.k), while on column R_Table.k
there is a hash index idx(R_Table.k).

2. For each test case, the BAO tester first calls the key generator. For
each generated key k and a corresponding random number v, it in-
serts a row (k,v) into both I_Table and R_Table using put(k,v).

3. For lookup, the BAO-tester iterates though the R_Table to test cor-
rectness of put() and get(). For each key/value in R_Table it tests
that the result of accessing the key in I_Table calling get() returns
the same value.

4. For mapping the BAO tester iterates over each (k,v) in I_Table us-
ing map() and tests that the key/value pair is present in R_Table.

5. For deletion, the BAO tester uses map() to iterate over all (k,v) in
I_Table calling delete(k) followed by get(k) to check that each
value is actually deleted.

6. For remaining, the system verifies that the table is empty after step
5.

7. For dropping, the table is repopulated, then drop() is called, and
eventual remaining keys are reported.

7.2 The SSF tester
The purpose of the SSF tester is to validate that the result from an SSF is
correct. Based on user-defined generators of SSF parameters, the system au-
tomatically generates test queries for each SSF translation rule of an index
type IDS. The tests are based on that the SFF translation rules provide trans-
parent rewrites of a generated test query to utilize the index through the SSF.
When an index is defined for some attribute and can be utilized by some SSF
translation rules in a test query, the query should return the same result as
when there is no index or no matching SSF translation rule.

In order to test an SSF, the user needs to specify data generators for SSF
parameters as queries stored in the SSF parameter generator table (Table 3).

 23

Table 3 SSF parameter generator table

Index
type

SSF name SSF parameter generator SSF Parame-
ter types

1 B-tree btree_se-
lect_range

select l, u
from Number l, Number u
where
l in uniform_int(100, 0,10000)
and
u in uniform_int(100, 0,10000)

(Number,
Number)

2 B-tree btree_se-
lect_open

select u
from Number u
where u in uniform_int(100,
0,10000)

(Number)

3 X-tree xtree-prox-
imity-search.

select x, d
from Vector of Number x,
 Number d
where
 x in uniform_vec_real(
 100,5,0,1) and
 d in uniform_real(100,
 0, 1.4)

(Vector of
Number,
Number)

4 X-tree xtree_knn-se-
arch

select x, k
from Vector of Number x,
 Number k
where
 x in uni-
form_vec_real(100,
 5,0,1) and

 k in uniform_int(0,5)

(Vector of
Number,
Number)

In Table 3 the first row tests btree_select_range() by generating the two SSF
parameters as 100 pairs of random integers in range [0, 1000]. The 2nd test
case validates btree_select_open() by 100 random numbers in range [0,1000].
The 3rd test case validates X-trees proximity search by generating 100 pairs
(x,d) where x is a 5D vector of random numbers in range [0,1] and d is a
random number in range [0,1.4]. The fourth test case validates KNN search
with an X-tree by generating 100 pairs (x,k) where k is the number of closest
neighbors to be tested. There can be several test cases specified per SSF.

For each test case in the SSF parameter generator table (Table 3), the SSF
tester generates one SSF validation query VQ for each SSF translation rule TR
in the SSF translation table (Table). The generated validation query VQ con-
tains a query fragment of form Fm matching the TR.

The SSF translator will rewrite the VQ using the translation rule TR when
VQ contains query fragments of form Fm matching the TR. In order to guar-
antee that no other TR matches VQ, all other translation rules matching Fm are
temporarily turned off when executing VQ. For each index type, this test pro-
cedure validates both the TRs and the SSFs.

 24

Meta-data to generate each VQ is obtained by joining the SSF translation
rule table (Table), the SSF parameter generator table (Table 3), and the index
key generator table (Table 2), to get for each test case the index key type, the
SSF name, the SSF parameter generator, and the SSF parameter types, respec-
tively. For each test case and TR, two queries VQi and VQr are generated. VQi
is a query over I_Table, which is rewritten by the chosen TR to call the SSF.
VQr is the same query over the R_Table. If the SSF is correct, both queries
should return the same result. Depending on which form Fm is matching TR
the validation queries are generated as follows:

Case 1: TR matches Form (i).
Assume the SSF parameters types in the SSF parameter generator table are
T1,.., Tm (Table 3), that IT is the index key type in the index key generator table
(Table 2), that SPG is the SSF parameter generator (Table 3) for parameters
p1,…,pm, and that ri are the relops in Form (i). Then the validation query VQi
has the following format:

select iv, v
from IT iv, Number v,
 T1 p1, T2 p2,.., Tm pm
where I_Table(iv, v) and
 (p1, p2, …,pm) in (SPG) and
 (iv r1 p1) and
 (iv r2 p2) and
 . . .
 (iv rm pm);

For example, the automatically generated validation query VQi for test case 1
in Table 3 is:

select iv, v
from Number iv, Number v, Number p1, Number p2
where I_Table(iv, v) and
 (p1, p2) in (select l, u from Number l, Number u
 where l in uniform_int(100, 0,10000) and
 u in uniform_int(100,0,10000)) and
 iv >= p1 and iv <= p2;

Case 2: TR matches Form (ii).
VQi has the following format, assuming the ISF() has arity j.

 25

select iv, v
from IT iv, Number v,
 T1 p1, T2 p2,.., Tm pm,,
 Tj res
where I_table(iv, v) and
 (p1, p2, …,pm) in (SPG) and
 res = ISF (iv, p1,..,pj-1) and
 (res r1 pj) and
 . . .
 (res rm pm);

For example, the generated validation query VQi for test case 3 in Table 3 is:
select iv, , v
from Vector of Number iv, Number v, Vector of Number p1,
 Number p2, Number res
where I_Table(iv, v) and
 (p1, p2) in (select x, d from Number x, Number d
 where x in uniform_vec_real(100,5,0,1) and
 d in uniform_real(100,0, 1.4)) and
 res = distance(iv, p1) and res<= p2;
Case 3: When TR matches Form (iii) the generator validation query has the

form:
select iv, v
from IT iv, Number v,
 T1 p1, T2 p2,.., Tm pm,,
where I_table(iv,v) and
 (p1, p2, …,pm) in (SPG) and
 (iv,v) in ISF (p1,..,pm, I_Table)

For example, the generated validation query VQi for test case 4 in Table 3 is:
select iv, v

 from Vector of Number iv, Number v, Vector of Number p1,
 Number p2
 where I_Table(iv, v) and

 (p1, p2) in (select x, k from Number x, Number k
 where x in uniform_vec_real(100,5,0,1) and k in
 uniform_int(0,5)) and

 (iv,v) in knn(p1, p2, #’images’);

The BAO and SSF testers are run on all chosen index implementations to val-
idate that they were correct. One bug in the R* package [7] and two bugs in
the X-tree implementation [30] were found by the SSF tester.

 26

8 Experiments
We measured the performance of using Mexima for main memory implemen-
tations of B-trees [30], Linear-Hashing [30], Judy-Tries [2], X-trees [30], and
R*-trees [7].

We conducted experiments in several perspectives. First, in Experiment A
we compared the coding effort of the different index implementations based
on disk-based GiST and SP-GiST with the corresponding main-memory index
extensions in Mexima w.r.t. code size.

In Experiment B, we compared the execution times of calling a plugged-in
index through the BAOs put(), get(), map(), and delete() with the execution
times of the corresponding stand-alone implementations in C/C++. The abso-
lute time difference was calculated as overhead. The overhead of both boxed
and unboxed keys were investigated.

In Experiment C, the importance for scalability of using SSF translation
rules is investigated. The queries were run with and without SSF translation
enabled.

All performance experiments were repeated 10 times, from which the av-
erage figures were calculated after removing outlier results if any.

The experiments were run under Windows 7 on an Intel (R) Core(TM) i5
760 @2.80GHz 2.93 GHz CPU with 4GB RAM, using the Visual Studio 10
32 bits C compiler.

Experiment A – Code size
Table 4 shows the number of C/C++ code lines of different index interface
implementations in PostgreSQL version 9.3.5
(http://www.postgresql.org/ftp/source/v9.3.5/) and SP-GiST version 0.0.1
[25], compared to the corresponding Mexima drivers. We excluded comments
in the comparisons. The compared code is what an index extension developer
needs to provide to interface the DBMS extensibility frameworks.

Table 4 Number of code lines'

 GiST SP-GiST Mexima Factor
B-tree 5031 -- 116 43
KD-tree -- 572 118 5
R-tree 1133 -- 120 9.5
Trie -- 580 120 5

In PostgreSQL, the GiST-based B-tree was implemented as a fully separate
module from the GiST core, while parts of the R-tree implementation are pre-
sent in the GiST core. Thus, the number of code lines for R-trees with GiST
is underestimated in the table.

Table 4 shows that the code size of including a main-memory index imple-
mentation in Mexima is 5–43 times smaller than the corresponding disk based
index plug-in with GiST.

 27

Notice that the Gist based index implementations are specially designed to
follow the Gist coding conventions, while with the Mexima framework all
used index implementation code is left unchanged, including memory alloca-
tion, which is particularly complex in Judy-tries.

To conclude, Mexima provides introduction of domain indexes with rela-
tively little coding effort for the interface between the untouched domain in-
dex implementation and the Mexima kernel. This allows to plug-in very com-
plex main-memory index implementations with small efforts.

Experiment B – Mexima BAO overhead
The purpose of this experiment is to investigate the performance overhead of
plugging-in an existing index implementation in Mexima. Figure 6 illustrates
how the execution time is spent in different layers of a plugged-in index im-
plementation.

Here:
• op: time spent to call algebra operations on an indexed table to add, delete,

access, or map.
• mc: time spent to dispatch and call the BAO function in an algebra oper-

ation. This includes time spent for type checking and automatic garbage
collection.

• ed: time spent in the index extension drivers for BAOs and SSFs.
• st: time spent on actually running the untouched index implementation

code. This is the actual work to manipulate the index, i.e. the time to run
the stand-alone C/C++ implementation.

• In the experiment, we measured the execution times for the different index
implementations both when plugging-in the implementation into Mexima
and when running the implementation as a stand-alone C/C++ program.
The total execution time for using a plugged-in index implementation is
tot = op + mc + ed + st. The Mexima overhead, o, of calling a plugged-
in index implementation is calculated as o= op + mc + ed.

Figure 6. Execution layers

Query Processing

Operations

Mexima core

Index extension driver

Stand-alone
implementation

op

mc

ed

st

 28

In the experiments, the performance of B-tree, Linear Hashing, and Judy-Trie
implementations were measured for a database of size S with uniformly dis-
tributed random key/value pairs. The execution times of put(), get(), and de-
lete() per call were measured by loading the database and then measuring the
time of doing 1000 random inserts, lookups, and random deletes, respectively.
The time to call map() was measured by iterating over the indexed table and
dividing the total time with S. The time for generating data and populating the
reference tables were excluded in all measurements.

Table 5 shows the average Mexima overheads o in microseconds for the
BAOs put(), get(), delete(), and map(). The database size S was 5 million
key/value pairs. The total overhead was measured with both boxed keys bo
and unboxed keys o. The standard deviations in all cases were less than 0.03
µs. The overhead of Mexima is well below one µs per call and particularly
low for unboxed keys, so unboxed keys are used in all remaining experiments.
Table 5 furthermore breaks down the percentages of how the overhead o is
spent in the different layers op, mc, and ed.

Table 5 Mexima overhead for different BAO calls (µs)

BAO Index bo o %op %mc %ed
Put LH 0.89 0.56 51.7% 36.2% 12.1%

B-tree 0.89 0.53 52.3% 35.8% 11.9%
Judy-trie 0.87 0.54 52% 35.3% 11.7%

Get LH 0.57 0.26 37.2% 47.1% 15.7%
B-tree 0.59 0.23 36.6% 47.6% 15.7%
Judy-trie 0.57 0.22 36% 48% 16%

Map LH 0.21 0.07 32.1% 50.9% 17%
B-tree 0.19 0.07 34.4% 49.2% 16.4
Judy-trie 0.23 0.07 33.7% 49.7% 16.6%

Delete LH 0.65 0.42 45% 41.3% 13.7%
B-tree 0.64 0.42 43.3% 42.5% 14.2%
Judy-trie 0.63 0.41 43.4% 42.5% 14.1%

Figure 7 shows insert times in microseconds of different index implementa-
tions with unboxed keys compared with the corresponding stand-alone imple-
mentations for different database sizes.

 29

Figure 7. Put () overhead

Analogously, Figure 8, Figure 9, and Figure 10 show lookup, delete, and map
time per call with unboxed keys.

As expected, stand-alone index implementations were faster than their cor-
responding plug-in indexes using the same implementation because of the
Mexima overhead. The overhead is not dependent on the database size for any
of the methods as shown in Figure 7, Figure 8, Figure 9, and Figure 10. The
system carefully makes sure that an index is not accessed more than once in
an operation, as that would make the overhead larger as the database grows.
For unboxed keys, the overhead is less than 0.6 µs and depends on the index
driver implementation of the BAO, not the database size.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ex
ec

ut
io

n
tim

e
(m

ic
ro

se
co

nd
s)

Data size (milions)

LH ST-LH Btree ST-Btree Judy ST-Judy

 30

Figure 8. Get() overhead

Figure 9. Delete()

The ease of plugging-in index implementations in Mexima without code
changes with very low overhead shows that Mexima is an excellent tool for
comparing domain index implementations. In particular not changing the in-
dex implementation allows to easily comparing highly optimized and complex
domain-index implementations such as Judy-tries with other implementations.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ex
ec

ut
io

n
tim

e
(m

ic
ro

se
co

nd
s)

Data size (milions)

LH ST-LH Btree ST-Btree Judy ST-Judy

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ex
ec

ut
io

n
tim

e
(m

ic
ro

se
co

nd
s)

Data size (milions)LH ST-LH Btree

ST-Btree Judy ST-Judy

 31

For example, Figure 7, Figure 8, and Figure 10 show that Judy-tries are better
than B-trees for inserts and lookups, but not for mapping.

Figure 10. Map()

Experiment C – Impact of SSF translation rules
The purpose of this experiment is to show the importance of Mexima rewrite
rules for scalable processing of user queries utilizing plugged-in domain in-
dexes. In Figure 11 the performance of range search query Q1 (Form (i)) with
and without the SSF translation rules is investigated for B-trees and Judy-tries.
Without the SSF translation rules the index is not utilized, so the system has
to use the map() function to iterate over the index and then do post-filtering
on every row. Figure 11 also shows that B-trees are better than Judy-tries for
interval search.

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ex
ec

ut
io

n
tim

e
(m

ic
ro

se
co

nd
s)

Data size (milions)LH ST-LH Btree

ST-Btree Judy ST-Judy

 32

Figure 11. Q1 Range search

In Figure 12 the performance of 2D KNN-search is investigated for X-trees
and R*-trees. Query Q3 (Form (ii)) is used with the relation Images populated
with 2D point vectors from a real data set [9], which is a collection of Califor-
nia road points. We enlarged the original data set to different data sizes by
randomly generating points from 1.S to 14.S with S=210480 with the same
range distribution as the origin. When SSF translation is enabled, Q3 with k
=10 scaled substantially better since the index was utilized. We also notice
that the X-tree implementation performed as good as the R*-tree implementa-
tions for the given 2D database.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of road points (thousands)

(SSF translation is OFF) B-tree map

(SSF translation is ON) B-tree interval search

(SSF translation is OFF) Judy-trie - map

(SSF translation is ON) Judy-trie - interval search-

 33

Figure 12. Q3 Knn

In Figure 13 the performance of high dimension 9D proximity search for Q2
(Form (iii)) is measured with the X-tree implementation, with and without SSF
translation rules enabled. In this experiment, we used the ColorHist database
[6]. The database comprises of 9D (3 x 3) - color histograms extracted from
S=70000 images provided by the Corel Image Database. As for the road
points, we enlarged the size of the database from 1.S to 14.S.

Figure 13. Proximity search

k=10

k= 1

Naive Knn

0

1

2

3

4

5

6

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of road points (thousands)

(SSF translation is ON) R*-tree KNN, K= 10

(SSF translation is ON) Xtree-KNN, K= 10

(SSF translation is ON) R*-tree KNN, K= 1

Naive Xtree-KNN

Naive R*-tree-KNN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of color histograms (thousands)

(SSF translation is ON) Xtree-proximity

(SSF translation is OFF) Xtree-full scan

 34

Figure 14 shows the scalability improvement by rewriting similarity queries
for Q4 (Form (v)) using the X-tree implementation and the ColorHist data-
base.

Figure 14. Similarity search

From experiment C, we conclude that SSF translation rules are critical for
scalability of Mexima’s extensible indexing, because they make the indexes
be utilized in queries. To evaluate the quality of domain index implementa-
tions, plugging-in and comparing with ease proposed domain index imple-
mentations, as in Experiment C, are critical.

9 Conclusions & Future Work
The Mexima framework allows transparent plugging-in of main-memory do-
main index implementations into a main-memory DBMS without code
changes. To plug-in a domain index implementation, the extension developer
writes a simple Mexima driver for the universal index operations (BAOs) and
the domain index specific search functions (SSFs).

To provide transparent utilization of SSFs in queries the extension devel-
oper populates an SSF translation table in which each row is an SSF transla-
tion rule that describes parameters for the query processor matching different
query fragment forms. Combined with algebraic rewrites, the SSF translation
rules provide the necessary meta-data for the query processor to generate scal-
able execution plans that utilize the index by calling its SSF operators.

To validate the correctness of new indexes, Mexima generates test queries
based on index-specific data generators specified as queries by the extension

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of color histograms (thousands)

(SSF translation is ON) X-tree index is utilized

(SSF translation is OFF) X-tree full-scan

 35

developer. The index key generator table contains queries that generate index
keys to be tested for correct BAO behavior. The SSF parameter generator
table contains queries that generate arguments of the SSF operators to be
tested. Based on these two tables and the SSF translation table, Mexima auto-
matically generates and executes test queries for the new index.

To show that existing index implementations can be transparently plugged
into Mexima, five different main-memory index implementations were eval-
uated without changing their source code. In particular, the very complex
Judy-trie index implementation [2] was included and compared with a text-
book B-tree implementation.

The overhead of Mexima for BAOs of the different plugged-in index im-
plementations was evaluated, showing that the current Mexima implementa-
tion has overhead in the sub-µs range per BAO call.

The importance of SSF translations was investigated for chosen index im-
plementations showing the SSF translation rules provide scalable performance
of declarative queries over tables indexed by plugged-in domain indexes.

The ease of plugging-in index implementations in Mexima without code
changes and with very low overhead shows that Mexima is an excellent tool
for comparing domain index implementations. In particular not changing the
index implementation allows to easily utilizing highly optimized and complex
domain-index implementations such as Judy-tries.

For future work, other kind’s indexes will be plugged into Mexima to meet
the specific requirements from other application domains. This is likely to put
additional requirements on Mexima’s query processor. Furthermore, also in-
dex performance measurements can be automated by extending the Mexima’s
tester to include performance tests.

Altogether, Mexima provides a complete and extensible platform for do-
main index integration and evaluation, as required in many scientific applica-
tions.

10 Acknowledgements
This work was supported by the Swedish Foundation for Strategic Research,
grant RIT08-0041 and by the EU FP7 project Smart Vortex.

11 References

[1] W. G. Aref and I. F. Ilyas: An extensible index for spatial databases, Proc. of
Statistical and Scientific Database Management, pp 49–58, 2001.

[2] D. Baskins: Judy home page [http://judy.sourceforge.net/], 2003.

 36

[3] D. Benoit, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin: Automatic
SQL tuning in Oracle 10g, Proc. of Thirtieth international conference on Very
large data bases-Volume 30, pp 1098-1109, 2004.

[4] N. Bruno, S. Chaudhuri and D. Thomas: Generating Queries with Cardinality
Constraints for DBMS Testing, IEEE Transactions on Knowledge and Data En-
gineering, 18(12), pp 1721-1725, 2006.

[5] M. Carey, et al: The architecture of the EXODUS extensible DBMS, Proc. 1986
international workshop on Object-oriented database systems, IEEE Computer
Society Press, 1986.

[6] Color Histogram Data Set: http://archive.ics.uci.edu/ml/datasets/Corel+Im-
age+Features

[7] Efficient and Lightweight In-Memory Implementation of R*-Tree:
http://www.ics.uci.edu/~salsubai/rstartree.html.

[8] M. Elhamali and L. Giakoumakis: Unit-testing Query Transformation Rules,
Proc. of 1st International Workshop on Testing Database Systems, 2008

[9] L. Feifei, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.H. Teng: On trip plan-
ning queries in spatial databases, Proc. of Symposium on Spatial and Temporal
Databases, pp. 273 - 290, 2005.

[10] R. A. Finkel, and J. L. Bentley: Quad trees: A data structure for retrieval on com-
posite keys. Acta Inf., vol. 4, pp 1–9, 1974.

[11] E. Fredkin: Trie memory, Communications of the ACM, 3(9), pp 490–499, 1960.
[12] G. Goetz: The cascades framework for query optimization, IEEE Data Engineer-

ing Bulletin. 18(3), pp 19-29, 1995.
[13] G. Goetz, W. J. McKenna: The Volcano optimizer generator: Extensibility and

efficient search, Proc. of IEEE Conference on Data Engineering. pp. 209-218,
1993.

[14] A. Guttman: R-trees: A dynamic index structure for spatial searching, Proc. SIG-
MOD Conf., pp 47–57, 1984.

[15] F. Haftmann, D. Kossmann and E. Lo: A framework for efficient regression tests
on database applications, The Very large data bases Journal, 16(1), pp. 145-164,
2007

[16] J Hellerstein. M., J. F. Naughton, and A. Pfeffer: Generalized search trees for
database systems, Proc. of The Very large data bases Conference., pp 562–573,
1995.

[17] M. Kornacker: High-performance extensible indexing, Proc. of Very large data
bases Conference. pp 699–708, 1999.

[18] W. Litwin and T.Risch: Main Memory Oriented Optimization of OO Queries Us-
ing Typed Datalog with Foreign Predicates, IEEE Transactions on Knowledge
and Data Engineering, 4(6), 1992.

[19] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos: A survey on
model-based testing approaches: a systematic review. Proc. of the 1st ACM in-
ternational workshop on Empirical assessment of software engineering lan-
guages and technologies, in conjunction with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), ACM, New York, NY,
USA, pp 31-36, 2007.

[20] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze, V. Köppen, and G. Saake.
2013: QuEval: beyond high-dimensional indexing à la carte, Proc. of the Very
large data bases Endowment, 6(14), pp 1654-1665, 2013.

[21] Oracle Inc: Query Optimization in Oracle Database 10g Release 2.
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-general-
query-optimization-10gr-130948.pdf, 2005.

 37

[22] H. Pirahesh, T.C. Leung, & W. Hasan: A rule engine for query transformation in
Starburst and IBM DB2 C/S DBMS. Proc. of IEEE Conference on Data Engi-
neering, pp. 391-400, 1997.

[23] J. T. Robinson: The KDB-tree: a search structure for large multidimensional dy-
namic indexes, Proc. of SIGMOD Conf., pp 10-18, 1981.

[24] S. Shekhar and S. Chawla: Spatial Databases: A Tour, Prentice Hall, ISBN:013-
017480-7, 2003

[25] SP-GiST: https://www.cs.purdue.edu/spgist/
[26] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S. DeFazio: Extensible

indexing: a framework for integrating domain-specific indexing schemes into or-
acle8i. Proc. of IEEE Conference on Data Engineering., pp 91–100, 2000. 

[27] B. Stefan, A.K. Daniel, H-P. Kriegel: The X-tree : An Index Structure for High-
Dimensional Data, Proc. of Very Large Databases Conference., pp 28-39, 1996.

[28] T. Truong, T. Risch: Scalable Numerical Queries by Algebraic Inequality Trans-
formations, Proc. Database Systems for Advanced Applications (DASFAA), pp
95-109, 2014.

[29] T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Dis-
tributed Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis
(eds.): Functional Approach to Data Management - Modeling, Analyzing and In-
tegrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2004.

[30] http://www.it.uu.se/research/group/udbl/mexima
[31] T. J. Lehman and M. J. Carey: A study of index structures for main memory da-

tabase management systems,” in PVLDB ’86, 1986.
[32] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.

Lee, S. A. Brandt et al.: Fast: Fast architecture sensitive tree search on modern
cpus and gpus, Proc. of SIGMOD, 2010

[33] V. Leis, A. Kemper, and T. Neumann: The adaptive radix tree: Artful indexing
for main-memory databases, Proc. of IEEE Conference on Data Engineering,
2013

[34] J. Rao, and K. A. Ross: Making B+-trees cache conscious in main memory. ACM
SIGMOD Record. Vol. 29. No. 2. ACM, 2000.

Paper II

 1

Paper II

Truong, Thanh and Risch, Tore.
Scalable Numerical Queries by Algebraic Inequality Transformations,

In Proceedings of 19th International Conference: Database Systems for Ad-
vanced Applications (DASFAA 2014),

Springer International Publishing, pages 95-109.
Bali, Indonesia, April 21-24, 2014.

ISBN: 978-3-319-05810-8,
DOI=10.1007/978-3-319-05810-8_7,

http://dx.doi.org/10.1007/978-3-319-05810-8_7

Copyright notice: with permission of Springer.

Re-print with permission.

The paper is reformatted for typographic consistency.

 2

Scalable Numerical Queries by Algebraic In-
equality Transformations

Thanh Truong, Tore Risch

Department of Information Technology
Box 337, SE-751 05, Sweden
Uppsala University, Sweden

thanh.truong@it.uu.se, tore.risch@it.uu.se

Abstract
To enable historical analyses of logged data streams by SQL queries, the
Stream Log Analysis System (SLAS) bulk loads data streams derived from sen-
sor readings into a relational database system. SQL queries over such log data
often involve numerical conditions containing inequalities, e.g. to find sus-
pected deviations from normal behavior based on some function over meas-
ured sensor values. However, such queries are often slow to execute, because
the query optimizer is unable to utilize ordered indexed attributes inside nu-
merical conditions. In order to speed up the queries they need to be reformu-
lated to utilize available indexes. In SLAS the query transformation algorithm
AQIT (Algebraic Query Inequality Transformation) automatically transforms
SQL queries involving a class of algebraic inequalities into more scalable SQL
queries utilizing ordered indexes. The experimental results show that the que-
ries execute substantially faster by a commercial DBMS when AQIT has been
applied to preprocess them.

1 Introduction
We first introduce a real-world scenario application under investigation in the
Smart Vortex project [15], which requires queries involving numerical expres-
sions. A factory operates some machines. On each machine, there are a num-
ber of sensors to measure different physical properties, e.g. power consump-
tion, pressure, temperature, etc. The sensors generate logs of measurements
per machine that carry a time stamp ts, a machine identifier m, a sensor iden-
tifier s, a measured value mv, and a measurement class mc for the kind of
measurements made by the sensor. Examples of measurement classes are oil
pressures of hydraulic filters and pressures of gear pumps. The logs are ana-
lyzed by bulk loading them into a relational DBMS. To speed up performance

 3

when analyzing sensors of the same kind on many different machines, there is
one table for each measurement class of each kind of physical property. To
avoid repetition of unchanged sensor readings, each measured value mv on
machine m is associated with a valid time interval bt and et indicating the
begin time and end time for mv, computed from the log time stamp ts when
the data is bulk loaded. Hence, the measurement of class mc=MC on machines
m will be stored in the table measuresMC(m, s, bt, et, mv). These tables will
contain large volumes of log data from many sensors of the same kind on
different machines.

After the data streams have been loaded into measuresMC(), the user can
issue offline historical queries to find errors on machines in the past by looking
for abnormal values of mv. This often requires search conditions containing
inequalities inside numerical expression. In our scenario, in order to improve
the performance of inequality queries over mv, a B-tree index is added on each
measuresMC.mv, denoted idx(measuresMC.mv). The following are typical
numerical query conditions on tables measuresA, and measuresB to identify
faulty behaviors of machines:
• C1: Were the measurements of class A higher than a threshold v0 = 15.6?

We ex-press the condition as 1ܥሺ݉ݒሻ:݉ݒ > .ݒ
• C2: Were the measurements of class A higher than r1 = 300 above the

expected value v1 = 15.6? We express the condition a	2ܥሺ݉ݒሻ:݉ݒ ଵݒ− > .ଵݎ
• C3: Were the measurements of class B outside the range r2 = 11 from the

ideal value v1 = 20? We express the condition as 3ܥሺ݉ݒሻ: ݒ݉| − |ଵݒ .ଶݎ<
• C4: Were the measurements of class B outside the range r3=20% from v1

= 20? We express the condition as 4ܥሺ݉ݒሻ: ቚ ଵ௩ି௩భቚ > .ଷݎ

The above conditions can be expressed in SQL. Relational databases can han-
dle SQL query conditions of type C1 efficiently, since there is an ordered in-
dex idx(measuresA.mv). However, in C2-C4 the inequalities are not defined
directly over the attribute mv but through some numerical expressions, which
makes the query optimizer not utilizing the indexes and hence the queries will
execute slowly. We say that the indexes idx(measuresA.mv) and
idx(measuresB.mv) are not exposed in C2-C4. To speed up such queries, the
DBMS vendors recommend that the user reformulate them [11], which often
requires rather deep knowledge of low-level index operations.

To transform automatically a class of queries involving inequality expres-
sions into more efficient queries where indexes are exposed, we have devel-
oped the query transformation algorithm AQIT (Algebraic Query Inequality
Transformation). We show that AQIT substantially improves performance for

 4

queries with conditions of type C2-C4, exemplified by analyzing logged ab-
normal behavior in our scenario. Without the proposed query transformations,
the DBMS will do a full scan, not utilizing any index.

AQIT transforms queries with inequality conditions on single indexed at-
tributes to utilize range search operations over B-tree indexes. In general,
AQIT can transform inequality conditions of form F(mv) ψ ε, where mv is a
variable bound to an indexed attribute A, F(mv) is an expression consisting of
a combination of transformable functions T, currently T ∈ {+, -, /, *, power,
sqrt, abs}, and ψ is an inequality comparison ψ ∈ {≤, ≥, <, >}. AQIT tries to
reformulate inequality conditions into equivalent conditions, mv ψ’ F’(ε) that
makes the index on attribute A, idx(A) exposed to the query optimizer. AQIT
has a strategy to automatically determine ψ’ and F’(ε). If AQIT fails to trans-
form the condition, the original query is retained. For example, AQIT is cur-
rently not applicable on multivariable inequalities, which are subjects for fu-
ture work.

In summary, our contributions are:
• We introduce the algebraic query transformation strategy AQIT on a class

of numerical SQL queries. AQIT is transparent to the user and does not
require manual reformulation of queries. We show that it substantially im-
proves query performance.

• The prototype system SLAS (Stream Log Analysis System) implements
AQIT as a SQL pre-processor to a relational DBMS. Thus, it can be used
on top of any relational DBMS. Using SLAS we have evaluated the per-
formance improvements of AQIT on log data from industrial equipment
in use.

This paper is organized as follows. Section 2 discusses related work. Section
3 presents some typical SQL queries where AQIT improves performance. Sec-
tion 4 gives an overview of SLAS and its functionality. Section 5 presents the
AQIT algebraic transformation algorithm on inequality expressions. Section
6 evaluates the scalability of applying AQIT for a set of benchmark queries
based on the scenario database, along with a discussion of the results. Section
7 gives conclusions and follow-up future work.

2 Related Work
The recommended solution to utilize an index in SQL queries involving arith-
metic expressions is to manually reformulate the queries so that index access
paths are exposed to the optimizer [5] [11] [13]. However, it may be difficult
for the database user to do such reformulations since it requires knowledge
about indexing, the internal structure of execution plans, and how query opti-
mization works. There are a number of tools [11] [16], which point out ineffi-
cient SQL statements but do not automatically rewrite them. In contrast, AQIT

 5

provides a transparent transformation strategy, which automatically trans-
forms queries to expose indexes, when possible. If this is not possible, the
query is kept intact.

Modern DBMSs such as Oracle, PostgreSQL, DB2, and SQL Server sup-
port function indexes [8] [10], which are indexes on the result of a complex
function applied on row-attribute values. When an insertion or update hap-
pens, the DBMS computes the result of the function and stores the result in an
index. The disadvantage of function indexes compared to the AQIT approach
is that they are infeasible for ad hoc queries, since the function indexes have
to be defined beforehand. In particular, function indexes are very expensive
to build in a populated database, since the result of the expression must be
computed for every row in the database. By contrast, AQIT does not require
any pre-computations when data is loaded or inserted into the database. There-
fore, AQIT makes the database updates more efficient, and simplifies database
maintenance.

Computer algebra systems like Mathematica [1] and Maple [4] and con-
straints database systems [7] [9] also transform inequalities. However, those
systems do not have knowledge about database indexes as AQIT. The current
implementation is a DBMS independent SQL pre-processor that provides the
index specific query rewritings.

FunctionDB [2] also uses an algebraic query processor. However, the pur-
pose of FunctionDB is to enable queries to continuous functions represented
in databases, and it provides no facilities to expose database indexes.

Extensible indexing [6] aims at providing scalable query execution for new
kinds of data by introducing new kinds of indexes. However, it is up to the
user to reformulate the queries to utilize a new index. By contrast, our ap-
proach provides a general mechanism for utilizing indexes in algebraic ex-
pressions, which complements extensible indexing. In the paper, we have
shown how to expose B-tree indexes by algebraic rewrites. Other kinds of
indexes would require other algebraic rules, which is a subject of future work.

3 Example Queries
A relational database that stores both meta-data and logged data from ma-
chines has the following three tables:
• machine(m, mm) represents meta-data about each machine installation

identified by m where mm identifies the machine model. There is a sec-
ondary B-tree index on mm.

• sensor(m, s, mc, ev, ad, rd) stores meta-data about each sensor installation
s on each machine m. To identify different kinds of measurements, e.g oil
pressure, filter temperature etc., the sensors are classified by their meas-
urement class, mc. Each sensor has some tolerance thresholds, which can

 6

be an absolute or relative error deviation, ad or rd, from the expected value
ev. There are secondary B-tree indexes on ev, ad, and rd.

• measuresMC(m, s, bt, et, mv) enables efficient analysis of the behavior of
different kinds of measurements over many machine installations over
time. The table stores measurements mv of class MC for sensor installa-
tions identified by machine m and sensor s in valid time interval [bt,et).
By storing bt and et temporal interval overlaps can be easily expressed in
SQL [3] [14]. There are B-tree indexes on bt, et, and mv.

We use the abnormality thresholds @thA for queries determining deviations
in table measuresA, @thB for queries determining absolute deviation in table
measuresB, and @thRB for queries determining relative deviation in table
measuresB. We shall discuss these thresholds in Section 6 in details.

The following queries Q1, Q2, and Q3 identify abnormalities:
Query Q1 finds when and on what machines, the pressure reading of class

A was higher than @thA from its expected value:
1 SELECT va.m, va.bt, va.et
2 FROM measures A va, sensor s
3 WHERE va.m = s.m AND va.s = s.s AND va.mv > s.ev + @thA.

AQIT has no impact for query Q1 since the index idx(measuresA.mv) is al-
ready exposed.

Query Q2 identifies abnormal behaviors based on absolute deviations:
When and for what machines did the pressure reading of class B deviate more
than @thB from its expected value? AQIT translates the query into the fol-
lowing SQL query T2:

 Q2:

1 SELECT vb.m, vb.bt, vb.et

2 FROM measuresB vb, sensor s

3 WHERE vb.m =s.m AND

 vb.s=s.s AND

4 abs(vb.mv - s.ev) > @thB

5

T2:

SELECT vb.m, vb.bt, vb.et

FROM measuresB vb, sensor s

WHERE vb.m=vb.m AND

 vb.s=s.s AND

 ((vb.mv > @thB + s.ev) OR

 (vb.mv < - @thB + s.ev))

In T2 lines 4-5 expose the ordered index idx(measuresB.mv).
Query Q3 identifies two different abnormal behaviors of the same machine

at the same time based on two different measurement classes and relative de-
viations: When and for which machines were the pressure readings of class A
higher than @thA from its expected value at the same time as the pressure
reading of class B were deviating @thRB % from its expected value? After
the AQIT transformation Q3 becomes T3:

 7

Q3:

1 SELECT va.m,greaest(va.bt,vb.bt)

2 least(va.et, vb.et)

 3 FROM measuresA va,measuresB vb,

4 sensor sa, sensor sb

5 WHERE va.m=sa.m AND

6 va.s=sa.s AND

7 vb.m=sb.m AND

8 vb.s=sb.s AND

9 va.m=vb.m AND

10. va.bt<=vb.et AND

11 va.et>=vb.bt AND

12 va.mv - sa.ev > @thA AND

13. abs((vb.mvsb.ev)/sb.ev)>@thRB

14

15

16

T3:

SELECT va.m,greatest(va.bt, vb.bt),

 least(va.et, vb.et)

FROM measuresA va, measuresB vb,

 sensor sa, sensor sb

WHERE .va.m=sa.m AND

 va.s=sa.s AND

 vb.m=sb.m AND

 vb.s=sb.s AND

 va.m =vb.m AND

 va.bt<=vb.et AND

 va.et>=vb.bt AND

 va.mv >@thA + sa.ev AND

 ((vb.mv>(1+@thRB)*sb.ev

 AND sb.ev >0)

 OR (vb.mv<(1+@thRB)*sb.ev

 AND sb.ev<0)

 OR (vb.mv<(-@thRB+1)*sb.ev
 AND sb.ev>0)

 OR (vb.mv>(-@thRB+1)*sb.ev

 AND sb.ev<0)

Lines 10-11 in Q3 selects temporal overlap of the time interval [va.bt, va.et]
with [vb.bt, vb.et]. The functions greatest(va.bt, vb.bt) and least(va.et, vb.et)
return the maximum and minimum values of their two arguments, respec-
tively. These functions are supported by Oracle, MySQL, DB2 and Post-
greSQL but not by SQL Server [14]. Therefore, we defined greatest(x, y) and
least(x, y) as user defined functions for SQL Server.

In T3 line 13 exposes idx(measuresA.mv) and lines 14-16 expose
idx(measuresB.mv).

4 Stream log analysis system (SLAS)
Figure 1 illustrates the architecture of SLAS. It uses a datastream management
system, DSMS, to process raw streams of measurements from different ma-
chines. The log writer receives from the DSMS a stream of tuples with format
(mc, m, s, ts, mv) specified as a continuous query. The log writer produces
once per system determined time interval a CSV file of tuples (m, s, bt, et, mv)
for each measurement class mc to be loaded into the corresponding table
measuresMC. Here, [bt,et) is the valid time interval for mv, computed from ts.
When the log writer has written a CSV file it notifies the log loader for meas-
urement class mc, which bulk loads the new log file rows into the correspond-
ing measurement log table measuresMC.

 8

In order to limit and customize the amount of log data stored in the DBMS
the log deleter continuously deletes log data from the DBMS according to user
specified configuration parameters.

The user can analyze the stored data streams by issuing historical SQL que-
ries over loaded log data through the AQIT processor. The strategy used by
AQIT to improve numerical SQL queries is the focus of this paper.

Figure 1. Stream Log Analyse System

Figure 2 illustrates the query processing of AQIT. An SQL query is first
parsed into an internal query in a Datalog dialect [12]. The AQIT rewriter
transforms the Datalog query into an equivalent index exposed query. The SQL
Generator transforms the index exposed Datalog query into an equivalent
shipped SQL query sent to the back-end DBSM through JDBC for optimiza-
tion and evaluation.

DSMS

Raw streams

Log stream

Log Writer

CSV files

Log Loader

DBMS

Log Deleter

Bulk delete

AQIT

Log Loader

M
ac

hi
ne

s

SQL queries

 9

Figure 2. AQIT Preprocessor

5 Algebraic Query Inequality Transformation
To explain the AQIT transformations we need the following definitions:

Definition 1: A source predicate r(…) of a query is a predicate that represents
access to a relation named r.
Definition 2: If there is a B-tree index idx(r.a) on some attribute a of a source
predicate r(…a…), we say that r is an indexed predicate.
Definition 3: If there is an occurrence of a variable v representing idx(r.a) in
an indexed predicate r(…v…) of a query, we say that v is an indexed variable
in the query.
Definition 4: If there is an inequality ψ (v,x) where v is an indexed variable,
we say that the indexed variable v is exposed by the inequality predicate ψ.

In this section, we use Q1 and Q2 to show how AQIT works. First the parser
translates Q1, and Q2 into the following Datalog queries DQ1 and DQ2:

DQ1(m,bt,et)

 measuresA(m,s,bt,et,mv) AND

 sensor(m,s,_,_,ev,_,_) AND

DQ2(m,bt,et)

 measuresA(m,s,bt,et,mv) AND

 sensor(m,s,_,_,ev,_,_) AND

 v1 = mv – ev AND

SQL query

Query Parser

SQL
Generator

AQIT rewriter

DataLog

Index exposed query

Shipped
SQL

DBMS

 10

 v1 = ev + @thA AND

 mv > v1

 v2 = abs(v1) AND

 v2 > @thA

Here, the source predicates measuresA(m,s,bt,et,mv) and
measuresB(m,s,bt.et,mv) represent relational tables for two different measure-
ment classes. For both tables there is a B-tree index on mv to speed up com-
parison and proximity queries, and therefore measuresA() and measuresB()
are indexed predicates and the variable mv is an indexed variable. In Q1, the
index idx(measuresA.mv) is already exposed because there is a comparison
between measuresA.mv and variable v1, so AQIT will have no effect.

In Q2, the index idx(measuresB.mv) is not exposed by the inequality pred-
icate v2 > @thB since the inequality is defined over a variable v2, which is
not bound to the indexed attribute measuresB.mv. Here AQIT transforms the
predicates to expose the index idx(measuresB.mv) so in T2 idx(measuresB.mv)
is exposed in both OR branches.

5.1 AQIT Overview
The AQIT algorithm takes a Datalog predicate as input and returns another
semantically equivalent predicate that exposes one or several indexes, if pos-
sible. AQIT is a fixpoint algorithm that iteratively transforms the predicate to
expose hidden indexes until no further indexes can be exposed. The full
pseudo code can be found in [17].

The transformations are made iteratively by the function transform_pred()
in Listing 1. At each iteration, it invokes three functions, called chain(), ex-
pose(), and substitute(). chain() finds some path between an indexed variable
and an inequality predicate that can be exposed, expose() transforms the found
path so that the index becomes exposed, and substitute() replaces the terms in
the original predicate with the new path.

Listing 1 Transform predicate
function transform_pred(pred):
input: A predicate pred
output: A transformed predicate or the original
pred
begin

if pred is disjunctive then

set failure = false
/*result list of transformed branches*/
set resl = null
do /*transform each branch*/

set b = the first not transformed branch in
pred
set nb = transform_pred(b)/*new branch*/
if nb not null then add nb to resl
else set failure = true

 11

until failure or no more branch of pred to try
 if not failure then
 /*return a disjunction from resl*/
 return orify(resl)
 end if

else if pred is conjunctive then

set path = chain(pred)
if path not null then

set exposedpath = expose(path)
if exposedpath not null then
 return substitute(pred, path, exposed-
path)
end if

end if
end if
return pred

end

Chain: The chain() algorithm tries to produce a path of predicates that links
one indexed variable with one inequality predicate. If there are multiple in-
dexed variables a simple heuristic is applied. It sorts the indexed variables
decreasingly based on selectivities of the indexed attributes, which can be ob-
tained first from the backend DBMS. The path must be a conjunction of trans-
formable terms that represent expressions transformable by AQIT. Each trans-
formable term in a path has a single common variable with adjacent terms.
Such a chain of connected predicates is called an index inequality path (IIP).
Query DQ2 has the following IIP called Q2-IIP from the indexed variable mv
to the inequality v2 > @thB, where the functions ‘–‘ and ‘abs’ are transform-
able:

Q2-IIP: measuresB(m, s, bt, et, mv) v1=mv - ev v2=abs(v1) v2>@thB.

In this case Q2-IIP is the only possible IIP, since there are no other unexposed
index variables in the query after Q2-IIP has been formed. The following
graph illustrates Q2-IIP, where nodes represent predicates and arcs represent
the common variable of adjacent nodes:

Figure 3. Q2-IIP

v1= mv -ev

measuresB(m, s bt, et, mv)
v2=abs(v1)

v2 > @thB
mv

v1

v2

 12

An IIP starts with an indexed origin predicate and ends with an inequality
destination predicate. The origin node in an IIP is always an indexed predicate
where the outgoing arc represents one of the indexed variables.

chain() is a backtracking algorithm trying to extend partial IIPs consisting
of transformable predicates from an indexed variable until some inequality
predicate is reached, in which case the IIP is complete. The algorithm will try
to find one IIP per indexed variable. If there are several common variables
between transformable terms, chain() will try each of them until a complete
IIP is found. If there are other not yet exposed ordered indexes for some source
predicates, the other IIPs may be discovered later in the top level fixpoint it-
eration.

The chain() procedure successively extends the IIP by choosing new trans-
formable predicates q not on the partial IIP such that one of q’s arguments is
the variable of the right-most outgoing arc (mv in our case) of the partial IIP.
For DQ2 only the predicate v1=mv-ev can be chosen, since mv is the outgoing
arc variable and ‘–‘ is the only transformable predicate in DQ2 where mv is
an argument. When there are several transformable predicates, chain() will try
each of them in turn until the IIP is complete or the transformation fails.

An IIP through a disjunction is treated as a disjunction of IIPs with one
partial IIP per disjunct in Listing 1. In this case, the index is considered utilized
if all partial IIPs are complete.

Expose: The expose() procedure is applied on each complete IIP in order to
expose the indexed variable. The indexed variable is already exposed if there
are no intermediate nodes between the origin node and the destination node in
the IIP. For example, the IIP for Q1 is Q1-IIP: measuresA(m, s, bt, et, mv)
mv>v1. Here the indexed variable mv is already exposed to the inequality.
Therefore, in this case expose() returns the input predicate unchanged.

The idea of expose() is to shorten the IIP until the index variable is exposed
by iteratively combining the two last nodes through the algebraic rules in Ta-
ble 4 into larger destination nodes while keeping the IIP complete. To keep
the IIP complete the incoming variable of the last node must participate in
some inequality predicate. As an example, the two last nodes in Q2-IIP in
Figure 3 are combined into a disjunction in Figure 4. Here the following al-
gebraic rule is applied: R10: |x| > y (x > y ∨ x < - y).

Figure 4. Q2-IIP after the first reduction

v1= mv -ev

measuresB(m, s bt, et, mv)

v1> @thB
OR v1<-@thB

mv

v1

 13

The algebraic rule R10 exposes a variable x hidden inside abs() of an inequal-
ity. The following table shows how R10 is applied on the two last nodes in
Figure 3 to form the new predicate in Figure 4.

Table 1 Applying R10

Before After

v2 = abs(v1) AND v2 > @thB (v1 > @thB OR v1 < -@thB)

By iteratively exposing each variable on the IIP, the indexed variable (and the
index) will possibly be exposed. For example, Q2-IIP in Figure 4 is reduced
into Figure 5 by applying the algebraic rules R3: x - y > z x > y+ z and R4:
x - y < z x < y+ z.

Figure 5. Q2-IIP after the second reduction

The following two tables show how rules R3 and R4 have been applied:

Table 2 Applying R3
Before After

v1 = mv –ev AND
v1 > @thB

v3 = ev + @thB AND
 mv > v3

Table 3 Applying R4
Before After

v1 = mv –ev AND
v1 < -@thB

v4 = ev -@thB AND
mv < v4

The new variables v3 and v4 are created when applying the rewrite rules to
hold intermediate values.

In Figure 5 there are no more intermediate nodes and the index
idx(measuresB.mv) is exposed, so expose() succeeds.

expose() may fail if there is no applicable algebraic rule when trying to
combine some two last nodes, in which case the chain() procedure will be run
again to find a next possible IIP until as many indexed variables as possible
are exposed.

Substitute: When expose() has succeeded, substitute() updates the original
predicate by replacing all predicates in the original IIP, except its origin, with

measuresB(m, s bt, et, mv)

mv> v3
OR mv < v4

mv

 14

the new destination predicate in the transformed IIP [17]. For Q2 this will
produce the final transformed Datalog query:

DQ2(m,bt,et) measuresB(m,s,bt,et,mv) AND

 sensor(m, s, _,_,ev,_,_) AND

 v3 = ev + @thB AND

 v4 = ev -@thB AND

 (mv < v4 OR mv > v3)

The Datalog query is the translated by the SQL Generator into SQL query T2.

5.2 Inequality Transformation Rules
Table 4 the algebraic rewrite rules currently used by AQIT are listed. The list
can be extended for new kinds of algebraic index exposures. In the rules, x, y,
and z are variables and ψ denotes any of the inequality comparisons ≥, ≤,<, or
>, while ψ--1 denotes the inverse of ψ. CP denotes a positive constant (CP >
0), while CN denotes a negative constant (CN < 0). Each rule shows how to
expose the variable x hidden inside an algebraic expression to some inequality
expression.

Table 4 Algebraic inequality transformations

R1
(x + y) ψ z ⇔ x ψ (z – y)

R2
(y + x) ψ z ⇔ x ψ (z – y)

R3
(x - y) ψ z ⇔ x ψ (z + y)

R4
(y - x) ψ z ⇔ x ψ -1 (y – z)

R5
(x * CP) ψ z ⇔ (x ψ z/CP)

R6
(x * CN) ψ z ⇔ (x ψ -1 z/CN)

R7
x/y ψ z ∧ y!=
0

⇔ (x ψ y*z ∧ y > 0) ∨ (x ψ -1 z*y ∧ y < 0)

R8
y/x ψ z ⇔ (y/z ψ x ∧ x*z > 0)

∨ (y/z ψ-1 x ∧ x*z < 0)
∨ (y = 0 ∧ 0 ψ z)

R9
|x| ≤ y ⇔ (x ≤ y ∧ x ≥ - y)

R10
|x| ≥ y ⇔ (x ≥ y ∨ x ≤ - y)

 15

R11 ψ y ⇔ x ψ y2

R12
xy ψ z ⇔ (x ψ ∧ y > 0)

∨ (x ψ -1 ∧ y < 0)
∨ (x ψ z ∧ y = 0)

R13
(x+ y)/x ψ z ⇔ (1+ y/x) ψ z

R14
|(x - y) / y | > z ⇔ (x > (z + 1)* y ∧ y > 0) ∨ (x < (z + 1)*

y ∧ y < 0)
∨ (x < (- z+ 1)* y ∧ y > 0)∨ (x > (- z +
1)* y ∧ y < 0)

6 Experiment Evaluation
We experimentally compared the performance of a number of typical queries
finding different kinds of abnormalities based on 16000 real log files from two
industrial machines. To simulate data streams from a large number of ma-
chines, 8000 log files were constructed by pairing the real log files two-by-
two and then time-stamping their events based on off-sets from their first time-
stamps. This produces realistic data logs and enables scaling the data volume
by using an increasing number of log files.

6.1 Setup
To investigate the impact of AQIT on the query execution time, we run the
SLAS system with SQL Server™ 2008 R2 as DBMS on a separate server
node. The DBMS was running under Windows Server 2008 R2 Enterprise on
8 processors of AMD Opteron ™ Processor 6128, 2.00 GHz CPU and 16GB
RAM. The experiments were con-ducted with and without AQIT prepro-
cessing.

6.2 Data
Figure 6 is a scatter plot from a small sampled time interval of pressure read-
ings of class A. This is an example of an asymmetric measurement series with
an initial warm-up period of 581.1 seconds.

x

y
z

y
z

 16

Figure 6. Pressure measured of class A

Figure 7 Pressure measured of class B

The abnormal behavior in this case is that the measured values are larger than
the expected value (17.02) within a threshold. When the deviation threshold
is 0 all measurements are abnormal, while when the threshold is 359.44 no
measurements are abnormal. For example, Q1 finds when a sensor reading of
class A is abnormal based on threshold @thA that can be varied.

Figure 7 plots pressure readings of measurements of class B over a small sam-
pled time interval. Here the abnormality is determined by threshold @thB,
indicating absolute differences between a reading and the expected value
(20.0), as specified in Q2. When the threshold is 0 all measurements are ab-
normal, while when the threshold is 20.0 no measurements are abnormal.

In addition, the abnormality of measurements of class B is determined by
threshold @thRB as in Q3, indicating relative difference between a reading

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500

Pr
es

su
re

 (b
ar

)

Timestamp (second)

0

5

10

15

20

25

30

0 20 40 60 80

Pr
es

su
re

 (b
ar

)

Timestamp (second)

 17

and the expected value. When the relative deviation threshold is 0%, no meas-
urements are abnormal, while when the threshold is 100% all measurements
are abnormal.

Figure 8. Thresholds and selectivity mappings

6.3 Benchmark queries
We measured the impact of index utilization exposed by AQIT by varying the
abnormality thresholds @thA for queries determining deviations in
measuresA, and the thresholds @thB and @thRB for queries determining de-
viations in measuresB. The larger the threshold values the fewer abnormalities
will be detected. We also defined three other benchmark queries Q4, Q5, and
Q6. All the detailed SQL and Datalog formulations before and after AQIT for
the benchmark queries are listed in [18].

• Q4 identifies when the pressure readings of class B deviates more than
@thB for the machines in a list machine-models of varying length. Here,
if a query spans many machine models the impact of AQIT should de-
crease since many different index keys are accessed.

0
10

20
30

40
50
60

70
80

90
100

0 50 100 150 200 250 300 350 400

In
de

x
se

le
ct

iv
ity

 id
x(

m
ea

su
re

sA
)(

%
)

Threshold @thA (bar)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

In
de

x
se

le
ct

iv
ity

 id
x(

m
ea

su
re

sB
)(

%
)

Threshold @thB (bar)

0
10

20
30
40

50
60

70
80
90

100

0 20 40 60 80 100

In
de

x
se

le
ct

iv
ity

 id
x(

m
ea

su
re

sB
)(

%
)

Threshold @thRB (%)

(A) (B)

(C)

 18

Q4:

SELECT vb.m, vb.bt, vb.et

FROM measuresB vb, sensor s,

 machine ma

WHERE vb.m = s.m AND

 va.s=s.s AND

 vb.m = ma.m AND

 ma.mm in@machine-models AND

 abs(vb.mv - s.ev) > @thB

T4:

SELECT vb.m, vb.bt, vb.et

FROM measuresB vb, sensor s,

 machine ma

WHERE vb.m = s.m AND

 va.s=s.s AND

 vb.m = ma.m AND

ma.mm in @machine-models AND

 (vb.mv > @thB + s.ev

 OR vb.mv < - @thB + s.ev)

• Q5 identifies when the pressure reading of class B deviates more than
@thB for two specific machine models using a temporal join. The query
involves numerical expressions over two indexed variables, which are
both exposed by AQIT. See [18] for details.

• Query Q6 is a complex query that identifies a sequence of two different
abnormal behaviors of the same machine happening within a given time
interval, based on two different measurement classes. On what machines
the pressure readings of class B were out-of-bounds more than @thB
within 5 seconds after the pressure readings of class A were higher than
@thA from the expected value. Here, both idx(measuresA.mv) and
idx(measuresB.mv) are exposed by AQIT. See [18] for de-tails.

6.4 Performance measurements
To measure performance based on different selectivities of indexed attributes,
in Figure 8 we map the threshold values to the corresponding measured index
selectivities of idx(measuresA.mv) and idx(measuresB.mv). 100% of the ab-
normalities are detected when any of the thresholds is 0 and thresholds above
the maximum threshold values (@thA=359.44, @thB=20.0, and
@thRB=100%) detect 0% abnormalities.

Experiment A varies the database size from 5GB to 25GB while keeping the
selectivities (abnormality percentages) at 5% and a list of three different ma-
chine models in Q4.

Figure 9 shows the performance of example queries Q2, Q3, Q4, Q5, and Q6
(without AQIT) and their corresponding transformed queries T2, T3, T4, T5,
and T6 (with AQIT) when varying the database size from 5 to 25 GB. The
original queries without AQIT are substantially slower since no indexes are

 19

exposed and the DBMS will do full scans, while for transformed queries the
DBMS backend can utilize the exposed indexes.

Experiment B varies index selectivities of idx(measuresA.mv) and
idx(measuresB.mv) while keeping the database size at 25 GB and selecting
three different machine models in Q4. We varied the index selectivities from
0% to 100%. Figure 10 presents execution times of the all benchmark queries
with and without AQIT.

Without AQIT, the execution times for Q2 - Q6 stay constant when varying
the selectivity since no index is utilized and the database tables are fully
scanned.

Figure 9. All queries while changing DB size

T2

Q2

T3

Q3

T4

Q4

T5

Q5
Q6

T7

Q7

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

Ex
ec

ut
io

n
tim

es
 (s

ec
)

Database size (GB)
T2 Q2 T3 Q3 T4 Q4

T5 Q5 T6 Q6 T7 Q7

 20

Figure 10. All queries while changing selectivities

Figure 10 shows that AQIT has more effect the lower the selectivity, since
index scans are more effective for selective queries. For non-selective queries
the indexes are not useful. When all rows are selected the AQIT transformed
queries are slightly slower than original ones; the reason being that they are
more complex. In general AQIT does not make the queries significantly
slower.

Experiment C varies the number machine models in Q4 from 0 to 25 while
keeping the database size at 25 GB and the selectivity at 5%, as illustrated by
Figure 11. It shows that when the list is small the transformed query T4 scales
much better than the original query Q4. However, when the list of machine
increases, T4 is getting slower. The reason is that the index idx(measuresB.mv)
is accessed once per machine model, which is faster for fewer models.

Figure 11. Execution times of Query 4 when varying the list of machine models

T2

Q2

T3

Q3

T4

Q4

T5

Q5

T6

T6

Q6

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Ex
ec

ut
io

n
tim

e
(s

ec
)

Selectivity (%)

T2 Q2 T3 Q3 T4 Q4

T5 Q5 T6 Q6 T7 Q7

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Ex
ec

ut
io

n
tim

es
 (s

ec
on

d)

Number of machine models

Q5

T5

 21

The experiments A, B, and C show that AQIT improves the performance of
the benchmark queries substantially and will never make the queries
significantly slower. In general AQIT exposes hidden indexes while the
backend DBMS decides whether to utilize them or not.

7 Conclusion & Future work
In order to improve the performance of queries involving complex inequality
expression, we investigated and introduced the general algebraic query trans-
formation algorithm AQIT. It transforms a class of SQL queries so that in-
dexes hidden inside numerical expressions are exposed to the back-end query
optimizer.

From experiments, which were made on a benchmark consisting of real log
data streams from industrial machines, we showed that the AQIT query trans-
formation substantially improves query execution performance.

We presented our general system architecture for analyzing logged data
streams, based on bulk loading data streams into a relational database. Im-
portantly, looking for abnormal behavior of logged data streams often requires
inequality search conditions and AQIT was shown to improve the perfor-
mance of such queries.

We conclude that AQIT improves substantially the query performance by
exposing indexes without making the queries significantly slower.

Since inequality conditions also appear in spatial queries we plan to extend
AQIT to support transforming spatial query conditions as well user defined
indexing. We also acknowledge that the inequality conditions could be more
complex with multiple variables and complex mathematical expression, which
will require other algebraic rules.

8 Acknowledgements
The work was supported by the Smart Vortex EU project [15].

9 References

[1] Andrew, G.L. Cain, S. Crum, T.D. Morley, Calculus Projects Using Mathemat-
ica. McGraw Hill (1996).

[2] T.Arvind and M. Samuel. Querying continuous functions in a database system,
Proc. of SIGMOD 2008, Vancouver, Canada, 791 – 804.

[3] J.Celko. SQL for Smarties (Fourth Edition): Advanced SQL Programming,
ISBN: 978-0-12-382022-8, 2011.

 22

[4] C.M. Chang. Mathematical Analysis in Engineering, Cambridge University Press
(1994)

[5] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaït, and M. Ziauddin. Automatic
SQL Tuning in Oracle 10g, Proc. of Very Large Database 2004, Toronto, Can-
ada, 1098-1109

[6] M.Y. Eltabakh, R. Eltarras, W.G. Aref, Space-Partitioning Trees in PostgreSQL:
Realization and Performance, Proc. of ICDE 2006, Atlanta, Georgia, USA,  100
– 112.

[7] K.Gabriel, L.Leonid, and P.Jan: Constraint Databases. ISBN 978-3-642-08542-
0, Springer Berlin Heidelberg, 21-54.

[8] J.Gray, A. Szalay, and G. Fekete. Using Table Valued Functions in SQL Server
2005 to Implement a Spatial Data Library, Technical Report, Microsoft Research
Advanced Technology Division 2005.

[9] S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex
spatial queries, Proc. of SIGMOD 1998, Seattle, Washington, 213-224.

[10] D.J-H. Hwang. Function-Based Indexing for Object-Oriented Databases, PhD
Thesis, Massachusetts Institute of Technology, 1994, 26-32.

[11] Leccotech. LECCOTECH Performance Optimization Solution for Oracle, White
Paper, http://www.leccotech.com/, 2003.

[12] W. Litwin and T. Risch. Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates, IEEE Transactions on Knowledge
and Data Engineering, Vol. 4, No. 6, December 1992.

[13] Oracle Inc. Query Optimization in Oracle Database 10g Release 2. An Oracle
White Paper, June 2005.

[14] R.T. Snodgrass. Developing Time-Oriented Database Applications in SQL ,
Morgan Kaufmann Publishers, Inc., San Francisco, ISBN 1-55860-436-7, 1999

[15] Smart Vortex Project - http://www.smartvortex.eu/
[16] Quest Software. Quest Central for Oracle: SQLab Vision, http://www.quest.com,

2003.
[17] http://www.it.uu.se/research/group/udbl/aqit/PseudoCode.pdf
[18] http://www.it.uu.se/research/group/udbl/aqit/Benchmark_queries.pdf

Paper III

 1

Paper III

Minpeng Zhu, Silvia Stefanova, Thanh Truong, and Tore Risch.
 Scalable Numerical SPARQL Queries over Relational Databases,

 In Proceedings of the Workshops of the EDBT/ICDT, 2014 Joint Confer-
ence, pages 257—262.

Athens, Greece, March 28, 2014.
 http://ceur-ws.org/Vol-1133/paper-41.pdf,

Copyright notice: (c) 2014, Copyright is with the authors. Published in the
Workshop Proceedings of the EDBT/ICDT 2014 Joint Conference (March

28, 2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution
of this paper is permitted under the terms of the Creative Commons license

CC-by-nc-nd 4.0. Re-print with permission.

Re-print with permission.

The paper is reformatted for typographic consistency.

 2

Scalable Numerical SPARQL Queries over
Relational Databases

Minpeng Zhu, Silvia Stefanova, Thanh Truong, Tore Risch
Department of Information Technology, Uppsala University, Sweden

Department of Information Technology, Uppsala University
Box 337, SE-75105 Uppsala, Sweden

{Minpeng.Zhu, Silvia.Stefanova, Thanh.Truong, Tore.Risch}@it.uu.se

ABSTRACT
We present an approach for scalable processing of SPARQL queries to RDF
views of numerical data stored in relational databases (RDBs). Such queries
include numerical expressions, inequalities, comparisons, etc. inside FIL-
TERs. We call such FILTERs numerical expressions and the queries - numer-
ical SPARQL queries. For scalable execution of numerical SPARQL queries
over RDBs, numerical operators should be pushed into SQL rather than exe-
cuting the filters as post-processing outside the RDB; otherwise the query ex-
ecution is slowed down, since a lot of data is transported from the RDB server
and furthermore indexes on the server are not utilized. The NUMTranslator
algorithm converts numerical expressions in numerical SPARQL queries into
corresponding SQL expressions. We show that NUMTranslator improves sub-
stantially the scalability of SPARQL queries based on a benchmark that anal-
yses numerical logs stored in an RDB. We compared the performance of our
approach with the performance of other systems processing SPARQL queries
to RDF views of RDBs and show that NUMTranslator improves substantially
the scalability of numerical queries compared to the other systems’ ap-
proaches.

Keywords

SPARQL queries; RDF views of relational databases; numerical expressions;
query rewrites; query optimization

1 Introduction
The Semantic Web provides uniform data representation for integrating data
from different data sources by using established well-known formats like

 3

RDF, RDFS, OWL, and the standard query language SPARQL. Semantic
Web seems promising to integrate and search industrial data [2].

Our application scenario is from the industrial domain, where sensors on
machines such as trucks, pumps, kilns, etc., produce large volumes of log data.
Such log data describes measured values of certain components at different
times and can be used for analyzing machine behavior. Furthermore, the geo-
graphic locations of machines are often widely distributed and maintained lo-
cally in autonomous RDBs called log databases. We are developing the FLOQ
(Federated LOg database Query) system, which is a system for historical anal-
yses over federations of autonomous log databases using SPARQL queries.
To discover abnormal machine behaviors, a user of FLOQ defines SPARQL
queries to these log databases. FLOQ processes a SPARQL query by first
finding the relevant log databases containing the desired data, then sending
local SPARQL queries to them, and finally collecting the local query results
to obtain the final result.

In this paper we concentrate on scalable historical analyses by SPARQL
queries of log data stored in a single relational database. Suspected abnormal
machine behaviors are discovered and analyzed by specifying numerical
SPARQL queries to an RDF view of the RDB. The queries analyze log data
through numerical FILTERs containing numerical operators [11]. For exam-
ple, query Q1 retrieves the machine identifiers m for which a sensor has meas-
ured values mv of measurement class A higher than the expected values ev by
a threshold value @thA during the time from bt to time et. Here <prod> de-
notes the URI for the RDF view of the RDB.

In FLOQ, SPARQL queries to RDBs are processed by generating a local ex-
ecution plan containing calls to one or several SQL queries sent to a back-end
RDBMS for evaluation. SPARQL queries that cannot be completely pro-
cessed by SQL are instead partially processed by an execution plan interpreter
in FLOQ. However, in order for the SQL queries to return the minimal re-
quired data, it is desirable that as much as possible of the SPARQL query is
translated to SQL [8].

In FLOQ numerical SPARQL queries are defined over an automatically
generated RDF view over an RDB expressed in ObjectLog [6], which is a
Datalog dialect that supports objects for representing URIs and typed literals

Q1:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresA log:mA_BySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.
 ?measuresA log:mA/m ?m.
 ?measuresA log:mA/mv ?mv.
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + @thA)) }

 4

[9], disjunctive queries for UNION expressions, and foreign predicates to rep-
resent numerical operators in queries. The SPARQL queries are parsed into
ObjectLog queries to the RDF view. Internally representing queries in Object-
Log permits domain calculus query transformations and optimizations before
generating the execution plan. Calls to tuple calculus SQL query strings are
made as foreign predicates. Foreign predicates are also used for accessing
URIs in the execution plan. Doing all processing in the RDB is complicated,
and requires implementing SPARQL operators not supported by SQL as
RDB-specific UDFs. We show that ObjectLog query transformations enable
scalable execution by the RDBMS.

Numerical SPARQL queries contain variables bound to numbers and calls
to numerical functions and operators. For scalable execution, it is important
that such numerical expressions are pushed into corresponding SQL expres-
sions and executed on the RDBMS server, which is the subject of this paper.
The NUMTranslator algorithm converts numerical SPARQL queries into
SQL queries where numerical expressions are pushed into SQL. For example,
Q1 is converted into SQL query SQL1, where the numerical expression in the
SPARQL FILTER is translated into a corresponding SQL expression.

A particular problem is that SPARQL and ObjectLog are domain calculus lan-
guages where variables can be bound to numbers, while SQL is a tuple calcu-
lus language where variables have to be bound to tuples in relations. The
NUMTranslator algorithm translates domain calculus expressions into corre-
sponding SQL tuple calculus expressions after having applied domain calcu-
lus transformation on the ObjectLog representation.

We show that NUMTranslator improves substantially the query perfor-
mance for numerical SPARQL queries compared to other approaches used by
other systems.

In summary the contributions are:
1. We propose a table driven approach to translate numerical domain

calculus operators into numerical SQL tuple calculus operators.
2. We present the NUMTranslator algorithm that extracts numerical

ObjectLog expressions and translates them into corresponding nu-
merical SQL expressions.

3. We compare the performance of numerical SPARQL queries to
RDF views of RDBs with and without applying NUMTranslator,

SQL1:
SELECT m.m, bt, et
FROM MeasuresA m, SENSOR s
WHERE m.m=s.m AND
 m.s=s.s AND
 m.mv > s.ev + @thA

 5

and show that the algorithm substantially improves the query per-
formance.

4. We compare the performance of our approach with the perfor-
mance of other systems processing SPARQL queries over RDF
views of RDBs and show substantially better performance.

The rest of this paper is organized as follows: Section 2 presents a scenario
where the approach is applicable. Section 3 overviews the system architecture.
Section 4 describes the NUMTranslator algorithm. Section 5 discusses perfor-
mance experiments. Section 6 describes related work. Conclusions and future
work are described in section 7.

2 Motivating Scenario
We present a common scenario from an industrial setting where it is desirable
to analyze historical log data in order to find abnormal machine behavior. Log
data from embedded sensors is stored in a relational log database.

Figure 1 shows the schema of the RDB storing log data measured by sen-
sors embedded in machine installations. Table Machine(m, mm) stores meta-
data about each machine installation, i.e. machine identifier and model name.
The table Sensor(m, s, sm, mc, ev, ad, rd) stores information about each sensor
installation, i.e. the machine installation m where a sensor s is embedded, sen-
sor model name sm, the kind of measurement (measurement class) mc, ex-
pected sensor value ev, absolute error ad and relative error rd. The attribute
mc, measurement class is used to identify different kind of measurements, e.g.
oil pressure, temperature, etc. The tables MeasuresA(m, s, bt, et, mv) and
MeasuresB(m, s, bt, et, mv) store log data of kind A and B read from sensors
s embedded in machine installations m. The begin time bt and the ending time
et for a sensor reading are also stored, while the measured value for a certain
time stamp is denoted by mv. The columns m, (m, s), and (m, s, bt) are primary
keys in the tables Machine, Sensor, and MeasuresA and MeasuresB, respec-
tively. The column m in tables MeasuresA, MeasuresB, and Sensor references
the column m in the table Machine as foreign key. Furthermore, columns (m,
s) in tables MeasuresA and MeasuresB reference columns (m, s) in table Sen-
sor as a composite foreign key.

Figure 1 RDB schema for log data

The RDF view of the RDB is illustrated by the RDF graph in Figure 2.

Machine(m, mm)
Sensor(m, s, sm, mc, ev, ad, rd)
MeasuresA(m, s, bt, et, mv)
MeasuresB(m, s, bt, et, mv)

 6

Figure 2. RDF grahp of the RDF view for the example RDB

Next we define two more typical numerical SPARQL queries to the log data-
base, Q2 and Q3, that discover abnormal machine behaviors. Query Q2 iden-
tifies a potential failure by retrieving for machine models M_1, M_2, and M_3
those machineid where, during the time interval (bt, et), the measured value
mv was above 75% of the allowed deviation @thA from the expected value
ev.

Query Q3 identifies abnormal behaviors of machines of a measurement class
based on absolute deviations: when and for which machine identifiers did the

mA/mv

mA/bt

mA/et

mA/mmA/s

mB/m

mB/s

mB/bt

mB/et

mB/mv

sensor/ev

sensor/s

sensor/m

machine/mmachine/mm

mB_atMachine

mA_atMachine

mA_bySensor
sensor_ofMachine

mB_bySensor
Sensor

MeasuresB

MeasuresA

Machine

xsd:string xsd:int

xsd:floatxsd:int

xsd:int

....

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

Q2:
SELECT ?machineid ?bt ?et
FROM <prod>
WHERE{?measuresA log:mA_bySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.
 ?measuresA log:mA/mv ?mv.
 ?measuresA log:mA_atMachine ?machineid.
 ?machineid log:machine/mm ?mm.
 FILTER (?mm in ('M_1','M_2','M_3')).
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + 0.75*@thA)) }

 7

pressure reading of class B deviate more than @thB from its expected value
ev?

3 FLOQ Overview and Query Processing
Figure 3 illustrates processing of numerical SPARQL queries by FLOQ.

Figure 3. FLOQ query processor

The RDF view over the RDB is automatically generated based on the database
schema and ontology mapping tables in FLOQ.

The used mappings conform to the direct mapping recommended by W3C
[10].

We define a unique RDFS class for each relational table, except for link
tables [10] representing set-valued properties as many-to-many relationships.
In addition, RDF properties are defined for each column in a table. For exam-
ple, the RDFS class with the URI <log:mA> represents the table MeasuresA,

SQL

SPARQL query

FLOQ

RDF view

Query processor

NUMTranslator

RDB

Q3:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresB log:mB/bt ?bt.
 ?measuresB log:mB/et ?et.
 ?measuresB log:mB/mv ?mv.
 ?measuresB log:mB_bySensor ?sensor.
 ?sensor log:sensor/m ?m.
 ?sensor log:sensor/ev ?ev.
 BIND ((?mv-?ev) as ?temp).
 FILTER (abs(?temp) > @thB) }

 8

while <log:mA/bt> and <log:mA/et> represent the columns bt and et in
MeasuresA, respectively.

The RDF view is defined in terms of:
• Source predicates R(a1, a2, …, an) that represent the content of each refer-

enced relational database table R where the tuple (a1, …, an) represents a
row in R.

• URI-constructor predicates that construct URIs to identify rows in tables.
• Mapping tables that map relational schema elements to RDF concepts.

The complete RDF view definitions can be found in [9]. The query processing
steps in FLOQ are shown in Figure 4.

Figure 4. Query processing steps

The SPARQL parser first transforms the SPARQL query into an ObjectLog
expression where each triple pattern in the query becomes a reference to the
RDF view of the RDB. Then the ObjectLog transformer generates a simplified
disjunctive normal form (DNF) predicate. The NUMTranslator algorithm per-
forms the extractor and finalizer steps. The extractor collects from conjunc-
tions predicates that can be translated to SQL, called access filters. The query
decomposer then optimizes the query, producing a query execution plan where
access filters are called. The finalizer traverses the execution plan to translate
the extracted predicates in the access filters into SQL expressions. When the
execution plan is interpreted, the generated SQL statements are sent to the

SQL

SPARQL query

SPARQL parser

RDB

Query Decomposer

Finalizer

Extractor

ObjectLog transformer

Post-processing

 9

RDB for execution. The non-extracted predicates are not translated to SQL
and have to be processed outside the RDB by post-processing operators. For
example, such operators are URI-constructors and numerical expressions not
supported by the SQL engine.

4 The NUMTranslator Algorithm
The NUMTranslator uses a table-driven approach to define which SPARQL
operators to extract and translate into corresponding SQL operators and func-
tions. Table 1 defines the SPARQL to SQL operator translations:

Table 1 SPARQL to SQL operators to translate

In Table 1 there is one row for each SPARQL operator or function (column
SPARQL) that can be translated into SQL. The column SQL defines the corre-
sponding SQL operator or function. A value in the column INFIX is true when
the corresponding SQL operator is an infix operator op on operands x and y,
i.e. x op y (e.g. x+y); otherwise it is an SQL function on format f(x,y,..). The
column FUNCTION is true when the operator is a non-Boolean function re-
turning a value.

4.1 The NUMTranslator extractor
The extractor is applied on each ObjectLog conjunction in the simplified pred-
icate received by the ObjectLog transformer. The extractor collects predicates
that can be translated to SQL. Such predicates are i) source predicates SPs
representing RDB tables, and ii) non-source predicates (NSPs) that are de-
fined in Table 1 as translatable to SQL.

Figure 5 shows the ObjectLog representation of Q1 after it has been trans-
formed by the ObjectLog transformer.

SPARQL SQL INFIX FUNCTION

> > True False
< < True False
= = True False
!= <> True False
+ + True True
- - True True

ABS ABS False True
UCASE UPPER False True

etc.

 10

Figure 5. ObjectLog of query Q1

In this case all predicates in Q1 are translatable to SQL since MeasuresA and
Sensor are SPs, and > and + are NSPs defined in Table 1.

The steps of the extractor are the following:
1. Initialize a variable Xpreds for the first found SP, denoted R1, in

the conjunction and bind a variable Rest to the other predicates.
2. Iteratively extract from Rest the predicates that have some common

variable with some extracted predicate in Xpreds, which are either
SPs or NSPs defined in Table 1.

3. Construct an access filter of all extracted predicates in Xpreds since
those can be fully translated to SQL.

4. While there are some remaining SP, R2, in Rest, re-initialize Xpreds
by R2 and Rest by the remaining predicates, and repeat steps 2-3.

5. Finally, construct a conjunction of the access filters and Rest.
For example, for Q1 the predicates in Xpreds are extracted in the following
order:

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.
2. >(mv, v36) (line 2) since > is defined in Table 1 and the variable

mv is common with the extracted MeasuresA.
3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP having common

variables (m and s) with MeasuresA().
4. V36 = ev + @thA (line 3) since + is defined in Table 1 and the

variable ev is common with the extracted Sensor predicate.

Then the following conjunctive access filter F1 is formed by the predicates in
Xpreds:
 F1(m,s,bt,et,mv,ev):-
1 MeasuresA(m, s, bt, et, mv) and

2 Sensor(m, s, _, _, ev, _, _) and

3 v36= ev + @thA and

4 mv > v36

No non-translatable predicates remain in Rest.

4.2 Query decomposition
To optimize the query produced by the extractor, the query decomposer uses
cost-based optimization [6] to produce an optimized execution plan. Based on

Q1(m, bt, et):-
1 MeasuresA(m, s, bt, et, mv) and
2 mv > v36 and
3 v36 = ev + @thA and
4 Sensor(m, s, _, _, ev, _, _)

 11

heuristics and statistic of the queried RDB, execution cost and selectivities of
access filter are estimated. Default cost parameters are used by the optimizer
to estimate the execution cost and selectivities of predicates if no statistic is
available. The decomposer will then reorder the access filters and the post
processed predicates to generate an optimized execution plan. We do not fur-
ther elaborate the query decomposer here.

4.3 The NUMTranslator finalizer
The finalizer translates access filters in the decomposed execution plan into
calls to an SQL interface operator, sql that sends generated SQL strings to the
back-end RDB for execution.

ObjectLog numerical expressions are translated into SQL numerical ex-
pressions by recursively replacing all ObjectLog domain variables that repre-
sent numerical expressions with their bound expressions. For example, the
variable v36 in line 4 in F1 doesn’t represent a relational column and is re-
placed by its bound expression in line 3, and then the obtained expressions is
mv > ev + @thA. Thus for Q1 the execution plan P1 becomes the following:

Figure 6. Execution plan P1 with NUMTranslator

The execution plan contains an algebra expression where the apply operator γ
fn(..) calls the foreign predicate sql(ds, q, result) implemented in Java. The
foreign predicate sql sends an SQL query q to the RDBMS data source ds for
execution and iteratively returns bindings of tuples, result.

If NUMTranslator had not been applied, all numerical operators would
have to be post-processed, which would slow down the query execution since
filtering cannot be made in the database server.

For example, if NUMTranslator is turned off, for Q1 the following execu-
tion plan P2 is produced that doesn’t contain any numerical SQL operators
corresponding to numerical SPARQL operators, which are instead post-pro-
cessed:

(m, bt, et)

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA
m, SENSOR s WHERE m.mv > s.ev + @thA AND
m.m=s.m AND m.s=s.s", (m, bt, et))

 12

Figure 7. Execution plan P2 without NUMTranslator

Comparing the two execution plans P1 and P2 it can be seen that the sql op-
erator in P2 retrieves much more data than P1, so if NUMTranslator is turned
off lots of data needs to be filtered out outside the RDB server. Furthermore,
the utilization of indexes on the SQL numerical expression by the back-end
database server makes significant performance difference. We show in the
next section that applying NUMTranslator substantially improves the query
performance of numerical SPARQL queries.

5 Performance Measurements
We compared the performance for executing the numerical queries Q1, Q2,
and Q3 in FLOQ with and without applying NUMTranslator. Furthermore,
we compared the query performance of FLOQ with the query performance of
D2RQ [1] for Q1, Q2, and Q3, for the same back-end relational database. We
tried to run the queries with both ontop [7] and Virtuoso [3] as well, but none
of our numerical SPARQL queries could be run, indicating that those systems
do not provide full support for processing numerical SPARQL queries.

All experiments are carried out on a MS SQL Server 2008 R2 installed on
a server machine with 8 AMD OpteronTM 6128 processors, 2.00 GHz CPU
and 16GB RAM. The RDB is populated by loading sensor data into the MS
SQL server. B-tree indexes are created on the columns mm, mv, bt, et, ev, ad,
and rd to speed up the queries.

All measurements were taken both for cold and warm runs. The cold runs
were made immediately after the RDBMS server was started, which implied
that there were no data cached in the buffer pool and the executed query wasn’t
optimized by the RDBMS. Thus a measured query execution time for a cold
run includes the time for i) reading data from disk, ii) SQL query optimization
on the RDBMS server, iii) communication, and iv) post-processing of data on
the client. The warm runs were made after a query was executed once. Since
the back-end RDBMS has a statement cache a same SQL query executed twice
will be optimized the first time it is run. Therefore, warm executions do not
include RDBMS query optimization time.

(v36)

(mv)

(m, bt, et)

(ev)

γ >(mv, v36)

γ +(ev, @thA)

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND
m.s=s.s", (m, s, bt, et, mv, ev))

 13

The plotted values are mean values of three measurements. The standard
deviation is less than 10% in all cases. To investigate the SQL query produced
by all the other systems we use the system profiling tool of MS SQL server
when running a query.

The following notations are used in the performance diagrams:
• NUMTranslator: FLOQ with NUMTranslator turned on, i.e. the SPARQL

numerical expressions are translated into corresponding SQL expressions.
• Naive: FLOQ with NUMTranslator turned off, i.e. the SPARQL numeri-

cal expressions are not translated into corresponding SQL numerical ex-
pressions.

• D2RQ: D2RQ version [0.8.1] configured with the system’s default map-
pings.

Figure 8, Figure 9, and Figure 10 show the execution times for both cold and
warm runs for Q1, Q3, and Q2 while scaling the databases size from 1 GB to
15 GB.

Figure 8. Execution times for Q1

Figure 9. Execution times for Q3

0

2000

4000

6000

8000

10000

12000

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q1 cold

Naive

NUMTranslator

D2RQ

0

2000

4000

6000

8000

10000

12000

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q1 warm

Naive

NUMTranslator

D2RQ

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q3 cold
Naive

NUMTranslator

D2RQ

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q3 warm

Naive

NUMTranslator

D2RQ

 14

Figure 8 and Figure 9 show that NUMTranslator substantially improves the
query execution scalability compared to Naïve for numerical SPARQL queries
like Q1 and Q3 with highly selective numerical FILTERs: 0.04% for Q1 and
3% for Q3. In these cases pushing the numerical FILTERs to SQL is more
profitable than filtering large data amounts on the client. The performance of
D2RQ is worse than Naïve since D2RQ sends to the RDBMS an SQL query
that doesn’t contain numerical expressions, and is a much more complex query
with more joins. Furthermore, Q3 had to be manually changed for D2RQ to
remove the BIND operator, since otherwise D2RQ wouldn’t return correct re-
sult.

Measurement results for Q2 are shown in Figure 10. For Q2 the results for
NUMTranslator and Naïve are presented in a separate diagram, since they are
very close. It can be seen on Figure 10 that NUMTranslator doesn’t improve
the query performance for non-selective queries like Q2 where the FILTER
selects 43% of the data. In this case pushing the numerical SPARQL filters to
be executed to the RDBMS server doesn’t make a significant difference com-
pared to post-filtering data on the client.

D2RQ performs worse for Q2 since it doesn’t translate any of the FILTERs
and it furthermore generates a very complex SQL query with many joins.

Figure 10. Execution times for Q2

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q2 cold 1

Naive

0

50

100

150

200

250

300

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q2 cold 2

Naive

NUMTranslator

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q2 warm1

Naive

0

50

100

150

200

250

300

0 5 10 15

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Database size (GB)

Q2 warm2

Naive

NUMTranslator

 15

In general, the experiments show that NUMTranslator substantially improves
the query performance of numerical SPARQL queries where the numerical
FILTERs have high selectivity.

6 Related Work
Virtuoso RDF Views [3] and D2RQ [1] are other systems that process
SPARQL queries to RDF views of RDBs. These systems implement compil-
ers that translate SPARQL directly to SQL. By contrast, FLOQ first generates
ObjectLog queries to a declarative RDF view of the RDB, and then transforms
the SPARQL queries to SQL by logical transformations.

We didn’t find any publication of how D2RQ compiles numerical
SPARQL queries into SQL and the documentation for Virtuoso’s SQL gener-
ation is very limited [3]. However, by using the profiling tool of the RDBMS
and the debug logging of Virtuoso we were able to analyze what queries were
actually sent to the RDBMS, showing that neither of those systems translates
numerical SPARQL expressions into corresponding SQL expressions.

The ontop system [7] also enables SPARQL queries to RDF views of RDBs
by translating SPARQL to Datalog programs, which are rewritten and trans-
lated to SQL. A difference to ontop is the table driven NUMTranslator algo-
rithm, which makes it very easy to extend for new operators. Furthermore,
FLOQ generates execution plans containing calls to SQL intermixed with ex-
pressions interpreted in the client. This enables FLOQ to interpret in the client
SPARQL operators not available in SQL. In addition NUMTranslator trans-
lates the domain calculus SPARQL queries into tuple calculus SQL queries
by substituting variables with their bound expressions.

7 Conclusions and Future Work
We presented the FLOQ system where the NUMTranslator algorithm uses a
table driven approach to translate numerical domain calculus SPARQL ex-
pressions into corresponding numerical SQL expressions. This enables scala-
ble processing of numerical SPARQL queries to RDF views over RDBs.

The approach was evaluated on a benchmark scenario in an industrial set-
ting where logged data stored in an RDB was analyzed using numerical
SPARQL queries. We compared the performance of the SPARQL queries
with and without applying NUMTranslator. The experiments show that
NUMTranslator substantially improves the query performance of numerical
SPARQL queries in particular when the numerical expressions inside FIL-
TERs are highly selective.

 16

We also compared our approach with other systems that translate SPARQL
queries to SQL. Only D2RQ could execute our queries, but substantially
slower since D2RQ does not employ an approach similar to NUMTranslator.

As our next step, we will investigate numerical SPARQL queries searching
large numbers of distributed log databases combined through an ontology.
Another issue is creating benchmarks based on randomly generating SPARQL
queries [5]. Furthermore, query processing and mediation strategies over other
back-ends than RDBs [4] in our setting should be investigated.

ACKNOWLEDGMENT

This work is supported by the Swedish Foundation for Strategic Research un-
der contract RIT08-0041.

REFERENCES

[1] Bizer, C., Cyganiak, R., Garbers, G., Maresch, O., and Becker, C. 2009. The
D2RQ Platform v0.7 - Treating Non-RDF Relational Databases as Virtual RDF
Graph, http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/

[2] Björkelund, A., Edström, L., etc. 2011. On the integration of skilled robot mo-
tions for productivity in manufacturing, In Proc. of IEEE International Sympo-
sium on Assembly and Manufacturing, Tampere, Finland.

[3] Erling, O. and Mikhailov, I. 2009. RDF Support in the Virtuoso DBMS, Studies
in Computational Intelligence, Vol. 221

[4] Langegger, A., Wöß, W., and Blöchl, M. 2008. A Semantic Web Middleware for
Virtual Data Integration on the Web, 5th European Semantic Web Conference
ESWC 2008.

[5] Langegger, A. and Wöß, W. 2009. RDFStats – The Extensible RDF Statistics
Generator and Library, 8th International Workshop on Web Semantics, DEXA
2009, Linz, Austria, August 31-September 40.

[6] Litwin, W. and Risch, T. 1992. Main Memory Oriented Optimization of OO Que-
ries using Typed Datalog with Foreign Predicates, IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 6.

[7] Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M., Bagosi, T., and Calva-
nese, D. 2013. Evaluating SPARQL-to-SQL Translation in Ontop, ORE 2013

[8] Sequeda, J. F., and Miranker, D. P. 2013. Ultrawrap: SPARQL Execution on Re-
lational Data, Tech. Report, Univ. of Texas at Austin.
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2078.pdf

[9] Stefanova, S., and Risch, T. 2011. Optimizing Unbound-property Queries to RDF
Views of Relational Databases. 7th International workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS2011), Bonn, Germany.

[10] Arenas, M., Bertails, A., Prud’hommeaux, E., and Sequeda, J. 2012. A Direct
Mapping of Relational Data to RDF, http://www.w3.org/TR/rdb-direct-mapping/

[11] Harris, S., and Seaborne, A. 2013. SPARQL 1.1 Query Language,
http://www.w3.org/TR/sparql11-query/

Paper IV

 1

Paper IV

Sobhan Badiozamany, Lars Melander, Thanh Truong, Xu Cheng, and Tore
Risch. 2013. Grand challenge: implementation by frequently emitting paral-
lel windows and user-defined aggregate functions. In Proceedings of the 7th

ACM international conference on Distributed event-based systems (DEBS
'13).

ACM, New York, NY, USA, 325-330.
DOI=10.1145/2488222.2488284

http://dx.doi.org/10.1145/2488222.2488284

Copyright notice: Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA. Copyright © ACM
978-1-4503-1758-0/13/06

Re-print with permission.

The paper is reformatted for typographic consistency.

 2

Grand Challenge: Implementation by Fre-
quently Emitting Parallel Windows and User-

Defined Aggregate Functions

Sobhan Badiozamany, Lars Melander, Thanh Truong, Cheng Xu, Tore
Risch

Department of Information Technology
Box 337, SE-751 05, Sweden
Uppsala University, Sweden

{firstname.lastname }@it.uu.se

ABSTRACT
Our implementation of the DEBS 2013 Challenge is based on a scalable, par-
allel, and extensible DSMS, which is capable of processing general continu-
ous queries over high volume data streams with low delays. A mechanism to
provide user defined incremental aggregate functions over sliding windows of
data streams provide real-time processing by emitting results continuously
with low delays. To further eliminate delays caused by time critical opera-
tions, the system is extensible so that functions can be easily written in some
external programming language. The query language provides user defined
parallelization primitives where the user can express queries specifying how
high volume data streams are split and reduced into lower volume parallel data
streams. This enables expensive queries over data streams to be executed in
parallel based on application knowledge. Our OS-independent implementa-
tion was tested on several computers and achieves the real-time requirement
of the challenge on a regular PC.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Parallel databases, Query pro-
cessing

Keywords
Parallel data stream processing; continuous queries; spatial-temporal window
operators.

1 Introduction
Monitoring a soccer game requires a system than can process, in real-time,
large volumes of data to dynamically determine physical properties as they
appear. This requires a system having the following properties:

 3

• To keep up with the very high data flow the system must deliver high
throughput while processing expensive computations over high volume
data.

• Response in real-time requires continuous delivery of query results with
low latency.

• Continuous identification of physical phenomena, such as moving balls
and players, requires complex spatio-temporal algebraic computations
over windows.

Our EPIC (Extensible, Parallel, Incremental, and Continuous) DSMS provides
very high throughput and low latency through parallelization, extensibility,
and user defined incremental aggregation of windowed data streams. The high
level query language provides numerical data representations and data stream
windows as first class objects, which simplifies complex numerical computa-
tions over streaming data and enables automatic query optimization. To pro-
vide very high performance of low level numerical and byte processing func-
tions the system is easily extensible with user defined functions over streams
and numerical data, which allows accessing external systems and plugging in
time-critical user algorithms.

EPIC extends the SCSQ system [9] with several kinds of data stream win-
dows and incremental evaluation of user-defined aggregate functions over the
windows. In particular the window operator FEW (Frequently Emitting Win-
dowizer) decouples the frequency of emitted tuples from a window’s slide.

To process expensive queries with high-throughput and low latency the
system provides application specific stream parallelization functions where
general distribution queries specify how to parallelize and reduce outgoing
data streams.

2 The EPIC Approach
First FEW and its incremental user-define aggregation are presented in sec-
tions 2.1 and 2.2, and then the solution is outlined in section 2.3.
Figure 1 shows the overall data stream flow of the implementation. The thick-
ness of the arrows in all data flow diagrams in this paper correspond to the
relative volume of the data streams. Each node in the dataflow diagram is a
separate OS process, called a query processing node, in which a partial con-
tinuous execution plan is running. The topology of the dataflow diagram is
completely expressed in the query language where it is possible to specify
continuous sub-queries running in parallel [9]. The system automatically cre-
ates OS processes running the execution plans of the sub-queries and the com-
munication channels between them (local TCP). In the Grand Challenge im-
plementation, the query processing nodes all run on the same computer and
the OS is responsible for assigning CPUs to the processes. The system can

 4

also distribute query processing nodes over several computers but those fea-
tures are not used here.

Figure 1. High-level data stream flow.

2.1 Frequently Emitting Windowizer, FEW
EPIC provides window forming operators that support several kinds of win-
dows, including time, count, and predicate windows [5][2][7]. The windows
are formed by window functions mapping streams to streams of objects of
type Window. For example, the window function
tWindowize(Stream s, Number length, Number stride) -> Stream of Window
ws
forms a stream ws of timed windows over a stream s where windows of length
time units (seconds) slide every stride time units. To avoid copying, the win-
dows are represented by pointers to their first and last elements. When a win-
dow slides the pointers are updated.

A naive implementation of tWindowize() would emit tuples only when the
formed windows slide. This causes substantial delays, in particular for large
windows. For example, when forming a 10 minutes window, it is not practical
to wait 10 minutes for the aggregation to be emitted. To be able to emit aggre-
gation results before a complete window is formed, we have introduced a win-
dow function having a parameter ef, the emit frequency:
fewtWindowize(Stream s, Number length, Number stride, Number ef) ->
Stream of Window pw

Event
Reader

Interrupt
Reader

DEBS
Splitter

Q1
Front
End

Q2/Q4
Ball

Hitter

Q3
Front
End

Interrupt

stream

Game stream Q2/Q4 Input stream

 5

The window forming function fewtWindowize() forms partial time win-
dows, pw, every ef time units. The emitted partial windows are landmark sub-
windows of the elements of the window being formed. When the formed win-
dow is complete it is emitted as well before it slides, and then the landmark is
reset to the start time of the newly slided window.

The FEW windows are required when:
• The results must be emitted before the window is formed.
• The results must be emitted more often than the slide (not used in this

application).

2.2 User-defined incremental window aggregate functions
The windowing mechanism in EPIC supports incrementally evaluated user
defined aggregate functions [1][8]. These are defined by associating init(),
add(), and remove() functions with a user defined aggregate function:
• init() -> Object o_new creates a new aggregation object, o_new, which is

used for accumulating changes in a window.
• add(Object o_cur, Object e) -> Object o_nxt takes the current aggregation

object o_cur and the current stream element e and returns the updated ag-
gregation object o_nxt.

• remove(Object o_cur, Object e_exp) -> Object o_nxt removes from the
current aggregation object o_cur the contribution of an element e_exp that
has expired from a window. It returns the updated o_nxt.

A user defined aggregate function is registered with the system function:
aggregate_function(Charstring agg_name, Charstring initfn, Charstring
addfn, Charstring removefn) -> Object

For example, the following shows how to define the aggregate function
mysum() over windows of numbers:

create function initsum() -> Number s as 0;
create function addsum(Number s_cur, Number e) -> Number s_nxt as res
+ e;
create function removesum(Number s_cur, Number e_exp) -> Number
s_nxt as s_cur – e_exp;
These functions are registered to the system as the aggregate function

mysum() by the function call:
aggregate_function(‘mysum’,’initsum’,’addsum’,’removesum’);
After the registration mysum() can be used in CQs as:
select mysum(w) from Window w where w in fewtWindowize(s, 10, 2, 1);
In this simple example the aggregation object is a single number. It can also

be arbitrary objects, including dictionaries (temporary tables) holding sets of
rows, which is used in the Challenge implementation to incrementally main-
tain complex spatio-temporal aggregations.

 6

2.3 Solution outline
In Figure 1 the Event Reader node reads the full-game CSV file and produces
the Game stream consisting of events for both balls and players. The Event
Reader then scales the time stamps by subtracting the start time. It also trans-
forms the position, velocity, and acceleration values to metric scales. To avoid
the Event Reader becoming a bottleneck it is implemented as a foreign func-
tion in C. To speed up the communication we use binary representation of all
events communicated between query processing nodes, while the input and
output log files use the CSV format.

The Interrupt Reader node produces the Interrupt stream, which contains
referee interruptions, by reading and transforming the provided game inter-
ruptions files.

The DEBS Splitter node merges the two input streams based on the time
stamps in the streams and produces parallel input streams for the different
queries. It also filters out those event stream tuples of the Game stream that
are in-between game interruptions. The nodes Q1 Front End, Q2/Q4 Ball Hit-
ter, and Q3 Front End receive parallel data streams required for the four Grand
Challenge queries Q1-Q4. Q2 and Q4 share some downstream computations
executed by Q2/Q4 Ball Hitter node.

In EPIC the splitstream() system function provides customizable distribu-
tion and transformation of stream tuples. The user can provide customizable
splitting logic as a distribution query over an incoming tuple that specifies
how a tuple is to be distributed, filtered and transformed.

The distribution query for the DEBS Splitter in Listing 1 is passed as an
argument to splitstream().

Listing 1 DEBS Splitter distribution query

select i, ev from Integer i
where (i = 0 and isPlayer(ev)) or
 (i = 1) or
 (i = 2 and isPlayer(ev));

The result of the query are pairs (i, ev) specifying that an incoming event ev is
to be sent to output stream number i. In the DEBS splitter distribution query
three output streams enumerated by i are specified. They produce the corre-
sponding streams Q1 Input, Q2/Q4 Input, and Q3 Input. The Boolean function
isPlayer(v) returns true if v is a player sensor reading.

To speed up the processing, shared computations are made in separate
nodes. In Figure 1 the Q1 Front End and the Q3 Front End nodes perform
stream preprocessing and reduction for queries 1 and 3, respectively, while
the Q2/Q4 Ball Hitter node detects hits to the ball needed by queries 2 and 4.

 7

2.3.1 Query Q1: Running Analysis
Figure 2 shows the topology of Q1. The aggregated running statistics for dif-
ferent time windows are computed in parallel based on the common current
running statistics produced by the Q1 Front End node. The stream containing
player sensor readings is sent to the Q1 Front End node (see Listing 1), which
produces the running statistics. The running statistics is then broadcasted to
four other nodes to compute the aggregated running statistics of different time
window lengths.

Figure 2. Query 1 data stream flow

2.3.1.1 Incremental maintenance of running statistics
In order to make the result more reliable for the current running statistics, we
first create a 1 s tumbling window and then calculate the statistics for each
player over that window. The window length 1 s was chosen experimentally
to produce stable results. Both running and aggregate statistics utilize user de-
fined aggregate functions to maintain arrays of the two types of statistics for
each player.

2.3.1.2 Current running statistics
For each incoming player sensor reading in the current 1 s window, the fol-
lowing statistics tuple for each player is incrementally maintained in an array:
(ts_start, ts_stop, pid, left_x_start, left_y_start, left_x_stop, left_y_stop,
right_x_start, right_y_start, right_y_stop, right_y_stop, sum_speed, count)

Q1 Front
End

Q1:
1 Min

Q1:
5 Min

Q1:
20 Min

Q1:
Landmark

Q1 Input stream

CRS: Current Running Statistics

stream

 8

The time stamp ts_start stores the first time when a sensor reading of player
pid arrives to the current window, while ts_stop stores the last sensor reading.
The elements left_x_start, left_y_start, right_x_start, and right_y_start are the
position readings of the left and right foot of the player at time ts_start, while
left_x_stop, left_y_stop, right_x_stop, and right_y_stop are the corresponding
foot position readings at time ts_stop. To incrementally calculate the average
velocity the elements sum_speed and count are also included. ts_start,
left_x_start, left_y_start, right_x_start, and right_y_start are updated only
when the first sensor reading of the player pid arrives to the window, while all
the other elements are updated every time a sensor reading of pid arrives. Here,
no remove function is needed for the aggregation, since we are maintaining a
stream of tumbling windows where the statistic will be re-initialized every
time the window tumbles.

With the statistics above, the current running statistics for a given player is
calculated as the Euclidian distance between the average position of the first
and last update during the time window.

2.3.1.3 Aggregate running statistics
We have chosen to log the result tuple of Q1 in CSV format every 1 s since
the current running statistics are not emitted more often than once per second.
Four FEW time windows were defined for aggregating running statistics with
lengths 1 minute, 5 minutes, 20 minutes, and the entire game. All windows
slide and emit results every 1 s. FEW is critical for early emission while the
first windows are being formed.

Aggregate running statistics over the window are incrementally maintained
in an array similar to current running statistics.

The stream from the Q1 Front End node contains the elements ts_start,
ts_stop, player_id, intensity, distance, and speed. The difference ts_stop –
ts_start is used to incrementally maintain the duration of a player being in the
corresponding running intensity class. Analogously, the moving distance is
maintained for the corresponding intensity classes by incrementally associat-
ing the incoming distance with the right intensity.

2.3.2 Query Q2: Ball Possession
Figure 3 shows the data flow of queries Q2 and Q4 combined. The Q2/Q4
input stream consists of player, ball, and interrupt sensor readings. The Q2/Q4
Ball Hitter computes the Ball Hitter and the Ball streams. The Ball Hitter
stream contains ball hitter events, which occur when a player pid at timestamp
ts hits the ball. The Ball stream contains Ball Hitter events interleaved with
ball sensor readings. The Q2/Q4 Ball Hitter node emits the Ball stream to the
Shot on Goals query processing node, which executes the final stages of query
Q4. The Ball Hitter stream contains only ball hitter events and is sent to the
Player Possession node, which calculates and broadcasts the same Player Ball
Possession stream to four Team Possession query processing nodes. The Team

 9

Possession nodes log every 10 s statistics of team ball possessions for the two
teams with the different window lengths: 1 minute, 5 minutes, 20 minutes, and
a landmark window of the entire game. As an alternative, we also measured
reporting team possessions every 1 s resulting in the same latency and
throughput.

Figure 3. Query 2 and Query 4 data stream flow

2.3.2.1 The Q2/Q4 Ball Hitter query processing node
In order to compute a stream of ball hitters, we maintain acceleration of the
ball ballacc, its position bx, by, bz, the shortest distance from a player to the
ball sdist, and the player pid.

For every input ball sensor reading, the Q2/Q4 Ball Hitter node incremen-
tally updates the ball acceleration and the ball position accordingly. When a
player sensor reading arrives, it incrementally maintains sdist.

A ball hitter event is emitted when both the following criteria hold:
• C1: The ball acceleration reaches a predefined threshold: ballacc > 55 m

/ s2.
• C2: The shortest distance sdist is within the player’s proximity: sdist < 1

m.

There are 36*200 player sensor readings per second. In addition, after being
hit, the ball acceleration remains high for a while, in particular before the ball
leaves the player’s proximity. Therefore, the two conditions C1 and C2 will
hold for a short period of time within which several ball hitter events could be
reported for the same actual ball hit by the player. To avoid generating false
ball hitter events, we employ a dropping policy to drop player sensor readings
occurring significantly later than the last report time. The dropping policy is
expressed by the following query condition over a player sensor reading v:

Q2/Q4
Ball

Hitter Player
Possession

Shot
on

Goal

Team
Possession

1min

Q2/Q4

Input

stream

Team
Possession

5 min

Team
Possession

20 min

Team
Possession
landmark

PBP: Player Ball
Possession stream

 10

ts(v)-lrts > epsilon;

Here, lrts is the latest timestamp when a ball hitter event was reported, and
epsilon is the minimum time period between two reports. Because Q4 is more
sensitive to the ball hitter events, we have empirically tuned this parameter to
0.2 s to get the best possible accuracy of Q4.

2.3.2.2 The Player Possession query processing node
The Player Possession node emits the Player Ball Possession (PBP) stream
consisting of the variables fts, pid, and hits, which state that the player pid
possessed the ball hits times, starting from first time the player hits the ball,
fts.

The Player Possession node increases the variable hits if a ball hitter event
bhe is from the same player pid. Otherwise, it will emit ball possession events
for player pid and then reset the variables. The total possession time is the
interval between the timestamps bhe and fts.

2.3.2.3 The Team Possession query processing nodes
There are four Team Possession nodes, each with different window length: 1
minute, 5 minutes, 20 minutes, and a landmark of the whole game. For the
received Player Ball Possession stream they compute team possession statis-
tics as follows:
• Incrementally calculate the sum of the ball possessions of all players in

each team when a corresponding player ball possession arrives.
• When a report is logged, the following two percentages are calculated: ܲ = 	 ܣ	݉ܽ݁ܶ݉ݑݏܣ݉ܽ݁ܶ݉ݑݏ + 			ܤ݉ܽ݁ܶ	݉ݑݏ

ܲ = 	 ܣ	݉ܽ݁ܶ݉ݑݏܤ݉ܽ݁ܶ݉ݑݏ + 			ܤ݉ܽ݁ܶ	݉ݑݏ
Here FEW windows are used to frequently report while the first windows are
being formed. For example, the results must be regularly delivered every 10 s
while the team possession landmark window is being formed.

2.3.3 Query 4: Shot on Goal
The Shot on Goal node receives three different kinds of events in the Ball
stream:
• A ball hitter event marks a shot and contains a time stamp and the pid of

the shooting player.
• A ball event contains the current ball sensor reading.
• An interrupt event indicates a game interruption. It is good practice to re-

set the shot detection when an interruption occurs.

 11

Q4 shares detection of a ball hit with Q2. However, the logic for detecting
a shot is slightly different for the two queries: Q2 is specified stricter than
needed for Q4. To share computations this stricter logic is also used for Q4.

The operation of Q4 is straightforward; it is an iteration over the Ball stream
to keep track of the state of a shot:
1. Wait for the next ball hitter event.
2. Check ball events until the ball has travelled one meter.
3. Return ball events as long as the ball is approaching the opposite team’s

goal.

The calculation of the ball direction uses basic linear algebra over the ball
sensor readings.

Gravity is accounted for to an extent. The expected time for the ball to
travel to the goal line is multiplied twice with the acceleration constant g, and
added to the height of the goal bar. The actual ball trajectory is not considered,
but the current calculation should be an adequate approximation.

Using the Q2 requirements for detecting a ball hit has the draw-back that
some events are not detected, such as the header at 12:19 in the second half
our example Game stream, since the ball is more than one meter away from
any sensor. Whether that is technically a “shot” is questionable.

Curve balls need special attention. For example, at 26:07 in the first half
there is a curve ball goal. In this case the direction of the ball is pointing out-
side the goal posts, while the ball later curves inwards and comes to rest inside
the goal.

To handle curve balls we have introduced a state pending, indicating that a
shot is not yet dismissed, but could later be become a shot on goal. The model
adds two meters of margin on both sides of the goal posts and the shot is con-
sidered pending if it points in the direction of the margin area.

Bounces are considered as long as the direction of the bounce is within the
negative distance of the goal bar plus gravity. While the instructions do not
account for bounces at all, this limit should add some correctness to the alge-
bra.

Shots that are bounces, which we detect, are not included in the provided
list of shots on goal. In the second half of the game there are four shots on goal
that are bounces. They are at 4:11, 19:39, 24:36 and 29:29. Setting the bounce
threshold to zero, i.e. not considering bounces creates a result in accordance
to the specification. Viewing the video makes it apparent that the specification
is not correct in this regard.

2.3.4 Query 3: Heat Map
In Query 3 a grid on the field is formed where the cells are numbered in row
order, for example from 0 to 6399 in a 64 X 100 grid. Given the position of a
player (x,y), the function cell_id(x,y,grid_size) returns the corresponding cell

 12

number for a given grid size. Query results for lower resolution grids are com-
puted by aggregating the results for the higher resolution grids. Thus we in-
crementally maintain the results only for the highest resolution.

Note that the results of longer windows cannot be built on top of the results
from a shorter window. This is due to the 1 s stride parameter in all the queries.
For example, the 5 minute window can’t be built on top of the results produced
by the 1 minute window, since the 5 minute window needs to remove the con-
tributions made to the statistics by the expired elements, i.e. the elements with
the time stamp ts – 300 s, where ts is the current time stamp. Those elements
are too old to be in the 1 minute window. Nevertheless, the definition of longer
windows in terms of shorter ones could have been utilized if the stride was
one minute instead of the one second stride in the Challenge specification

2.3.4.1 Q3 Front End
Figure 4 shows the dataflow diagram for query Q3. As specified in Listing 1
the Q3 Input Stream contains all player sensor readings. The Q3 Front End
node produces the One Second HeatMap (OSHM) stream by forming 1 s tum-
bling windows over the incoming tuples. Thereby incremental user defined
aggregate functions are used to maintain statistics per second in a table
heamap1s(pid, cell_id, ts, cnt) local per window. Here ts is the latest time
stamp player pid has been present in the cell identified by cell_id cell identifier
in the highest resolution grid (64 X 100). cnt is the total number of sensor
readings for player pid in the cell in the current window.

Figure 4. Query 3 data stream flow.

The OSHM stream is produced by emitting all the rows accumulated in the
table during the past second.

Q3 Front
End

Q3
1 Min

Q3
5 Min

Q3
10 Min

Q3
Landmark

Q3 Input

stream

OSHM: One Second HeatMap

stream

 13

The Q3 Front End significantly reduces the stream volume by summarizing
it. It receives 200 tuples per second from 36 sensors, in total 7200 tuples/sec-
ond. It emits at maximum the total number of cells all the players have been
present in the highest grid resolution during one second, which is about 70
tuples per second, i.e. a factor 10 reduction in stream flow.

2.3.4.2 Q3 query nodes
The OSHM stream is broadcasted to four Q3 query nodes Q3 1 Min, Q3 5 Min,
Q3 10 Min, and Q3 Landmark. These nodes run parallel CQs over time win-
dows with lengths 1, 5, 10 minutes, and whole game, respectively. The win-
dows are formed by the FEW window specification fewtWindowize(oshm,
length, 1, 1), where length is 60s, 300s, 600s and the whole game duration,
respectively. The stride and the emit frequency are both 1 s. The emit fre-
quency is needed so that sub-windows are emitted while the window is being
formed the first time.

Similar to Q3 Front End, the Q3 query nodes incrementally maintain user
defined aggregates by updating the following local tables inside each window
as the input stream elements arrive:

heatmap(pid, cell_id, ts, cnt)
sensor_count(pid, total_cnt

In table heatmap, the attribute cell_id is the cell player pid has been present
in, ts is the latest time player pid was in the cell, cnt is the number of times the
player has been present in the cell. To enable translation of cnt into percent-
ages per cell, the Q3 query nodes also maintain total_cnt per player, which
stores the total number of position reports in all cells for a given player during
the window in question.

Since Q3 query nodes only maintain the statistics for the highest resolution
in a given window length, at reporting time they compute lower resolutions
by aggregating grid cells per player to fill the bigger cells in the higher reso-
lutions.

The Q3 query nodes log the output CSV streams to files. Since each Q3
query nodes cover all grid settings in a given window size, the produced log
files contains output stream elements for more than one grid setting. We use
the following grid identifiers to tag streams per grid: 6400 for 64 X 100, 1600
for 32 X 50, 400 for 16*25, and 104 for 8 X 13 grid setting.

The size of these log files is huge (ca 400,000 rows/s) since they cover all
movements between grid cells over several very long windows. Here it be-
comes important to use SSD as storage medium, which is fast at writing big
blocks in parallel, while disk arm movements for writing different log files
has been observed to slow down the entire system throughput with a factor of
around two.

 14

3 Performance
We measured the performance of our implementation based on both through-
put and delay. The throughput was measured as the total execution time per
query and for all queries in parallel over the entire game. The latency was
measured by propagating the system wall clock of the entry time of the latest
event contributing to each result tuple. The delay was calculated by subtract-
ing the propagated entry time from the wall time when a result tuple is deliv-
ered. The throughput is measured per query while the latency is measured per
output stream.

We ran our experiments on a VMware virtual machine with Windows
Server 2008 R2 x64, running on a laptop with the following specifications:
Dell Latitude E6530, CPU: Intel Core i7-3720QM @2.60 GHz, RAM: 8 GB,
Hard Disk Device: ST500LX003-1AC15G, OS: Windows 7 64-bit.
Figure 5 illustrates the throughput of the individual queries as well as all que-
ries running together. Queries Q1, Q2, and Q4 take around 5 minutes to finish
separately, while Q3 takes considerably longer time, which is mainly due to
intensive report computations in the Q3 query nodes. To investigate the log
writing time, Q3 and the all queries columns have a watermark indicating how
much time it takes to execute them without logging to disk, showing that this
takes around 35 % of the Q3 alone time and 25 % of all queries together. We
also investigated whether it would be favorable to parallelize the logging of
the result stream for Q3 query nodes, but that turned out to be slower in our
current environment.

Since all queries run in parallel according to the dataflow diagrams, running
all of them together takes approximately the same time as running the slowest
one, Q3.

Figure 6 shows the average delay per output stream while running all que-
ries together. Notice that Q2 and Q4 are time critical queries since they imme-
diately report real-time phenomena. By contrast Q1 and Q3 report delayed
statistics aggregated over time.

The VMware virtual machine containing our implementation of the Grand
Challenge can be downloaded from http://udbl2.it.uu.se/DEBS/. There is also
a zip archive that can be run on any Windows machine.

4 Related Work
In the stream processing community, there has been a lot of work for devel-
oping query languages over data streams [5] [7] introduced a formal specifi-
cation of different kinds of windows over data streams and provided a taxon-
omy of window variants. The notation of report (emit) frequency was pro-
posed in SECRET [2] without any actual implementation. SECRET is a de-
scriptive model to help users understand the result of window-based queries

 15

from different stream processing engines. Esper [4] also allows a report fre-
quency but does not have user defined window aggregate functions. Further-
more Esper’s sliding window model is different from FEW because the slides
are triggered by window content changes rather than explicitly specified time
periods.

To efficiently calculate the aggregate result over long windows with small
strides, [6] and [1] use delta computations to reduce the latency and the
memory usage. The focus of [8] is to extend a DSMS with online data mining
facilities by user defined aggregate functions over windows. The implemen-
tation described in this paper shows that EPIC is general enough to define very
complicated user defined aggregations as functions while in [1] and [8] the
aggregates are defined as updates.

5 Conclusions
We have addressed the Grand Challenge by expressing continuous queries in
a high level language that supports incremental evaluation of aggregate func-
tions over windows and frequently emitting windowing. We meet the real-
time requirements of the real-time queries on a virtual machine running on a
laptop. The extensibility of the query engine was used for supporting high
throughput and low latency of time critical operations.

Figure 5. Performance.

 16

Figure 6. Delays.

Acknowledgements
This work was supported by the Swedish Foundation for Strategic Research,
grant RIT08-0041 and by the EU FP7 project Smart Vortex.

References

[1] Bai, Y., Thakkar, H., Wang, H., Luo, C., and Zaniolo, C.: A Data Stream Lan-

guage and System Designed for Power and Extensibility. Proc. CIKM Conf.,
2006.

[2] Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R. J. and Tatbul, N. SE-
CRET: A Model for Analysis of the Execution Semantics of Stream Processing
Systems. Proc. VLDB Conf., 2010.

[3] Botan, I., Fischer, P. M., Florescu, D., Kossmann, D., Kraska, T., and Tamose-
vicius, R. Extending XQuery with Window Functions. Proc. VLDB Conf., 2007.

[4] http://esper.codehaus.org/
[5] Law, Y-N, Wang, H., and Zaniolo, C.: Relational Languages and Data Models

for Continuous Queries on Sequences and Data Streams. ACM TODS 36, 2, (May
2011).

[6] Li, J., Maier, D., Tufte, K., Papadimos,V., and Tucker, P. A. Semantics and eval-
uation techniques for window aggregates in data streams. Proc. SIGMOD
Conf., pp. 311 - 322, 2005.

[7] Patroumpas, K. and Sellis, T. Window specification over data streams. Proc.
EDBT Conf., 2006.

[8] Thakkar, H., Mozafari, B. and Zaniolo, C.: Designing an Inductive Data Stream
Management System: the Stream Mill Experience. Proc. 2nd International Work-
shop on Scalable Stream Processing Systems, 2008.

 17

[9] Zeitler, E. and Risch, T.: Massive scale-out of expensive continuous queries,
Proc. of the VLDB Endowment, ISSN 2150-8097, Vol. 4, No. 11, pp.1181-1188,
2011

Paper V

 1

Paper V

Mahmood, Khalid, Truong, Thanh and Risch, Tore.
NoSQL Approach to Large Scale Analysis of Persisted Streams.

In Proceedings of the 30th British International Conference on Databases,
BICOD 2015, pages 152—156.
Edinburgh, UK, July 6-8, 2015.

Springer International Publishing.
ISBN: 978-3-319-20424-6.

DOI=10.1007/978-3-319-20424-6_15
http://dx.doi.org/10.1007/978-3-319-20424-6_15

Copyright notice: with permission of Springer.

Re-print with permission.

The paper is reformatted for typographic consistency.

 2

NoSQL Approach to Large Scale Analysis of
Persisted Streams

Khalid Mahmood, Thanh Truong, Tore Risch
Department of Information Technology, Uppsala University, Sweden

Department of Information Technology, Uppsala University
Box 337, SE-75105 Uppsala, Sweden

{Khalid.Mahmood, Thanh.Truong, Tore.Risch}@it.uu.se

ABSTRACT
A potential problem for persisting large volume of streaming logs with con-
ventional relational databases is that loading large volume of data logs pro-
duced at high rates is not fast enough due to the strong consistency model and
high cost of indexing. As a possible alternative, state-of-the-art NoSQL data
stores that sacrifice transactional consistency to achieve higher performance
and scalability can be utilized. In this paper, we describe the challenges in
large scale persisting and analysis of numerical streaming logs. We propose
to develop a benchmark comparing relational databases with state-of-the-art
NoSQL data stores to persist and analyze numerical logs. The benchmark will
investigate to what degree a state-of-the-art NoSQL data store can achieve
high performance persisting and large-scale analysis of data logs. The bench-
mark will serve as basis for investigating query processing and indexing of
large-scale numerical logs.

Keywords. NoSQL data stores, numerical stream logs, data stream archival.

1 Introduction
The data rate and volume of streams of measurements can become very high.
This becomes a bottleneck when using relational databases for large-scale
analysis of streaming logs [1][2][3][4]. Persisting large volumes of streaming
data at high rates requires high performance bulk-loading of data into a data-
base before analysis. The loading time for relational databases may be time
consuming due to full transaction-al consistency [5] and high cost of indexing
[6]. In contrast to relational DBMSs, NoSQL data stores are designed to per-
form simple tasks with high scalability [7]. For providing high performance
updates and bulk-loading, NoSQL data stores generally sacrifice strong con-
sistency by providing so called eventual consistency compared with the ACID

 3

transactions of regular DBMSs. Therefore, NoSQL data stores could be uti-
lized for analysis of streams of numerical logs where full transactional con-
sistency is not required.

Unlike NoSQL data stores, relational databases provide advanced query
languages and optimization technique for scalable analytics. It has been
demonstrated in [8] that indexing is a major factor for providing scalable per-
formance, giving relational databases a performance advantage compared to a
NoSQL data store to speed up the analytical task. Like relational databases,
some state-of-the-art NoSQL data stores (e.g. MongoDB), also provide a
query language and both primary and secondary indexing, which should be
well suited for analyzing persisted streams.

To understand how well NoSQL data stores are suited for persisting and
analyzing numerical stream logs, we propose to develop a benchmark com-
paring state-of-the-art relational databases with state-of-the-art NoSQL data
stores. Using the bench-mark as test bed, we will then investigate techniques
for scalable query processing and indexing of numerical streams persisted
with NoSQL data stores.

2 Application Scenario
The Smart Vortex EU project [1] serves as a real world application context,
which involves analyzing stream logs from industrial equipment. In the sce-
nario, a factory operates some machines and each machine has several sensors
that measure various physical properties like power consumption, pressure,
temperature, etc. For each machine, the sensors generate logs of measure-
ments, where each log record has timestamp ts, machine identifier m, sensor
identifier s, and a measured value mv. Relational databases are used to analyze
the logs by bulk-loading them in table measures (m, s, ts, mv) which contains
a large volume of data logs from many sensors of different machines [3][4].

Since the incoming sensor streams can be very large in volume, it is im-
portant that the measurements are bulk-loaded fast. After stream logs have
been loaded into the database, the user can perform queries to detect anomalies
of sensor readings. The following query analyzes the values of mv from sensor
logs for a given time interval and parameterized threshold.
SELECT * FROM measures
WHERE m = ? AND s = ?AND
 ts > ? AND

 ts < ? AND mv > @th

In order to provide scalable performance of the query, we need an index on
the composite key of m, s, ts and a secondary B-tree index on mv.

 4

3 Challenges in Analyzing Large Scale Persisted
Streams

Analysis of large-scale stream logs in the above application scenario poses the
follow-ing challenges (C1 to C6) in utilizing relational and NoSQL data
stores.

 C1. Bulk-loading: In relational DBMSs, the high cost of maintaining the
indexes and full transactional consistency can degrade the bulk-loading per-
formance of large volume of data logs. The loading performance of a rela-
tional DBMS from a major commercial vendor, called DB-C and a popular
open source relational database, called DB-O for 6GB of data logs is shown
in Figure 1 It took more than 1 hour in a high performance commodity ma-
chine for the state-of-the-art commercial DBMS, DB-C to bulk-load data logs
consisting of around 111 million sensor measurements. Some of the data logs
consist of more than a billion sensor measurements, which require high-per-
formance bulk-loading. To boost up the performance, weak consistency level
of a NoSQL or relational database can be utilized.

Figure 1. Bulk-loading performance of 6GB logs.

Figure 2. Index and database size of 6GB of logs.

C2. Index size: Figure 2 shows the index and database sizes for 6GB of
stream logs loaded into the two DBMSs. The size of the index created in both
relational DBMSs was larger than the size of the original logs. For high per-
formance and scalable analysis of typical stream logs, hundreds of gigabytes

22,105

3,882

0

15 000

30 000

0 1 2 3 4 5 6 7 8

Lo
ad

 T
im

e
(s

)

DB size (GB)

DB-O DB-C

11,4
7,5

6,3

7,5

0,0
2,0
4,0
6,0
8,0

10,0
12,0
14,0
16,0
18,0
20,0

DB-O DB-C

Si
ze

 (G
B)

Data Stores

Index Data

 5

of memory is required in our application. It is interesting to see whether the
state-of-the-art NoSQL data store can provide memory efficient indexing
strategies. Novel indexing techniques can also be incorporated in order to pro-
vide a memory efficient indexing for analyzing persisted streams.

 C3. Indexing strategies: Unlike relational databases and MongoDB, most
NoSQL data stores do not provide both primary and secondary indexing,
which are essential to scalable processing of queries over data logs. Some
NoSQL data stores such as Hbase, Cassandra, Memcached, Voldemort, and
Riak do not provide full secondary indexing, which is needed for queries hav-
ing inequalities over non-key attributes. CouchDB has secondary index, but
queries have to be written as map-reduce view [7], not transparently utilizing
indexes.

C4. Query processing: Unlike relational databases, most NoSQL data
stores do not provide a query optimizer. Some NoSQL data stores, e.g. Mon-
goDB, provide a query language that is able to transparently utilize indexes.
However, the sophistication of query optimizer still needs to be investigated
for scalable analysis of data logs.

C5. Advanced analytics: Relational DBMS features for advanced analyt-
ics such as joins or numerical expressions is limited in NoSQL data stores.
Therefore, it needs to be investigated how advanced numerical analytics over
large-scale data logs could be performed by NoSQL data stores.

C6. Parallelization of data: NoSQL data stores have the ability to distrib-
ute data over many machines, which can provide parallel query execution.
However, typical queries for analyzing data logs can generate lots of interme-
diate results that need to be transferred over the network between nodes, which
can be a performance bottleneck. Therefore, the performance of both horizon-
tal and vertical partitioning of distributed NoSQL data stores can be investi-
gated for query execution over numerical logs.

4 Proposed Work
There are several investigations that can be performed for large-scale analysis
of numerical stream logs.

Stream log analysis benchmark: Typical TPC benchmarks [9] such as
TPC-C, TPC-DS, and TPC-H are targeted towards OLTP or decision support,
not for log analysis. To benchmark data stream management systems, the Lin-
ear Road Benchmark (LRB) [10] is typically used. However, LRB does not
include the performance of persisted streams. Analysis of large-scale data logs
often requires scalable queries (e.g. [3][4]) over persisted numerical logs,
which should be the focus the benchmark. In the benchmark, several state-of-
the-art NoSQL data stores should be compared with relational DBMSs to in-
vestigate at what degree NoSQL data stores are suitable for persisting and an-
alyzing large scale numerical data streams. The performance of bulk-loading

 6

capacities of the databases w.r.t. indexing and relaxed consistency should be
investigated in the benchmark. The queries should be fundamental to log anal-
yses and targeted to discover the efficiency of query processing and utilization
of primary and secondary index of the data logs. The benchmark should ana-
lyze and compare the performance differences of loading with relaxed con-
sistency, index utilization, and query execution for both NoSQL and relational
databases, which can provide the important insights into challenges C1, C3,
C4, and C6.

Query processing: Supporting advanced analytics using a complete query
language with a NoSQL data store requires the development of query pro-
cessing techniques to compensate for the limitation of the NoSQL query lan-
guages, for example lack of join and numerical operators. The push-down of
query operators as generated parallel server side scripts should be investi-
gated. Furthermore, it should be investigated how domain indexing strategies
[11] in a main memory client-side database (e.g. Amos II [12] developed at
UDBL of Uppsala University and [13]) can improve performance of numeri-
cal data log analyses of data retrieved from back-end NoSQL databases. These
can provide the insights of the challenges C2 and C5.

References

[1] Smart Vortex Project, http://www.smartvortex.eu/
[2] Zeitler, E., Risch, T.: Massive Scale-out of Expensive Continuous Queries. In:

VLDB (2011)
[3] Truong, T., Risch, T.: Scalable Numerical Queries by Algebraic Inequality Trans-

formations. In: DASFAA (2014)
[4] Zhu, M., Stefanova, S., Truong, T., Risch, T.: Scalable Numerical SPARQL Que-

ries over Relational Databases. In: LWDM Workshop (2014)
[5] Doppelhammer, J., Höppler, T., Kemper, A., Kossmann, D.: Database perfor-

mance in the real world. In: SIGMOD (1997)
[6] Stonebraker, M.: SQL databases v. NoSQL databases. Comm. ACM. (2010)
[7] Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39 (2011)
[8] Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., Dewitt, D.J., Madden, S., Stone-

braker, M.: A Comparison of Approaches to Large-Scale Data Analysis. In: SIG-
MOD (2009)

[9] Council, T.P.P.: TPC Benchmarks, http://www.tpc.org/information/bench-
marks.asp

[10] Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E.,
Stonebraker, M., Tibbetts, R.: Linear road: a stream data management bench-
mark. In: VLDB (2004)

[11] Gaede, V., Günther, O.: Multidimensional Access Methods. ACM Comput. Surv.
30 (1998)

[12] Risch, T., Josifovski, V., Katchaounov, T.: Functional Data Integration in a Dis-
tributed Mediator System. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Pou-
lovassilis, A. (eds.) The Functional Approach to Data Management (2004)

[13] Freedman, C., Ismert, E., Larson, P.-Å.: Compilation in the Microsoft SQL
Server Hekaton Engine. In: IEEE Data Eng. Bull. 37, 1 (2014)

