
Linköping Studies in Science and Technology

Submitted to the School of Engineering at Linköping University in partial
fulfillment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköping University

S-581 83 Linköping, Sweden

Thesis No733

Performance-Polymorphic Declarative Queries

by

Thomas Padron-McCarthy

Linköping 1998

Department of Computer and Information Science
Linköping University
S-581 83 Linköping

Sweden

Performance-Polymorphic Declarative Queries

by

Thomas Padron-McCarthy

December 1998
ISBN 91-7219-354-9

Linköping Studies in Science and Technology
ISSN 0280-7971
Thesis No 733

LiU-Tek-Lic 1998:68

ABSTRACT

Performance polymorphism, where a system can select between several given implemen-
tations of the same conceptual operation, has been used in real-time programming lan-
guages, such as Flex. The contingency plans used in the active database system HiPAC
is a related, but more limited, mechanism. We have introduced performance polymor-
phism into a declarative database query language. We have shown the feasibility of the
concept by implementing a general, performance-polymorphic query optimizer. We
show how performance-polymorphic queries are specified and optimized in our system.
A number of applications for the technique are suggested.

This work was supported by NUTEK, the Swedish National Board for Industrial and
Technical Development, as part of ISIS, the Competence Center for Integrated Systems
for Control and Information.

Contents

1 Introduction 7

1.1 Overview of this thesis 7

2 Background 9

2.1 Databases . 9

2.1.1 Query optimization 11

2.1.2 Active databases 12

2.1.3 Object-oriented databases 12

2.1.4 Main-memory database systems 13

2.2 Real-time systems . 15

2.3 Real-time database systems 16

2.4 Active real-time databases 17

3 Performance Polymorphism 19

3.1 Contingency plans . 20

3.2 Exceptions . 20

3.3 Performance dimensions 22

3.4 Performance polymorphism 23

4 Related Work on Performance Polymorphism 25

4.1 HiPAC . 25

4.2 CASE-DB . 25

4.3 Parachute queries . 26

4.4 Data models . 27

4.5 Flex . 27

4.5.1 Timing constraints in Flex 27

1

2 CONTENTS

4.5.2 Execution-time measurements and timing analy-
sis in Flex . 29

4.5.3 Imprecise computations in Flex 29
4.5.4 Performance polymorphism in Flex 30
4.5.5 Trade-o�s in performance polymorphism in Flex . 31
4.5.6 Combining resource measurements in Flex 32

4.6 ROMPP . 32
4.7 CHAOS . 35

5 Our Approach to Performance Polymorphism 37

5.1 Performance dimensions 37
5.1.1 Di�erent kinds of time 38
5.1.2 Quality . 38
5.1.3 Bayesian probability as quality 38

5.2 Performance-polymorphic queries 39
5.3 Optimization . 40
5.4 The cost model . 40

6 The Implementation 41

6.1 AMOS . 41
6.1.1 Query optimization in AMOS 42

6.2 The optimizer . 42
6.3 Specifying performance dimensions in our implementation 42
6.4 The algorithm . 43

6.4.1 Traditional dynamic programming 44
6.4.2 Modi�cations in our algorithm 44

6.5 Pseudo-code for the optimizer 44
6.5.1 Initial values . 44
6.5.2 Some other variables 45
6.5.3 The optimization procedure 46

6.6 A real-time telecom example 48

7 Applications 55

7.1 Suitable applications . 55
7.2 Real-time systems . 56

7.2.1 Graphics-intensive simulations 56
7.2.2 Time ranges . 57

CONTENTS 3

7.3 The Internet and the World Wide Web 58
7.4 Multidatabases and mediators 58

7.4.1 Distributed databases 58
7.4.2 Distributed databases and performance polymor-

phism . 59
7.4.3 Multidatabases 60
7.4.4 Multidatabases and performance polymorphism . 61
7.4.5 Performance-polymorphic MSQL 62
7.4.6 Mediators . 63

7.5 Server-side optimization 64
7.6 Telecom databases . 65

8 Future Work 67

8.1 Late and early optimization 67
8.2 Alternative optimization algorithms 68
8.3 Measurements of quality 68
8.4 Re�ning and validating the cost model 69
8.5 What if the cost model was wrong? 69

9 Conclusions 71

9.1 Concept . 71
9.2 Implementation . 71
9.3 Applications . 72

4 CONTENTS

Acknowledgments

My thanks to my advisor, professor Tore Risch, and also to the other
members of the EDSLAB research group at the Link�oping University
who have provided valuable advice and discussions. Special thanks to
Jonas S Karlsson (who thanked me in his lic thesis!) for discussions
about hash tables, how to implement alloca, and other interesting top-
ics.

This work was funded by NUTEK, the Swedish National Board for
Industrial and Technical Development, as part of ISIS, the Competence
Center for Integrated Systems for Control and Information.

5

6 CONTENTS

Chapter 1

Introduction

This work is about database systems, and how to let such systems �nd
optimal solutions to problems bymaking trade-o�s between constrained
resources.

Parts of the material have been presented in [37] and [38].

1.1 Overview of this thesis

Chapter 2 gives an introduction to some concepts within the �elds
of databases, real-time systems, and real-time databases. In section
2.1 we will examine some of the properties of a database management
system that are of importance for this work, including active and object-
oriented database systems. Section 2.2 will cover some relevant aspects
of real-time systems, and in section 2.3 we look at the combination of
the two concepts, i. e. real-time database systems. Section 2.4 is about
active real-time database systems.

Chapter 3 explains the concept of performance polymorphism, and
gives some de�nitions of the term. In chapter 4 we explore more in
depth some related work that has been done using performance poly-
morphism, in a wide sense of the term. Then, in chapter 5, we will
explain how our approach di�ers from this previous work.

Chapter 6 documents the performance-polymorphic query optimizer
that we have implemented in the AMOS system.

Chapter 7 shows how this work can applied to some example appli-

7

8 CHAPTER 1. INTRODUCTION

cation domains.
Chapter 8 suggests some future directions for this research, and

chapter 9 gives some conclusions.

Chapter 2

Background

This thesis is intended to show how certain database technology can be
used to solve a class of problems for, primarily, real-time applications.
As a background, we present in this chapter some important aspects of
database systems [13] [47] [11] and real-time systems [8] [50].

We concentrate on those aspects that we believe are important for
the understanding of our work in performance polymorphism, so this
chapter is not necessarily useful as a �rst introduction to any of the
subjects covered.

2.1 Databases

A database is a collection of data. Typically, the amount of data is large,
and it may also have a complicated structure. Other requirements may
be added to the de�nition, such as the data being related, consistent,
or stored in a computer system.

A database management system (DBMS) is a program or set of
programs that manages these data. Typical DBMSs provide their users
with powerful and exible ways to de�ne, store and retrieve the data.
Sometimes the term database is used to refer to DBMSs.

The combination of a database and the DBMS that manages it can
be called a database system. This term, like database, is also sometimes
used to refer to DBMSs.

A schema is a description of the data that can be stored in the

9

10 CHAPTER 2. BACKGROUND

database. The schema is stored explicitly, along with the data in the
database, and can be accessed and modi�ed by the DBMS. While it is
possible to have a collection of data without an explicitly stored schema,
where the information about the data and its structure is instead hard-
coded in, for example, a programming language, we believe that the
existence of such an explicit schema is one of the most important traits
of a database system.

A data model de�nes what kinds of schemas can be used. The most
common data models in current research and development are the re-
lational model and various object-oriented models.

An important ingredient in many DBMSs is a declarative query lan-
guage, where the user can formulate declarative queries. A declarative
query, or query for short, is an operation against a database that is for-
mulated in such a declarative query language, which is a high-level pro-
gramming language that permits the user to specify complex database
operations in a concise manner. A well-known query language is SQL.
Declarative queries are not directly executable, but must be translated,
by the DBMS, into an executable, procedural, program, the execution
plan. This process is known as query optimization, and is done by a
DBMS subsystem called the query optimizer.

A DBMS will usually add some overhead, in memory usage, disk
usage and execution time, compared to an application where the da-
ta management has been hand-coded in a traditional programming
language such as C++ or Ada. In some cases, this overhead may be
large. On the other hand, development time can be much shorter, since
advanced functionality is already built in into the DBMS. Execution
speeds may also be higher in the database solution, since the DBMS
provides advanced data structures and execution modes that are di�-
cult to implement well in a hand-coded application. Also, and perhaps
more importantly, the DBMS allows for much greater exibility than
a hand-coded program. It is comparatively easy to change both the
logical and the physical structure of the data, and to manipulate the
data in new and unforeseen ways. An especially important factor for
this power and exibility is the presence of a declarative query language
in the DBMS. Using the query language, it is possible to perform new
types of operations on the data in the database, for example previously
unexpected types of searches.

2.1. DATABASES 11

2.1.1 Query optimization

There are usually many possible execution plans for a given declara-
tive query, and these plans can have widely varying performance. One
execution plan can easily be several orders of magnitude faster than an-
other. It is therefore important that the query optimizer �nds a good
(i. e. fast) plan, ideally the best.

A traditional database query optimizer [45] works with a single per-
formance measure, the \cost", which usually reects the expected exe-
cution time, which in a disk-based database is dominated by the number
of disk accesses.

The optimizer uses an optimization algorithm to �nd an accept-
able execution plan. In some cases, such as in a traditional disk-based
database with few and well-known data types and operations on these
data types, it may be su�cient to use some heuristics to order the steps
in the execution plan. For example, for a query expressed in relational
algebra, the main such heuristic rule is to reorder the query so that
select and project operations are performed before join or other bina-
ry operations. The justi�cation for this rule is that select and project
typically decrease the size of the result, and will never increase its size.
Therefore, the cost of the entire query execution will be lower.

For more complicated cases, and for more exact optimization, it
is necessary to use an explicit cost model to estimate the cost of the
execution plans. The cost model de�nes a cost for each step in the
execution plan, and a way to calculate the cost for a complete (or
partial) plan. In a traditional database the cost model is crude, and
only speci�es the relative merits of di�erent execution plans, instead
of the actual expected execution time. The optimizer then searches the
space of possible execution plans, in di�erent orders depending on the
optimization algorithm.

With an exhaustive method, the optimizer will �nd the best plan,
according to the cost model. This requires the optimizer to examine
all possible execution plans, except those that can be guaranteed to be
inferior. Typically dynamic programming is used, which builds a search
tree of possible execution plans using a best-�rst search.

For complex queries, where the number of possible execution plans
can be too large for an exhaustive search, a heuristic method can be

12 CHAPTER 2. BACKGROUND

used. A heuristic method uses some rule-of-thumb to concentrate the
search to sets of plans that are likely to be good, and thus will not
examine all possible plans. Such methods are not guaranteed to �nd the
best plan, but will, in practice, �nd an acceptable plan. A randomized
method [20] inserts an element of randomness, for example by using one
or many random starting points for the search.

2.1.2 Active databases

Traditional database systems have been passive, i. e. they only execute
queries or transactions that are explicitly submitted by a user or an
application program. Sometimes it is necessary to monitor the data in
the database, to detect certain situations, and to trigger a response in
a timely manner. For example, an inventory control system may need
to monitor the quantity of stock for the items in the database, and
to detect when the quantity of some item falls below a certain value.
Then, the system should initiate some steps to order additional items
to �ll up the inventory.

An active database (or rather, active DBMS) is a DBMS that can
detect such conditions, and perform di�erent kinds of actions in re-
sponse ([26], chapter 21; [12]). Typically, ECA rules are used, where
the user can specify an Event, such as the deletion or insertion of data,
a Condition on the deleted or inserted data, and an Action, which can
consist of arbitrary operations on data. The DBMS is then responsible
for monitoring changes in the database, and to execute the appropriate
actions.

There is some support for active functionality in the SQL3 standard,
and many modern commercial DBMSs now contain at least limited
active functionality.

2.1.3 Object-oriented databases

Traditional database applications have been business-oriented, such as
banking or inventory applications. Common to these applications have
been large amounts of data with a relatively simple structure, and large
numbers of relatively simple transactions.

2.1. DATABASES 13

In order for other areas of computing also to bene�t from the exi-
bility and power of database systems, a new class of applications with
di�erent requirements has emerged. Among these are CAD (computer-
aided design), CASE (computer-aided software engineering), o�ce au-
tomation, and expert systems. These applications handle data with
a more complex structure than in traditional databases. Transactions
may also be longer and more complex.

A new class of DBMSs have been developed in order to meet these
requirements. To model the complex and interrelated data, and the
procedural data, of the new applications, they use object-oriented data
models [9] [26].

One of the advantages of object-oriented DBMSs over, e. g., relation-
al systems, is a decreased so-called impedance mismatch. An impedance
mismatch means that the database uses another data model for the da-
ta than what is natural and e�cient for the application program, so
the application program has to translate back and forth between its
own data representation and the one that the database system uses.
Less impedance mismatch makes possible a closer integration between
DBMS and application program, and a di�erent and more e�cient ar-
chitecture of the database system.

What is sometimes called �rst-generation object-oriented databas-
es, are systems based on a programming language, usually C++ or
Smalltalk, which has been extended with database functionality, pri-
marily persistence.

Second-generation object-oriented databases, also called object-
relational databases, are instead based on a traditional DBMS, which
is extended with object-oriented functionality. The important di�er-
ence is that second-generation object-oriented DBMSs provide a better
declarative query language.

2.1.4 Main-memory database systems

Traditionally, database systems have been disk-based. In such a system,
all the data in the database is stored on disk, and retrieved into main
memory only when it is needed. This is slow, and response times can
be hard to predict, due to the e�ects of bu�ering and to the physics of
disks.

14 CHAPTER 2. BACKGROUND

Modern databases may be entirely stored in main memory, and only
use disk for the purpose of recovery and persistence [18]. This is, today,
easily feasible for 10-100 megabytes of data, and clearly possible even
for one or a few gigabytes on a large, dedicated machine. (Numbers
like these are growing rapidly. A popular model for this is Moore's law,
which usually is taken to say that the capacity of computer systems
roughly doubles in eighteen months.)

A main-memory database system typically shows much higher per-
formance than a disk-based system. Main memory is typically 10000
times faster than a disk for processing a block (one or a few kilobytes)
of data [52]. The di�erence is much bigger for accessing a single small
object, since disks are block oriented and have a high, �xed cost per
access that does not depend on the amount of data that is retrieved
during the access. This �xed cost for retrieving a block of data is typi-
cally around 10 ms for modern disks (and this �gure is not decreasing
rapidly), while access to main memory can be around 10 ns. This means
that for some applications with high performance requirements, either
for average response times or for real-time (i. e., worst-case) response
times, disk-based databases are simply not possible to use. (With disk
striping, as used in some RAID architectures [47], part of this limita-
tion of disks can be alleviated. The maximumdata transfer rate can be
increased, but the minimum access time is not a�ected.)

The lay-out of data, especially concerning locality and the possibil-
ity for sequential access, is much less critical in a main-memory system
than in a disk-based one. Therefore, index structures that are sim-
pler to implement and gives less overhead can be used. (On the other
hand, if the computer uses a cache memory between main memory and
the CPU, and this cache memory is much faster than the normal main
memory, locality and sequential access may still have to be considered.)

Other overhead induced by the DBMS can also be lower. E. g., in
some cases locking can be entirely avoided, because the system will
never need to wait for a slow disk operation to complete [18]. Another
example of reduced overhead can be that while a disk-based system
uses a bu�er manager, which makes it necessary to copy the data in one
or more steps, a main-memory system might access the data directly,
referring to it by its memory address.

One disadvantage with main-memory systems is that data in main

2.2. REAL-TIME SYSTEMS 15

memory is more vulnerable than disk-resident data to software and
hardware errors. Main-memory systems will also still need to use disks
for transaction processing purposes, for backup, logging and recovery.

2.2 Real-time systems

A real-time system [8] [50] is a system where the operations not only
have correctness requirements, but also requirements on timeliness. For
example, a task needs to be completed before a given deadline. Real-
time systems are not restricted to applications where the time spans
in question are short (fractions of a second), although many real-time
applications fall in this domain, but also include applications with a
longer time range (several seconds or much longer) [51]. The common
denominator is that the system must be able to meet the timeliness
constraints, either by predicting in advance how long operations will
take, and scheduling them accordingly, or by performing some contin-
gency action when a deadline cannot be met. The concept of a deadline
is common in real-time systems, i. e. a time limit when an operation
should be �nished.

A real-time system is not the same thing as a high-performance
or fast system, although in actual implementations a common way of
guaranteeing response times is to simply have a system that is (one
hopes) fast enough.

Sometimes a distinction is made between hard, soft and �rm real-
time systems. The distinction is made by looking at the usefulness of
the result, and how this usefulness varies when the deadline is passed.
A hard real-time system is one where the deadline absolutely must be
met. Otherwise, e. g., the plane crashes. A soft system is one where the
result may still be useful even if it arrives after the deadline. An example
of a soft real-time system is a system that shows a �lm by retrieving
individual frames form a repository of some kind, or by computing
them. If a frame is not available when it should be presented, it may still
be valuable to show it later. The movie will just freeze for a moment. A
�rm systems is one where the result will not be useful after the deadline,
but no disaster will occur. An example of this can be a weather forecast.

16 CHAPTER 2. BACKGROUND

2.3 Real-time database systems

In traditional database applications, real-time response has been of
small importance. With respect to execution times, the focus has been
on high through-put, meaning that average performance has been op-
timized instead of the execution time for an individual transaction, or
the worst-case execution time for an individual transaction. Because of
this, the real-time characteristics of a traditional DBMS can be totally
unsatisfactory for applications that require a guaranteed response time.

A real-time database management system (RTDBMS) [42] [4] [3] is a
DBMS that meets timeliness requirements, in addition to the tradition-
al DBMS functionality. Alternatively, it can be de�ned as a real-time
system that includes database capabilities, such as transaction man-
agement, index structures, and query capabilities. Despite the appar-
ent similarity, in practice these two de�nitions are not co-extential, but
di�er in a way that is similar to what can be said about object-oriented
databases. The approach of starting with the DBMS concept, and
adding real-time functionality, tends to put emphasis on database fa-
cilities, such as transaction processing and de�ning a declarative query
language as interface to the database, while the other approach favors
a programming-language interface, typically using C or Ada.

For applications with extremely high requirements on performance,
and that use very simple data, solutions in hardware may be necessary.
For applications with slightly lower demands, and more complex data,
software solutions that are hand-coded in a traditional programming
language might be used. A database approach will probably be used for
applications with larger amounts of more complex data, with higher re-
quirements on exibility, and with somewhat less extreme performance
requirements.

The best choice for a real-time database systems is probably a main-
memory database architecture, with disk-based solutions reserved for
systems that use very large amounts of data and that have lower de-
mands on performance and uniformity of response time.

2.4. ACTIVE REAL-TIME DATABASES 17

2.4 Active real-time databases

The presence of active rules in a real-time database [1] [2] poses addi-
tional problems. Even if it is possible to guarantee response times in a
system where activity in the DBMS is explicitly initiated by the user, it
may be much more di�cult to do so when the DBMS initiates actions
on its own. Since these can happen at unpredictable times, and with
unpredictable amounts of data, care must be taken to avoid that the
execution of a triggered rule breaks a deadline.

One solution may be to de�ne several di�erent actions to be exe-
cuted when a rule is triggered, and let the system choose among them.
The early active database system HiPAC [14] provided for alternative
actions, contingency plans, which could be chosen when there wasn't
time to execute the normal action. This can be viewed as an early form
of performance polymorphism, as described later in this thesis.

18 CHAPTER 2. BACKGROUND

Chapter 3

Performance Polymorphism

In time-critical applications it is sometimes possible to �nd a simpli�ed
algorithm that can be used when there isn't enough time to run the
normal algorithm. This simpli�ed algorithm performs the same concep-
tual operation as the normal one, but in shorter time. The trade-o� is
that the result may be of a lower quality in some sense, for example
with respect to precision, completeness, or data consistency.

As an example of an application, such di�erent algorithms can be
used in a control system that reads input from a slow physical sensor.
If the control application doesn't always have time to wait for the next
sensor reading, it could instead use an extrapolation of previous values.
This will produce a value within the allowed time-frame, but the value
may deviate from the actual physical value.

Another example is an iterative numerical computation that may
be set to produce results with di�erent precisions depending on the
execution time spent on the computation. Thus we have a trade-o�
between time and precision, and this trade-o� can be used in a time-
critical application to �nd an acceptable result within the allowed time-
span, instead of a more exact result that arrives too late.

The di�erent implementations can be de�ned by the programmer,
and under some circumstances it is possible for the system to �nd them
automatically, such as is done in CASE-DB [19] [35] [34].

19

20 CHAPTER 3. PERFORMANCE POLYMORPHISM

3.1 Contingency plans

A contingency plan is an alternative operation that can be performed
when there is not time enough for the normal operation, or when some
other condition makes the normal action impossible. The contingency
plan may perform the same task as the normal action, but in a faster or
cheaper way, and perhaps not as well. An example of this can be to use
less precision in a calculation, or to use old data instead of collecting
or calculating them. It is also possible for the contingency plan to do
something completely di�erent from the normal operation, such as to
turn back and land the plane instead of ying to the destination.

Contingency plans were used in HiPAC [14], where the action part
of an ECA rule could be speci�ed to have an alternative, which was
to be executed if enough time was not available for the normal action
part.

3.2 Exceptions

Constraints, which put limits on the allowed performance of the query
execution in terms of time, resource consumption, quality of the answer,
etc., need to be satis�ed and checked by the query execution system.
These constraints may be explicitly stated by a user who writes a query,
or they may originate from some other source.

The handling of constraints may consist of the system making a
choice between alternative actions in order to satisfy the constraints,
or that the system monitors the constraints in order to e. g. guarantee
that appropriate action is taken before a deadline. Such handling can
be done at di�erent times. There are four important cases:

� At compile-time. At this time, the program and the structure
of the data is known. In a database context, this means that
the query and the schema is known. The data itself may not be
fully known, or it may be di�erent from the data that will be
used in the actual execution. For example, the size of a relation
may be unknown or di�erent from what will be used when the
query is run. In some cases it is therefore di�cult or impossible

3.2. EXCEPTIONS 21

to estimate execution time and other resource usages at compile-
time, even with a perfect cost model. In other cases data statistics
are available. Relational cost-based optimizers rely on this.

� Immediately before execution, that is, when a query has been
submitted for execution, or an action has been triggered, but be-
fore execution has started. This is sometimes called the activation
phase. At this time, there will probably be more knowledge avail-
able about the data. Database systems can keep track of the size
and statistical distribution of data, so it may be possible to use
the cost model to �nd a better estimate of the time and other
resources that the query will need.

The additional resource usage for the constraint checking and
for the choice between options, may make this case unsuitable
for some applications since these resources have to be added to
the resources consumed by the query execution itself. E. g. in a
real-time system with high performance requirements (i. e. which
requires short response times), the additional delay may not be
acceptable.

� During execution. While the execution of the query is in progress,
it may be possible to keep track of resource usage by actual
measurements. For real time, this simply means to keep track
of elapsed time. Time-outs fall in this category. It may also be
possible to compare the pre-execution cost estimate with the ac-
tual measured execution cost, either to check the validity of the
estimate or to �nd new and improved cost estimates by feeding
better estimates to the cost model than what was available before
execution.

� After the execution has completed. For some applications, the
actual cost of the query may not be available until after execution.
One example of this is a real-time database system that runs on
top of a non-real-time operating system, where other tasks or
disk access may cause unpredictable delays. For a performance
measure that is not increasing or decreasing monotonically, it may
not even be possible to detect a constraint violation until after the

22 CHAPTER 3. PERFORMANCE POLYMORPHISM

entire execution has completed. It may not be pointless to detect
a constraint violation at this late time, since some compensating
action may be possible, or the cost model may be improved.

In HiPAC, it seems that the choice between the normal action and
the contingency plan was performed before execution.

Other systems choose to continuously monitor the speci�ed con-
straints, using an exception mechanism, which is familiar from the pro-
gramming languages Ada and C++. One such system is the C++-based
programming language Flex. When a constraint is broken, and this is
detected by the system, we say that an exception is raised or thrown.
This can be done either automatically by the system, or explicitly by the
application program. When an exception has been raised, the normal
execution stops, and the system instead executes an �exception handler,
that has been written by the application programmer. If no exception
handler exists, execution is terminated with some form of error message.

3.3 Performance dimensions

Traditional database query optimizers use a single performance mea-
sure, the \cost", which usually reects the expected execution time.
The execution time is but one of many di�erent resources that may be
of interest, and that may therefore be used as performance measures.
Other examples are memory usage, network communication, and mon-
etary cost. When optimizing a query, we might want to keep track of
all these, both to minimize resource usage and to enforce constraints
on this usage. We can therefore view each performance measure as a
performance dimension.

The examples of performance dimensions mentioned are resources
consumed by the query execution. Another class of measures is con-
nected with the result of the query, such as its precision, its quality or
its size. We may want to enforce constraints, or optimize, these too, so
we consider them also as performance dimensions.

Both the programming language Flex (see section 4.4 below) and
the data model ROMPP (see section 4.5) use several performance di-
mensions. ROMPP has a mechanismwhere the application programmer
can specify any number of performance dimensions.

3.4. PERFORMANCE POLYMORPHISM 23

In the most general environment, it should be possible for the user
to specify new performance dimensions, and it should be possible to use
any of the dimensions as the optimization objective. If the system allows
the speci�cation of constraints, it should be possible to put constraints
on all performance dimensions,

3.4 Performance polymorphism

The term performance polymorphism refers to \a scheme were all the
versions of a particular computation are identi�ed as candidates for
binding to a generic name. We call this technique performance poly-
morphism by analogy to the conventional polymorphism where di�er-
ent functions of the same name operate on di�erent data types" [23].
A similar de�nition is given in [55].

The essence of the de�nition is that the system must be able to au-
tomatically select among several di�erent given implementations, and
that it should �nd the best, or at least an acceptable, trade-o� be-
tween the di�erent performance measures. This can be done either at
run-time, or at compile-time. A mixture is also possible, where the se-
lections that can be made early are made early, and the rest is deferred
to run-time. The simplest solution for implementing this mixture is
to let a programming-language compiler perform normal compiler opti-
mizations, thereby eliminating some of the choices where the conditions
are known at compile-time. This approach is used in Flex [23]. A more
advanced solution could use partial evaluation techniques [21] or have
explicit mechanisms to let the compiler leave some choices unmade in
the generated execution plan, or generate several alternative execution
plans [10].

While these de�nitions seem to be best suited for use in program-
ming languages or in object-oriented databases, with named functions
or methods, the concept could be extended to cover e. g. contingency
plans in the ECA-rules of an active database system [14], and the query
partitioning in CASE-DB [34]. However, in order to naturally capture
this and other forms of polymorphism, an object-oriented data mod-
el is advantageous. Several real-time object-oriented data models have
been de�ned, e. g. RTSORAC [41]. Some real-time systems combine

24 CHAPTER 3. PERFORMANCE POLYMORPHISM

performance polymorphism and object orientation, such as the Flex
programming language and the ROMPP data model.

Chapter 4

Related Work on

Performance Polymorphism

4.1 HiPAC

An early example of a mechanismwhere di�erent implementations of an
operation can be de�ned by the user, and then automatically chosen
by the system, is the contingency plans for alternative executions of
reactive rules in the active DBMS HiPAC [14], also discussed in some
later publications, e. g. [6]. In the ECA rules described in the HiPAC
project, more than one version of the action part could be speci�ed.
When the time constraints could not be met by the normal action of
a rule, the system could instead choose an alternative, the contingency
plan. While HiPAC provided a declarative query language, the use of
di�erent-performance implementations was limited to the ECA rules,
and could not be used in other parts of the system. Contingency plans
do not fall under the de�nition of performance polymorphism, but it is
a related concept.

4.2 CASE-DB

CASE-DB [19] [35] [34] is a real-time relational prototype DBMS that
permits the speci�cation of time constraints for queries expressed in
relational algebra.

25

26CHAPTER 4. RELATEDWORKONPERFORMANCEPOLYMORPHISM

Given a deadline, the system can automatically partition a query,
and then does iterative improvement using these partitions, while han-
dling the risk of over-spending its time budget. First a query is run on
the smallest subset, giving a crude approximation in short time. Then
a larger subset is used, and so on, until at the end all the data is used.

For aggregate queries, this can be done automatically. In this case,
CASE-DB uses query approximation techniques where the result of the
query is estimated using statistical estimators and sampling techniques.

For non-aggregate queries, this requires a previous, user-de�ned par-
titioning of the data. The user or the database administrator identi�es
the relations that are likely to be used in time-constrained queries,
and (horizontally) divides each relation into three fragments: required,
strongly preferred, and preferred.

The choice of relation fragments is completely based on the seman-
tics of the application, and will change with each application. Therefore,
this partitioning is entirely left to the user, and CASE-DB gives no help
or guidelines on how to do the partitioning.

CASE-DB has no user-declared performance polymorphism, i. e. it
is not possible to de�ne multiple implementations of operations. The
quality of the answer, and trade-o�s between time and quality, is not
discussed.

The value of a transaction is mentioned in [34], where there is a
brief discussion on how to choose between several transactions that
are competing for resources, where some of the transactions can be
executed in di�erent versions.

The preferred way to handle competing transactions, according to
that same brief discussion, is to let each transaction specify its "option-
al" and "required" parts (subtransactions), in order to let the DBMS
modify transactions (by downsizing them), and make sure that all or
most of the transactions can complete within their deadlines.

4.3 Parachute queries

A heterogeneous database system, where a query can retrieve data from
several di�erent data sources, su�er from a common problem: if some
sources are unavailable during query execution, these systems either

4.4. DATA MODELS 27

silently ignore the unavailable source, or the entire query fails. In envi-
ronments where there is a large probability that data sources become
unavailable (such as the Internet), this behavior is not good enough.

A possible improvement is to generate a partial answer, based on
the data that could be retrieved and processed. If such a partial answer
is accompanied by a representation of the un�nished work to be done, it
can be resubmitted to the system in order to generate the full answer. A
secondary query that is designed to complete a partial answer is called
a parachute query. [5]

This type of query modi�cation is not based on any trade-o� be-
tween e. g. quality or execution time. The result depends entirely on
from which data sources that are available.

4.4 Data models

As mentioned above, an object-oriented data model is advantageous
for expressing performance polymorphism. Several real-time object-
oriented data models have been de�ned, e. g. RTSORAC [41].

Other real-time systems combine object orientation with a more ex-
plicit performance polymorphism, such as the Flex programming lan-
guage [27] [23] [25] [32] [22] [24] in the Concord project [28] and the
ROMPP data model [55] in the MDARTS project [33].

4.5 Flex

Flex is an experimental programming language based on C++, which
has been extended with real-time functionality. It contains constructs
for stating timing constraints, for performance polymorphism, and for
imprecise computations. Flex also has the ability to measure the actual
execution times, and analyze this data in order to improve the timing
estimates.

4.5.1 Timing constraints in Flex

Flex incorporates primitives for specifying constraints on time and oth-
er resources [27] [24]. These constraints can be both absolute, and rela-

28CHAPTER 4. RELATEDWORKONPERFORMANCEPOLYMORPHISM

tive to other computations. Constraints are described using constraint
blocks:

A: constraint block

(start >= B.start + 5; duration <= 10; temperature <= 100)

~> { /* optional exception statements here */ }

{ /* block's statements here */ }

In this case, the constraint block is labeled "A", and the constraints
say that this block is not allowed to start until 5 time units after the
start of another block labeled "B", and that the duration of this block
must be at most 10 time units. Also, the value of the variable "temper-
ature" must at all times be less than 100. If a constraint is broken, and
an optional exception handler exists, this exception handler is called.

Note that the speci�ed constraints must be true at all times. There
is no mechanism here for a database-type transaction (see e. g. [13]
chapter 17) where the constraints are checked only at the end of the
transaction. This is probably the right choice for checking the usage of
resources, since we probably want such an exception to be raised when
the problem occurs and not later, after the execution has completed.

Constraints can be created using the start time of an activation, the
�nish time, the duration, and the interval between starts of consecutive
activations.

Flex handles two resources, duration (that is, real execution time)
and count (the number of executions of a block). The authors state
in [22] that "[w]e have not experimented with other resources, but it
would be easy to model the amount of memory a program uses, the
communications bandwidth it consumes, the number of processors it
uses, and so on." Also, in the Concord project [28], which the Flex
project is a part of, precision is considered as a resource.

The types of resources are built-in in the language, so, at least in this
experimental version of Flex, there is no mechanism for an application
programmer to declare additional resources.

4.5. FLEX 29

4.5.2 Execution-time measurements and timing

analysis in Flex

There are performance-analysis systems that use analytical methods
to determine the expected or worst-case execution times of real-time
tasks. Other systems rely on the programmer to supply the required
data. Flex instead uses an empirical method, where actual execution
times are measured and fed into a timing analyzer. It also incorporates
programmer knowledge about timings, since it allows the programmer
to state expected timings. [22]

The programmer inserts measuring directives in the program. An
example given in [22] is a directive for measuring the execution time of
a sorting function. The code might look like this:

void isort(int* a, int n)

#pragma measure mean duration defining

A,B,C in (A*n + B) * n + C safety 2

{ /* function body's statements here */ }

isort is a sorting function, which sorts an array a, containing n integers.
The #pragma measure directive causes the compiler to insert code that
measures the execution time of each invocation of this function. mean
in the measure directive indicates that we are interested in the mean
resource usage, and not the worst case. duration is the resource. A, B
and C are constants that will be calculated by the timing analyzer, and
that appear in the expression (A*n + B) * n + C, which models the
expected resource behavior.

When the measurement data has been collected, the programmer
runs a timing-analysis program, which determines the best �t of the
parameters, in this case the constants A, B and C.

The formula for calculating the expected execution time of the func-
tion isort can now be used, for example for choosing between di�erent
sorting functions using performance polymorphism (see below).

4.5.3 Imprecise computations in Flex

A program model that is discussed in the Flex literature [32] [25] is
imprecise computations. With such a mechanism, an approximate value

30CHAPTER 4. RELATEDWORKONPERFORMANCEPOLYMORPHISM

can be found when there is not time enough to �nd an exact result.
Flex contains a statement impcall, which can be used instead of a

normal procedure call. The called procedure uses the normal return
statement to return the �nal result, but before it does that it can use
the impreturn statement to make a tentative, imprecise result available.
If the calculation has to be interrupted due to a timing constraint, the
best of these tentative results is then used.

4.5.4 Performance polymorphism in Flex

In Flex it is possible to de�ne several implementations of the same
function, with di�erent timing measures, and with di�erent �gures of
merit. [23] [25]

Using the declaration

void sort(int* a, int n) perf_poly;

sort is declared to be a performance-polymorphic function, i. e. a
name that can be bound to one of a number of di�erent implementa-
tions, with di�erent performance characteristics.

Given that declaration, di�erent implementations can be provided:

provide isort for void sort(int* a, int n);

provide hsort for void sort(int* a, int n);

Given these implementations, and performance models calculated
by timing measurements and timing analysis as described above, in a
code fragment looking like the following,

A: constraint block (duration <= 100)

{

#pragma objective minimize duration

sort(some_array, array_length);

}

the system will, at run-time, choose an implementation that �ts
within the given time constraint. If several implementations are fea-
sible (i. e., �t within the given time constraint), the one with lowest

4.5. FLEX 31

duration will be chosen. The directive#pragma objective minimize du-
ration in this example tells the compiler to choose the implementation
that, according to the model, has the smallest duration.

(The choice will not necessarily always be the same. A sorting al-
gorithm that has the asymptotical time complexity O(n log n) will,
for su�ciently large ns, always be faster than an algorithm with the
time complexityO(n2), but for smaller ns, the O(n2) algorithm may be
faster.)

An alternative way of choosing between di�erent feasible implemen-
tations is for the programmer to specify a formula giving a �gure of
merit for each candidate implementation. The system will then choose
the implementation with the highest merit.

The performance-polymorphic binding is done at run-time, but if
some constraints and other data are known at compile-time, the com-
piler can perform normal compiler optimizations on the code for choice
of implementation, and some of the binding decisions can therefore be
done at compile-time.

[23] introduces the term performance polymorphism, and contains
a discussion of the concept and how to implement it.

4.5.5 Trade-o�s in performance polymorphism in

Flex

Since Flex isn't a declarative query language, it does not do any query
optimization. The emphasis is on a single choice between the elements
in a set of performance-polymorphic candidates, to meet a set of con-
straints. However, the \allocation problem" is discussed: when more
than one performance-polymorphic function is to be executed, more
than one choice has to be made, and the trade-o� between them has to
be considered.

In [23], the authors show that, given some assumptions, the alloca-
tion problem is equivalent to a \knapsack sharing" problem, which can
be solved in linear time. However, when we relax these assumptions, it
becomes a combinatorial bin-packing problem. Here the authors sug-
gest the use of approximate algorithms, or speci�c techniques that may
solve a subset of the problem for a certain application.

32CHAPTER 4. RELATEDWORKONPERFORMANCEPOLYMORPHISM

In the end, Flex does not provide a general allocation mechanism.
Instead, the application programmer has to provide this allocation
himself1, using one constraint block for each performance-polymorphic
function call.

4.5.6 Combining resource measurements in Flex

If a program contains several performance-polymorphic function calls
within the same constraint block, the system must have a way to
combine the performance values for these calls. How this combination
should be done, depends on the type of resource, and of the structure
of the program.

[22] notes that most resource types fall into one of two categories:
time-like and space-like resources.

For example, if two statements a and b are executed sequentially,
the usage of a time-like resource (such as time) is the usage for a plus
the usage for b. For a space-like resource (such as memory space) the
usage is the maximum of the usage for a and the usage for b.

Other resources, such as precision, are more di�cult to handle.

4.6 ROMPP

ROMPP (Real-time Object Model with Performance Polymorphism)
[55] uses a solution that is similar to, and more general than, the one
used in Flex, but from a database approach with an explicit schema
that describes the data. ROMPP is a conceptual data model, and is
not dependent on any speci�c implementation. [55] uses C++ in the
examples.

ROMPP has a mechanism of envelope and letter classes to handle
performance polymorphism in several specialization dimensions, not
just (or even necessarily) time.

The envelope/letter structure used in ROMPP requires a pair of
classes that are used in combination: an outer class (the envelope class)
that provides the visible interface to the application programmer, and

1\Himself" is used gender-inclusively.

4.6. ROMPP 33

an inner class (the letter class) that buries implementation details. Sev-
eral such letter classes may exist for each envelope class, and the sys-
tem will then choose one of them to provide the functionality that is
required by the interface in the envelope class. That is, letter classes
are not explicitly accessed by the application developer. Instead, they
are manipulated and selected by the system, based on the performance
requirements.

In the following example (from [55]), an envelope class Sensor is
declared. The declaration for Sensor contains two methods: sample and
process. There are also two specialization dimensions: STime, which
is the execution time for the method sample, and PTime, which is
the execution time for the method process. In this envelope class, no
implementations are given for the methods sample and process.

When an object of type Sensor is used in a program, the system
will instead create an object of one of the two letter classes Sensor1
and Sensor2. Each of these two classes provides implementations for
the methods sample and process. The implementations have di�erent
performance, which is seen by the di�erent values given to the special-
ization dimensions STime and PTime.

// @EC: Sensor

class Sensor {

public:

Sensor();

// @DIM: int sample() = STime

virtual int sample();

// @DIM: void process() = PTime

virtual void process();

....

};

// @LC: Sensor1 OF Sensor

class Sensor1 : public Sensor {

Sensor1();

// @DIM: STime = 10 ms

int sample();

// @DIM: PTime = 6 ms

34CHAPTER 4. RELATEDWORKONPERFORMANCEPOLYMORPHISM

void process();

....

};

// @LC: Sensor2 OF Sensor

class Sensor2 : public Sensor {

Sensor2();

// @DIM: STime = 20 ms

int sample();

// @DIM: PTime = 3 ms

void process();

....

};

In the following declaration of another class, which contains as an
object of type Sensor along with a statement of the performance re-
quirements, an object of Sensor1 will be constructed by the system.
Sensor1 satis�es the constraints on STime and PTime, while Sensor2
does not. If, in the future, the application adjusts the timing require-
ments for the Sensor object to "STime < 22 ms, PTime < 5 ms", the
system will automatically select another Sensor2 as the implementation
object for Sensor. The process of rebinding is handled by the system,
and is transparent to the application developer.

class Foo {

public:

....

private:

Sensor s("Time <= 15 ms, PTime < 7 ms");

....

};

In contrast to Flex, it seems that all resolution of performance-
polymorphic functions in ROMPP is intended to be done at compile-
time.

ROMPP does not provide a declarative query language, and thus
no optimization.

4.7. CHAOS 35

[55] mentions \value propagation" of the specialization dimensions,
i. e. the combination of performance characteristics, as an \open ques-
tion to be answered".

[55] also contains an overview of previous work on performance poly-
morphism.

4.7 CHAOS

CHAOS [44] is a system for developing and executing real-time appli-
cations. CHAOS has support for di�erent implementations of an opera-
tion, and for con�guring and re-con�guring an application by replacing
these implementations. While this re-con�guration can be done \dy-
namically" at run time, the system cannot do this automatically.

36CHAPTER 4. RELATEDWORKONPERFORMANCEPOLYMORPHISM

Chapter 5

Our Approach to

Performance Polymorphism

In this chapter we describe our approach to performance polymorphism,
how it di�ers from the work described in the previous section, and the
advantages gained.

In short, our system handles declarative queries, and we allow the
user to specify any number of performance dimensions. Constraints can
be speci�ed for any of the performance dimensions. and it is possible
to use any of the dimensions as the optimization objective.

5.1 Performance dimensions

The concept of performance dimensions is introduced in section 3.3.
Here we give some examples on performance dimensions that may be
used by our optimizer.

Many real-time applications would use at least two dimensions:
some kind of time dimension (for example worst-case time) and some
kind of quality, e. g. value precision, and allow for a trade-o� between
these two.

37

38CHAPTER 5. OURAPPROACHTO PERFORMANCEPOLYMORPHISM

5.1.1 Di�erent kinds of time

Nothing prevents us from de�ning several di�erent time measures, for
example the expected execution time (which can be minimized by the
optimizer), and the guaranteed worst-case execution time (which we
might put constraints on in a hard real-time system).

In a soft or �rm real-time system, where we can allow some transac-
tions to miss their deadlines, we may want to use an \expected worst-
case execution time". Most transactions will �nish within this predicted
execution time, but we allow a small number of transactions to be too
late.

5.1.2 Quality

If the application should work with a quality dimension, the charac-
teristics of this quality measure will probably vary between di�erent
application domains. Some general types of quality may be the preci-
sion of the answer, and the age of the data used in the calculation.

5.1.3 Bayesian probability as quality

For some applications, the quality in a quality/performance trade-o�
can be a Bayesian probability [39], for example the probability that the
value of a boolean predicate is correct.

For some applications, such a one-dimensional probability measure
is not su�cient. It may be necessary to handle false positives separately
from false negatives.

If you are searching for sea-shells on the beach, you could examine
each square foot of the beach to see if there are any shells there. If a
typical beach consists of one million square feet, and there is a sea-shell
on 0.01 percent of the squares, then there are 100 sea shells on the
beach. Say that for each square you �nd a boolean value, indicating if
there is believed to be sea-shell there. If there is a 1 percent chance that
each value is wrong, you can expect to �nd 99 of the 100 sea shells, but
these will be di�cult to �nd among the 9999 false positives. Therefore,
you would want the probability of a false positive to be lower than the
probability of a false negative.

5.2. PERFORMANCE-POLYMORPHIC QUERIES 39

In medicine, this applies to clinical tests. The term diagnostic sensi-
tivity refers to the conditional probability that a person having a disease
will be correctly identi�ed by a clinical test, i. e., the number of true
positive results divided by the number of true positive and false neg-
ative results. The term diagnostic speci�city refers to the conditional
probability that a person not having a disease will be correctly identi-
�ed by a clinical test, i. e., the number of true negative results divided
by the number of true negative and false positive results. It is important
to consider both the sensitivity and the speci�city of clinical tests, both
when determining which tests to use and how to interpret the results.
[16]

In a database application, were external procedures in the database
refer to clinical tests, queries could be optimized along performance
dimensions of sensitivity, speci�city, monetary cost, time required for
the tests, and the number of tuples in the result.

5.2 Performance-polymorphic queries

By a performance-polymorphic query we mean a query that is formu-
lated in a declarative query language, and that involves operations that
may exist in several implementations with di�erent performance.

A performance-polymorphic query optimizer is, in addition to the
functionality of a traditional query optimizer, required to choose be-
tween the di�erent implementations of each performance-polymorphic
operation.

To the best of our knowledge, all previous work concerning object-
oriented performance polymorphism where it is possible for the us-
er to de�ne multiple versions of a function or method with di�erent
performance, has concentrated on providing a programming-language
interface. No declarative query language, and therefore no query opti-
mization, has been provided.

While a programming-language interface may be su�cient for many
applications, there are important advantages with a declarative query
language, such as a simpler interface, increased data independence, and
the possibility for better optimization than for hand-coded procedural
programs, especially for large amounts of data and non-trivial schemas.

40CHAPTER 5. OURAPPROACHTO PERFORMANCEPOLYMORPHISM

Since the system includes a cost model for the optimizer, it can use this
to automatically estimate the execution time.

5.3 Optimization

Since query optimization is a potentially time-consuming task, it is
usually important for a real-time database with a declarative query
language to do the optimization at an early time, so the optimization
time does not have to be included in the time constraints at execution
time. Even if there exists applications where this is tolerable, for exam-
ple when the ranges of the time in the time constraints are very large
(minutes), optimization should be done early, if possible.

5.4 The cost model

The choice between di�erent implementations of an action is done at
compile-time, and is entirely based on the cost model. It is therefore
very important that the predictions in the cost model accurately reect
the actual behavior of the system.

Chapter 6

The Implementation

In this chapter we describe how our approach to performance poly-
morphism, which itself is described in the previous chapter, has been
implemented within our research platform, AMOS. We describe the
optimization algorithm, and give some details of the implementation.

We have implemented a performance-polymorphic query optimizer
within our research platform AMOS [31] [48] [49] which is a main-
memory object-oriented active DBMS, with a relationally complete,
object-oriented query language. The optimizer uses dynamic program-
ming [45], which has been modi�ed to handle operations that are poly-
morphic in any number of user-de�ned performance dimensions, e. g.
time, precision, quality. The performance dimensions can have both
numeric and symbolic values. Constraints can be stated on all perfor-
mance dimensions, and any one of these can be used as the optimization
objective.

6.1 AMOS

Our research platform AMOS [31] [48] [49] is a main-memory object-
oriented active DBMS, with a relationally complete, object-oriented
query language.

41

42 CHAPTER 6. THE IMPLEMENTATION

6.1.1 Query optimization in AMOS

In AMOS, a declarative query is �rst translated to an internal form,
a domain calculus language called ObjectLog [31], which is a variant
of Datalog where facts and Horn Clauses are augmented with type
signatures. The predicates in this internal form are, at this stage, type-
resolved but not binding-resolved and not ordered.

The optimizer then orders the predicates, while at the same time
resolving their bindings. The result, the execution plan, will be run as
a nested-loop join.

AMOS allows for the use of di�erent optimization algorithms for
ordering the predicates. Exhaustive and heuristic methods have been
implemented.

6.2 The optimizer

The performance-polymorphic optimizer that has been implemented is
based on the normal exhaustive optimizer, which uses dynamic pro-
gramming.

6.3 Specifying performance dimensions in

our implementation

For each performance dimension, the user has to supply the following
characteristics:

� its name,

� its starting value, which is used as the value of this performance
dimension for an empty execution plan, i. e. a partial plan to
which no operations have been added yet,

� a default value, which is used when the value of this performance
dimension for a certain operation is not speci�ed,

6.4. THE ALGORITHM 43

� a combination function that combines the performance values of
two operations, to be used when more steps are added to a partial
execution plan,

� a comparison function that determines which of two values of this
performance dimension is better,

� a switch indicating if the value of this performance dimension is
monotonically worsening as the incomplete plan grows by adding
operations to it, if it is improving, or if its monotonicity is un-
known.

As an example, the performance measure time will typically have
the starting value 0, no default value, a combination function that nu-
merically adds two values, and will use the function less-than as a com-
parison function. Since an execution plan can never be made faster by
adding operations, the value is monotonically worsening.

A typical use, in the context of a real-time system, is to de�ne one
performance measure called time, which expresses either the expected
or the worst-case actual execution time, and another measure called
quality, which expresses the quality or \goodness" of the result. The
optimizer is then typically required to either choose the execution plan
that gives a result with the highest possible quality within some given
time limit, or to choose the execution plan with the fastest execution
time, given some minimum quality.

Any number of performance measures can be de�ned.

6.4 The algorithm

During optimization, the space of possible execution plans is investigat-
ed by building a search tree using best-�rst search with respect to the
performance measure that is used as objective. Each node in this search
tree represents an execution plan for the declarative query that is being
optimized. The leaf nodes represent complete, executable plans, while
the internal nodes of the tree represent partial plans.

44 CHAPTER 6. THE IMPLEMENTATION

6.4.1 Traditional dynamic programming

In the traditional algorithm, as described in [45], the search tree is gen-
erated until a complete plan is found. Because of the best-�rst search,
and because appending operations to an (incomplete) plan can never
decrease the cost, it will not be possible to construct another complete
plan with better cost than the one that was found. Other plans with
the same cost can be found, though, but since there is no reason to
prefer them, the �rst one is used.

6.4.2 Modi�cations in our algorithm

Our algorithm handles several performance dimensions, compared to
the single \cost" in the traditional algorithm, but since one of the di-
mensions is chosen as the optimization objective, this modi�ed algo-
rithm is similar to the traditional one.

The di�erences are due to the presence of constraints on the values
of the performance dimensions, and because the chosen optimization
objective may not always be monotonically worsening.

6.5 Pseudo-code for the optimizer

This section contains (somewhat simpli�ed) pseudo-code for the
performance-polymorphic query optimizer. The actual Lisp source code
is available on request.

6.5.1 Initial values

When the optimization procedure is called, the variables unresolved-
query-predicates, performance-dimensions, optimization-constraints,
optimization-objective, and performance-polymorphic-predicates are as-
sumed to be set to appropriate starting values.

The variable unresolved-query-predicates contains the list of predi-
cates in the query. These need to be (1) ordered in an execution order,
(2) type-resolved and (3) performance-resolved. Type-resolution means
that a call to a function name F is replaced by a call to a speci�c im-
plementation of F that is specialized for certain argument types. As an

6.5. PSEUDO-CODE FOR THE OPTIMIZER 45

example, a call to a generic PRINT function might be replaced by a
call to PRINT-INTEGER. Analogously, performance-resolution means
that a call to a function name F is replaced by a call to a speci�c
implementation of F with speci�c performance characteristics.

Performance-dimensions is a set of performance dimensions. Each
such performance dimension contains its characteristics: its name, start-
ing value, default value, combination function, comparison function and
monotonicity.

Optimization-constraints is a set of constraints on the values of the
performance dimensions, which have been speci�ed for this query.

Optimization-objective is the performance dimension used as opti-
mization objective for this query. The optimizer will try to �nd the
best possible execution plan with respect to this dimension, given the
constraints.

Performance-polymorphic-predicates is the set of all performance-
polymorphic predicates. Each performance-polymorphic predicate is
connected to the set of all its implementations. With each such im-
plementation, the performance values along the di�erent performance
dimensions are stored. The query optimizer will, for each performance-
polymorphic predicate that appears in a query, choose one of the exist-
ing implementations, depending on the optimization objective and the
optimization constraints.

6.5.2 Some other variables

Partial-plans-queue is a best-�rst priority queue of partial plans, i. e. the
\frontier" of the search tree. Each \plan" in this queue contains not only
the actual partial plan, i. e. an ordered list of type- and performance-
resolved function calls, but also the expected performance values after
executing the existing part of the plan.

Best-complete-plan is the best complete plan that we have found so
far, if any. If the optimization objective isn't monotonically worsening,
we need to continue investigating even after �nding the �rst complete
plan.

46 CHAPTER 6. THE IMPLEMENTATION

6.5.3 The optimization procedure

BEGIN

/* Input data */

unresolved-query-predicates :=

the (unordered and unresolved) predicates in the query;

performance-dimensions :=

all existing performance dimensions, with their characteristics;

performance-polymorphic-predicates :=

the "virtual" predicates, with their implementations;

optimization-objective :=

the performance dimension to optimize;

optimization-constraints :=

constraints on the values of performance dimensions;

/* Initialize local variables */

partial-plans-queue := empty queue of partial plans;

best-complete-plan := empty list of function calls;

partial-plans-queue :=

a list containing the root node, i. e. a single search tree node

with starting values for all performance-dimensions;

FOREVER DO BEGIN

IF a "best-complete-plan" exists,

AND "partial-plans-queue" is empty

THEN RETURN "best-complete-plan";

/* since it is the only possible solution */

IF a "best-complete-plan" exists,

AND "optimization-objective" is monotonically worsening

THEN RETURN "best-complete-plan";

/* since no other plan can be better */

IF there is no "best-complete-plan",

AND "partial-plans-queue" is empty

THEN FAIL;

/* since the "unresolved-query-predicates"

6.5. PSEUDO-CODE FOR THE OPTIMIZER 47

couldn't be optimized */

oldplan := the first element of "partial-plans-queue";

/* i. e. the best partial plan so far,

according to the "optimization-objective */

remove that first element from "partial-plans-queue";

IF "oldplan" is a complete plan,

AND "optimization-objective" is monotonically worsening

THEN RETURN "oldplan"; /* since no other plan can be better */

oldrem := remaining predicates from "unresolved-query-predicates";

/* i. e. those that haven't been used in "oldplan" */

oldplan-performance :=

the expected performance values after executing

the partial plan "oldplan";

FOR EACH remaining unused predicate expression,

called "virt_pred_expr", IN "oldrem", DO BEGIN

IF the function name in "virt_pred_expr" predicate expression

is a placeholder for one or more performance-polymorphic

function implementations,

THEN implementations :=

all the implementations of that function name;

ELSE implementations := the function name itself;

FOR EACH function implementation, called "implementation",

IN "implementations", DO BEGIN

IF the predicate can be executed at this point in the plan,

THEN BEGIN

newplan := "oldplan", extended with a call to

the function "implementation";

predicate-performance :=

these performance values

(or functions to calculate them)

48 CHAPTER 6. THE IMPLEMENTATION

of this predicate

for the different performance dimensions;

newplan-performance :=

empty set of performance dimension values;

FOR EACH performance dimension, called "dim",

IN "predicate-performance" DO BEGIN

new-value :=

apply the "combine-function" for "dim" on the

performance dimension value of "oldplan-performance"

and "newplan-performance";

add "new-value" to "newplan-performance";

END /* for each "dim" */

IF any values in "newplan-performance" breaks

a constraint in "optimization-constraints" on any

monotonically worsening performance dimension

THEN throw away this partial plan;

ELSE IF there is no "best-complete-plan",

OR "newplan" is better than "best-complete-plan";

THEN best-complete-plan := newplan;

ELSE insert "newplan" into "partial-plans-queue";

END /* if the predicate can be executed */

END /* for each "implementation" */

END /* for each "virt_pred_expr" */

END /* forever */

END

6.6 A real-time telecom example

In this example we will show how the AMOS system translates a declar-
ative query into an unoptimized execution plan, how the possible ex-
ecution plans can be represented as a search tree, and how the query
optimizer �nds an optimal execution plan by partially constructing,
and traversing, this tree.

A mobile telephone network consists of a number of base stations,
each covering an certain area, and a number of mobile telephones. At all

6.6. A REAL-TIME TELECOM EXAMPLE 49

times, each base station needs to know which of the mobile telephones
are present in the area it covers.

DBMS

Figure 6.1: A cell in a mobile telephone network

We assume that the base station has the ability to �nd a certain
mobile telephone by sending out a radio message that the telephone re-
sponds to, if that telephone is present in the area. We call this operation
present.

We also assume that the base station can use a di�erent operation,
signal_strength, to determine the strength of the signal received from
the telephone.

In this scenario, it can be useful to have multiple implementations of
both these operations. For example, it will often be enough to know that
a telephone was present in the area some time ago, and thus a previously
stored value can be used, but at other times it will be necessary to be
more certain, which requires actually sending a radio message to the
mobile telephone to receive a reply. This is expensive from a battery
consumption and frequency utilization point of view, in addition to the
time required.

Therefore we assume that the conceptual operation present has
been implemented in three di�erent ways, each with a di�erent perfor-
mance measure for time (t) and quality (q):

� p1: the procedure was_present gets the previously stored value
(t = 0, q = 0.2)

50 CHAPTER 6. THE IMPLEMENTATION

� p2: search_once sends one radio message (t = 0.2, q = 0.6)

� p3: search_many sends several radio messages (t = 3.0, q = 0.99)

We also assume that the conceptual operation signal_strength

has been implemented in two di�erent ways:

� s1: old_signal_strength gets the previously stored value (t =
0, q = 0.2)

� s2: measure_signal_strength measures the actual signal
strength by sending a radio message and measuring the reply
(t = 0.3, q = 0.9)

In this example, radio communication is very slow in comparison
with internal data lookup and calculations. We can therefore assume
that internal operations take time 0.

The quality measure q that is used here varies between 0 (lowest
quality) and 1 (highest quality), and is combined using the function
MIN. The starting value and the default value are both 1.

We also assume that the number of telephones in the database is
100, and that previous values of present and signal_strength have
been stored for 10 of these (for use by p1 and s1).

As an example query, we need to �nd which of the mobile tele-
phones that are present in the area but have a signal strength less
then 25. Assuming that the data type telephone and the performance-
polymorphic functions present and signal_strength have been de-
�ned, this query can be formulated using AMOS' query language,
AMOSQL:

select p

for each telephone p

where present(p)

and signal_strength(p) < 25

with t better than 2.0

optimize q;

6.6. A REAL-TIME TELECOM EXAMPLE 51

(In the current implementation the performance speci�cations, i. e.
"t better than 2.0" and "optimize q", are given through AMOS' Lisp
interface.)

We want the query to be executed in at most 2 seconds, with the
best possible quality within that time limit. We have therefore de�ned
a constraint t <= 2.0. We have also declared the quality q as the
optimization objective. This means that the optimizer will attempt to
�nd the execution plan with the best quality that has an estimated
execution time of less than 2 seconds.

The AMOSQL query is compiled into a domain calculus language
called ObjectLog [31], which is a variant of Datalog where facts and
Horn Clauses are augmented with type signatures:

answertelephone(P) :-

signal strengthtelephone;integer(P, G1) &

presenttelephone(P) &

<object;object(G1, 25).

The functions in ObjectLog are not only performance-polymorphic,
but also both type-polymorphic in the regular way (notice the sub-
scripts) and binding-polymorphic (with di�erent implementations de-
pending on whether the arguments are bound or free).

This representation of the query is still declarative and not directly
executable, since the order among the predicates and the bindings are
not determined. The predicates will be re-ordered by the optimizer, and
the polymorphic functions will be resolved. The result, the execution
plan, will be run as a nested-loop join.

The query optimizer starts by creating an empty execution plan,
which is used as root of the search tree (�gure 6.2). The space of possible
execution plans will then be traversed as the tree is constructed. In the
�gure, plan denotes the list of functions in the partial plan, t denotes
the estimated execution time for the partial plan, and q denotes its
quality. Fanout is the expected number of objects in the result of an
operation when the plan is executed. The fanout is operator-dependent,
and fanout is actually treated as yet another performance dimension in
our system.

The optimizer has six choices as the �rst step in the execution plan:
the operation < (less-than), the three implementations of present, and

52 CHAPTER 6. THE IMPLEMENTATION

plan = (), t = 0, q = 1, fanout = 1

Figure 6.2: The root of the search tree

the two implementations of signal_strength. So far, no parameters
are bound, and the operation < cannot be executed with two unbound
parameters. All the implementations of present and signal_strength

can be executed.
For each of the �ve partial plans that result from adding one of

these operations to the empty plan, t, q and fanout are calculated by
looking up the speci�ed values of these performance dimensions for the
operation, and calling the combination function for that performance
dimension. Of the �ve plans, all but two will break the time constraint
t <= 2.0. Those that don't are added to the search tree, which then
consists of two partial plans (�gure 6.3).

plan = (), t = 0, q = 1, fanout = 1

plan = (s1), t = 0, q = 0.2, fanout = 10 plan = (p1), t = 0, q = 0.2, fanout = 10

Figure 6.3: The search tree after the �rst iteration

In the next iteration we continue building on the partial plan with
the best quality q, since this is the optimization objective. In this case
both plans have the same quality, so it doesn't matter which one is
chosen.

We take the plan that consists of the operation s1, and expand
it. It already contains an implementation of signal_strength, so we
can expand it with either the operation < (less-than) or one of the
three implementations of present. p3 would break the time constraint
t < 2, so it is not used. The three new partial plans are added to the
search tree (�gure 6.4).

In the next iteration, the partial plan (p1, s1) is added (�gure 6.5).
In the iteration after that, the partial plan (s1, p2) is expanded

to (s1, p2, <), which is a complete execution plan (�gure 6.6).

6.6. A REAL-TIME TELECOM EXAMPLE 53

t = 0, q = 0.2, fanout = 10
plan = (s1, <),

t = 10*0.2 = 2, q = 0.2, fanout = 10
plan = (s1, p2),

plan = (p1), t = 0, q = 0.2, fanout = 10

plan = (s1, p1),
t = 0, q = 0.2, fanout = 10

plan = (), t = 0, q = 1, fanout = 1

plan = (s1), t = 0, q = 0.2, fanout = 10

Figure 6.4: The search tree after the second iteration

plan = (p1), t = 0, q = 0.2, fanout = 10

t = 0, q = 0.2, fanout = 10
plan = (s1, <),plan = (s1, p2),

t = 2, q = 0.2, fanout = 10
plan = (s1, p1),
t = 0, q = 0.2, fanout = 10

plan = (), t = 0, q = 1, fanout = 1

plan = (s1), t = 0, q = 0.2, fanout = 10

t = 0, q = 0.2, fanout = 10
plan = (p1, s1),

Figure 6.5: The search tree after the third iteration

Since we have done a best-�rst search with respect to the quality
measure q, and we know that q is monotonically worsening as the
plan grows, we can return this result. None of the partial plans can be
extended to a complete plan with better quality than this plan.

If we instead use a quality measure with a value that can improve
as the plan grows, the algorithm will continue expanding the partial
plans in the search tree even after �nding this plan. This is a di�erence
from the standard dynamic programming algorithm [45].

A possible simpli�cation to our algorithm is to return the �rst found
complete plan no matter what the monotonicity of the optimization
objective. This plan is within the time limit, and with some probability
it does also have a good quality compared to the other plans (because
of the best-�rst search).

54 CHAPTER 6. THE IMPLEMENTATION

plan = (p1), t = 0, q = 0.2, fanout = 10

t = 0, q = 0.2, fanout = 10
plan = (s1, <),plan = (s1, p2),

t = 2, q = 0.2, fanout = 10
plan = (s1, p1),
t = 0, q = 0.2, fanout = 10

plan = (), t = 0, q = 1, fanout = 1

plan = (s1), t = 0, q = 0.2, fanout = 10

t = 0, q = 0.2, fanout = 10
plan = (p1, s1),

plan = (s1, p2, <),
t = 2, q = 0.2, fanout = 10

Figure 6.6: The search tree after the fourth iteration

Chapter 7

Applications

In this chapter, we look at applications for our approach to performance
polymorphism. First, we try to identify the characteristics of a suitable
application, and then we give some examples of possible application
domains.

Even if we in this work concentrate on the real-time aspect of per-
formance polymorphism, where a trade-o� in quality is made in order
to get the operation done within a time limit, performance polymor-
phism is not limited to real-time applications. If we e. g. are searching
for information from sources on the Internet, with di�erent monetary
costs and data quality, this can be modeled using performance polymor-
phism, and a performance-polymorphic query optimizer can be used to
�nd an acceptable trade-o� between monetary cost and data quality. In
the general case, the implementations of the performance-polymorphic
operations are speci�ed along any number of performance dimensions.

7.1 Suitable applications

There are applications where a database solution in general, and there-
fore also the technique presented here, is probably not suitable. Appli-
cations whose data has a simple structure, and where the operations
on that data are few, simple, constant, and known in advance, can
sometimes be better handled in a traditional programming language.

Also, applications with very high requirements on through-put and

55

56 CHAPTER 7. APPLICATIONS

response times may also be unsuited for the overhead that is usually
imposed by a database management system. For some applications, it
may even be necessary to implement certain functionality in hardware.

On the other hand, a database solution allows for a much more
exible system. It is easy to accomodate changes in the structure of the
data, the amounts of data, and the operations that are to be performed.

Performance polymorphism adds another dimension of exibility,
and we believe that the approach presented here, with performance-
polymorphic queries, can bene�t any application where there can be
alternative operations, or where there exists possible alternative imple-
mentations of the operations.

Among possible application domains are real-time systems of dif-
ferent kinds (except, perhaps, those with the very highest performance
requirements), but also those non-real-time systems where there are
constraints on some other resource, for example network bandwidth or
monetary cost.

7.2 Real-time systems

The original motivation for performance polymorphism comes from the
real-time domain. This includes not only the \traditional" real-time
applications such as robot control and factory automation, but also
e. g. certain types of Internet lookup. There are probably very few
applications where the time dimension is totally unimportant.

7.2.1 Graphics-intensive simulations

If you have played graphics-intensive computer games such as Quake
or Unreal, you may have noticed that when more objects are shown
on the screen, fewer frames are shown per second. When there are
more objects, it takes more time to generate each frame. This can be
irritating, because when many objects are shown at the same time, the
player is usually in a di�cult situation in the game. That, of course,
is exactly when a high and constant frame rate is most needed. The
screen resolution and the amount of detail in the graphics can usually
be changed, but only by the user and not dynamically by the game. The

7.2. REAL-TIME SYSTEMS 57

user has to choose between bad graphics all the time, or slow updates
when many objects are shown.

A better solution may be to let the game automatically switch to
lower-quality graphics, perhaps selectively omitting unimportant ob-
jects or the background, in order to maintain a high frame rate.

Performance polymorphism could be used to model this problem.
The constraints are that a picture has to be computed within a certain
time limit (such as 100 ms), and that certain objects have to be shown.
The performance dimensions are the amount of detail, or the presence,
of each of the objects. The optimization objective is the overall quality
of the picture, perhaps measured by the number of objects shown or
the number of surfaces used when computing the picture.

This particular example may not be best solved by database tech-
nology with declarative queries, but it serves to indicate a class of non-
traditional real-time applications. Also, as the size and complexity of
e. g. games grows, databases technology may become more and more
relevant and even necessary.

7.2.2 Time ranges

As for real-time database technology in general, performance-
polymorphic queries may not be feasible for applications with the very
highest performance requirements. Depending on the implementation,
the time range that is of interest is probably one or a few milliseconds,
assuming a main-memory database.

Also, for queries where optimization has to be done on the y, the
time for optimization has to be included in the response time, and this
puts further restrictions on the type of applications. On the other hand,
this usually applies to ad hoc queries formulated or generated by the
user, and then an additional response time of a few milliseconds, or
even seconds, may not be important.

58 CHAPTER 7. APPLICATIONS

7.3 The Internet and the World Wide

Web

The Internet, with all its diverse applications, and with the varying
speed and reliability of its di�erent parts, seems to be well suited as
an environment for database technology and performance-polymorphic
operations.

The deadline semantics is usually soft or �rm instead of hard, and
response times are usually in the order of seconds instead of milli- or
microseconds. This makes it possible and economical to perform even
advanced pre-processing of queries in connection with their execution.

7.4 Multidatabases and mediators

The information in a database may exist in several copies, and the
cost of retrieving or updating data may vary between these copies. One
example of this a distributed database, where the same data may be
replicated on di�erent hosts in a computer network. If there are several
performance dimensions, such as execution time and quality, it may be
useful to �nd a trade-o� between them.

7.4.1 Distributed databases

A distributed database can be de�ned as \a collection of multiple, logi-
cally interrelated databases distributed over a computer network", and
a distributed DBMS as \the software system that permits the man-
agement of the [distributed database system] and makes the distri-
bution transparent to the users" [36]. It is usually understood that
the term distributed database refers to a situation where the di�erent
nodes (\servers", \hosts") have little autonomy, and where the inter-
nal functioning of the di�erent nodes in the database system (such as
cuncurrency control) is accessible from the network [7]. Transactions
that originate locally are not given preference at a node over transac-
tions that originate from some other node. An architecture where the
nodes are more independent may be called a \federated database" or
\multidatabase".

7.4. MULTIDATABASES AND MEDIATORS 59

Since a distributed database system is tightly integrated, there is a
global query optimizer, with a cost model that can di�erentiate between
the costs of accessing data at di�erent nodes [36]. Traditionally, network
communication has been the dominant factor, at least in wide-area
networks. If data is replicated in several locations, it has therefore been
considered cheaper to access data locally than to get it from some
other node. However, in modern high-speed networks (both local-area
and wide-area networks), it may be cheaper to get data that is cached
in main memory at another node, than it is to retrieve it from local
disk storage [43].

7.4.2 Distributed databases and performance

polymorphism

If some or all of the data in a distributed database is replicated at sev-
eral nodes, the query optimizer must choose which of these copies to
use in each query. With normal replication, the di�erent copies contain
exactly the same data, and one only has to �nd the copy that is cheap-
est to access (taken into account that the choice of node to use may
a�ect the costs of choices in other parts of the query, and that process-
ing costs may vary). This may be seen as a simple form of performance
polymorphism, with cost as the single performance dimension, since
the system chooses between di�erent implementations of the same con-
ceptual operation (getting the data, from any of the places where it is
stored).

It does, however, become more interesting if we introduce more than
one performance dimension. If the data in the di�erent nodes are not
simple copies of each other, but have di�erent characteristics, we can
de�ne several performance dimensions. For example, the data in a node
may be incomplete (with some tuples or �elds missing), or it may have
lower precision, its temporal validity may vary (it being older than data
on other nodes), and so on. We may want to keep the cost (a more or
less rough estimate of the execution time) as one of the performance
measures.

Now we can use our model of performance polymorphism (as de-
scribed above in chapter 5) to specify performance-polymorphic queries

60 CHAPTER 7. APPLICATIONS

where we want to optimize one of these dimensions, while we put con-
straints on some of the other dimensions. For example, we may want a
result with as high a precision as possible, with the constraint that the
query execution time may not exceed some given value. A performance-
polymorphic query optimizer would then �nd an execution plan that
retrieves the best (most precise) data copies that it has time to do
within the given time constraint.

With the common data model and tight integration of a distributed
database system, the characteristics of the copies of replicated data
can be controlled, and it will (under some conditions) be possible to
construct a cost model that accurately describes these characteristics.
However, in current research and practice of distributed databases, the
focus has been on a replication which means exact copies, with no
di�erences in characteristics except varying access cost. One reason for
this may be lack of a good approach to use in choosing between (non-
equivalent) copies of data, and handling the trade-o�s between multiple
performance measures.

The performance-polymorphic approach may be more useful for
multidatabases, as described below, where the di�erences between repli-
cated (or rather, \similar") data can be much larger.

7.4.3 Multidatabases

A multidatabase is a collection of autonomous databases, whose data
can be manipulated through a common system, a multidatabase sys-
tem [30]. The individual databases in the multidatabase system do not
expose their low-level interfaces to other nodes, which instead have to
access the data through the normal DBMS user interface [7].

Typically, the databases existed previously, before they were col-
lected into one or more multidatabases, thus, making it possible to
manipulate their data through a common interface. This means that
their schemas have been designed independently, even using di�erent
data models. The same facts about the world may be simultaneously
present in several of the databases, but in very di�erent form.

7.4. MULTIDATABASES AND MEDIATORS 61

7.4.4 Multidatabases and performance polymor-

phism

There are many problems that need to be handled to use databases
with di�erent and independent schemas (name di�erences, format dif-
ferences, structural di�erences, missing or conicting data, many kinds
of semantic di�erences). However, there are some areas that seem es-
pecially interesting if we want to apply performance polymorphism to
multidatabases. The following may all be identi�ed as performance di-
mensions:

� Response time. The response times of the databases may vary.
Even if exactly the same data is available in two individual
databases, the expected performance can be very di�erent, due
to di�erent hardware, di�erent load, di�erent local policies, and
for reasons of the network.

� Reliability. We may expect that the probability of us being able
to access an individual database at all may vary between the
databases, for much the same reasons as given for performance
above.

� Access policies. Di�erent sites may enforce di�erent access poli-
cies, so external users, or some external users, may be denied
access to data in some of the databases. (Even if not proper
databases, some ftp sites disallow users from outside the coun-
try to download certain software, for legal reasons.)

� Data quality. The quality of the data may vary between databas-
es in the multidatabases. Thus, precision, correctness, validity,
consistency, and age of the data, can vary between the databases.

� Monetary cost. There may be a fee for accessing some of the
individual databases.

It is probably not uncommon to want to optimize or constrain some
of these performance measures. (As fast as possible! No monetary cost!)
Being able to state them explicitly, and let an optimizer handle them
in a uniform way, may be very useful.

62 CHAPTER 7. APPLICATIONS

One example is prices of stocks on some stock exchange. These prices
may be found on the Internet for free, if one can accept a certain delay.
It is also possible to get the prices immediately (\in real-time"), but
for this one has to pay a (large) fee.

7.4.5 Performance-polymorphic MSQL

As an example on how a multidatabase query language could be ex-
tended with performance polymorphism, and how a query may look, we
will use the multidatabase query language MSQL [30], and show how
a hypothetical extension to MSQL may be used to formulate a simple
performance-polymorphic multidatabase query.

Assume that there are three di�erent databases, all of them con-
taining information about stock prices at a certain stock exchange.
These databases are called stock_de_luxe, stockprices_on_line,
and gnu_stock. The externally accessible data in these databases is
delayed by di�erent time intervals (0, 10 seconds, and 15 minutes, re-
spectively), and each retrieval has a monetary cost (1.00, 0.01, and
free). We now need to �nd the current price of Microsoft, but we do
not want to pay more than 0.50 for the result. For simplicity, we assume
that each of the three databases contains a table called \stock", with
columns \name" and \price".

We also assume that we have, through some interface in the multi-
database system, de�ned the performance dimensions age (of the data)
and dollars (monetary cost) according to the model in chapter 5, and
with the appropriate default values, combination functions, etc.

It will also be necessary to specify the values for age and dollars
of the di�erent databases to the multi-dimensional cost model of the
multidatabase. This will have to be done in terms of primitives on a
lower level than the MSQL language provides.

First we use normal MSQL to create a multidatabase that uses the
three databases:

CREATE stockprices

FROM stock_de_luxe, stockprices_on_line, gnu_stock

Then we need a way to state that the three \stock" tables can

7.4. MULTIDATABASES AND MEDIATORS 63

be used to �nd the same information, but with di�erent performance
values. This could be a possible syntax:

CREATE PERFORMANCE_POLYMORPHIC VIEW stock

AS SELECT name, price

FROM [stock_de_luxe.stock, stockprices_on_line.stock,

gnu_stock.stock];

The query may then look like this, along the pattern from the
AMOSQL query in section 6.5:

USE stockprices

SELECT price FROM stock

WHERE name = 'Microsoft'

WITH dollars BETTER THAN 0.50

OPTIMIZE age

In this case, the optimizer will choose an execution plan that reads the
requested value from database number 2, stockprices_on_line, the
one with a cost of 0.01 and a delay of 10 seconds.

7.4.6 Mediators

In a large computer network, such as the Internet, with various data
sources with di�erent formats of data and di�erent semantics, appli-
cations may �nd it useful to have an intermediate system to mediate
between them. Such a mediator can be de�ned as "a software module
that exploits encoded knowledge about certain sets or subsets of data
to create information for a higher layer of applications" [53].

The mediator module has knowledge, for example in the form of
rules, about the di�erent formats of data, and their semantics. The
mediator can perform not only simple translation, but also other pro-
cessing of the data, such as creating di�erent abstractions of the same
data. Several previously existing databases may be accessed from one
application, through one or more mediators that sits inbetween the
systems.

64 CHAPTER 7. APPLICATIONS

Even if mediators originally have been mostly intended to translate
and in various ways interpret data, it will probably be interesting or
even necessary to be able to choose between more or less equivalent
data that represent the (more or less) same real things.

In a heterogeneous environment, where many existing databases,
that perhaps are managed by di�erent organizations, are to be used
as data sources for mediators, it seems that an important part of the
information processing done in a mediator may be to choose between
alternative sources for the same data, sources that provide that data
with di�erences in quality, cost, speed, and other characteristics.

7.5 Server-side optimization

A server may have to handle several concurrent transactions. If not all
these transactions can be performed with the highest available quality,
some could be \down-graded". It is then necessary to be able to han-
dle several implementations of the \same" operation, but with di�er-
ent performance. Performance polymorphism may be a way to handle
these multiple implementations and the choices between them. Also,
there may be some required quality of service for the transactions, and
this translates to the constraints in our model of performance polymor-
phism.

An example is a central server for electronic commerce, which han-
dles commercial transactions, and which guarantees that each transac-
tion is completed within, say, one second. The optimization objective
in such a system should not be to minimize the execution time for each
transaction, but to maximize the number of transactions that can be
completed within the one-second time limit. In order to maximize this
number, we may have to slow down some individual transactions.

If the entire set of queries that has to be executed (in a certain
time period) is optimized as one large query (as seen by the optimizer),
with performance-polymorphic choices for (some of) the steps in each
plan, constraints can be put on each transaction's cost. This could lead
to a very large \query conglomerate" that has to be optimized, and
a better way may be to view each individual query as one operation,
with a performance-polymorphic choice between di�erent, previously

7.6. TELECOM DATABASES 65

generated, execution plans for this query.

7.6 Telecom databases

Telecom databases [43] are databases used in the operation of a telecom
network or as parts of applications in the telecom network.

The �rst telecom databases provided number translations for vari-
ous services. Another early application was databases that keep track
of mobile phones. Other telecom databases are used for management
of the network, especially for real-time charging information.

Database servers for telecom application have in common that they
have to answer massive amounts of rather simple queries (e. g. 10000-
20000 requests per second) and that they have (soft real-time) require-
ments on short response times (e. g. 5-15 ms). Some of them also need
large storage, and some need to send large amounts of data to the users.
They also have to be very reliable, for example with unavailability re-
quired to be less than 30 seconds per year, and no scheduled downtime
allowed.

A complication is that all telecom networks are built with the as-
sumption that not all subscribers are active at the same time. This
means that overload situations can occur.

If the requirements on response times and availability are to be met,
even in such situations, telecom databases must therefore have a scheme
to handle overload situations.

66 CHAPTER 7. APPLICATIONS

Chapter 8

Future Work

In the present implementation, the optimizer should be rewritten with
more regard to e�ciency, robustness and elegance of the program code.
The integration with other parts of AMOS should be better.

8.1 Late and early optimization

The optimization of a declarative query is a combinatorical problem,
and performance polymorphism adds additional complexity. n predi-
cates can be ordered in n! di�erent orders, and for each of these pred-
icates that exists in several performance-polymorphic versions, the ex-
pression n! has to be multiplied by the number of di�erent versions of
that predicate.

Since optimization is a hard problem in this sense, and the optimiz-
er itself in its present implementation is not time-constrained, query
optimization and the resolving of performance-polymorphic predicate
implementations is expected to be done early, at query compile time. In
some cases, however, late binding is advantageous, [17] and then strate-
gies are needed to estimate the performance of late bound performance-
polymorphic function calls. The query optimizer should automatically
choose early binding when possible. When late binding cannot be avoid-
ed the system can optimize each resolvent separately and then estimate
the time to execute the performance-polymorphic call in terms of the
actual time to execute its resolvents. Such partial evaluation of the es-

67

68 CHAPTER 8. FUTURE WORK

timates of cost and quality would minimize the amount of work that
has to be done at run time.

8.2 Alternative optimization algorithms

For complex queries, the (pseudo-)exhaustive search done by dynamic
programming will not be feasible. The complexity of queries in relation-
al DBMSs is increasing. One reason for this is that modern graphical us-
er interfaces to database systems enables the users to pose very complex
queries, where the textual or internal form of the query is automatically
generated. [40]. Therefore, alternative optimization algorithms should
be investigated, such as randomized and heuristic algorithms. Among
the candidates are hill-climbing with multiple random starting points,
and simulated annealing [20].

One problem here is how to handle the combination of constraints
and a non-exhaustive optimization algorithm, in the cases where the
constraints can't be satis�ed. An exhaustive algorithm will, in that
case, try all possible plans (or, as in our dynamic-programming-based
algorithm, after pruning unnecessary parts from the search tree), and
then report a failure. If the non-exhaustive algorithm simply proceeds
until it �nds a feasible solution, i. e. one that satis�es the constraints,
the non-exhaustive algorithm may degenerate into an unusually ine�-
cient exhaustive algorithm. We should handle this in some way, instead
of letting the optimizer work for maybe hours or days before it reports
the failure. Perhaps a simple time-out will be su�cient. Perhaps we can
apply performance polymorphism to the optimizer itself?

8.3 Measurements of quality

The present work leaves the choice of a quality measure, or several
quality measures, to the application implementer. However, di�erent
quality measures can be studied. Among these are the rules of fuzzy
logic [54] [15], or some ad-hoc measure, like the certainty factors of
EMYCIN [46].

8.4. REFINING AND VALIDATING THE COST MODEL 69

8.4 Re�ning and validating the cost mod-

el

Since the choices between di�erent implementations of actions are done
at compile-time, these choices are entirely based on the cost model. It
is therefore important for the cost model to be correct.

For the system to be useful in real-time applications, timing esti-
mates should be developed for the internal operations This includes
operations, such as lookup and insertion, on the DBMS's internal data
structures. These data structures should be modi�ed for an improved
and well-analyzed worst-case behavior.

The cost model that is used to �nd timing estimates should be
veri�ed against actual, measured execution times [25] [29].

8.5 What if the cost model was wrong?

Even if great care is taken to guarantee the accuracy of the cost model,
it could turn out to be wrong in certain cases. It may be di�cult to
�nd accurate estimates, for example due to inherent unpredictability in
the application domain, or to changing conditions. Unexpected events
may occur, such as if a server suddenly doesn't respond.

This means that if the cost model is wrong, the generated execu-
tion plan may not be optimal, or it may not comply with the stated
constraints on performance dimensions.

To handle a situation like this we can monitor execution, and com-
pare the actual performance with the one predicted by the cost model.

The simplest case is to detect whenever a constraint is overrun,
and then raise an exception and call an exception handler. A more
advanced system could keep track of resource usage during each step
of plan execution, and perform some appropriate action if the actual
measured performance deviates from the cost model.

70 CHAPTER 8. FUTURE WORK

Chapter 9

Conclusions

9.1 Concept

We have de�ned the concept of performance-polymorphic queries, and
compared it to other similar approaches.

Performance-polymorphic queries can be used in situations where
it is possible to de�ne one or more performance dimensions, such as
di�erent types of cost or quality, and where one or more operations can
exist in more than one version, and where these versions di�er in their
performance along one or more of the performance dimensions.

Previous work has either used a programming-language approach,
or severely limited the use of performance polymorphism. We give the
users the power and exibility of a declarative query language, and allow
general use of performance-polymorphic functions in the language.

Our approach seems to handle the combination of performance val-
ues better than previous work, especially the programming language
Flex and the data model ROMPP. In contrast to these, our optimizer
is able to �nd a trade-o� between choices when a program or query
contains more than one performance-polymorphic operation

9.2 Implementation

We have extended a query language with performance-polymorphic
queries, and we have developed a performance-polymorphic query op-

71

72 CHAPTER 9. CONCLUSIONS

timizer based on extensions to an object-oriented query optimizer.
We have therefore shown that the idea is possible to implement,

and that performance-polymorphic declarative queries can be compiled,
optimized and executed.

9.3 Applications

The technique seems to be useful on a number of applications. Medium-
to low-speed real-time applications is one class of such applications.
Since any number of performance dimensions can be de�ned and han-
dled by the optimizer, the technique is general, and can also be used
outside the real-time domain.

Bibliography

[1] M. Berndtsson and J. Hansson, editors. Active and Real-Time
Database Systems (ARTDB-95), Berlin, 1995.

[2] M. Berndtsson and J. Hansson. Issues in active real-time databas-
es. In International Workshop on Active and Real-Time Database
Systems (ARTDB-95), pages 142{157, Sweden, June 1995. Univer-
sity of Sk�ovde, Sweden, Springer-Verlag.

[3] A. Bestavros and V. Fay-Wolfe, editors. Real-Time Database Sys-
tems - Research Advances. Kluwer Academic Publishers, 1997.

[4] A. Bestavros, K.-J. Lin, and S. H. Son, editors. Real-Time
Database Systems - Issues and Applications. Kluwer Academic
Publishers, 1997.

[5] P. Bonnet and A. Tomasic. Partial Answers for Unavailable Da-
ta Sources. Proceedings of the Third International Conference on
Flexible Query Answering Systems, FQAS'98, 1495:44{55, 1998.

[6] H. Branding and A. P. Buchmann. On providing soft and hard real-
time capabilities in an active DBMS. In International Workshop on
Active and Real-Time Database Systems (ARTDB-95), pages 158{
169, Sweden, June 1995. University of Sk�ovde, Sweden, Springer-
Verlag.

[7] M. W. Bright, A. R. Hurson, and S. H. Pakzad. A Taxonomy and
Current Issues in Multidatabase Systems. Computer, 25(3):50{60,
March 1992.

73

74 BIBLIOGRAPHY

[8] G.C. Buttazzo. Hard Real-Time Computing Systems - Predictable
Scheduling Algorithms and Applications. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1997.

[9] R. G. G. Cattell. Object Data Management. Object-Oriented and
Extended Relational Database Systems. Addison Wesley, 1991.

[10] R. L. Cole and G. Graefe. Optimization of dynamic query evalu-
ation plans. In Richard T. Snodgrass and Marianne Winslett, ed-
itors, Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data, pages 150{160, Minneapolis, Min-
nesota, 24{27 May 1994.

[11] C. J. Date. An Introduction to Database Systems. Addison-Wesley,
Reading, Mass., 6 edition, 1995.

[12] U. Dayal. Ten Years of Activity in Active Database Systems:What
Have We Accomplished? In Proceedings of the 1st International
Workshop on Active and Real-Time Database Systems, Workshops
in Computing, pages 3{22. Springer, 1995.

[13] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Addison Wesley, Redwood City, CA, 2 edition, 1994.

[14] U. Dayal et al. The HiPAC project: Combining active databas-
es and timing constraints. SIGMOD Record, 17(1):51{70, March
1988.

[15] R. Fagin. Combining Fuzzy Information from Multiple Systems.
In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS 1996, pages
216{226, Montr�eal, Canada, June 1996. ACM Press.

[16] P. Fernlund, G. Fex, A. Hanson, J. Steno, and B. Lundh. Laurells
Klinisk kemi i praktisk medicin. Studentlitteratur, Lund, Sweden,
1991.

[17] S. Flodin and T. Risch. Processing Object-Oriented Queries with
Invertible Late Bound Functions. In Proceedings of VLDB-95,
1995.

BIBLIOGRAPHY 75

[18] H. Garcia-Molina. Main memory database systems: An overview.
IEEE Transactions on Knowledge and Data Engineering, 4(6):590{
516, December 1992.

[19] W.-C. Hou, G. �Ozsoyo�glu, and B. K. Taneja. Processing aggregate
relational queries with hard time constraints. In Proc. of ACM
SIGMOD Conf. 1989, pages 68{77, Portland, Oregon, May 1989.

[20] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for opti-
mizing large join queries. In H. Garcia-Molina and H. V. Jagadish,
editors, Proceedings of the 1990 ACM SIGMOD International Con-
ference on Management of Data, pages 312{321, Atlantic City, NJ,
May 1990.

[21] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial
Evaluation and Automatic Program Generation. Prentice Hall In-
ternational, International Series in Computer Science, June 1993.
ISBN number 0-13-020249-5 (pbk).

[22] K. Kenny and K.-J-Lin. Measuring and Analyzing Real-Time Per-
formance. IEEE Software, 8(5):41{49, September 1991.

[23] K. Kenny and K. J. Lin. Structuring large real-time systems with
performance polymorphism. In Proc. 11th IEEE Real-Time Sys-
tems Symp., pages 238{246, Orlando, FL, December 1990.

[24] K. Kenny and K.-J. Lin. Implementing and Checking Timing Con-
straints in Real-Time Programs. Microprocessing and Micropro-
gramming, (38):477{484, 1993.

[25] K. B. Kenny and K.-J. Lin. Building Flexible Real-Time Systems
Using the Flex Language. Computer, 24(5):70{78, May 1991.

[26] W. Kim, editor. Modern Database Systems. The Object Model,
Interoperability, and Beyond. Addison Wesley, New York, NY,
1995.

[27] K.-J. Lin and S. Natarajan. Expressing and Maintaining Timing
Constraints in FLEX. In Proceedings of the 9th IEEE Real-time

76 BIBLIOGRAPHY

Systems Symposium, pages 96{105, Los Alamitos, CA, July 1988.
IEEE Computer Society Press.

[28] K. J. Lin, S. Natarajan, J. W. S. Liu, and T. Krauskopf. Con-
cord: A system of imprecise computations. In Proc. 1987 IEEE
Compsac, October 1987. Japan.

[29] S. Listgarten and M.-A. Neimat. Cost model development for a
main memory database system. In A. Bestavros, K.-J. Lin, and
S. H. Son, editors, Real-Time Database Systems - Issues and Ap-
plications, pages 139{162. Kluwer Academic Publishers, 1997.

[30] W. Litwin, A. Abdellatif, A. Zeroual, B. Nicolas, and P. Vigi-
er. MSQL: A multidatabase language. Information Sciences,2,3,
49(1):59{101, 1989.

[31] W. Litwin and T. Risch. Main memory oriented optimization of
OO queries using typed datalog with foreign predicates. IEEE
Transactions on Knowledge and Data Engineering, 4(6):517{528,
December 1992.

[32] J. W. S. Liu, K.-J. Lin, W.-K. Shih, A. Chuang shi Yu, J.-Y.
Chung, and W. Zhao. Algorithms for Scheduling Imprecise Com-
putations. Computer, 24(5):58{68, May 1991.

[33] V. Lortz. An object-oriented real-time database system for multi-
processors. Technical Report CSE-TR-210-94, University of Michi-
gan, April 1994.

[34] G. �Ozsoyo�glu, S. Guruswamy, Kaizheng Du, and Wen-Chi Hou.
Time-constrained query processing in CASE-DB. IEEE Transac-
tions on Knowledge and Data Engineering, 7(6):865{884, Decem-
ber 1995.

[35] G. �Ozsoyo�glu, K. Du, S. Guru swamy, and W.-C. Hou. Processing
real-time, non-aggregate queries with time-constraints in CASE-
DB. In F. Golshani, editor, Proceedings of the International Con-
ference on Data Engineering, volume 8, pages 410{417, Los Alami-
tos, CA, February 1992. IEEE Computer Society Press.

BIBLIOGRAPHY 77

[36] M. T. �Ozsu and P. Valduriez. Principles of Distributed Database
Systems. Prentice-Hall, Englewood Cli�s, New Jersey, 1991.

[37] T. Padron-McCarthy and T. Risch. Performance-Polymorphic Ex-
ecution of Real-Time Queries. In Proceedings of the First Interna-
tional Workshop on Real-Time Databases, pages 50{53, Newport
Beach, CA, USA, March 1996.

[38] T. Padron-McCarthy and T. Risch. Optimizing Performance-
Polymorphic Declarative Database Queries. In A. Bestavros and
V. Fay-Wolfe, editors, Real-Time Database Systems - Research Ad-
vances, pages 311{326, Dordrecht, The Netherlands, 1997. Kluwer
Academic Publishers.

[39] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, San Francisco, 2 edi-
tion, 1994.

[40] H. Pirahesh, T. Leung, and W. Hasan. A rule engine for query
transformation in starburst and IBM DB2 C/S DBMS. In Pro-
ceedings of the 13th International Conference on Data Engineering
(ICDE'97), pages 391{401, Washington - Brussels - Tokyo, April
1997. IEEE.

[41] J. J. Prichard, L. C. DiPippo, J. Peckham, and V. F. Wolfe. RTSO-
RAC: A real-time object-oriented database model. Lecture Notes
in Computer Science, 856:601{610, 1994.

[42] K. Ramamritham. Real-time databases. Distributed and Parallel
Databases, 1(2):199{226, April 1993.

[43] M. Ronstr�om. Design and Modelling of a Parallel Data Server for
Telecom Applications. Link�oping Studies in Science and Technol-
ogy, Dissertation No. 520, Link�oping, 1998.

[44] K. Schwan, P. Gopinath, and W. Bo. CHAOS { Kernel support for
objects in the real-time domain. IEEE Transactions on Computers,
36(8):904{916, August 1987.

78 BIBLIOGRAPHY

[45] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access Path Selection in a Relational Database
Management System. In Proc. of SIGMOD Conf. 1979, pages 23{
34, Boston, MA, 1979.

[46] E. H. Shortli�e. Computer-Based Medical Consultations: MYCIN.
Elsevier/North-Holland, Amsterdam, London, New York, 1976.

[47] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, New York, 1997.

[48] M. Sk�old, E. Falkenroth, and T. Risch. Rule Contexts in Ac-
tive Databases | A Mechanism for Dynamic Rule Grouping. In
RIDS'95 (Rules in Database Systems), Athens, Greece, September
1995.

[49] M. Sk�old and T. Risch. Using partial di�erencing for e�cient
monitoring of deferred complex rule conditions. In Proceedings
of the 12th International Conference on Data Engineering, pages
392{401, Washington - Brussels - Tokyo, February 1996. IEEE
Computer Society.

[50] S. H. Son, editor. Advances In Real-Time Systems. Prentice Hall,
Englewood Cli�s, NJ, 1995.

[51] J. A. Stankovic. Misconceptions About Real-Time Computing.
A Seriuos Problem for Next-Generation Systems. Computer,
21(10):10{19, October 1988.

[52] H. S. Stone. High-Performance Computer Architecture. Addison-
Wesley, 3 edition, 1993.

[53] G. Wiederhold. Mediators in the Architecture of Future Informa-
tion Systems. Computer, 25:38{49, March 1992.

[54] L. A. Zadeh. Fuzzy Sets. Information and Control, 8(3):338{353,
June 1965.

[55] L. Zhou, E. A. Rundensteiner, and K. G. Shin. Schema evolution
for real-time object-oriented databases. Technical Report CSE-
TR-199-94, University of Michigan, March 1994.

Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköping University
S-581 83 Linköping

Sweden

ISSN 0280-7971

Thesis No 733

Performance-Polymorphic Declarative Queries
by

Thomas Padron-McCarthy

Licentiatavhandling

som för avläggande av teknologie licentiatexamen vid Linköpings universitet kommer att
offentligt presenteras i seminarierum Belöningen, hus B, Linköpings universitet, tisdagen den 8
december 1998, kl 13:15.

Abstract

Performance polymorphism, where a system can select between several given implementations
of the same conceptual operation, has been used in real-time programming languages, such as
Flex. The contingency plans used in the active database system HiPAC is a related, but more
limited, mechanism. We have introduced performance polymorphism into a declarative data-
base query language. We have shown the feasibility of the concept by implementing a general,
performance-polymorphic query optimizer. We show how performance-polymorphic queries
are specified and optimized in our system. A number of applications for the technique are sug-
gested.

This work was supported by NUTEK, the Swedish National Board for Industrial and Technical
Development, as part of ISIS, the Competence Center for Integrated Systems for Control and In-
formation.

ISBN 91-7219-354-9

Department of Computer and Information Science
Linköping University

Linköping Studies in Science and Licentiate Theses at the Faculty of Arts and Humanities

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,
Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel:An Interactive Flowcharting Technique for Communicating and Realizing Algo-
rithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos:New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Programs,

1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren:Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson:On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson:Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson:A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki:Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-Bases,

1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck:Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson:DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.
No 326 Andreas Kågedal:Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems, 1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Imple-

mentation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson:Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye:Dependency-based Groudness Analysis of Functional Logic Programs, 1993.
No 402 Lars Degerstedt:Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett

agentteoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.

No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén:Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson:Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg:Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson:Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson:Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson:Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.
No 549 Jonas Hallberg:High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.
No 557 Mikael Johansson:Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson:Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald:Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson:Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth:Data Management in Control Applications - A Proposal Based on Active Database Systems, 1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.
No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels:A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson:Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.
No 609 Jonas S Karlsson:A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.

No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja: . Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin : Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering av

systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability, 1998.
No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets rekommenda-

tion om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder : Projektledaren & planen - en studie av projektledning i tre installations- och systemutvecklingsprojekt,

1998.
FiF-a 14 Ulf Melin : Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i personal

inom skogsindustrin, 1998.
No 719 Joakim Gustafsson:Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska organi-

sationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

