
Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 901

Query Processing for Peer
Mediator Databases

BY

TIMOUR KATCHAOUNOV

ACTA UNIVERSITATIS UPSALIENSIS
UPPSALA 2003

Dissertation at Uppsala University to be publicly examined in Siegbahnsalen,Ångstr̈om Lab-
oratory, Tuesday, November 11, 2003 at 13:00 for the Degree of Doctor of Philosophy. The
examination will be conducted in English

Abstract
Katchaounov, T. 2003. Query Processing for Peer Mediator Databases. Acta Universitatis
Upsaliensis.Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science
and Technology901. 73 pp. Uppsala. ISBN 91-554-5770-3

The ability to physically interconnect many distributed, autonomous and heterogeneous software
systems on a large scale presents new opportunities for sharing and reuse of existing, and for the
creataion of new information and new computational services. However, finding and combining
information in many such systems is a challenge even for the most advanced computer users.
To address this challenge, mediator systems logically integrate many sources to hide their
heterogeneity and distribution and give the users the illusion of a single coherent system.

Many new areas, such as scientific collaboration, require cooperation between many autonomous
groups willing to share their knowledge. These areas require that the data integration process
can be distributed among many autonomous parties, so that large integration solutions can be
constructed from smaller ones. For this we propose a decentralized mediation architecture, peer
mediator systems (PMS), based on the peer-to-peer (P2P) paradigm. In a PMS, reuse of human
effort is achieved through logical composability of the mediators in terms of other mediators
and sources by defining mediator views in terms of views in other mediators and sources.

Our thesis is that logical composability in a P2P mediation architecture is an important
requirement and that composable mediators can be implemented efficiently through query processing
techniques. In order to compute answers of queries in a PMS, logical mediator compositions
must be translated to query execution plans, where mediators and sources cooperate to compute
query answers. The focus of this dissertation is on query processing methods to realize composability
in a PMS architecture in an efficient way that scales over the number of mediators.

Our contributions consist of an investigation of the interfaces and capabilities for peer
mediators, and the design, implementation and experimental study of several query processing
techniques that realize composability in an efficient and scalable way.

Keywords:data integration, mediators, query processing

Timour Katchaounov, Department of Information Technology. Uppsala University. Box 337,
SE-75105 Uppsala, Sweden

c© Timour Katchaounov 2003

ISBN 91-554-5770-3
ISSN 1104-232X
urn:nbn:se:uu:diva-3687 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3687)

To my wife Adela.

Acknowledgements

The person I owe most for the completion of this dissertation and from whom
I learned most about research is my advisor Tore Risch. My gratitude and
appreciation to him for his constant help and energy, being always available
for an advice, a tough discussion, or even a bug-fix. I would like to thank
my opponent Tamer̈Ozsu and the dissertation committee Nahid Shahmeri, Per
Svensson, and Per Gunningberg who generously gave their time and expertise
to evaluate this work.

I would also like to thank Marianne Ahrne who proof-read parts of my
dissertation. Marianne, Eva Enefjord, and Gunilla Klaar were of great help in
many organizational issues.

My former advisors and mentors Vanio Slavov and Vassil Vassilev not only
taught me the foundations of Computer Science but also encouraged me to pur-
sue a doctoral degree. Stefan Dodunekov suggested that I apply for a doctoral
position in Sweden.

Special thanks to my fellow graduate student and friend Vanja Josifovski
who helped me with my first steps in the AMOSII code, and with whom we
co-authored several papers. Vanja was also very helpful in finding my first
database job at the IBM Silicon Valley Lab.

Many thanks to the former members of EDSLAB Jörn Gebhardt and Hui
Lin for becoming my friends and making my stay in Linköping more enjoy-
able. Thanks also to all current members at Uppsala Database Lab whose con-
stant questions pushed my understanding to the limits and helped me clarify
many research and technical issues.

While in Uppsala I was lucky to meet Monica, Zeynep, Brahim, Karim,
Elli, Lamin and Russlan who became my friends for life. Thanks to them now
I see the world from a much wider perspective. Mo, Elli and Brahim, some of
my best time in Sweden was when we shared a place together.

During my first months in Sweden I was very happy to meet again Plamen,
years after school. Thanks to him and Pepa I got in touch with the Bulgarian
group in Uppsala who were always ready to help.

I am grateful to all my old friends from Bulgaria, they made me understand
that home is where one is loved, so home for me is wherever they are.

Most of all I owe the inspiration to follow a career in research to my parents.
They, and my brother, always encouraged me to follow new challenges. It is

iv

thanks to their unconditional love and support I managed not to give up at times
of deep home-sickness and I stayed to complete this project. My gratitude and
love to all of you.

My dear Adi, I had to go all the way to Sweden so that we can meet. So I
believe that the stress and the many lonely evenings you had to endure during
the last two years were a natural part of our being together. I will never be able
to thank you enough for your love and patience during this time and I look
forward to our future together.

This work was funded by the Swedish Foundation for Strategic Research (con-
tract number A3 96:34) through the ENDREA research program, and by the
Swedish Agency for Innovation Systems (Vinnova), project number 21297-1.

v

List of Papers

This dissertation comprises of the following papers. In the summary of the
disseration the papers are referred to asPaper AthroughPaper F.

[A] Tore Risch, Vanja Josifovski, and Timour Katchaounov. Func-
tional data integration in a distributed mediator system. InThe
Functional Approach to Data Management. Springer-Verlag, 2003.

[B] Timour Katchaounov and Tore Risch. Interface capabilities for
query processing in peer mediator systems.Technical report
2003-048, Department of Information Technology, Uppsala Uni-
versity, 2003.

[C] Timour Katchaounov, Vanja Josifovski, and Tore Risch. Scal-
able view expansion in a peer mediator system. InEighth In-
ternational Conference on Database Systems for Advanced Appli-
cation, (DASFAA’03), pages 107–116, IEEE Computer Society,
March 2003.

[D] Vanja Josifovski, Timour Katchaounov, and Tore Risch. Optimiz-
ing queries in distributed and composable mediators. InProceed-
ings of the Fourth IFCIS International Conference on Cooperative
Information Systems, CoopIS’99, pages 291–302, IEEE Computer
Society, September 1999.

[E] Vanja Josifovski, Timour Katchaounov, and Tore Risch. Eval-
uation of join strategies for distributed mediation. In5th East
European Conference on Advances in Databases and Information
Systems, ADBIS 2001, volume 2151 ofLecture Notes in Computer
Science, pages 308–322, Springer-Verlag, September 2001.

[F] Timour Katchaounov, Tore Risch, and Simon Zürcher. Object-
oriented mediator queries to internet search engines. InProceed-
ings of the Workshops on Advances in Object-Oriented Informa-
tion Systems, volume 2426 ofLecture Notes in Computer Science,
pages 176–186, Springer-Verlag, September 2002.

Papers reprinted with the permission from the respective publisher:

vi

Paper A: c©Springer-Verlag 2003.

Paper C: c©IEEE 2003.

Paper D: c©IEEE 1999.

Paper E: c©Springer-Verlag 2001.

Paper F: c©Springer-Verlag 2002.

Other papers and reports
In addition to the papers included in this dissertation, during the course of my
Ph.D. studies I have authored or co-authored the following papers and reports
listed in chronological order.

1. Hui Lin, Tore Risch, and Timour Katchaounov. Object-oriented mediator
queries to xml data. InProceedings of the First International Conference
on Web Information Systems Engineering, WISE 2000, volume II, IEEE
Computer Society, June 2000.

2. Timour Katchaounov, Vanja Josifovski, and Tore Risch. Distributed view
expansion in composable mediators. InProceedings of the 7th Interna-
tional Conference on Cooperative Information Systems, CoopIS 2000, vol-
ume 1901 ofLecture Notes in Computer Science, pages 144–149, Springer-
Verlag, September 2000.

3. Krister Sutinen, Timour Katchaounov, and Johan Malmqvist. Using dis-
tributed database queries and composable mediators to support require-
ments analysis. InProceedings of INC0SE’2001, 2001.

4. Hui Lin, Tore Risch, and Timour Katchaounov. Adaptive data mediation
over xml data.Journal of Applied Systems Studies, 3(2):399–417, 2002.

5. Timour Katchaounov. Query processing in self-profiling composable peer-
to-peer mediator databases. InProceedings of the Worshops XMLDM,
MDDE, and YRWS on XML-Based Data Management and Multimedia Engineering-
Revised Papers, pages 627–637. Springer-Verlag, 2002.

vii

Contents

1 Introduction . 1
2 Background . 5

2.1 Data Integration .5
2.2 Data Warehouses. .12
2.3 Mediator Database Systems .13
2.4 Peer-to-peer Systems .16
2.5 Query Processing and Optimization .18

3 A P2P Architecture for Mediation . 23
3.1 Design Motivation .23
3.2 Requirements .25
3.3 External System Components .28
3.4 Mediator components and their functionality33
3.5 Systems of Peer Mediators. .40

4 The Problem of Query Processing in Peer Mediator Databases 45
5 Related Work . 51

5.1 Distributed Database Systems .51
5.2 Mediator Systems .51
5.3 Peer Data Management Systems .53

6 Summary of Contributions . 57
7 Summary of Appended Papers . 61

7.1 Paper A: Functional Data Integration in a Distributed Mediator
System .61

7.2 Paper B: Interface Capabilities for Query Processing in Peer
Mediator Systems .62

7.3 Paper C: Scalable View Expansion in a Peer Mediator System . .64
7.4 Paper D: Optimizing Queries in Distributed and Composable

Mediators .66
7.5 Paper E: Evaluation of Join Strategies for Distributed Mediation68
7.6 Paper F: Object-Oriented Mediator Queries to Internet Search

Engines .69
8 Future Work . 73

viii

Introduction

The pervasive use of wide-area computer networks and ultimately the Internet
provides the capability to physically interconnect millions of computing de-
vices1. However the nodes in such global networks are designed and evolve
independently of each other which results in heterogeneity at various levels,
starting from the hardware platforms and operating systems to the abstract
models used to describe reality. The ability to physically connect distributed,
autonomous and heterogeneous computing systems on a large scale presents
new opportunities for better sharing and reuse of existing computational re-
sources and information and for the creation of new computation services and
new information from the combination of existing ones. One approach to real-
ize these opportunities is to provide abstractions above the physical network in
a separate layer calledmiddlewarethat shields the users from various aspects
of the heterogeneity and distribution in a global network.

A particular kind of middleware systems aredata integrationsystems that
address the problem of heterogeneity and distribution of large amounts of data
in a computer network. The main purpose of data integration systems is to
provide a logically unified view of distributed and diverse data so that it can
be accessed without the need to deal with many systems, interfaces and syn-
tactic and semantic data representations. The need for data integration occurs
in many diverse contexts that vary in the degree of distribution and autonomy,
the level of diversity of the data sources in terms of their data model and com-
putational capabilities, the complexity of the modeled domain, the amount and
dynamics of data, performance and data timeliness requirements, and the type
of queries posed.

Various data integration solutions are suitable depending on the combina-
tion of values for each of these parameters. Database technology provides
high-level abstractions of data, data retrieval, and manipulation operations.
Naturally, the ideas from database technology are applied to the problems of
data integration so that unified views of many data sources can be specified
in terms of declarative query languages. Two main approaches exist for the
design of data integration systems based on database technology - thema-
terialized approachbased on data warehouse technology and thevirtual ap-

1According to the Internet Software Consortium (http://www.isc.org/) the number of hosts
advertised in the DNS in January 2003 is 171,638,297.

1

proachbased on the mediator concept. Data warehouse systems are central-
ized repositories where distributed data is collected, unified and stored in the
same physical database, and is accessed without accessing the original data
sources. Mediator systems [55] provide a logically unified view of the data
sources (a virtual database) and the means to access and combine relevant data
“on the fly” directly from the data sources. We describe the materialized and
the virtual data integration approaches in more detail in Sect. 2.

Typically, database systems are designed to work in an enterprise context
with a centralized organizational structure where scalability is been sought in
terms of the data size or number of concurrent users. Since data warehouse
systems are essentially traditional DBMSs and their main concept is that of
a centralized data repository for all unified data, they are suitable mainly for
centralized organizations. While the mediator approach itself does not imply
a centralized architecture, most existing mediator systems have either central-
ized or two-tier architectures that make them suitable for the same type of
centralized organizations as data warehouses.

However, due to the wide-spread use of computing technology and wide-
area networks, the need for data integration and the opportunities it brings are
relevant in many other social contexts than centralized organizations where
database technology is commonly used. Some typical examples are scientific
communities, alliances of companies, groups of individuals, to name a few.
These social contexts are characterized by many independent and distributed
units ready to share some of the data and services they own, so that when
combined with other sources, new valuable information is produced. This in-
formation can be used by others either to satisfy their needs or to further in-
tegrate more data, services and information to provide higher-level integration
services. Another important characteristic is the complexity and diversity of
data in terms of its degree of structure. In contrast with traditional enterprise
environments where data is well structured and mostly of a tabular nature easy
to represent in terms of the relational data model, many new application areas
need the integration of both complex and highly nested data such as product
models, and of semi-structured data such as HTML or XML documents.

Based on these observations we conclude that there is a need for a new
type of data integration systems based on database technology that are suitable
for the sharing and integration of large number of autonomous, distributed and
heterogeneous data sources and computation services with complex data. Such
a system should fulfill several high-level requirements:

R1 (autonomy): The autonomous and distributed nature of the participating
entities (e.g companies or research units) should be preserved because
no one owns all data sources, and most likely no single entity has the
knowledge how to integrate all data sources.

2

R2 (decentralization): There should be no need for centralized administra-
tion because in most cases no participant would like to relinquish control
to someone else.

R3 (evolution): Each of the participants’ knowledge and information needs
may evolve at various rates, which requires that separate parts of the
system evolve independently.

R4 (flexibility): It is hardly possible to predict all social contexts where data
integration may be useful. Therefore a data integration system should
lend itself to easy adaptation and customization by various types of users
and in various social environments.

R5 (self-management):With a large number of autonomous participants, the
cost of human maintenance of a large number of integrated views of
many data sources can be prohibitively high. Therefore, a large scale
data integration system should be able to maintain itself automatically,
ideally with no human participation beyond the management of the data
sources by their owners.

R6 (scalable integration): The process of data integration requires a lot of
domain knowledge and is a complex and time consuming activity that
will be mainly a human task in the foreseeable future. It is important
that this process can be scaled to large number of autonomous sources.

R7 (abstraction): The heterogeneity of the data sources in terms of their data
models and capabilities requires that a data integration system has pow-
erful modeling capabilities so that it can represent and integrate the con-
tents of diverse sources without loosing semantics.

R8 (scalable performance):Finally, and most importantly, a data integration
system should provide high overall scalable performance in terms of
both the number of nodes and data size.

While requirementsR1 - R7are related to the high-level functionality and
architecture (visible to its users) of a data integration system, the last require-
mentR8) is related to the internal implementation of such a system.

To fulfill requirementsR1- R7we propose a distributed mediator architec-
ture based on the peer-to-peer (P2P) paradigm. The architecture is described
in detail in Sect. 3. As proposed in [55], here mediators are relatively sim-
ple software modules that encode domain-specific knowledge about data and
share abstractions of that data with other mediators or applications. Each me-
diator is a database system with its own storage manager, query processor and
multi-mediator query language which can reference database objects in other

3

mediators. More complex mediators are defined through these primitive me-
diators by logically composing new mediators in terms of other mediators and
data sources. Logical composability is realized throughmulti-mediator views
defined in terms of views and other database objects in other mediators and
data sources.

Many architectures are possible that fulfill the general requirements in one
or another degree. It is hardly possible to show that one architecture is superior
to another from the users’ perspective. Most likely in the future there will be
many P2P data integration systems that will differ in various aspects of their
architecture. Only time and active usage in real-life problems can tell what is
the right combination of features for a usable system. However, we believe
that no matter what is the exact architecture, any such system will have to deal
with the same fundamental problems with respect to the translation of logical
mediator compositions into executable plans, that isquery processing, which is
the focus of this dissertation. No matter what is the particular architecture one
of the most important issues for its usefulness is that of scalable performance.
That is why our main goal is not the design of a complete architecture for me-
diation, but instead is the investigation of query processing techniques that are
generic for such systems. The presented architecture provides the framework
for the design and implementation of query processing techniques that will
provide scalable performance and make the architecture useful in practice.

Therefore, at high-level, the research question we will address in this disser-
tation is: given an architecture that fulfills the general requirementsR1- R7, is
it possible to design query processing techniques that will achieve high over-
all scalable performance in that architecture? This is a very general question
that can be decomposed into many related sub-problems each having different
answers depending on the particular architecture chosen and the requirements
we put on a mediator system.

Our thesis is that logical composability in a P2P mediation architecture is
an important requirement and that composable mediators can be implemented
efficiently through query processing techniques.

In the rest of the dissertation wei) present a specific mediation architecture
based on the P2P paradigm,ii) describe composability as the main requirement
for the components in this architecture,iii) analyze several important problems
related to processing queries in such an architecture, andiv) describe and eval-
uate experimentally the corresponding solutions which show that, indeed, it
is possible to realize composability in a P2P mediator system with low over-
head. The results are verified experimentally through an implementation of
composable peer mediators in the AMOS II mediator database system.

4

Background

The title of this dissertation combines three independent concepts:mediators,
peer-to-peer systemsandquery processing, that provide the foundation for our
work. All three concepts have been extensively (re)defined and used in the
literature in various senses. To provide a basis for the rest of our discussion, in
this section we provide definitions of these concepts. As with most high-level
architectural concepts, our definitions are necessarily informal.

To provide better understanding, we position the three concepts in a wider
context. That is why first we discuss the area of data integration and the main
approaches to implement data integration systems. Next we focus on theme-
diator approach to data integration as it is the basis for our work. Then we
discusspeer-to-peer systems. Finally, we turn our attention to the area ofquery
processing. Along with our main exposition we introduce several more related
concepts that are used in the rest of our work.

2.1 Data Integration
The area of data integration is concerned with the problem of combining data
residing in different autonomous sources and providing users with unified and
possibly enriched views1 of these sources, and the means to specify informa-
tion requests that correlate data from many such sources. Adata integration
systemprovides the means to define such integrated views and to process infor-
mation requests against these views. The purpose of data integration systems
is to hide the complexity of many diverse sources and present to the users a sin-
gle interface to the data in all sources. As illustrated with the cloud on Fig. 2.1,
there is no specific architecture for data integration systems, nor is there one
standard technology to implement such systems. However, for reasons we will
describe below, the most common research approach is to use techniques from
the database and knowledge management areas. General concepts and archi-
tectures related to data integration from the perspective of the database systems
area can be found in [44], [53]. A recent overview of the theoretical aspects of
data integration from a formal logical perspective can be found in [31].

1Here we use the termviewin a general sense as the logical organization of the data the user
sees.

5

Data source

Data Integration System

Data
source

Data source

request information receive answers

interact
interact interact

Engineer

Manager

Researcher

Figure 2.1:Data integration system

Data integration has long been important for decision support in large en-
terprises because of the benefits it can bring due to improved decision mak-
ing. However, recently many more areas of human activity rely on informa-
tion technology to create, store and search information, such as engineering,
health care, scientific research, libraries, and personal uses. These applica-
tion domains lead to several important characteristics of the data integration
problem:
• The information needs of the users of an integrated system can be diverse

and dynamic, and cannot be predicted in advance. For example a genetics
researcher or a mechanical engineer would hardly know in advance the kind
of information and the sources they need to access in order to solve some
problem. This requires that data integration systems provide flexible means
for the specification of information requests.

• Typically, the sources cannot be changed and may not be even aware of their
participation in a data integration system. To take into account and integrate
existing sources, data integration requires a bottom-up design approach that
starts from the sources and incrementally constructs a unified view in terms
of the sources’ data.

• So far, the most common use of data integration systems is for information
requests. There are several reasons for that. Typically, data integration is
needed for decision-making which necessarily begins with request(s) for
information and may (or may not) result in need for changes in the initial
data. Many sources, such as most Web sources, provide read-only access.
Finally, propagating updates to autonomous sources poses many hard prob-
lems related to their consistency.

6

2.1.1 Data sources

Since data sources are important in data integration, let us first look at what
they are and what their properties are.Data sourcesare uniquely identifiable
(in some scope) collection(s) of stored or computed data, calleddata sets2, for
which there exist programmatic access, and for which it is possible to retrieve
or infer a description of the structure of this data, calledschemaand possibly
additional information about the source. All the information about the con-
tents of a source (its schema, data size, etc.), the computational capabilities of
a source (the interface to access the data), and possibly other information about
a source as reliability, information quality, etc., are collectively calledsource
meta-data. Data sources may contain very large or even infinite amounts of
data such as data streams from sensors or financial data, or results from com-
puter simulations.

A data source can be anything from a file that is accessible via the file sys-
tem API of an operating system, a Web page accessible through a Web server
via the HTTP protocol, a CAD simulation accessible through a CORBA in-
terface, to a complex database managed by an RDBMS accessible through an
ODBC driver. From our definition it follows that in general a data source can-
not be identified neither with one single software component, nor with a single
storage element. Therefore a data source is defined by the combination of a
software component and the data (stored or computed) that it provides access
to. Given the practically unlimited number of ways to combine various tech-
nologies to access data, describe and store data, the concept of a data source is
a loose term and in some cases it can be hard to decide precisely what consti-
tutes one data source.

An important aspect of data sources is that there is no single generic method
to retrieve data source schemas, and to associate a schema with a source. Some
sources such as RDBMS may store and provide the source schema as part of
the data source itself but separately from the actual data. In other cases, such
as XML and RDF documents, the data sets in a source (in this case called
documents) may be self-descriptive and schema information may be embedded
inside the data sets. Finally, some sources as Web pages may not provide any
schema at all, but methods can be developed to analyze the data and extract its
structure.

Data sources may share the same type of interface and/or system to access
their data but differ in terms of their contents. Thus it is important to distin-
guish between types of data sources and data source instances. For example
all Oracle DBMSs are the same type of data source, however each particular
installation of the DBMS is a different instance of the Oracle DBMS. Due to

2Here we use the termsetin an informal sense. Formally speaking data sets can have either
set or multi-set semantics.

7

the many possible combinations of common and different features of all po-
tential data sources, it is not always possible to clearly separate between data
source types and instances. For example a feature that is common only for a
small group of data source instances may be considered as that group’s charac-
teristic and used to distinguish this group of sources as a new kind of sources.
On the other hand, such an approach may result in an unmanageable number
of source types. As in other modeling problems, it is up to the designer of a
data integration system to decide which sources constitute a type of their own.

From this discussion we can derive several important properties of data
sources - heterogeneity, autonomy and distribution.

• Heterogeneity.Data sources may be heterogeneous at many levels. Based
on [43] we distinguish three general levels of heterogeneity:
• Platform heterogeneity. At this level sources differ in the operating

system and hardware they use, physical representation of data, methods
to invoke the functions that provide programmatic access to the source’s
data, network protocols, etc.
• System heterogeneity.At this level data sources differ mainly in two

aspects. Data sources may use different sets of concepts, calleddata
modelsto model real world entities. A variety of methods may be used
for data access and manipulation. The collection of methods to access
and manipulate data in a source is calledsource capabilities. Source ca-
pabilities may vary from a query language like SQL to a sequential file
scan. Corresponding to our description of data sources, system hetero-
geneity is related to types of data sources.
• Information heterogeneity. This level of heterogeneity relates to the

data itself, that is to the data source instances. Their contents can differ
at a logical level, because there exist many ways to model the real world.
The resolution of this type of heterogeneity is calledschema integration.
Various taxonomies have been proposed to classify the differences be-
tween source instances at the logical level [58, 28, 43, 27, 22, 47]. Most
works agree on two main types of information heterogeneity: seman-
tic and structural heterogeneity. Different real-world concepts can be
related to different concepts at the data source level which leads tose-
mantic heterogeneity. Semantic heterogeneity manifests itself, for exam-
ple, in different names for the same thing or the same name for different
things, or using different units and precision.Structural heterogeneity
(also calledschematic) is related to the use of different concepts at the
data model level, such as: different data types, objects vs. types, or types
vs. attributes to model the same real-world entities.

• Autonomy. Because of organizational or technical reasons, data sources are
usually independent and even not aware of each other. This independence is
referred to asautonomy, which is related to the distribution of control (and

8

not data) [44]. In the organizational sense autonomy means that sources are
controlled by independent persons or groups. In its technical sense auton-
omy is related to distribution of control [45]. Various overlapping defini-
tions of autonomy are given in the literature that reflect its different aspects.
In [41] node autonomy is classified in several types:naming autonomy re-
lates to how nodes can create, select and register names of system objects,
foreign request autonomyreflects the freedom a node has if and how to
serve external requests and with what priority,transaction autonomyde-
scribes the ability of a node to choose transaction types and to choose when
and how to execute transactions. In addition [41] recognizes heterogeneity
as a type of autonomy - that is the autonomy in the choice of data model,
schema, interfaces, etc. In [11] autonomy is defined asdesign autonomy-
the freedom to choose data model and transaction management algorithms,
communication autonomy- the ability to make independent decisions on
what information to provide to external systems and when, andexecution
autonomy- any system can execute local transactions in any way it chooses.
Another important facet of autonomy is the independent lifetimes of data
sources, calledlifetime autonomy.
• Distribution. Typically data sources reside on different computer nodes

and thus are naturally distributed. As in [44] we use the term distribution
with respect to data. However data sources may not only store but may also
compute data. Thus, the distribution aspect of data sources is related to both
data and function distribution, rather than just distribution of stored data.

Thus, data integration has to solve a wide variety of problems ranging from
access to the data, unification of the data at various levels of abstraction, ex-
traction of meta-data, and correlation of data items from disparate sources,
to name a few. Naturally, all these operations have to be performed within
reasonable time and resource limits, and therefore a major issue for any data
integration solution is performance and scalability both in the data size and
number of sources.

2.1.2 General approaches to data integration

Computer networks and network protocols allow to bridge the distribution gap
between many data sources. However, networks only allow to bring data to-
gether and possibly unify it at the lowest physical level of representation (such
as byte order). Thus we consider networks as an enabler for other technologies
that can solve the problems brought by the heterogeneity, autonomy of data
sources and the performance requirements for their integration.

9

Standards.

Standards are only a partial solution for heterogeneity. They can be applied
only in well-defined domains where consensus can be reached about data rep-
resentation and programming interfaces to data. It is hardly possible to foresee
and standardize all possible ways in which data sources may be combined,
thus even in a single domain, if standards are achieved, there are many aspects
that cannot be fully standardized, for example the way people understand and
model the world. Also standards often evolve and even compete, thus there is
often the need to align different standards and to update systems with support
for new standards which may be very costly and difficult. That is why even if
standards can be enforced, there still will be heterogeneity of data sources at
many levels.

Middleware.

One possible solution to the data integration problem is to migrate all disparate
systems to one homogeneous, possibly distributed system. This is hardly a
viable alternative as it may require all software at the data sources and all
their applications to be rewritten and all data source owners to reach consensus
about data representation and system interfaces.

Because of these mainly organizational reasons, data integration problems
require solutions that do not interfere with the data sources and do not require
changes of the data sources. To address this requirement, many data integration
solutions introduce a unifying software layer calledmiddleware[5]. Middle-
ware is a very broad term used for a very wide spectrum of software systems
and technologies. The goal of middleware technologies is to provide a degree
of abstraction that hides various aspects of system heterogeneity and distri-
bution. While many middleware technologies are not designed specifically to
solve data integration problems, they can be applied for data integration either
directly or as parts of more complex solutions.

Distributed object technologies.

One type of widely used middleware are distributed object frameworks such as
CORBA [45], DCOM [33], Java RMI, and Web services [50]. All distributed
object technologies have several features in common. They provide a general
purpose way to specify procedural interfaces to some computation services
and transparent access to remote objects. These technologies are concerned
with the ability of distributed heterogeneous systems to transparently invoke
each other’s services and exchange data (often in the form of objects) across
heterogeneous platforms and languages with different type systems. How-
ever, distributed object technologies are not concerned with how to efficiently
compose distributed services and leave this task to the programmer. Since
distributed object technologies are based on general-purpose procedural lan-

10

guages (typically object-oriented), their direct application to data integration
has the following problems:i) they do not provide high-level constructs for
the integration of many data sources and require “manual” programming to
encode the transformation and combination of data from many sources,ii) ev-
ery time when new information need arises or a new data source has to be
added the middle object layer has to be changed, which may require a lot of
(re)programming,iii) they do not expose the implementation of the services
which prevents global optimization of composed services (e.g. a Web service
that uses other Web services), andiv) it is infeasible to perform such global
optimizations of composite services even if their implementation is available.
This makes the direct application of general purpose distributed object man-
agement technologies unsuitable for the integration of many data sources es-
pecially in cases when the sources contain large amounts of dynamic data,
and changing user information needs. Thus, distributed objects are enabling
technologies on top of which more advanced solutions can be built.

Database technology.

A natural choice of technology for data integration are database management
systems (DBMS) [17]. Database technology presents a high level of abstrac-
tion of large data sets and the operations to manage and query such data sets
through declarative interfaces. Query languages and standardized data mod-
els allow the implementation of scalable and flexible systems that can manage
and access very large data sets with very little programming effort compared
to procedural frameworks.

However, database technology has been developed to manage homogeneous
data sets (using the same physical and logical organization) that are fully con-
trolled by a DBMS and therefore are not autonomous. For reliability and per-
formance reasons DBMS technology has been extended to manage distributed
data. Still, distributed DBMSs (DDBMS) are homogeneous systems that con-
sist of the same type of nodes that operate as one system, and therefore neither
the nodes of a DDBMS nor the data it manages are autonomous.

In order to be applicable to data integration problems, database technol-
ogy has been extended and modified in various ways to support heterogeneity
and autonomy. An exhaustive discussion of the architectural alternatives for
database systems depending on the degree of autonomy, distribution and het-
erogeneity is given in [44]. Reference [9] provides an overview and classifica-
tion of approaches to querying heterogeneous data sources along several other
architectural dimensions. Here we overview in the following two sections the
two most popular approaches to data integration middleware based on database
technology - data warehouse and mediator systems.

11

2.2 Data Warehouses.
One possibility to integrate data from many sources is to extract data of in-
terest from the sources, transform that data into a uniform representation and
then load it into a central repository, adata warehouse, that provides uniform
access to the integrated data. This approach is often calledmaterializedbe-
cause it physically materializes the integrated view by copying transformed
data from the sources. Due to the maturity and wide use of relational database
technology, it has been the primary choice to implement data warehouse sys-
tems. Data warehouses are built as a subject-oriented databases that are spe-
cialized in answering specific decision-support queries. This approach allows
for avoiding the replication of all data from all sources which often may be
infeasible or even impossible, and allows for the fine-tuning of a database for
complex ad-hoc decision-support queries. A simplified architecture of a data
warehouse is shown in Fig 2.2.

Data source

Data
Warehouse

Data source

 Extract
 Transform
 Load
 Integrate

 Analysis
 Query/Reporting
 Data mining

Queries

Data source

Data source
Catalog

Figure 2.2:Simplified data warehouse architecture

A data warehouse integrated schema is first designed that logically inte-
grates the data sources. The most common type of data sources areopera-
tional databases, that is, relational DBMS used for the day-to-day operation
of an enterprise, tuned for on-line transaction processing (OLTP). Other types
of data sources can be used as well, such as Web pages, specialized biologi-
cal and engineering databases. To populate a data warehouse, the data is first
extracted from multiple data sources. Then the data has to be cleaned, that
is, anomalies such as missing and incorrect values are resolved, and trans-
formed into uniform format. After extraction and cleaning the data is loaded
into the warehouse. During loading data can be further processed by check-
ing integrity constraints, sorting, summarization and aggregation. Thus data
loading materializes the integrated views defined during the design phase of
a data warehouse. To support decision-making data warehouses are designed
to store historical data that is, organized in predefined dimensions that corre-
spond to subjects of interest. Periodically the data warehouse is refreshed by
propagating changes in the sources to the warehouse database. The process of
loading and/or updating a data warehouse often may take many hours or even

12

days. That is why data warehouses are refreshed from time to time (once a
day, or even once a week) and the users do not have access to the most recent
data. Since a data warehouse has to accommodate all data of interest from
the sources for long periods of time, its design requires very careful planning
in advance both of its logical and physical organization, which can be a very
time-consuming and complex process. A detailed overview of data warehouse
technology can be found in [8].

2.3 Mediator Database Systems
An alternative to the data warehouse approach is to keep all data at the sources
and access the sources on per-need basis to retrieve and combine only the
data that is relevant to a request. For that, an intermediate software layer is
introduced that presents to the users a logically integrated view of the data
sources. Since this integrated view is not materialized explicitly by the user,
this approach to data integration is often calledvirtual.

The requirements for the functionality, interfaces, and architecture of a vir-
tual integration layer are analyzed in [55], and based on this analysis an ar-
chitecture for amediationlayer is specified, illustrated on Fig. 2.3. A medi-
ator layer is a virtual middle layer that separates the functions related to data
integration from the data management functions of the data sources and the
presentation functions of the applications. The goal of this layer is to simplify,
abstract, reduce, merge, and explain data. It consists ofmediatormodules,
defined in [55] as “a software module that exploits encoded knowledge about
certain sets or subsets of data to create information for a higher layer of appli-
cations”.

Mediator

Data source Data source Data source Data source

Application Application ApplicationApplication
layer

Mediation
layer

Data source
layer

Mediator

MediatorMediator

Mediator

Mediator

Figure 2.3:Mediation architecture

13

The mediation architecture is targeted at the integration of large number of
autonomous and dynamic data sources that are typically available on the In-
ternet or other wide-area networks. In this environment, maintainability is of
uttermost importance. For better maintainability, a mediation layer is designed
in a modular way and consists of a network of small and simple mediator
modules specialized in some domain. Thus every mediator can be maintained
by one domain expert or a small group of experts. Mediators share their ab-
stractions with higher levels of mediators and applications which can use the
domain knowledge encoded in lower-level mediators. Applications and me-
diators that require information from different domains use one or more other
specialized mediators. Each mediator presents its own integrated view of some
sources and mediators and thus adds more knowledge to the mediator network.
An important consequence is that there is no single global view of all sources.
There may be a large number of mediators to choose from. To facilitate knowl-
edge reuse and discovery, mediators should beinspectableand provide data
about themselves. A logical application of mediators is to use some of them
asmeta-mediatorsthat facilitate the access to mediator and data source meta-
data. According to [56] the main tasks of a mediation layer, calledmediation
services, are:

• accessing and retrieving relevant data from multiple data sources,
• abstraction and transformation of the retrieved data into a common repre-

sentation and semantics,
• integration and matching of the homogenized data,
• reduction of the integrated data by abstraction

Since mediators do not store the source data themselves, all functions related
to data access, integration and delivery have to be performed dynamically “on-
the-fly”.

The concept of a mediator does not prescribe a particular implementation
technology. However, as indicated in [55], a declarative approach to media-
tor design can bring the necessary maintainability and flexibility required for
the integration of large number of dynamic sources. In particular mediators
should support declarative interfaces to the applications and other mediators.
Most practical implementations of mediator systems are based on database
technology. For such mediator systems we use the termmediator database
systems (MDS). Below we will focus on mediator database systems and will
use common database terminology to describe the structure and operation of
mediator database systems.

Data integration in an MDS is performed in two main stages. The first
stage,data model mapping, specifies how to retrieve data from each of the
sources and how to convert the source data to the data model of the mediator
system. This step deals with system heterogeneity, and provides a uniform
representation of all data sources in terms of the mediator data model, called

14

thecommon data model (CDM). The second stage,schema integration, deals
with the information heterogeneity of sources’ data on a logical level. During
this stage identical objects in different sources are matched and schema and
data instance conflicts are resolved. Since all sources’ data is mapped to the
mediator CDM, at this stage the CDM and the mediator query language can be
used to define database views that logically unify the data sources.

Thus the data model and the query language of the mediator serve as the
single interface to all integrated sources. User’s information requests are then
expressed in terms of the mediator query language. The actual retrieval and
transformation of data from the sources is typically performed on demand
when users pose queries to the integrated schema of the MDS. Other modes of
data delivery are possible such as publish/subscribe, push, and broadcast [36].

These two integration stages often require very different approaches. As
pointed out in Sect. 2.1 the data sources may present extremely diverse in-
terfaces to their data and use very different data representations. This often
requires a Turing-complete programming language to be used to specify the
access to the sources and the required low-level data transformations. On
the other hand, once the data has been transformed into a CDM and can be
manipulated by a query language, semantic transformations can be specified
declaratively.

Based on this two-phase integration approach, mediator systems are usu-
ally organized into two architectural tiers, each responsible for some of the
tasks specific for the mediation layer. The first tier is typically responsible for
the data model mapping phase. It is usually implemented as software com-
ponents, calledwrappers, that implement a uniform programming interface
which hides all access details to the sources. Typical wrapper functions are re-
trieval of source data and its translation into the mediator CDM, access to (or
inference of) source meta-data and statistics. The second tier, usually called the
mediator tier, provides conflict resolution primitives across multiple sources.
These primitives can be expressed in the query language of the mediator sys-
tem, because the data from all sources is translated in the data model of the
mediator by the wrappers. This two-tiered architecture is often referred to as
themediator-wrapperapproach.

Notice, the term “mediator” was used in two senses - denoting the general
mediator concept as presented in [55], and denoting only the mediator tier of
an MDS. In addition projects such as TSIMMIS [13] and AURORA [58] use
the term mediator in the sense of the integration views defined in a mediator,
while they use correspondingly the termmediator templateor mediator skele-
ton to denote the mediator system itself. Other works do not specify the exact
meaning of the term “mediator” and often use it in all three senses. We pro-
vide a precise definition of the mediator concept as we use it in in this work in
Sect. 3.4.

15

At the semantic level of data integration there are two distinguished ap-
proaches to logically specify the relationship between a mediated schema and
the schemas of the data sources. In the first approach the integrated (also called
“global”) schema is described as views in terms of the local schemata of the
sources. This is the approach known asglobal-as-view (GAV). As opposed
to GAV, the second approach first defines a global integrated schema. Then
the contents of the sources is defined as views over this global schema. This
approach is known aslocal-as-view (LAV), since the source schemata is ex-
pressed as views in terms of the global view. An overview and comparison of
the two approaches can be found in [32, 52].

Very few systems fully implement the general mediator architecture de-
scribed here. Most such systems are either centralized or have a fixed 2- or 3-
tier architecture. Furthermore, most such systems provide read-only access to
the data sources.

One of the advantages of using database technology as a basis for the im-
plementation of mediator systems is that much of the research and practice in
the database area can be reused. Since both the integrated views and the user
information requests are expressed in terms of a query language, the area most
important to mediation is query processing. We discuss the general and the
mediation specific concepts related to query processing in Sect. 2.5.

2.4 Peer-to-peer Systems
According to the Oxford English Dictionary the primary meanings of the word
peerare “1. An equal in civil standing or rank; one’s equal before the law. 2.
One who takes rank with another in point of natural gifts or other qualifica-
tions; an equal in any respect”. The concept ofpeer-to-peer (P2P)is a general
software architecture paradigm at the same level of abstraction as client-server
computing. Systems with P2P architecture consist of software components,
calledpeers, that share and use each other’s resources to perform a common
task. The shared resources can be computing power, storage space, bandwidth,
and even human presence. Two recent overviews of the general aspects of P2P
and of the most popular P2P systems can be found in [3, 40].

Due to its general nature, the concept of P2P systems has been understood
and defined in various ways. Here we provide several recent definitions. The
Intel P2P Working Group3 defines P2P computing as “the sharing of computer
resources and services, including the exchange of information, processing cy-
cles, cache storage, and disk storage for files, by direct exchange between
systems. P2P computing approach offers various advantages: (1) it takes ad-
vantage of existing desktop computing power and networking connectivity, (2)

3www.peer-to-peerwg.org

16

computers that have traditionally been used solely as clients communicate di-
rectly among themselves and can act as both clients and servers, assuming
whatever role is most efficient for the network, and (3) it can reduce the need
for IT organizations to grow parts of its infrastructure in order to support cer-
tain services, such as backup storage.” According to [49], “P2P is a class of
applications that takes advantage of resources - storage, cycles, content, hu-
man presence - available at the edges of the Internet. Because accessing these
decentralized resources means operating in an environment of unstable con-
nectivity and unpredictable IP addresses, P2P nodes must operate outside the
DNS system and have significant or total autonomy from central servers”.

P2P systems are based on three fundamental principles [3]:
• Resource sharingrequires that peers (some or all) share some of their re-

sources with other peers.
• Decentralizationmeans that a system consisting of many peers is not con-

trolled centrally.
• Self-organizationis required in view of decentralization so that autonomous

peers can coordinate to perform global activities based on local shared re-
sources.
Initially the term P2P has been used for distributed file sharing and simple

keyword search, made popular by the Napster4 system. While P2P is often
considered equivalent to distributed file sharing applications used in systems
such as Gnutella, Kazaa.

However many other systems targeted at different application areas fall into
the P2P category. Distributed computing systems as SETI@home5, Entropia6

use P2P technology to share processing power resources. Such systems are
useful for complex computational tasks that can be split into smaller ones and
then distributed among available peers. Another application area is collabora-
tion. Such systems allow users to collaborate, often in real time to perform a
common task without relying on a central infrastructure. Popular applications
are Jabber7 for messaging, Groove8 for combined messaging and document
sharing, project management, etc. Another type of systems are P2P platforms
such as JXTA9 and FastTrack10 that provide generic APIs to build P2P sys-
tems.

Technically, two general types of P2P architectures are distinguished:pure
P2P systems do not have any centralized server or repository of any kind and
all nodes are equal, whilehybrid P2P systems employ one or more central

4www.napster.com
5setiathome.ssl.berkeley.edu
6www.entropia.com
7www.jabber.org
8www.groove.net
9www.jxta.org

10www.fasttrack.nu

17

servers, e.g. to obtain meta-data such as network addresses of peers, and/or
have some nodes with special functionality.Super-peerarchitectures [59] are
a kind of hybrid architectures with hierarchical organization, where groups of
peers communicate with all other peers through super-peers.

2.5 Query Processing and Optimization
The main purpose of a mediator system is to retrieve, combine and enrich ex-
isting data through queries in a declarative language. Therefore one of the
most important functionalities of a mediator is the ability to efficiently process
queries. Query processingis a collective term that stands for all techniques
used to compute the result of a query expressed in a declarative language.
Usually query processing is performed in two distinct steps.Query optimiza-
tion transforms declarative queries into an efficient executable representation
calledquery evaluation plan or query execution plan (QEP). Query evaluation
takes a QEP and interprets it against a database to produce query results.

Calculus Representation

Calculus Representation

Algebraic Representation

Execution plan

Parse Tree

Parser

Rewriter

Optimizer

Code generator

Query

Preprocessor

Execution engine

Result

Catalog

Statistics

Data store

Figure 2.4:Simplified DBMS query processor

A simplified diagram of a DBMS query compiler is shown on Fig. 2.4.
Theparserchecks input queries for syntactic correctness and translates them
into an in-memory representation calledparse tree. The parse tree is analyzed
for semantic correctness by thepreprocessor. The semantic analysis includes

18

checks such as whether relation and attribute names actually correspond to
existing relations with corresponding attributes, whether all attributes and con-
stants are type-compatible with their usage, etc. Semantically correct parse
trees are translated into an internal representation. The actual compilation of
the query begins with this internal representation.

In most modern database compilers [53, 44] query optimization is per-
formed in two main stages each using a different internal representation of the
query. The first, calledquery rewriting, is based on equivalent logical trans-
formations of some kind of a calculus form of the query. A calculus is a non-
procedural representation of the query where the desired result is expressed
via a logical formula equivalent to some variant of predicate calculus. This
phase is performed by therewriter. The goal of the calculus-based rewrites is
to simplify the query and to transform it into some normalized form suitable
for subsequent optimization.

The next compilation phase, calledquery optimization, accepts a calculus
query representation and transforms it into an equivalent algebraic form. This
phase is performed by theoptimizerwhich applies algebraic laws to produce a
more efficient algebraic representation. An algebra is a formal structure con-
sisting of sets and operations on the elements of those sets. For example re-
lational algebra is a formal system for manipulating relations. The operands
of relational algebra are relations. Its operations include the usual set oper-
ations (since relations are sets of tuples), and special operations defined for
relations: selection, projection and join. Since algebraic operators have prece-
dence and order of application of the operators, a query algebra is procedural
in the sense that it prescribes how to construct the result of a query. Abstract
algebraic operations may be implemented by various algorithms, each with
different execution cost. To produce an optimal QEP, the query optimization
phase usually searches the space of all logically equivalent algebraic expres-
sions that compute a query, assigns to the logical operators all applicable algo-
rithms and computes the cost of executing all the operators in the plan accord-
ing to their order and chosen implementation. An algebraic representation of
a query where the operators are associated with evaluation algorithms and cost
functions for those algorithms is calledphysical algebra. In order to choose
the best possible QEP the optimizer uses a cost model to evaluate the quality
of each candidate plan. For this various measures can be used such as resource
consumption or total execution time.

An optimal physical algebra expression where all algebraic operations are
assigned an implementing algorithm can serve directly as a QEP of a query,
and can be directly interpreted. Optionally there may be a final phase, per-
formed by thecode generator, that transforms the algebraic expression into
some lower-level representation, e.g. CPU instructions.

Finally the resulting QEP can be executed by theexecution engineor may

19

be stored for future use.

Calculus Representation

Calculus Representation

Algebraic Representation

Execution plan

Parse Tree

Parser

Rewriter

Optimizer

Code generator

Query

Preprocessor

Execution engine

Catalog
 - integrated schema
 - source descriptions

Statistics

Local
Data store

Wrapper

Wrapper Wrapper N

Decomposer

Subquery

Data source Data source

Source-
specific
requests

Results in
source
format

Results in
CDM

- local statistics
- source statistics

Figure 2.5:Simplified query processor of a mediator

Query processing for mediator systems introduces several more phases and
components shown on Fig. 2.5. In the figure the additional components are
denoted with continuous lines. Adecomposercomponent identifies which
portion of the original query can be computed by each of the sources. Decom-
position is performed either by the rewriter or by the optimizer or both, de-
pending on the particular mediator architecture. Decomposition is also present
in query processors for distributed DBMS [44]. However, there the query pro-
cessor needs not take into account the heterogeneous computing capabilities
of the data sources. As a result of decomposition the original plan is split into
sub-queries, each executable by one particular data source. The subqueries
are then submitted to the corresponding wrappers, which in turn translate them
into requests specific for the type of source accessed. The source return results
in their format which are mapped to the mediator CDM by the wrappers and
assembled by the execution engine as final results.

20

A P2P Architecture for Mediation

In this section we present a software architecture for the integration of many
distributed and autonomous data sources that fulfills the need for scalable
data integration in a distributed and autonomous environment. As in [14] by
software architecture we mean “The structure of the components of a pro-
gram/system, their interrelationships, and principles and guidelines governing
their design and evolution over time.” Software architectures provide a high-
level view of software systems that allows to define and reason about their
general properties. We define our architecture in a top-down fashion. To fulfill
requirementsR1-R7defined in Sect. 1 we base our architecture on two funda-
mental ideas - mediators and peer-to-peer systems. These two design choices
are justified in Sect. 3.1. For system architectures based on these two ideas
we use the termpeer mediator system (PMS)architecture. Next we identify
some important requirements that stem from these design choices in Sect. 3.2.
Then we identify and describe the components of a PMS and how they form
together a PMS. Finally we discuss the interactions between the components
that meet the architecture specific requirements in Sect. 3.2. The presented
PMS architecture is partially implemented in the framework of the AMOS II
mediator system and is described inPaper B.

3.1 Design Motivation
Mediators.

We base our architecture on the mediator approach because the materialized
(data warehouse) approach is not suitable for our target environment for several
reasons. With a large number of sources it may not always be practical or
possible to materialize all data from all sources due to its volume or source
limitations. On the other hand if only a subset of the data in the sources is to
be materialized in a data warehouse, it may not be possible to know in advance
what queries will be issued in the future and thus what data to materialize. With
autonomous data sources it may not be always possible to access all their data
due to security or request size restrictions. For sources that compute their data
dynamically instead of storing it explicitly (such as simulations), the source
contents may be infinite and therefore impossible to pre-compute and store.
Even more, for sources that perform specialized computations it may not be

21

possible to pre-compute and store all possible results. Such sources require
that results are computed on the fly depending on their input. Finally due
to potentially very large amounts of data in the data sources, it may not be
possible to update a data warehouse in a timely fashion, and to keep up data
warehouse updates with the change rate of the sources, which would result in
materialized views that are gradually getting older than the source data.

The mediator approach presents a solution to these problems. Since medi-
ators are virtual databases that provide only a logically unified view of many
data sources, all data access and transformations are performed on the fly dur-
ing query execution. This allows to:
• avoid the storage and update overhead of the materialized approach,
• answer any query over a virtual database with the most current data from

all sources without prior knowledge of a query workload,
• request only small portions of the sources’ data that relevant to a query,
• optimize query execution plans so that the least possible amount of data is

retrieved from the sources and transferred over the network,
• reuse the computational capabilities of the sources, such as feature extrac-

tion or pattern matching operations, and thus compute wider classes of
queries,

• take into account source security and access limitations.
In addition, mediators may transparently materialize and cache intermediate
results and some source data for improved performance.

Peer-to-peer architecture.

The mediator approach does not prescribe any particular architecture apart
from that there is a distinct middle layer between the user applications and
the data sources that separates the application logic from the data management
logic at the data source layer.

The simplest possible approach to design a mediator layer is to encapsulate
all mediation functionality in a single centralized mediator system. This is
the approach typically used in most existing mediator systems. However, with
a centralized approach only few of the general requirementsR1-R7 can be
fulfilled. The main reason for that is the assumption that all integration can
be performed by a single entity (individual or organization), which is not true
in our target environment. On the contrary, when large numbers of distributed
data sources are available, it will be most likely that many independent domain
experts will have the knowledge of how to integrate only portions of the data
in a subset of all sources. Therefore in a centralized mediation architecture:

• only the autonomy of the data source owners can be preserved, but not that
of the domain experts that integrate the sources, who will have to reveal all
their specialized knowledge to the mediator owner,

• data integration will require the coordinated access to and modification of a

22

one global virtual database schema by many independent entities, a process
that may not scale over many sources and many participants,

• central administration is required and therefore coordination between many
independent parties, which may not always be possible,

• it may be expected that a single mediator that covers many knowledge do-
mains and accesses large number of sources of many different types will be
extremely complex and hard to maintain,

• finally, a centralized mediator presents a single point of failure.

In summary a centralized mediator architecture requires central management
and concentration of all knowledge required to integrate all sources in one
place, something that is hardly possible on a large scale across geographic and
organizational boundaries.

However, as envisioned originally in [55], a mediation system may in gen-
eral consist of many distributed mediators specialized in some knowledge do-
main where each mediator integrates only a small subset of all available sources
and shares its data abstractions with a higher level of mediators and applica-
tions, a vision that naturally maps into a P2P architecture. Autonomy and de-
centralization are inherent properties of the P2P paradigm for distributed com-
puting, therefore one natural way to design a distributed mediation system that
fulfills the organizational requirements for autonomy(R1) and decentraliza-
tion (R2) is to design this system as apeer mediator system (PMS)consisting
of autonomous mediator peers that interact with each other and with the data
sources and user applications. Next we discuss some important requirements
for a PMS that follow from the design choice of peer-to-peer architecture.

3.2 Requirements
Before describing our architecture for peer mediators, we first discuss the im-
portant requirements that peers participating in a PMS should meet. We divide
these requirements into two groups. First are the ones that we address through
the contributions presented in this dissertation. For completeness, we present a
non-exhaustive list of additional requirements that are important for a success-
ful implementation of a PMS, but are outside of the scope of this work. We
consider the next three requirements to be fundamental for the realization of a
PMS architecture which is why we chose to focus our work at their study and
fulfillment.

Logical composability.

The main value of a PMS is in its ability to not only distribute the integration
effort among many autonomous participants, but in that it provides the means
to assemble integrated views of both data sources and other integrated views

23

and thus reuse human efforts and knowledge encoded in the mediators.
Two main approaches exist to realize compositions of distributed software

components. One is through distributed technologies such as RPC, CORBA, or
Web services. These approaches are procedural, require a lot of programming
effort, are rather static, and result in more or less tightly coupled distributed
systems that are hard to evolve. Therefore we do not consider these approaches
to be directly suitable for dynamic systems such as PMSs. We term distributed
systems that can interoperate through such procedural approaches asphysically
composable.

A much more flexible and scalable approach is to specify mediator com-
positions logically in terms of a declarative language. This requires that the
peers in a PMSi) have a query language and a view definition mechanism that
provides constructs to refer to both views and stored data in other mediators,
that is define and access data inglobal views (queries)andii) are able to share
their views and stored data with other peers, that is define some schema objects
aspublic and provide the means to access them. Having these two properties
allows to transitively define arbitrary logical compositions of peers in terms of
each other, a property we namelogical composability.

Logical composability extends the concept of logical data independence in
traditional databases across many distributed peers and allows peers to evolve
without affecting each other as long as the view interfaces are kept intact. An-
other advantage of logical composability is that mediators can reuse indirectly
abstractions exported by other peers without even knowing their existence
which promotes reuse and autonomy.

Physical composability.

To realize logical composability it is necessary that peers are able to gener-
ate executable plans to compute the extensions of many transitively composed
global views. That is, peers must be able to translate logical view compositions
into physically composed access plans across many mediators and sources. In
order for such plans to be executed peers must support programmatic inter-
faces to communicate over a network. These programmatic interfaces can be
implemented via one or more of many available technologies for distributed
interoperability [33], such as RPC, CORBA [45], DCOM, and more recently
SOAP [2].

Location transparency.

Large number of computer nodes, typically used as “dumb” Internet clients,
connect to the Internet via temporary connections and identify themselves
through dynamic physical (IP) addresses (such as computers connected over
a modem, LANs with DHCP, subnetworks behind NAT) that may change over
time. Many of these nodes may host mediator peers managed by the node

24

owner(s) and possibly used by other such nodes. Due to the mobility of many
computing devices, peer owners may migrate their peers from one node to
another (e.g. when a peer has been moved from an office workstation to a
portable node). To support such scenarios, peers should not be bound to phys-
ical addresses or to physical nodes. This requires that peers are somehow
uniquely logically identified within a PMS in a way that allows to dynamically
map logical peer identifiers to physical locations.

Logical identification of peers allows both users and peers to abstract from
the physical network details. In order to be able to refer to remote peers by
their logical identifiers, peers have to be able to performname resolution, that
is, map logical identifiers to physical addresses. For a PMS to scale in number
of peers and users, name resolution must be performed in a fully automated
and transparent manner that scales over large numbers of peers.

Requirements outside of the dissertation scope.

An implementation of the PMS architecture that would be useful in practice
raises a number of additional problems that will not be addressed by this work.
Below we discuss some of these problems that we consider to be important for
a successful implementation of a PMS.

Information discovery: The task of identifying relevant sources of informa-
tion is information discovery. These sources can be both other mediators
that provide already existing abstractions of data sources and other medi-
ators, or directly data sources. The result of information discovery con-
sists of logical identifiers of peers and optionally additional meta-data
about peer contents such as relation names and attributes, file names,
functions, etc. Information discovery requires that mediator peers are
able to store, exchange and query meta-data about other mediators and
data sources, a feature described as inspectable mediators in Sect. 2. In
a P2P architecture, information discovery poses additional performance
problems since there is no central meta-data repository and thus large
number of global meta-data requests may need to be processed. A re-
lated problem is that ofbootstrappinga PMS with initial meta-data so
that a set of disconnected peers can “learn” about each other and form a
PMS together.

Schema integration: One of the most important problems in data integration
in general is how to describe mappings between an integrated schema
and the sources’ schemas. In a PMS this problem is exacerbated by the
potentially very large number of views distributed among autonomous
mediators. Thus, a PMS requires information modeling concepts at the
query language level that will provide the users with scalable tools to

25

easily integrate large number of sources. In addition tools and meth-
ods are necessary to perform schema integration in an (semi-)automated
way.

Dynamic availability: Due to their autonomy, the peers in a P2P system may
control their own availability independent of other peers. At the same
time, on a global network some peers may become unreachable due to
network problems or simply because the nodes they reside on were dis-
connected from the network. That is why peers should be able to join
and leave a PMS at any time without disrupting the overall operation
of the system. This requires a mechanism for the peers to detect each
others’ availability and gracefully react when some peers are not avail-
able. The most challenging problem here is to define the semantics of
integrated views when some of the views’ sources are unavailable and to
process queries against such views in a way most suitable for the user.

Security: In a PMS system users may have conflicting interests and even
malicious intentions. Thus, care should be taken in a PMS that users
cannot access restricted information, tamper with information that trav-
els through many peers, and disrupt the operation of the system as a
whole. Two problems specific for a PMS architecture are, e.g.:i) a
highly decentralized system catalog with security related information
such as users, groups, passwords, keys and permissions may lead to per-
formance problems, andii) when integrated views are defined, it may
happen that some global execution plans are non-executable due to local
security restrictions which requires the query processor of a PMS to be
able to take security restrictions into account.

3.3 External System Components
To describe our P2P mediation architecture we first analyze the types of soft-
ware components that participate in a PMS. According to the conceptual me-
diation architecture described in Sect. 2.3, an integrated information system
consists of three types of software components, each with specific purpose and
functionality, divided into three layers: data sources, mediators and user ap-
plications. The data source components and their interfaces are given a priori.
Many applications exist that derive their data from various information systems
over standard interfaces. It is desirable that a data integration system provides
the means to reuse such applications. Therefore the design of a data integration
system can be viewed as a two step process. Existing sources and applications
require a bottom-up step that puts some requirements on the mediation layer.
After these requirements are stated, the design of the mediation layer itself can

26

be done in a top-down fashion. That is why we first observe and analyze the
main properties of the components in the data source and the application lay-
ers which are external from the view point of the mediators. Then in Sect. 3.4
we define the internal architecture of the mediation layer so that it fits best our
observations and requirements.

3.3.1 Data sources.
Section 2.1 defines a data source as a uniquely identifiable couple of a software
component and its data where a method exists to acquire some source meta-
data that contains at least the source schema and possibly other information
about the source. In this section we investigate in more details the properties
important for data integration of the data source components.

Low-level interfaces.

Data sources provide access primitives that allow external components to in-
voke some computation at the data sources, and to send and receive data. The
collection of all access primitives of a data source comprises itslow-level inter-
face. We distinguish two kinds of such interfaces.Global data sourcessupport
network-based interface(s) and are globally identifiable and globally accessi-
ble by remote systems over a network. Examples of global sources are Web
sites, Internet search engines, Web services, LDAP and DNS servers, etc.Lo-
cal data sourcesdo not have globally unique identifiers and there is no method
to access them by external components over a computer network. Typically
local interfaces are provided in the form of call-level APIs. Examples of local
sources are ODBC and JDBC sources, local files, and software components
accessible via an API (e.g. a B-tree index library). To make local data sources
globally accessible to all peers in a PMS, one or more mediator peers must
serve as intermediary between the local source and the rest of the PMS.

The large number and diversity of the low-level interfaces to existing and
future data sources, requires that a mediator system is easily extensible with
new functionality for the access to a variety of sources.

Computational capabilities.

A higher level of abstraction above low-level interfaces are the data sources’
capabilities which are related to, but often not equivalent to the low-level in-
terface(s) supported by the sources. In fact the same capabilities may be ac-
cessible via different low-level interfaces, e.g. for RDBMS typically these are
ODBC, JDBC, and a call-level API all providing access to the same functional-
ity. Thus capabilities are not equivalent to interfaces. By capabilities we mean
the abstract computations that a source can perform over some optional input
data. Based on similarities and differences in their supported capabilities the
data source components can be subdivided into four levels of abstraction.

27

• Type of source. This is the most general classification of data sources ac-
cording to which all sources with the same set of capabilities are of the same
kind. Some examples are all relational DBMSs that support the SQL’92
standard, or all installations of a particular DBMS like Oracle 9i or DB2
v7.2, or all installations of the Google search engine. All sources of these
kinds have their own specific capabilities either by virtue of being instances
of a particular software system or by fully implementing some standard.
Typically such data source kinds will be defined by standards or by some
well-known systems.

• Source instance. Many kinds of sources are customizable and extensible.
Thus, particular source instances (typically represented by a system of some
type being installed on a computer node) may differ in the functionality they
provide. For example a relational database may contain special user-defined
functions, created by its local administrator. Of course capabilities present
in one or few source instances may gradually become adopted by a vendor,
and then such group of capabilities may form a separate kind of sources.

• Schema instance. The above two classifications look at a source as a whole.
It is possible that a source can perform certain computations over some of
its data sets, but not over others. A typical example are Web forms where
scans can be performed over some data sets (e.g. get all countries), other
data sets may allow only selections (e.g. retrieve all cars of a specific make),
while third ones may allow only joins (e.g. get all parts supplied by suppli-
ers in Sweden). Thus, the capabilities of a source may change with respect
to its current schema and are not inherent for the source instance. Such lim-
itations may be due to only few queries being publicly accessible through a
Web interface, or because the data access is hard-coded in some procedural
language.

• Data instance. Finally at the lowest level of abstraction a source instance
with particular schema may have varying capabilities depending on its cur-
rent data contents. For example, if a Web form presents a choice of cities
where users can look for housing, this page can be viewed as a source with
two data sets - that of cities and of properties. However, the housing in-
formation that can be retrieved depends on the contents of the cities data
set.

Given the wide variety of interfaces and capabilities of the data sources, one
of the major problems for mediator systems is how to utilize existing capabili-
ties over the available low-level interfaces, how to compensate for missing ca-
pabilities, and finally how to find sources with some specific set of capabilities,
e.g. a matrix multiplication source or an image matching source. Solving this
problem requires that mediators are able to represent in some way the capa-
bilities of the sources they access. Ideally such a representation of capabilities
should be easy to specify, query and manipulate both “manually” by humans

28

and automatically by the mediators so that both new kinds of sources and new
source instances can be easily added, existing ones modified and queried for
their capabilities.

Relationships between data sources.

Data sources and/or the data items in the sources can be interrelated in a variety
of ways, the most common of which we discuss below.
• Data↔ meta-data. One possible way to acquire source meta-data is to

retrieve it from another source. An example of such sources are XML files
with external DTD or XSchema descriptions, and Web services described
in UDDI registries. Thus data sources may be related by a data - meta-data
relationship. This relationship may be “known” to some of the involved
sources (e.g. as a URI in an XML document that points to its DTD), to
third source(s) or mediators, or to humans. To facilitate source discovery
and automated integration meta-data sources should be accessible in the
same way as other sources. To allow for uniform treatment of data and
meta-data at any level, we do not distinguish meta-data sources from data
sources, but we require that a mediator system can model this relationship
in terms of its CDM.

• Data↔ index-data. Sources may also serve as indexes to other source’s
data. One example are text document indexes that provide fast access to
external documents either in a file system or on the Web. According to our
definition of a data source, indexes can be considered as data sources of their
own. In such case a relationship exists between the index source(s) and the
data source(s) it indexes. For example the Google and AltaVista Internet
search engines can be considered as indexes of most Web documents on
the Internet. Knowledge of the relationship between index and data sources
can be very important for the overall performance of a mediator system and
can provide alternative more efficient access paths to external data. In the
cases when a data source does not provide a “scan” interface, an index may
be the only way to access the data in the source. Utilizing the index - data
relationship is the only way to retrieve data from such limited sources.

• Data↔ nested data. Certain data sources may have nested structure, that
is, access and combine data from other datasub-sources. Due to the diver-
sity of all possible types of sources it is very hard to automatically detect
and model the structure of arbitrarily composed data sources. This may
not be possible either because the sources do not contain information about
their own structure or do not provide access to this information, or because
of security and privacy restrictions. Therefore in most cases data sources
can be considered to beatomicfrom the view point of an external system,
that is their nested structure is “invisible” to a mediation system.
However, suchcompounddata sources may provide the means for external

29

systems to inspect their internal structure. Typically such sources would
use a language to describe the composition of many sub-sources and would
provide some way of retrieving definitions of source compositions. Exam-
ples of such sources are DBMS products with support for external sources
in their data definition and query languages (e.g. the SQL/MED standard
[39]). In other cases the source structure may be specified manually by
a human. Either way a mediator system may benefit from the knowledge
of the relationship between sources and sub-source(s) in two ways. If the
sub-sources are directly accessible by an external system, then a media-
tor system may generate more efficient source access plans that bypass the
container source and access the sub-sources directly. If the container source
provides a language interface, then the mediator may generate more effi-
cient requests in terms of the container source language, e.g. by combining
multiple requests.

• Inter-source semantic constraints. The contents of data sources may be
semantically related in various ways. A source may be a replica of another
source, or there may be functional dependencies between sources. A me-
diator may utilize this knowledge to provide integrated views with richer
semantics, to generate more efficient access plans to the sources and to gen-
erate integrated data with better quality.

3.3.2 Applications.

User applications send requests to the mediation layer on behalf of a user,
and deal with the presentation of mediator replies to the user. By definition
applications are not capable of processing requests by themselves.

Many applications or application development frameworks have been de-
veloped that provide advanced data analysis and visualization functionality,
and support standard interfaces for data access. To utilize such legacy appli-
cations and frameworks a mediator system must be able to support some data
access standards (such as ODBC/JDBC, EJB, etc.) and provide the means to
be easily extensible with new interfaces.

Since these standard interfaces are not developed with any particular sys-
tem in mind, they may not be suitable for future applications that would access
integrated data through a mediation system. Standard interfaces suffer from
several deficiencies:i) they already assume a predefined set of functionalities
that may not be sufficient to express all capabilities of a mediator system,ii)
they are based on data models that may not be expressive enough to translate
all concepts at the mediator CDM, andiii) they may not provide the neces-
sary level of performance. Therefore a mediator system should provide rich
specialized interfaces for more effective and efficient access to the mediation
layer by new applications. To support the needs of future applications, the

30

mediators should provide at least two types of specialized interfaces.
To allow arbitrary applications to access arbitrary mediators across the net-

work in a flexible manner, the mediators may provide a low-level network
interface directly based on some transport protocol as TCP/IP. Typically such
interface would be implemented by advanced applications that support a me-
diator network protocol, need data processing functionality not present in the
mediators and need to access more than one mediator. The advantages of a
network interface are that it allows for loose coupling between the applica-
tion(s) and the mediator(s) that is independent from programming languages,
operating systems and hardware. However, suchglobal applicationsrequire
more intelligence built in them so that they can discover and communicate ef-
fectively and efficiently with many distributed mediators and combine the re-
trieved data. Thus, low-level application-to-mediator network interfaces would
result in very complex applications that implement much of the functionality
already present in the mediators.

In order to avoid such complex applications, all functions related to the re-
trieval and combination of data from many mediators can be delegated to a
single, specially designed mediator that serves as the application’sgatewayto
all other mediators. This approach allows applications to stay relatively simple
and delegate all tasks related to the efficient access to many remote mediators
to the gateway mediator. For this, a high-level function call interface is needed
to provide future and existing applications with the ability for simple and dis-
tribution transparent access to mediators. Such an interface would provide the
means for applications to be easily mediator-enabled either by directly em-
bedding a mediator system in the application through an API or providing a
high-level client-server interface. Applications that access a gateway mediator
are calledlocal because they are not aware of the distribution of the mediators
and they typically access only one gateway mediator.

3.4 Mediator components and their functionality
In this section we describe the functionality and architecture of the mediator
components which are the focus of our work. For the design of the mediator
components of a PMS we follow the mediator-wrapper approach described in
Sect. 2.3. We design each mediator as an autonomous extensible DBMS with a
query language interface, a view definition facility, local persistent storage, its
own catalog and query processor. All mediators share the same query language
and data model, and are capable of processing queries in terms of this query
language. A very important feature of the mediators is that they treat each
other as data sources, which serves as the basis for mediator composability.

To define what is a mediator, we first distinguish amediator systemand
a mediator instance. A mediator system is a software system represented by

31

program code and initial data necessary for the system to operate. A mediator
instance is either a mediator system instantiated as a process on a computer
node, or a mediator system that was executing on a computer node and which
state was persistently stored so that the mediator instance can be fully restored.
Thus a mediator instance would normally be a mediator system that is being
used to integrate data sources, and contains integration views, and possibly
other stored data and meta-data defined by the user(s). For short, we will use
the term “mediator” in the sense of “mediator system”.

Figure 3.1:Distribution of mediator functionality across components.

At a high level, the mediators are divided into two architectural tiers: a
mediator DBMS (MEDBMS) tierthat is responsible for information integra-
tion and processing of user queries, and awrapper tierresponsible for source
access1. A mediator consists of one MEDBMS, one wrapper for external me-
diators and any number of optional wrappers for other types of sources. Wrap-
pers are designed in a generic way so that one wrapper can access multiple
instances of the same data source type. For reusability, simplicity and flexi-
bility of the mediators, the mediation functionality described in Sect. 2.3, p.
2.3, is distributed between the wrapper and the MEDBMS tiers as illustrated
on Fig. 3.1. In the next two sections we describe the functionality of the two
mediator tiers.

3.4.1 Wrappers
The wrapper components are responsible for data model mapping from the
source’s data model to the mediator CDM. Unlike other mediator architectures
[58, 51] wrappers are internal, non-autonomous components of a mediator,
that are tightly connected to and controlled by the mediator. Thus wrappers
are not components of a PMS by themselves and are “invisible” outside their
mediators. Each wrapper component consists of two main sub-components - a
source interfaceand an optionaltranslator.

1Thus we resolve the first naming problem mentioned in Sect. 2.3, by naming the part of the
mediator complementary to the wrapper as “MEDBMS tier” instead of using the overloaded
term “mediator”.

32

The source interface provides functions to connect to sources of some type,
access data and meta-data in the sources, manage session information, and,
when possible, retrieve source statistics. The data access functions of a wrap-
per are responsible for sending input data to the data source, the invocation of
some functionality at the data source, the retrieval of the resulting data, and
transformation of that data into the mediator CDM. Source interface functions
return to the MEDBMS data objects in terms of its own CDM. In addition,
during data transformation the source interface component may perform var-
ious data cleaning and semantic enrichment tasks, such as replacing missing
values with defaults, or inferring the type of retrieved data (e.g. recognizing
strings as dates or numbers). Source interfaces hide only some of the system
heterogeneity of the sources - that of their low-level interfaces.

As already mentioned in Sect. 3.3.1 many types of sources can still be
heterogeneous in their computational capabilities. For such sources wrap-
pers need a translator component that “knows” how to translate operations
expressed in terms of the mediator query language into operations that can
be computed by the corresponding type of sources. A translator consists of
source capabilities descriptions and rewrite rules. Source capabilities roughly
describe the operations that a source supports, while rewrite rules provide de-
tailed translation of expressions in the mediator query language into requests
or language expressions in executable the sources. Examples of data sources
for which only a source interface is sufficient are storage managers such as
BerkleyDB2 which provides simple data access operations that can be easily
mapped directly to operations in the MEDBMS.

An example of simple sources that require translation is a source that pro-
vides only range access via non-strict inequalities only. If queries to such
sources require strict inequalities, the strict inequality in the query has to be
translated into a combination of a non-strict inequalities that can be com-
puted by the source and additional inequality tests that to be performed by
the MEDBMS. It is possible to access some types of data sources both only
through a source interface or with an additional translator for better perfor-
mance. As an example we point to RDBMS sources. They can be treated sim-
ply as storage managers with a simple interface to scan tables and get tuples
by key. Then all other operations must be performed by the MEDBMS. For
better efficiency a translator may be added that would push whole query sub-
expressions to the relational source. This approach to wrapper building pro-
vides the means to construct wrappers incrementally - first provide a minimal
wrapper only with data and meta-data access functionality, and then gradually
add functionality for source statistics, and a translator with source capabilities
and rewrites.

2www.sleepycat.com

33

3.4.2 Mediator DBMS

The MEDBMS component provides functionality to perform schema integra-
tion of many data source instances and to query integrated schemas. This func-
tionality is available through constructs of the mediator query language that
are suitable for the resolution of various types of information heterogeneity.
Unlike wrappers which are created for each data source type, the integration
constructs deal with the semantics of the data in the sources and therefore are
used at the data source instance level.

To fulfill requirementR7, Sect 1, our mediators provide a functional and
object-oriented (OO) common data model and a relationally complete query
language based on the Daplex functional data model [48]. The mediator data
model and query language are described in detail inPaper B. The functional
OO data model provides powerful modeling capabilities that allow to represent
the data in most most existing kinds of sources starting from flat files, to rela-
tional databases [12], object databases and even product models of engineer-
ing artifacts [29]. In particular, the concept of function in the query language
presents a perfect match to the view of data sources as sets of computations
that possibly require input data.

More specifically schema integration in our architecture is decomposed into
the following tasks.
• Data transformation. While the wrapper tier performs various data trans-

formations, this is done automatically for all data sources of the same type.
Often these automatic transformations may not be sufficient and additional
transformations may be necessary that are related to the data semantics and
thus depend on the source instance. For example strings in a Web document
may be converted by a wrapper to numbers, but the application domain may
require these numbers to be rounded to some precision. Data transforma-
tions may also be necessary to extract individual items from complex val-
ues, e.g. to extract the first and last names of persons from a string, or to
merge individual items into one value. Data transformations are seldom
used alone. Typically they are used as parts of the more complex transfor-
mations described next.

• Schema restructuring is used to map both semantically and structurally
heterogeneous sources into uniform representations which can be further
integrated. Schema restructuring involves operations like: renaming of at-
tributes and data sets, using data transformation to align attribute data types,
addition of new (possibly computed) attributes or merge of several attributes
into one, changing the schema concept used to represent a concept in a data
source, and restricting a data set to some subset. Schema restructuring is
performed over the schema elements of a data source instance. The result
of schema restructuring are schema elements that represent real-world enti-
ties from the same domain in the same way.

34

• Unification of overlapping data. When integrating data sources that model
the same or related application domains, the sources may contain data items
that represent real world objects of the same kind. There are two general
cases: either some real-world entities are represented in more than one data
sourceoverlapping sources, or there is no overlap between the sources. The
latter case is the simpler one. For non-overlapping sources it is sufficient to
restructure their schemas so that they have compatible structure, after which
the sources can be merged by a union operation.
The case when sources overlap poses two problems. First, it requires that
data objects which represent the same real-world entity are matched. This
requires object identity to be defined in some way and (possibly) different
representations of object identities to be mapped. This can be solved either
by applying schema restructuring, or by directly using data transformation.
Second, once object identity can be established, matching data items may
not agree on the values of some attributes. In some cases such data con-
flicts can be resolved automatically by default operations for each attribute
data type, e.g. always take attribute values from one of the sources, or al-
ways compute average of numeric values. However, in many cases the data
semantics may be more complex and may require a human to explicitly
specify data conflict resolution rules.
When source overlap, the user may want to define a view that contains var-
ious subsets of all objects in the sources. The most common case is a view
that contains all real world objects from all sources without the duplicates.
Another case is a view that contains only the objects present in all sources.
Finally a user may be interested in the real-world objects present only in
some sources.
• Reduction and summarization.The integration of many sources may re-

sult in views that contain very large amounts of data while a user may be
interested only in some general properties of data sets as a whole like trends
averages, etc. Data reduction and summarization tasks can be performed
as part of any of the previous two stages or separately over the integrated
views.

To support these schema integration tasks, our mediators’ query language
has several features that interact with each other:i) support for extensibility
through foreign functions,ii) a view definition facility,iii) reflectiveness, by
which schema objects are treated as other data items and can be queried, andiv)
global query facilitiesthat allow for a mediator to specify queries in terms of
database objects in other data sources, including mediators. Next we introduce
our mediator data model and query language in terms of which these features
are realized and point out how the mediator language constructs realize the
data integration functions listed above.

35

Data model and query language.

The basic modeling concept in the mediator data model is theobject. Ob-
jects are classified intypes. Attributes of objects and relationships between
types of objects are expressed throughfunctions. While objects model real-
world entities, in general functions represent computations. Depending on
how a computation is implemented we distinguish several kinds of functions -
storedfunctions store explicitly the result of a computation,derivedfunctions
specify the result of a computation as a declarative query defined in terms of
other functions,database proceduresdescribe computations in a procedural
language that uses the mediator data model, andforeign functions represent
computations specified in an external language(s) and/or module(s). To model
arbitrary computations, functions are annotated with binding patterns [34] that
specify inputs and outputs. Each binding pattern may have its own implemen-
tation that computes the foreign function in the most efficient way. To allow
the MEDBMS query processor to pick the best foreign function implementa-
tion when several are applicable, each binding pattern also has a cost function
associated with it. Functions that have more than one binding pattern associ-
ated with them are calledmulti-directional. All kinds of functions can be used
anywhere in the query language where a function can be used.

All objects of a type constitute theextentof that type. Thus types can be
viewed as named sets of objects with the same structure. All types are orga-
nized in a multiple inheritance hierarchy where the extent of a subtype is a
subset of the extents of its super-types (extent-subset semantics).

The mediator data model isreflective[38] in the sense that all data model
concepts are represented in terms of the data model bymeta-objectsclassi-
fied in meta-types. Types and functions are objects themselves and are in-
stances correspondingly of the meta-typesTypeand Function. Other meta-
types describe various aspects of the schema of a mediator, its knowledge
about other mediators, data sources, applications and even its internal state.
Since all meta-type objects are no different from the user objects, mediators
are inspectable via their query language through queries that can freely mix
user types and meta-types. This approach provides flexibility when inspecting
mediators combined with the simplicity of using the same query language for
data and meta-data retrieval.

Data integration functionality.

Data transformation and data reduction and summarization are supported di-
rectly through foreign functions and database procedures. Since foreign func-
tions can be implemented in external languages as C and Java, the mediator
user may add new functions that perform arbitrary specialized computations
to transform data in an application domain-specific manner (e.g. to apply an
image filter to image data) or to summarize domain-specific data (e.g. to com-

36

pute the average lightness of images). Foreign functions[34] are similar to,
but simpler and yet more expressive, than user-defined functions (UDFs) in
object-relational DBMS.

The mediator query language has a view3 definition capability through de-
rived functions which are named and parameterized queries specified in terms
of an SQL-likeselect-from-wherestatements andderived types, which are
types with their extents specified as queries. Database views address different
aspects of schema restructuring and unification of overlapping data. For the
schema restructuring tasks it is sufficient to use derived functions. For schema
unification a more suitable construct are derived types which provide simple
to use syntax to specify rules to match data items from different data sources,
and rules to reconcile conflicting attribute values.

Views by themselves are not sufficient to integrate many data sources. For
that the mediator query language has the ability to refer to schema elements
and objects in other data sources and use them transparently in all language
constructs as if they are local. This allows free mixing of local and remote
functions, types and objects both in derived types and derived functions. We
call this featureglobal query facilitiesbecause the query language allows to
refer to any globally accessible object in a mediator or a data source. Logical
compositions of mediators and other data sources are defined declaratively in
terms of each mediator’s global query facilities when views in one mediator
are defined in terms of other data sources and views in other mediators.

The reflective nature of the mediator data model, combined with its global
query facilities and meta-model of data sources (described inPaper B), allows
queries to be issued over the meta-data of any mediator peer and/or data source.
This allows to perform information discovery in a network of mediators and
data sources through regular queries. The resolution of structural heterogeneity
can be approached by parameterizing schema elements in the integration views
(e.g. parameterized relation names) and mixing data and meta-data in the same
query or view.

Integrated schemas in terms of the mediator query language are constructed
from the sources’ schemas in a bottom-up fashion using the global-as-view
approach. First, storage elements and computations in the sources are mapped
by the corresponding source wrappers to mediator schema objects. After this
initial step, data sources logically become part of the mediator database, but
there still are semantic differences between the data in different objects. These
differences are reconciled through the definition of views (derived types and
functions) defined in terms of the source types and functions. These integrated
views are then available to other mediators for further integration according to
their needs and application domain.

3Here we use the general termview to denote any declarative specification of derived data
from other stored or derived data in terms of a query language.

37

3.5 Systems of Peer Mediators.

In this section we describe how the three types of software components, de-
scribed in Sect. 3.3, form together a peer mediator system.

Originally mediators are defined [55] as a middle layer that is distinct both
from the underlying data source layer and the higher application layer. How-
ever, many software components that belong either to the data source or to the
application layer exhibit some functionality characteristic for mediator sys-
tems. Since mediators may serve both as intelligent data sources themselves
for other mediators and as applications for others, we will consider aPeer
Mediator System (PMS)to consist of not only the mediators themselves but
also of global data sources and global applications all of which communicate
over a network interface. This approach allows uniform treatment of all is-
sues regarding the joint operation of applications, mediators and data sources.
In particular it allows to design a system that is capable of introspection and
through that to facilitate (semi-) automatic integration and adaptive behavior.
From our general mediation architecture it follows that a PMS has at least one
mediator, and any number of global applications that access any number of
data sources through the mediator(s). Collectively the mediators, the global
applications and global data sources are the peers in a PMS.

Every peer has a globally unique logical identifier calledpeer nameinde-
pendent of its physical network address. Since data source peers use global
naming schemes different from that of the PMS, there is at least one mediator
peer that provides a mapping between logical names in the PMS to network-
dependent locations of the data sources. Global applications by definition sup-
port the inter-mediator interface and thus support the same naming scheme as
the mediators. The set of peers whose names are known to a peer are called
the peerneighborsand are related by aneighborrelationship.

We define aPMS instanceas follows. Given a nonempty set of peersN with
at least one mediator peer, where the peers can physically reach each other over
a computer network, aPMS instanceis the set of all peersP, P⊂ N, formed
by the transitive closure of the relationshipneighborover the set of peersN
starting from one of the mediator peers inN.

Mediator peers can form named groups, calledcommunities, which would
be typically formed because of common interests of the mediator owners.
Groups can be nested arbitrarily and mediators can participate in more than
one groups, as in [20, 7]. Some mediators act asmeta-mediatorsthat know
about other mediators and groups. Each group has at least one meta-mediator
that stores at least the logical identifiers of its members, their corresponding
physical addresses and the name of the group. Meta-mediators may store ad-
ditional information both about mediators and mediator groups such as content
descriptions, statistics, etc.

38

A PMS is completely decentralized - there is no global meta-data repository
(catalog) with information about all peers, and there is no central controller that
coordinates all peers. As a consequence:
• No peer has global knowledge about all other peers.
• Since the mediators are completely autonomous, there may be several me-

diators that define different (possibly conflicting) virtual databases over the
same set of sources.

• The only way that data and meta-data can be acquired by peers is by sending
requests (usually as queries) to known peers (which may trigger queries to
other peers).
Mediators cooperate directly with each other and all control, data and meta-

data are distributed among the mediators. Each mediator peer chooses the
peers it wants to cooperate with (both as its clients and/or servers) among its
neighbors, and has only limited knowledge about a subset of all available peers.
Each mediator locally plans its actions based on its local knowledge. Global
computations that involve many mediators are planned as a result of many lo-
cal cooperative decisions. Applications and mediators may recursively initiate
cooperation between peers on behalf of other peers or applications.

Most importantly, there is no global integrated view as in federated database
systems and centralized mediators. Each mediator defines its own integrated
view over a subset of all data sources and mediators and makes some part of
its integrated view available to other mediators and applications for further in-
tegration or querying. Each mediator peer has total control of its own schema.
Finally, mediators may join and leave a PMS at any time.

Our definition of a PMS allows PMS instances to have a very wide range
of logical topologies from a client-server with many applications, 1 mediator,
and many data sources, to a “pure” P2P system where all applications have
gateway mediators and all data sources are embedded in mediators, and there
is a network of mediators between the application and the data source layer.

An example of a PMS is shown on Fig. 3.2 where several mediators are
defined in terms of other mediators and data sources. In the example, applica-
tions access data in several data sources of different kinds (two RDBMS, one
Internet search engine and a Web site) through a collection of composed medi-
ator servers. The directed arcs connecting the mediator nodes and data sources
correspond to the relationship ”defined in terms of” between them, that is, the
mediators that point to other mediators or sources contain views that are de-
fined in terms of views or data in the pointed to mediators and sources. We
illustrate this in the upper-left mediator in the figure, where a global view is
defined in terms of other two mediators. It is important to point out that me-
diator compositions are not defined as static networks of mediators but are
dynamically generated through the definition of queries or views. Each query
or a view uses only a subset of all logical links, defined by the transitive closure

39

RDBMS
(ODBC)

RDBMS
(ODBC) Internet Search

engine
Internet Search

engine HTML
forms

HTML
formsRDBMS

(JDBC)
RDBMS
(JDBC)

Application

Mediator
Mediator

Mediator

Mediator

Application
Application

Mediator

Mediator
ViewLocal

data

Local data sources Global data sources

Figure 3.2:An example of a peer mediator system

of the logical relationship ”defined in terms of” between all views referred by
that particular query or view. Thus Fig. 3.2 is a simplified view of the union of
several superimposed logical mediator compositions.

The advantages of the P2P approach for mediation are that it allows the
domain experts to own and control independently their mediators in the same
way as data source owners have total control over the data sources. Each me-
diator may evolve at its own pace as long as it preserves its public interface.
In the foreseeable future it may be expected that data integration will remain a
predominantly “manual” task that requires a lot of domain knowledge and hu-
man participation. A P2P architecture allows to distribute the integration effort
between many autonomous domain experts and thus scale the integration pro-
cess. The domain knowledge encoded in the mediators is shared so that other
more complex mediators can be composed in terms of simpler ones and thus
integrate data across many data sources and knowledge domains in a scalable
manner. Finally, a P2P architecture promotes reuse of computation resources
such as storage, CPU cycles, and specialized software and hardware.

40

The Problem of Query Processing in Peer
Mediator Databases

A successful implementation of the PMS architecture presented in Sect. 3
must fulfill a wide range of requirements, some of which are discussed in
Sect. 3.2. Our focus is on the most fundamental requirement for the PMS
architecture, that of composability of mediators in terms of other mediators
and data sources. As discussed in Sect. 3.2 the fulfillment of this requirement
results in a data integration architecture that meets the general requirements
R1-R7 for large-scale data integration stated in Sect. 1.

The problem we address in this dissertation at a high-level is how to imple-
ment mediator composability effectively and efficiently in a PMS architecture
so that a PMS system can scale over the number of composed mediators. This
general problem can be decomposed into two sub-problems described below.

• Scalable integration.The first aspect of mediator composability is how
mediator compositions are defined so that many views from many medi-
ators are integrated into higher-level reconciled views. Compared to cen-
tralized mediation architectures, in a PMS this problem has the additional
complication that the views are defined in many mediators and there is no
central repository that keeps track of all existing views in all mediators.
We address this problem by providing a query language with global query
capabilities. However, the problems remaini) how to discover the rele-
vant views to a problem domain, andii) how to specify in a scalable man-
ner integrated views over large number of views. While these two prob-
lems are very important, in our work we assume that method(s) exist to
specify integrated global views over many mediators. This can be done
manually directly in terms of the global query capabilities of the media-
tor query language[23, 24], or (semi-) automatically through the use of vi-
sual tools and inference mechanisms[57]. In addition the mediator query
language may be extended with more expressive constructs for data inte-
gration. Given the high expressive power of the mediator query language
and data model, we believe that future tools or language constructs can be
expressed in terms of the existing language features. Thus in the rest of
our discussion we will assume that integrated global views are preexisting
and are specified in terms of the mediator query language as presented in
Paper B.

41

• Query processing.Assuming that the means exist to specify mediator com-
positions, the next important problem is how to provide scalable perfor-
mance for the computation of queries against composed mediators so that
a PMS is usable. Composability of mediators has two dimensions. Logical
composability is related to the means of specifying compositions of medi-
ators in terms of a declarative query language. Physical composability is
related to the means by which mediators physically interact with each other
and with external sources as one distributed system. In order to compute
answers of queries in a PMS, logical mediator compositions must be repre-
sented as physical ones.
Our mediator compositions are described in terms of a query language,
therefore the process of translating logical view compositions into physical
ones is in fact query compilation, while the computation of query results
according to a physical composition of mediators is query execution.

The two problems are tightly interrelated. On one side various approaches
can be envisioned to integrate many mediators and views such as tools and
language constructs. On the other side only some of these approaches may be
viable because of limits on their performance. Based on our analysis of related
work in the area of data integration, we conclude that while a considerable
amount of work has been done in the area of data models and query languages
for data integration that can be applied to a PMS architecture, the problems
specific to query processing in peer-to-peer architectures for data integration
have not been adequately addressed.

Thus, query processing in peer mediators itself poses a wide variety of chal-
lenges. In the remaining of this section we discuss several interrelated sub-
problems that we address in this dissertation.

Capabilities of inter-mediator interfaces.

One of the most fundamental issues for a distributed system is how to design
the public interfaces of the components in this system so that they can interop-
erate, are easy to evolve, and are efficient. In large scale P2P systems it is also
important that the peer interfaces provide enough expressive power so that the
distributed system as a whole can self-organize itself to perform efficiently as a
whole. In particular the interfaces of the PMS components should be sufficient
for them to cooperatively process global queries in an efficient way.

As noted in our discussion on data sources in Sect. 3.3, low-level interfaces
provide the communication infrastructure for distributed systems, but they do
not solve the problems of the semantics and granularity of the interfaces, that
is, what functionality is exposed through an interface and what is the granu-
larity of the interface. By functionality we mean what computations does one
system expose through its interfaces, and by granularity we mean at what gran-
ularity does a system provide a view of its internal state through an interface.

42

Thus, independent of the low-level infrastructure used for interoperability
between the components in a PMS, there is a large space of design choices
related to the functionality that PMS components should expose to enable ef-
ficient cooperation between them.Paper B investigates what computational
capabilities a software component should provide in order for that component
to participate as a peer in a PMS.

Overhead of logical mediator compositions.

Logical composability and autonomy of mediators poses several challenges
to the computation of queries over integrated global views. Since there is no
global control in a PMS, every mediator owner has the freedom to compose
arbitrary global views defined in terms of any of the known and accessible me-
diators and data sources. This ability to compose new mediators in a globally
uncontrolled manner may result in enormous redundancy in large mediator
compositions. Typically a mediator will be aware of and will integrate a rela-
tively small number of sources and neighbor mediators that provide informa-
tion of interest. However, the neighbor mediators may derive their information
from any number of other mediators and sources not known directly to the first
one. In this way it may be common that data from the same mediator(s) and/or
source(s) is indirectly integrated by a mediator through many levels of other
mediators, where each one eventually adds some value by restructuring and
enriching the information from the lower levels.

If queries over such composed mediators are executed naively by following
the logical links between the mediators, this may result in many redundant
computations performed by each of the underlying mediators, as well as in
many redundant network accesses and data transfers, which may result in an
unusable PMS.

Therefore methods need to be developed that remove these redundancies
and generate efficient query execution plans (physical compositions of medi-
ators). Since logical mediator compositions are essentially views defined in
terms of other views, these views can be expanded (unfolded) as in traditional
DBMS. However, in a P2P setting there is no central catalog and typically no
mediator “knows” the definitions of external views. Another issue is that in tra-
ditional database design the database schema is designed in a top-down fashion
and one may expect it to be relatively well designed and have relatively small
number of levels in the view definitions. However, due to the uncontrolled
bottom-up design of data integration solutions, it may be expected that very
large numbed of views will be nested very deeply. Finally, due to mediator
autonomy, some mediators may refuse to make their view definitions avail-
able to others, e.g. because they want to hide their information sources. To
respect each other’s autonomy, mediators should be able to negotiate if and
which views can be expanded, and be able to compile and execute queries in

43

all cases. Therefore view expansion in a P2P setting may not be as “simple” as
in a traditional DBMS setting.Paper Cstudies the problem of view expansion
in the presented PMS architecture.

Decentralized query processing.

A decentralized architecture of many autonomous, but equal in capabilities
peers, such as the PMS architecture, presents new opportunities and problems
for the processing of global queries. In a centralized distributed DBMS sys-
tem, there is one controlling peer, typically the peer where a query is issued,
that is responsible for the compilation and execution of its queries. This is
possible because there is a central catalog with all meta-data necessary to pro-
duce optimal QEPs, and because the component DBMSs give up their auton-
omy and leave the control to one peer. However, in a decentralized system,
no peer has global knowledge, or global control over the other peers. One
alternative to approach the lack of meta-data is to request it from the other
peers involved in a query. Another possibility is to use the fact that the other
mediator peers have their own query processors and local meta-data and thus
may take better decisions regarding local queries. Thus, instead of exchanging
meta-data, an alternative is to submit queries for remote compilation. In addi-
tion such distributed compilation provides the means for load balancing during
query compilation. Another side of the problem is query execution in a cen-
tralized system. There, one peer controls other peers during query execution.
As a result all data flows through the central peer. In a P2P mediator system,
where peers are distributed across a wide-area network with highly varying
link parameters, centralized data flow may be far from optimal. Instead, it
may be much more efficient to exchange data directly between peers that are
connected with fast links and and let them cooperate to compute intermediate
results which can be shipped to the query peer or some other intermediate peer.
As with cooperative compilation, such cooperative execution provides the ad-
ditional possibility for utilization of the resources of all peers. InPaper Dwe
study one particular method for optimizing global queries through distributed
compilation that produces decentralized QEPs.

Distributed join methods for mediation.

Data integration problems often require cross- source or mediator join opera-
tions because of overlapping information in the sources and/or mediators. Join
is known to be the most expensive operation in database systems. The pre-
sented PMS architecture is different from centralized and distributed but ho-
mogeneous DBMS architectures in that joins have to be made between media-
tors and sources with limited capabilities or computational sources often over
slow network connections. With such sources, data produced by one of the join
operands is required by the other operand as input, and therefore this interme-

44

diate result data has to be shipped from one operand to the other. Such joins
are often calleddependentbecause the execution of one of the join operands
depends on the execution of the other. Thus mediator systems need specialized
methods for the execution of dependent joins that take into account and reduce
data shipping costs together with the cost of join computation. The focus of
Paper Eis the design and study of three mediation-specific join strategies.

Access to diverse sources.

A mediation system would typically access a wide variety of data sources. It
is hard to predict in advance even what will be the future kinds of sources
that need to be integrated as a data integration system evolves. Therefore the
mediator components must be designed in a way that allows new sources to
be added easily and dynamically. Since sources are accessed through wrapper
components, this amounts to the question how to design a generic mediator-
to-wrapper interface and meta-model of data sources that allows the addition
of new wrappers for new kinds of sources. Another, more specific question
is, given the presented mediation architecture, is it flexible enough to easily
accommodate new kinds of sources? We address this problem inPaper F,
where we design and investigate a wrapper for several Internet search engines
as an example of non-database-like data sources.

45

Related Work

In this section we overview works related to the PMS architecture which serves
as the basis for our work, we point out the similarities and differences between
our architecture and other projects, and summarize how these projects relate to
the query processing problems described in Sect. 4.

5.1 Distributed Database Systems
There is a large body of knowledge on query processing in distributed databases
[30] that may provide partial solutions for problems related to query process-
ing in a PMS. However, the autonomy, distribution and extensible object-
oriented data model of the PMS architecture proposed here, poses new prob-
lems different from the ones related to distributed databases [37]. In distributed
database systems (DDBMS) the peers are homogeneous, there is a single site
that controls query processing and a centralized catalog, usually replicated in
all databases. In contrast to that, in a P2P system there is no central controlling
site and all meta-data is distributed among the peers. Various new problems
arise from that. Here we mention only some of them: to produce a global QEP
all peers involved in a query have to cooperate in the compilation process be-
cause no peer has complete knowledge of execution cost; peers have to request
cost information from other peers over the network which incurs high cost of
getting the cost; due to autonomy, cost information may not be available at all
peers; peers cannot assume that every other peer is capable of the execution of
arbitrary query fragments; therefore predicates might not be freely pushed in
the QEP from one mediator to another.

5.2 Mediator Systems
A considerable number of mediator systems [10, 13, 18, 25, 51, 46, 35, 58]
have been proposed with varying architectures in terms of their degree of dis-
tribution, autonomy and data model.

Many of the mediator proposals and systems have a centralized architecture,
that is they consist of a single mediator component, interacting with the data
sources via wrapper components. The wrappers themselves may or may not

46

be distributed with respect to the mediators. However, even in mediator archi-
tectures with distributed wrappers, all meta-data and control in the mediator-
wrapper system as a whole are concentrated in the mediator, and wrappers
in such architectures are not autonomous. Therefore, we will consider medi-
ator systems with distributed wrappers to have still centralized architectures,
where composability is not an issue. Typical example of centralized mediator
systems are Garlic [13] and DB2 Federated DBMS [18]. The TSIMMIS [13]
and Pegasus [10] projects mention that distributed mediators may access other
mediators, but no results are reported in this area.

Some mediation prototype systems have distributed architectures where
mediators access other mediators. Next we compare these mediator systems
with our PMS architecture.

The AURORA prototype [58] follows a fixed two-tier mediation model con-
sisting of three types of distributed components. The first tier consists ofho-
mogenization mediatorsthat deal with schematic mismatches on per-source
level, and distributed wrappers that provide access to the data sources. The
second tier consists ofintegration mediatorsresponsible for integrating multi-
ple homogenized sources through their respective homogenization mediators.
This distributed architecture is similar to our PMS architecture in that there
is no single monolithic integrated view, instead the integration process is dis-
tributed among many mediators. The main focus of the AURORA project is
a methodology for source homogenization and conflict resolution. Various
algebraic rewrite methods are proposed for pushing integration and standard
relational operations to the sources, but neither distribution of sources and/or
mediators is considered in any way, nor the effects of logically composing
the integration mediators in terms of many homogenization mediators. Query
processing in AURORA is considered only from the view point of a single ho-
mogenization mediator, and while not explicitly said, it seems to be performed
in a centralized manner. Our PMS architecture generalizes that of AURORA
because our mediators can be specialized to perform different roles as homog-
enization and/or integration, while there is no restriction on the number of
mediator tiers.

The DIOM project [46, 35] is one of the few mediator projects that points
out composability as an important property for scalable integration of many
sources. The project presents the implementation of a distributed mediator ar-
chitecture where mediators can access other distributed mediators and/or wrap-
pers. One feature that distinguishes DIOM from other mediator projects is that
it does not require conflicts to be resolved statically in an integrated schema.
Semantic conflict resolution is deferred to query result assembly time instead
before or at query compilation time. Thus users can dynamically specify the
information they are interested in and their preferences, and the mediator per-
forms automatically source selection and conflict resolution based on user pref-

47

erences. The DIOM prototype features a query processor aware of the distri-
bution of the sources and capable of dynamic query routing and scheduling,
but all query processing is performed in a centralized manner, such that query
compilation and execution are controlled by only one mediator. As a result
QEPs in DIOM are centralized and always follow the logical composition of
the mediators. To the best of our knowledge there are no reports of the actual
performance improvements achieved through the query processing approach
in DIOM. In particular all reported results describe processing of queries by
one mediator against several wrappers and do not address issues specific to
processing queries in mediator compositions.

The DISCO mediator system [51] also has a typical mediator-wrapper ar-
chitecture with distributed wrappers accessible by distributed mediators. Since
every mediator is a wrapper, mediators can call other mediators as if they were
wrappers. One of the prominent features of DISCO is graceful handling of
unavailable sources through partial evaluation semantics that returns partial
answers to queries by processing as much of a query as possible and returning
the remaining non-processed part of the query to the caller. This approach to
handling source unavailability can be applied to our architecture to fulfill the
requirement for dynamic source availability described in Sect. 3.2. As in the
DIOM system, query processing in DISCO is described only for flat two-tier
cases and does not take into account problems (and optimization opportunities)
resulting from mediator compositions.

Our conclusion is that, while several projects mention mediator compos-
ability as an important feature, none of these projects addresses issues related
to query processing in many composed mediators, which is the main focus of
our work. However, the described projects address other issues, important for
scalable data integration of many data sources, that are complementary to our
work.

5.3 Peer Data Management Systems
Several recent works propose P2P architectures for data integration and for the
management of distributed and autonomous databases. The ideas presented in
these works are the closest to our PMS architecture, and therefore we discuss
them here in more detail.

Data management systems based on P2P computing paradigm are discussed
in [16, 19, 20, 6] where new problems and opportunities arising from the usage
of a P2P paradigm are identified. However, there is little work on implementa-
tion issues of such systems, especially related to large number of cooperating
query processors. Even more, these works point out problems specific to P2P
architectures some of which we address in this dissertation. In the vision pa-
per [16] it is indicated that two fundamental problems in most P2P systems are

48

the placement and retrieval of data and therefore DBMS technology can and
should be applied to P2P systems. At the same time P2P architectures can be
useful in DBMS systems to provide system robustness and scalability, elimi-
nate proprietary interests, reduce administration effort and provide anonymity.
Of the two main problems mentioned, the paper describes in more detail the
problem of data placement. Solutions to this problem can be applied in our
PMS architecture, e.g. for efficient caching and replication of data at the me-
diator peers. One of the problems related to a P2P architecture is that of the
extent of knowledge sharing between peers. We analyze and provide some
answers to this problem inPaper Awith respect to an architecture with no
centralized catalog.

Another vision work [6], addresses the problem of semantic inter-dependencies
in between autonomous peer databases in the absence of a global schema. The
paper introduces the Local Relational Model (LRM) as a data model specific
for P2P data management systems. Inter-peer semantic dependencies are de-
scribed through coordination formulas that allow the synchronization of many
peer databases. The LRM can be used to mediate between multiple peers and
to propagate updates between peers so that consistency is preserved. The ar-
chitecture proposed for the LRM is described at a very high-level of detail, and
at that level of detail it is similar to our PMS architecture. In terms of query
processing in the proposed LRM model, the paper lists several P2P-specific
problems, but no solutions are proposed.

At the architectural level, the works closest to ours are [20, 19]. Based
on the assumption that data integration systems have one global mediated
schema that integrates all sources, the two papers advocate the concept ofpeer
data management systems (PDMS), as systems that replace the single logical
schema of data integration systems with an interlinked collection of semantic
mappings between the peers’ schemas. The ideas described in the two papers
are implemented in the Piazza peer data management system. The main prob-
lem addressed in the two papers is that of schema mediation in a PDMS. To
specify schema mappings between peer databases the authors propose a lan-
guagePPL that allows to express both GAV and LAV style mappings between
peer schemas. In [20] thePPL language is an extension of Datalog, and thus
suitable for peers supporting the relational data model. In [19] the mapping
language is modified to support RDF and XML sources. With respect to query
processing, both works deal with the problem of query answering (reformu-
lation) in the presence of mixed GAV and LAV transitive mappings between
peers. The goal of query answering is to reformulate an initial query in terms
of schema mappings to a query in terms of the base relations. As the authors
notice in [19] they do not address the problem of efficient processing of queries
which is essential for the overall performance of a PDMS.

From an architectural perspective, at the level of detail presented in [16, 19,

49

20, 6], all these proposals including ours are related. The main differences are
in the data models proposed, which is functional and object-oriented in our
case, and relational and RDF/XML in the other cases; the schema mapping
approaches used; and the query processing issues addressed in these works.

Regarding the problems related to query processing in a P2P architecture
which are our primary interest, our work and that of [20, 19] are complimen-
tary in several ways. The query reformulation algorithms presented there fully
expand all views and rewrite all queries in terms of the base relations. As
shown inPaper Cselective view expansion may often lead to better results
with substantially less compilation cost. Thus query reformulation in Piazza
can be simplified by not expanding all views (mappings), while our PMS ar-
chitecture can benefit from a more general method of mapping peer schemas
and its query reformulation algorithm. Since the current work on the Piazza
system is focused on query reformulation, all our solutions related to query
processing in a PMS can be directly applied in Piazza and similar PDMSs.

In [42] a P2P distributed data sharing system, PeerDB, is presented and
some of its aspects are experimentally evaluated. PeerDB consists of arbitrary
number of autonomous peers each of which consists of a relational DBMS
(MySQL), an agent system DBAgent, and a cache manager. Peers find each
other through one or more global names lookup servers that provide each node
with a unique identity. PeerDB uses an information retrieval approach to the
discovery of relevant information. Each relation and attribute in the peers’
databases is tagged with keywords. Relevant relations are discovered through
keyword matching and ranking. Compared to our PMS architecture, PeerDB
does not provide global query facilities and does allow for the definition of
integration views across multiple peers. Since there is no global view defini-
tion capability, PeerDB does not provide logical composability and the peers
constitute a logically “flat” system. PeerDB naturally handles peer unavail-
ability because there is no predefined integration schema. Query processing
in PeerDB is performed through “agents” that are dispatched to other peers
by the DBAgent component, but the paper neither defines what is an agent,
nor it describes by what algorithm(s) agents are dispatched to other peers. Fi-
nally, PeerDB does not address issues concerning access to external sources
with varying capabilities. Our conclusion is that PeerDB is suitable for the
sharing of structured data in a P2P fashion, but it cannot be applied to real data
integration problems.

A distributed relational query processor is proposed in [7], where the focus
is on dynamic extensibility and security. Advances in this project are compli-
mentary to our work and can be applied in the presented PMS architecture.
The project does not specifically address the integration of heterogeneous data
sources, neither problems related to redundancy in compositions of many au-
tonomous database.

50

Summary of Contributions

The hypothesis underlying this work is that a peer-to-peer mediator architec-
ture is more suitable for many real-world data integration problems than a
centralized one. It is shown to be possible to design a mediator system with a
peer architecture that can process queries efficiently and can scale in terms of
the number of peers. The main contributions described in this dissertation are:

• Analysis of the components of a PMS - applications, data sources and me-
diators. (Sect 3.3)

• Design and implementation of a P2P system for distributed data integration.
In the architecture autonomous peers share data and services with other
peers without a global coordinator. Mediator peers provide a unified and
knowledge-enriched view of many autonomous and heterogeneous sources
in terms of a functional and object-oriented common data model and query
language. The integrated views can be either queried directly or can be
used by other mediators to compose higher-level integration views in terms
of views in other peers. (Sect 3 andPaper A)

• Analysis of the inter-peer interfaces and corresponding computational capa-
bilities of the peers, the meta-data that needs to be exchanged between the
peers, and the query processing techniques that can be used in the presence
of some capabilites and meta-data in order to implement a PMS. (Paper B)

• Technique, called distributed selective view expansion (DSVE), to efficiently
process queries against many composed mediator views. DSVE has been
implemented in practice in the AMOS II mediator system and based on
this implementation it has been experimentally evaluated. The experimen-
tal analysis of this technique shows that it is possible to provide good query
performance with low compilation cost in a peer mediator system. (Pa-
per C)

• A distributed compilation technique to re-balance left-deep QEPs which
due to the autonomy of each peer, not only describe access to distributed
sources, but are distributed themselves. The QEP rebalancing technique im-
proves the quality of the QEPs in a peer mediator system by enabling direct
decentralized communication between the peers involved in the computa-
tion of a query result. The QEP rebalancing technique was implemented in
the AMOS II mediator system and studied experimentally. (Paper D)

• Design, and experimental study of three join algorithms for a peer mediator

51

system. Two of the algorithms, calledship-out, ship bindings from one of
the join operands (local or remote) to another remote operand and thus are
suitable for the computation of joins involving sources with limited capa-
bilities. The thirdship-inalgorithm, ships all data to the join site, where the
join is computed. Ship-in joins are suitable for sources with a scan interface
accessible over a fast network. (Paper E)

• Application of mediation for Internet search engines (ISEs). Various ISEs
are integrated through a flexible wrapper manager sub-system, called object-
relational wrapper for ISEs (ORWISE), that utilizes external web wrapper
toolkits and allows for flexible and dynamic addition of new ISE wrappers.
The design of ORWISE shows that the basic facilities for extensibility in
the AMOS II system described inPaper Aare powerful enough to support
such non-database-like sources with ease. (Paper F)

In addition, during my work various components of a peer mediator system
have been implemented as part of the AMOS II mediator system.
• Design and implementation of a meta-schema that models data sources. The

meta-schema allows for declarative manipulation of information related to
all data sources through the mediator query language. This allows mediator
users to query data source meta-data for discovery of relevant sources. In
addition the mediator kernel itself has been changed to reflectively utilize
the data source meta-data during query optimization. The meta-schema is
described inPaper AandPaper F.

• Experimental studies of a PMS require that large number of measurements
are performed and dependencies on many parameters are investigated. This
results in large volumes of distributed measurement data with complex struc-
ture. This requires that both the execution of experiments and experimental
data collection are performed in an automated way. A natural approach is
to use the mediator system itself to manage and collect the experimental
data. To enable the performance of large-scale computation experiments
in a PMS, I designed and implemented a declarative framework for auto-
mated computational experiments built on top of the AMOS II system. The
framework allows to configure and execute an experiment, collect all ex-
perimental data and plot various dependencies only through the query and
stored procedure language of the AMOS II system. The framework was
used to perform all experiments inPaper C.

• One of the most important types of data sources are RDBMSs. The most
wide-spread and standardized way to access RDBMS sources is ODBC. To
make our experimental studies more relevant, a wrapper for ODBC data
sources was implemented in AMOS II . The wrapper was used in all exper-
iments inPaper C, Paper DandPaper E.

• Many improvements in most components of AMOS II were necessary to
implement the query processing techniques and to perform the experiments

52

described in this dissertation. Some of the improvements led to orders of
magnitude less memory consumption and smaller compilation times.

53

Summary of Appended Papers

The papers included in this dissertation and summarized in this section are
inter-related in the following ways.Paper Adescribes an implementation of
a PMS that uses some of the results ofPaper B to process global queries.
Paper Binvestigates inter-peer interfaces and capabilities required for the in-
teroperability between mediator peers and/or data sources in a PMS, and the
applicable query processing techniques in the presense of these interfaces.Pa-
per C studies in detail how to process queries over mediator compositions
specified in the query language described inPaper Ausing theview shipping
approach described inPaper B. Paper Dinvestigates query optimization tech-
niques based on thequery shippingapproach described inPaper B. Paper E
describes distributed join methods for the PMS described inPaper A. Finally,
Paper Fdescribes how to add new wrappers for Internet search engines to the
PMS presented inPaper Aas a test case for mediator extensibility.

The overall structure of the dissertation is depicted on Fig. 7.1 where the
thin lines represent the relationship “uses results from”.

Paper A

Paper B

Paper C

Paper D

Paper E

Paper F

Requirements
for distributed
data integration

General
PMS

Architecture

Requirements
for peer
mediators

Figure 7.1:Logical organization of the dissertation.

7.1 Paper A: Functional Data Integration in a Distributed
Mediator System

This paper describes an implementation of the PMS architecture presented in
Sect. 3 in the framework of the AMOS II (Active Mediator Object System)
mediator system. In this section we will summarize the main features of the

54

AMOS II mediator system fromPaper Aand will point out their relationship
to the other works that constitute this dissertation. We will also point out the
limitations of the current implementation with respect to the general PMS ar-
chitecture.

With respect to the requirements for a PMS listed in Sect. 3.2, AMOS II me-
diators are fully composable at the logical and physical level. Location trans-
parency is supported through unique names assigned to each mediator and a
name resolution service described below. Peer discovery is supported through
the data source meta-schema that models data sources and can be queried via
the AmosQL query language. The issues that are not addressed in the current
implementation of the PMS architecture are dynamic availability of sources,
security, replication and caching.

With respect to the general mediator architecture, the AMOS II mediator
system described in this paper is different in that there is only one meta-
mediator, callednameserverthat stores the mapping between logical media-
tor names and physical network addresses. The second difference is that all
data sources are treated as local by the mediators, and thus even if the same
global data source is accessed by several mediators, such information cannot
be discovered and utilized by the mediators.

Further details about the data model and query language of AMOS II , its
reconciliation primitives, and its query processing can be found inPaper Aand
its references.

Comments

The main contribution I made to this paper is in the design and description
of the data source meta-model and description and clarification of the multi-
database query processing. I wrote the respective sections and participated in
other parts of the paper clarifying various aspects of the functional approach
to distributed mediation.

7.2 Paper B: Interface Capabilities for Query Process-
ing in Peer Mediator Systems

Each peer in a PMS must provide an interface to its data and meta-data suf-
ficient to allow the cooperative processing of queries in a PMS. InPaper B
we analyze the computational capabilities and meta-data that a software sys-
tem has to export through its interfaces in order to participate as a peer in a
PMS, and the corresponding query processing techniques that can be applied
in the presence of some meta-data and capabilities of the peers. Our analysis
is based on the functional data model and query language for data integration,
presented in detail inPaper A. We model data collections in remote peers as
proxy functionsthat describe the data types and relationship of the data items

55

in a remote data collection. Proxy functions may be implemented in different
ways, and queries over such functions may be also processed in different ways
depending on the computational capabilities of the peers in a PMS. Based on
the concept of proxy functions, we identify and compare six classes of peer
capabilities with increasing complexity, summarized below.

• Single-directional proxy functions (SDPF).The simplest possible way to
interface peers in a PMS, so that mediators can compute inter-peer queries,
is to assume that remote peers provide some interface to directly access
their data and to associate each proxy function with an implementation that
computes the results of the function by using the data access interfaces at the
remote peers. Proxy functions implemented in this way are computable in
RPC-like manner only in one direction - from their input parameters to their
results, and thus are termed as single-directional proxy functions (SDPF).

• Multi-directional proxy functions (MDPF). Often it may happen that sev-
eral SDPFs represent different directions of the same abstract relationship
stored at a remote source. As a result users have many alternative ways to
specify the same query, each with potentially very different performance.
To offload the user from performance considerations, we introduce multi-
directional proxy functions (MDPFs) that tie together several SDPFs into
one multi-directional proxy function. MDPFs provide higher degree of ab-
straction for the mediator users than SDPFs, and better query performance
through query optimization.

• Multi-peer proxy functions. Some of the functions referenced in a global
query may be computable at more than one peer. With SDPFs or MDPFs
it is up to the user to choose which alternative to use which requires users
to deal with performance issues and may result in sub-optimal query per-
formance. To alleviate this, we introduce an additional level of abstraction
through multi-peer proxy functions (MPPFs), where one MPPF relates to-
gether all MDPFs (or SDPFs) that represent the same computation in dif-
ferent peers. Thus MPPFs shift the task of choosing the optimal peer for a
function from the user to the mediator query processor.
• Plan shipping. All previous three interface classes assume simple peers

that provide only direct access to their data through some interface, and all
query operators, such as join, must be performed at the query peers. This
requires that all data during query execution is shipped through the query
mediator in a centralized manner. However, remote peers may be capable
of computing groups of database operations in the form of query plans.
Such capability can be utilized by the mediator peers through plan shipping
where the mediators compile an inter-peer QEP, identify the portions of this
QEP, called sub-plans, that can be computed by other peers, and ship these
sub-plans to the remote peers for execution.
• Query shipping. Many data sources, such as relational DBMS the medi-

56

ators themselves, provide a declarative query interface to their data. Thus,
an alternative to plan shipping is to group together through query decom-
position the query operations computable at the same remote peer into sub-
queries, and to ship them for compilation and execution to the correspond-
ing peer.

• View definition shipping. In a PMS, mediator peers can be freely com-
posed logically in terms of other mediators and data source peers through
database views. This may result in a network of logically composed peers
with redundancy, where many peers integrate the same source peers and
even the same remote views through many different logical paths. This log-
ical redundancy may result in many redundant computations and network
data transfers. To discover and remove such redundancy, the peers must be
capable of exchanging view definitions, so that the query peers can analyze
and optimize together the expanded view definitions.
The analysis of inter-peer interface capabilities and the related query pro-

cessing techniques presented above is based on our experiences from the im-
plementation of the AMOS II peer mediator system. We describe the imple-
mentation of a PMS in the AMOS II mediator system with peer capabilities
within each group. The description of our PMS implementation relates to-
gether the results of most of the papers in this dissertation. Since queries over
many peers are always reduced to SDPFs, and join is one the most common
and expensive database operation, inPaper Ewe design and study the per-
formance of three algorithms for computing inter-peer joins over SDPFs. In
Paper Dwe study an application of query shipping for rebalancing left-deep
global query execution plans to produce decentralized inter-peer QEPs. Fi-
nally, Paper Cinvestigates techniques to implement view definition shipping
that improve the quality of QEPs with low compilation cost.

Comments

The work described in this paper was done by me with discussions with Tore
Risch.

7.3 Paper C: Scalable View Expansion in a Peer Medi-
ator System

Views are the central concept for data integration in the PMS architecture.
This paper studies in detail theview shippingquery processing for peers with
view shipping capabilities described inPaper Bas a promising technique for
efficient processing of global queries over views defined in many peers.

There are two well-studied approaches to implement distributed informa-
tion systems. The first treats each of the distributed modules of an information
system as black boxes. The modules communicate with each other through

57

some protocol without revealing the implementation of the services they ex-
port. This is the approach used in CORBA based systems [1]. On the other
end are distributed database systems where database views are fully expanded
[44] independent of the location of the base tables and views that are used in a
view definition. We term the first approach as theblack-boxand the second as
transparent boxapproach.

The black-box approach provides full autonomy of the mediators, while at
the same time compiling queries without expanding all view definitions may
result in sub-optimal execution plans due to missed optimization opportunities
and many redundancies in mediator compositions. Without view definitions
being expanded, client mediators cannot ‘see’ that their sub-mediators have
views implemented in terms of the same common sub-mediator. As the ex-
periments in this paper show, such redundancies often lead to very inefficient
QEPs.

To solve the problems of the black-box approach, DBMS query compilers
expand view definitions. This ‘reveals’ to the query compiler the information
‘hidden’ in the view definitions which allows for better quality execution plans
by optimizing together queries with all directly and indirectly referenced view
definitions. In a PMS, view expansion may also allow to combine the view
definitions from various mediators, discover and remove redundant accesses to
intermediate mediators and push the resulting merged query down to the me-
diator(s) that actually contain/produce the data of interest. As one may expect,
such compilation techniques lead to several orders improvement in the quality
of a QEP. However, expanding all participating mediator definitions may result
in high compilation cost as many more mediators may become ‘visible’ to the
mediator that compiles a query and many more predicates are added to the ini-
tial query. In large mediator compositions this may lead to prohibitively high
compilation cost because of very large queries and large number of mediators.

A natural idea is to combine both approaches and treat the mediators as
grey boxeswith varying level of transparency. This paper presents and studies
experimentally an implementation of the grey-box approach in a new query
compilation technique for P2P mediators -distributed selective view expansion
(DSVE). In DSVE for better performance mediators can control the level of
transparency by selectively expanding only some multi-mediator views. To
preserve their autonomy, mediator peers can decide whether to fulfill or not
view definition requests. The performance improvements with DSVE are due
to more selective queries, smaller data flows between the servers, fewer servers
involved in the query execution while spending relatively little effort in query
compilation.

DSVE is implemented in the AMOS II mediator system described inPa-
per A. The implementation is studied experimentally in two scenarios with up
to 20 mediator peers to determine the effects of selective expansion of multi-

58

mediator views on the quality of QEPs. The study shows that one of the most
important factors for the overall performance of a P2P mediator system is the
topology of the logical mediator composition (i.e. of the graph defined by the
mediator peers as graph nodes and the relationship ‘defined in terms of’ as
graph arcs). Our experiments show that in mediator compositions with 10 and
more peers DSVE reduces query compilation time with orders of magnitude
with minor losses in the QEP quality and thus DSVE allows for efficient query
processing in logically composed mediators.

Comments

I am the main author of the paper. My main contribution to the paper was in
the scenario description, view expansion algorithm description and the exper-
imental section. I proposed the idea to selectively expand views as a gener-
alization of traditional full view expansion. An initial implementation of full
view expansion was done by Vanja Josifovski. I modified and extended this
implementation to support both full and partial view expansion. I also pro-
posed and implemented the mediation scenario and designed and performed
all experiments.

7.4 Paper D: Optimizing Queries in Distributed and Com-
posable Mediators

One of the challenges in processing queries against many composed mediators
is how to determine an optimal data flow between the mediators during query
execution and where to compute intermediate join results. The approach typ-
ically taken in mediator architectures is that the mediator to which a query is
posed, calledclient mediator, compiles locally and executes by itself a global
QEP for that query. As a result all data and control flow pass through that
mediator in a centralized manner, where all inter-mediator joins between its
sub-mediators are computed. Depending on the quality of the physical links
between all participating mediators and their processing resources, such cen-
tralized plans may not be always the most efficient. For example, when the
links between the sub-mediators are faster than the links between them and
the client mediator it may be more efficient to let those mediators directly
exchange data and compute intermediate results without involving the client
mediator. As pointed out inPaper B, for this mediators must support either
a plan shippingor a query shippingfunctionality, so that the client mediator
can instruct its sub-mediators to process global sub-queries that directly access
other sub-mediators.

For the optimization of global queries over many levels of composed me-
diators we take a two-phase approach which we have implemented in the
AMOS II PMS described inPaper A. In the first phase, the client mediator

59

decomposes global queries into sub-queries, each of them local with respect
to some remote sub-mediator. To reduce the cost of query optimization, at this
phase the optimizer searches only the space of left-deep QEPs. The resulting
left-deep query plan tree, stored at the client mediator, specifies the order in
which the client mediator will perform joins between the remote sub-queries
in the sub-mediators, and may contain additional local operations. Since all
joins are performed at the client mediator, this results in centralized plans.

In order to produce decentralized plans where sub-mediators communicate
directly and perform some of the joins themselves, the initial QEP has to be
decentralized into one or more global sub-plans that are computed by the sub-
mediators. This is performed by a second query optimization step, calledquery
plan tree distribution, or tree distributionfor short. The tree distribution opti-
mization phase is the focus of this paper.

One way to decentralize an initial QEP is to let the client mediator’s opti-
mizer explore all possible allocations of joins to sub-mediators and then to send
join sub-plans (via plan shipping) to those sub-mediators using the plan ship-
ping approach described inPaper B. In a PMS architecture this approach has
several problems:i) it would require centralized decision making for which
the client mediator would need to know the cost of executing joins by other
mediators,ii) since there is no global catalog this would incur many costing
requests, andiii) it is does not respect the autonomy of the sub-mediators.

A second possibility is to reuse the mediator’s capability to accept sub-
queries and locally compile them for further execution. Since each mediator
provides a global query language, requests for the execution of global sub-
plans can be submitted to remote sub-mediators in a declarative form using the
query shipping approach and let the sub-mediators decide on the exact exe-
cution plan. In this way a global query is compiled cooperatively by the par-
ticipating mediators, where each mediator both compiles and executes a piece
the global QEP. The advantages of this approach are that:i) mediators can
make cost estimates without performing remote cost requests,ii) mediator’s
autonomy is respected since each one can decide whether and how to execute
a sub-query, andiii) better load distribution is achieved not only during query
execution, but also at query compilation time.

The main contribution of this paper is a tree distribution algorithm based on
the query shipping approach. The algorithm starts with a centralized left-deep
global QEP. This initial tree is transformed by a series of plan node merge op-
erations. A node merge operation takes two randomly chosen neighbor nodes,
generates a sub-query that describes the join of the two nodes and replaces the
two original nodes with one that accesses the merged sub-query. A node merge
operation is performed only when it reduces the total QEP cost. For that the
merged sub-query is compiled at both sub-mediators, the current plan cost is
compared with the costs of the two new plans, and the cheapest of the three

60

is chosen. The process continues until no beneficial merge operations can be
performed. The node merge operations replace the inner relations of the ini-
tial QEP with composite joins, therefore the algorithm essentially re-balances
the initial centralized left-deep global QEP into a set of interacting distributed
QEPs, which if looked at one plan distributed among many mediators would
have a bushy instead of linear topology.

Comments

The general idea to re-balance distributed QEPs was suggested by Vanja Josi-
fovski. I designed and implemented a distributed QEP rebalancing algorithm
on top of the multi-mediator query compiler of AMOS II . I also designed, im-
plemented and performed the experiments that evaluate the performance im-
provements resulting from the algorithm and wrote the experimental section
of Paper Dthat describes the experimental results. The rest of the paper was
written jointly by Vanja Josifovski, Tore Risch and myself.

7.5 Paper E: Evaluation of Join Strategies for Distributed
Mediation

The distributed mediation architecture described in Sect. 3 andPaper Are-
quires that mediators are able to cooperate at the physical level to compute
answers of queries over integrated views. One of the most common tasks in
data integration is to match overlapping entities in different sources. Since the
mediators in the PMS architecture are essentially DBMS, matching of over-
lapping entities is logically expressed through ajoin. Join is one of the most
expensive operations in a DBMS and therefore much attention has to be paid
to its physical implementation. While many join variants have been proposed
for centralized and distributed DBMS, a PMS system requires new algorithms
that support inter-peer joins between mediators and sources with varying capa-
bilities. Thus the design of join methods for a PMS have to take into account
two aspects - efficiency and applicability. This paper proposes and evaluates
three distributed join algorithms suitable for the computation of inter-mediator
and mediator-source joins in a PMS.

Two ship-out algorithms ship data from a joining mediator towards the
sources. In these algorithms, intermediate result tuples are shipped to the
sources where they are used as parameters to remote subqueries or function
calls. The first algorithm is an order-preserving semi-join,PCAwhich is suit-
able when there are no duplicates in the outer collection. The second algo-
rithm, SJMA, uses a temporary hash index of possibly limited size to reduce
the number of accesses to the data sources. It is suitable when there are du-
plicates in the outer collection. Both ship-out algorithms are streamed and
the data is shipped between the mediator servers in bulks that contain several

61

tuples to avoid the message set-up overhead. The third algorithm is aship-
in join, where the data for the inner join operand is shipped from the remote
source into the joining mediator.

The ship-out algorithms are applicable to joins with remote sources that
need input data to execute local parameterized computations. If these compu-
tations are viewed as relations, then the sources are said to have limited ca-
pabilities because elements in these relations can not be retrieved by arbitrary
attribute(s). To fully implement the algorithms the remote sources must be
also able to accept and store locally whole bulks of data and then locally com-
pute over them. The ship-in join algorithm is applicable to joins with remote
sources that can ship to a mediator upon request the whole extent of a query or
a computation. Such sources may or may not accept parameters. If they accept
parameters, then both ship-out and ship-in join algorithms are applicable.

To analyze the performance of the three join algorithms we have fully im-
plemented them in the PMS architecture presented inPaper A. Our perfor-
mance study shows that the ship-out joins perform better that the ship-in join
when:i) early first results are important,ii) joins are performed over slow lines,
iii) mediator memory is limited. In particular, the PCA algorithm is simpler to
implement, while the SJMA algorithm performs considerably better for outer
collections with duplicates. The ship-in join generally performs better when
the communication is over a fast network. Finally the ship-out algorithms shift
the CPU load to the sources, while the ship-in join puts more of the CPU load
on the join mediator.

Comments

The join algorithms described in this paper were proposed and implemented
by Vanja Josifovski. I designed and performed the experiments and wrote the
experimental section of the paper. Parts of the supporting code for the imple-
mentation was done by me together with various improvements necessary to
make the implementation complete.

The published version of the paper contains a technical error - in Table 1
and Table 2 the resulting temporary relationtmp has to be inverted together
with the final result of the example join.

7.6 Paper F: Object-Oriented Mediator Queries to In-
ternet Search Engines

An important issue in design of a mediation system is its ability to easily in-
corporate new types of sources. In the mediation architecture presented in
Sect. 3 andPaper A, mediators access data sources through wrapper compo-
nents which interact with the mediator system through its facilities for exten-
sibility - foreign functions, user-defined types and a call-level interface. The

62

work presented in this paper investigates the flexibility of the extensibility fa-
cilities related to the design and addition of new wrappers. For that, an “exotic”
(from database view point) type of global sources is chosen - Internet search
engines (ISEs). Internet search engines differ from typical database-like data
sources in several ways:

• Their data access interfaces are non-standard, typically requiring program-
matic access to HTML forms.

• Their contents is represented as semi-structured documents without an ex-
plicitly defined schema. The structure of the ISEs’ content differs in struc-
ture among ISEs and even often changes over time for each ISE.

• ISEs do not have a standardized query language.

This requires that a system that accesses ISEs is very flexible. Due to the dy-
namic nature of the ISEs, it should be possible to easily modify and update
existing ISE wrappers, preferably in a dynamic “on-the-fly” manner. Since
the data delivered by ISEs have varying structures the mediator system has
to be able to model the schemata of the ISEs and to reconcile the semantic
differences between them. A large body of work exists that targets the prob-
lem of automatic schema extraction from semi-structured data. That is why a
desirable feature of a wrapper solution for Web sources (as ISEs) is to easily
incorporate new and existingwrapper toolkitsthat perform automatic schema
extraction.

The paper describes a component of the AMOS II mediator system de-
scribed inPaper A, calledORWISE (Object-Relational Wrapper of Internet
Search Engines)that allows to easily add new ISE wrappers or update existing
ones. Each kind of search engines is modeled as a subtype of the typeISE
underDataSource, described inPaper A. New ISE wrappers are added to a
mediator through the foreign functionorwisethat is overloaded for each ISE
sub-type. Each implementation oforwisetakes a query string in the language
of the particular kind of ISE (e.g. Google) and invokes the wrapper specific for
that kind of ISE through the ORWISE component. The ISE wrapper submits
the ISE query through a low-level wrapper generated by a wrapper toolkit to
the ISE. The data returned by the ISE is then parsed by the low-level wrapper
typically into strings. Finally the ORWISE component semantically enriches
the resulting ISE data by translating it into objects of typeDocumentViewthat
describe Web documents. This enrichment uses routines built-in ORWISE that
map strings into AMOS II types.

In summary, the ORWISE component providesi) the ISE schema for de-
scribing and querying data from any ISE in terms of subtypes of typeData-
Sourceand the overloaded functionorwise, ii) a mechanism to specify search
engine specific translators by redefiningorwiseand adding new ISE subtypes,
and iii) facilities to allow different wrapper toolkits to be easily plugged into
the system.

63

The design of ORWISE shows shows how to include a global data source
the PMS framework. In addition it shows that the approach to use foreign func-
tions, overloading and user-defined types to develop new wrappers is indeed
very flexible and can easily accommodate even non-database-like global data
sources as ISEs.

Comments

The initial idea to wrap ISEs proposed by myself. I also designed the ORWISE
component with discussions with Simon Zürcher. Simon Z̈urcher implemented
and tested ORWISE. The paper was written jointly by me and Tore Risch using
as a basis a technical report from Simon Zürcher.

64

Future Work

The presented mediation architecture poses a wide range of problems to be
solved as shown by our analysis of requirements in Sect. 3.2. The fulfillment
of each of these requirements is a research area of its own. Here we focus on
some future directions that follow directly from the main focus of this work -
scalable performance in composable mediators.

Topology-aware heuristics for view expansion

A direct continuation of the work presented inPaper C is to design an effi-
cient heuristic for selective view expansion that utilizes the knowledge of the
topology of the logical composition of mediators and targets the view expan-
sion process towards those mediator views that will produce highest increase
in QEP quality with the least compilation effort. In our ongoing work we eval-
uate several such heuristics.

Adaptivity in mediator compositions

Ideally query processing in a PMS should scale up to hundreds and even thou-
sands of mediator peers. In most cases it is impossible to perform precise cost
and selectivity estimates when integrating many mediators and diverse data
sources over a global network. This may lead to sub-optimal query execution
plans. Even if all necessary statistics information is available it is also infea-
sible to perform full cost-based query optimization in the traditional System R
style due the potentially very large number of mediators, sources and views.
Our current experience from experiments with mediator compositions of over
20 mediators show that incorrect cost and selectivity estimates can lead to or-
ders of magnitude worse query execution plans (QEP). Several factors specific
to peer mediators contribute to the incorrect cost estimates. In most cases it is
not possible to acquire statistics about the data stored in the data sources. This
is even harder when the data in a source is actually computed and not stored.
Imprecise cost modeling may result in that the errors in cost and selectivity
estimates increase by orders when propagated through many mediators. Fi-
nally data sources, network conditions and mediator load can all change in an
unpredictable manner. Therefore it is essential for a mediator system to adapt
to an unpredictable and changing environment.

Adaptive query processing for single-site query processors has been ad-
dressed by various works [54, 26, 4], to name a few. A good overview of

65

adaptive query processing can be found in [21, 15]. Many of the proposed
approaches can be integrated with the solution proposed here to implement
adaptive behavior of each of the mediator peers. However these approaches
do not address all the complexity of the problem of adaptivity in a P2P me-
diator architecture. A centralized query processor usually has direct access to
the data structures of a QEP and therefore it has the full power to modify the
QEP at any time and adapt its execution accordingly. In a P2P mediator sys-
tem a QEP is distributed among all peers participating in the evaluation of a
query. Because of autonomy, no peer has direct access to the fragments of a
global QEP in the other peers. Instead, the query processors of autonomous
peers have to cooperate through network protocols in order to change a global
QEP and adapt during query processing. Thus adaptivity in P2P mediators
requires not only single-site adaptation, but also cooperative adaptation by all
participating peers, so that sub-optimal global execution plans can gradually
converge to more efficient ones.

Integrated self-profiling

As a basis for adaptivity, mediator systems should be able to measure various
parameters of their environment and their own operation and that of neighbor
sources and mediators, store this measurements and use them to detect sub-
optimality and to adapt by recomputing the affected QEPs.

One approach to measure system performance and manage measurement
data is to integrate a database-based profiling system with the query processor
of each mediator peer. This will enable the query processor of a mediator to
measure parameters related to its own operation, the sources it accesses and
the network, and then use the accumulated information for better future deci-
sions. The main idea behind such an integrated profiling approach is to use the
mediator system itself in a reflective manner to store all measurement data in
the database itself. The benefits of this approach are that the full power of the
mediator query language will be available to update, retrieve and analyze the
distributed measurement data. Potentially there may be large amount of profile
data with dynamically changing distribution across many mediator peers. Us-
ing the global query capabilities of the mediator system in a reflective manner
to access the profile data would allow to let the system automatically compute
the best access path to the data without the need to hard-code it and to easily
modify the decision-making procedures inside the optimizer.

With a main-memory mediator database system, such as AMOS II, we can
expect very fast updates and retrievals of the measurement data. This will allow
to minimize the the performance penalty of profiling during normal system
usage. The extensibility of AMOS II allows to define custom data structures
and functions to store and update profiling data in the most efficient manner
while still preserving a query interface to that data. Finally the architecture

66

of the AMOS II mediator system allows any system component to be profiled
in a generic manner. An interesting direction is to profile the operation of all
critical components of the query engine and to introduce adaptivity not only
at the level of the query execution plans but other system components as well,
e.g. the query compiler itself.

The major challenges are how to minimize the performance penalty of pro-
filing, to ensure that the necessary profiling data can be accessed very fast as
this will be done from inside the query engine and finally the ability to dynam-
ically control what parameters are being measured.

Adaptive rebalancing of global QEPs

One potentially useful application of the integrated self-profiling is to adapt
the distributed data flow of global QEPs. InPaper Dwe investigated rebalanc-
ing of global QEPs that allows the query compiler to generate decentralized
plans at each mediator. QEP rebalancing takes a centralized plan where all
communication between one mediator and all its direct sub-mediators passes
through the controlling mediator and transforms it whenever favorable into a
plan with side-wise information passing, where some of the communication is
performed directly between the sub-mediators. For this sub-plans of the cen-
tralized QEP are sent to the nearest mediators (in terms of logical composition)
and further compilation of the sub-plans is delegated to neighbor peers. The
peers in turn may further decide to apply rebalancing to the sub-plans received
for compilation.

While Paper Dshows that distributed QEP rebalancing removes some of
the overhead of logical mediator composition, this is done in a static manner.
Future work for this project is to extend QEP tree rebalancing to allow medi-
ators to automatically adapt the data flow of distributed QEPs to changes that
may occur in a P2P mediator system.

Important research issues related to adaptive QEP rebalancing, and to adap-
tivity in general are: detecting sub-optimal performance and adapting to it;
reuse parts of a QEP when re-adapting to save compilation work; reuse of
the intermediate query execution results - if only some of mediators’ plans
are reoptimized only the execution of a sub-plan could be restarted instead of
recomputing the whole result from scratch.

67

References

[1] Object Management Architecture. John Wiley & Sons, New York, 1995.

[2] SOAP Version 1.2 Part 0: Primer. W3C Candidate Recommendation,
http://www.w3.org/TR/soap12-part0/, December 2002.

[3] Karl Aberer and Manfred Hauswirth. An Overview on Peer-to-Peer Information
Systems. InProceedings of Workshop on Distributed Data and Structures
(WDAS-2002), 2002.

[4] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously adaptive query
processing.ACM SIGMOD Record, 29(2):261–272, 2000.

[5] Philip A. Bernstein. Middleware: a model for distributed system services.Com-
munications of the ACM, 39(2):86–98, 1996.

[6] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John My-
lopoulos, Luciano Serafini, and Ilya Zaihrayeu. Data Management for Peer-to-
Peer Computing: A Vision. InWorkshop on the Web and Databases, WebDB
2002, Madison, Wisconsin, June 2002. SIGMOD 2002.

[7] Reinhard Braumandl, Markus Keidl, Alfons Kemper, Donald Kossmann,
Alexander Kreutz, Stefan Seltzsam, and Konrad Stocker. ObjectGlobe: Ubiqui-
tous query processing on the Internet.VLDB Journal, 10(1):48–71, 2001.

[8] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and
OLAP technology.ACM SIGMOD Record, 26(1):65–74, 1997.

[9] Ruxandra Domenig and Klaus R. Dittrich. An Overview and Classification of
Mediated Query Systems.SIGMOD Record, 28(3):63–72, 1999.

[10] W. Du and M. Shan. Query Processing in Pegasus. InObject-Oriented Mul-
tidatabase Systems: A Solution for Advanced Applications. Pretince Hall,
Englewood Cliffs, 1996.

[11] Weimin Du and Ahmed K. Elmagarmid. Quasi Serializability: a Correctness
Criterion for Global Concurrency Control in InterBase. InProceedings of the
Fifteenth International Conference on Very Large Data Bases, pages 347–
355. Morgan Kaufmann, August 1989.

68

[12] Gustav Fahl and Tore Risch. Query Processing Over Object Views of Relational
Data.VLDB Journal, 6(4):261–281, 1997.

[13] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajara-
man, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom.
The TSIMMIS Approach to Mediation: Data Models and Languages.Journal
of Intelligent Information Systems (JIIS), 8(2):117–132, April 1997.

[14] David Garlan. Research directions in software architecture.ACM Computing
Surveys (CSUR), 27(2):257–261, 1995.

[15] Anastasios Gounaris, Norman W. Paton, Alvaro A.A. Fernandes, and Rizos
Sakellariou. Adaptive Query Processing: A Survey. InProc. 19th British
National Conference on Databases, BNCOD, Sheffield, UK, July 2002.
Springer-Verlag.

[16] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases
do for peer-to-peer? InWebDB Workshop on Databases and the Web, June
2001.

[17] Laura Haas, Eileen Lin, and Mary Roth. Data integration through database fed-
eration.IBM Systems Journal, 41(4):578–, 2002.

[18] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Opti-
mizing Queries Across Diverse Data Sources. InProceedings of 23rd Inter-
national Conference on Very Large Data Bases, VLDB’97, pages 276–285,
Athens, Greece, August 1997. Morgan Kaufmann.

[19] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: data
management infrastructure for semantic web applications. InProceedings of
the twelfth international conference on World Wide Web, pages 556–567.
ACM Press, 2003.

[20] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema Me-
diation in Peer Data Management Systems. In19th International Conference
on Data Engineering, March 2003.

[21] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Desh-
pande, Kris Hildrum, Sam Madden, Vijayshankar Raman, and Mehul A. Shah.
Adaptive Query Processing: Technology in Evolution.IEEE Data Engineer-
ing Bulletin, 23(2):7–18, June 2000.

[22] Richard Hull. Managing Semantic Heterogeneity in Databases: A Theoreti-
cal Perspective. InProceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 51–61.
ACM Press, May 1997.

69

[23] Vanja Josifovski and Tore Risch. Functional Query Optimization over Object-
Oriented Views for Data Integration.Journal of Intelligent Information Sys-
tems, 12(2-3):165–190, 1999.

[24] Vanja Josifovski and Tore Risch. Integrating Heterogenous Overlapping
Databases through Object-Oriented Transformations. InProceedings of 25th
International Conference on Very Large Data Bases, VLDB’99, pages
435–446. Morgan Kaufmann, September 1999.

[25] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. Garlic: a new
flavor of federated query processing for DB2. InProceedings of the 2002
ACM SIGMOD international conference on Management of data, pages
524–532. ACM Press, 2002.

[26] Navin Kabra and David J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-
Optimal Query Execution Plans. InProceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pages 106–117, Seattle,
Washington, USA, June 1998. ACM Press.

[27] Vipul Kashyap and Amit P. Sheth. Semantic and Schematic Similarities Between
Database Objects: A Context-Based Approach.VLDB Journal, 5(4):276–304,
1996.

[28] Won Kim, Injun Choi, Sunit Gala, and Mark Scheevel. On resolving schematic
heterogeneity in multidatabase systems. pages 521–550, 1995.

[29] Milena Gateva Koparanova and Tore Risch. Completing CAD Data Queries
for Visualization. InInternational Database Engineering & Applications
Symposium, pages 130–139. IEEE Computer Society, 2002.

[30] Donald Kossmann. The state of the art in distributed query processing.ACM
Computing Surveys, 32(4):422–469, September 2000.

[31] Maurizio Lenzerini. Data integration: a theoretical perspective. InProceed-
ings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 233–246. ACM Press, 2002.

[32] Alon Y. Levy. Logic-based techniques in data integration. pages 575–595, 2000.

[33] Scott M. Lewandowski. Frameworks for component-based client/server com-
puting. ACM Computing Surveys (CSUR), 30(1):3–27, 1998.

[34] Witold Litwin and Tore Risch. Main Memory Oriented Optimization of OO
Queries Using Typed Datalog with Foreign Predicates.IEEE Transactions on
Knowledge and Data Engineering, 4(6):517–528, 1992.

70

[35] Ling Liu and Calton Pu. An Adaptive Object-Oriented Approach to Integration
and Access of Heterogeneous Information Sources.Distributed and Parallel
Databases, 5(2):167–205, April 1997.

[36] Ling Liu, Ling Ling Yan, , and M. Tamer̈Ozsu. Interoperability in Large-Scale
Distributed Information Delivery Systems. InAdvances in Workflow Systems
and Interoperability, pages 246–280. Springer-Verlag, 1998.

[37] Hongjun Lu, Beng-Chin Ooi, and Cheng-Hian Goh. Multidatabase query op-
timization: issues and solutions. InProceedings RIDE-IMS ’93., Third In-
ternational Workshop on Research Issues in Data Engineering: Interop-
erability in Multidatabase Systems, pages 137–143, Vienna, Austria, April
1993.

[38] Pattie Maes. Concepts and experiments in computational reflection. InConfer-
ence proceedings on Object-oriented programming systems, languages
and applications, pages 147–155. ACM Press, 1987.

[39] Jim Melton, Jan-Eike Michels, Vanja Josifovski, Krishna G. Kulkarni, and Pe-
ter M. Schwarz. SQL/MED - A Status Report.SIGMOD Record, 31(3), 2002.

[40] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-Peer Computing. Tech-
nical Report HPL-2002-57, HP Labs, 2002.

[41] H. Garcia Molina and B. Kogan. Node autonomy in distributed systems. In
Proceedings of the first international symposium on Databases in parallel
and distributed systems, pages 158–166. IEEE Computer Society Press, 1988.

[42] Wee Siong Ng, Beng Chin Ooi, Lee Tan, and Aoying Zhou. PeerDB: A P2P-
based System for Distributed Data Sharing. In19th International Conference
on Data Engineering, March 2003.

[43] Aris M. Ouksel and Amit P. Sheth. Semantic interoperability in global informa-
tion systems.ACM SIGMOD Record, 28(1):5–12, 1999.

[44] M. TamerÖzsu and Patrick Valduriez.Principles of Distributed Database
Systems. Prentice Hall, second edition edition, 1999.

[45] M. Tamer Özsu and Bin Yao. Building component database systems using
CORBA. pages 207–236, 2001.

[46] Kirill Richine. Distributed Query Scheduling in The Context of DIOM: An Ex-
periment. Tech. report TR97-03, Department of Computing Science, University
of Alberta, 1997.

71

[47] Fèlix Saltor and Elena Rodrı́guez. On Intelligent Access to Heterogeneous Infor-
mation. InIntelligent Access to Heterogeneous Information, Proceedings
of the 4th Workshop KRDB-97, volume 8 ofCEUR Workshop Proceedings,
pages 151–157, August 1997.

[48] David W. Shipman. The Functional Data Model and the Data Language
DAPLEX. TODS, 6(1):140–173, 1981.

[49] Clay Shirky. What Is P2P ... And What Isn’.
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html,
November 2000.

[50] Michael Stal. Web services: beyond component-based computing.Communi-
cations of the ACM, 45(10):71–76, 2002.

[51] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling Access to
Heterogeneous Data Sources with DISCO.IEEE Transactions on Knowledge
and Data Engineering, 10(5):808–823, 1998.

[52] Jeffrey D. Ullman. Information Integration Using Logical Views. In6th In-
ternational Conference on Database Theory - ICDT ’97, volume 1186 of
Lecture Notes in Computer Science, pages 19–40. Springer, January 1997.

[53] Jeffrey D. Ullman, Hector Garcia-Molina, and Jennifer Widom.Database Sys-
tems: The Complete Book. Prentice Hall PTR, 2001.

[54] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost Based Query
Scrambling for Initial Delays. InProceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 1998, pages
130–141, Seattle, Washington, USA, June 1998. ACM Press.

[55] Gio Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3):38–49, March 1992.

[56] Gio Wiederhold and Michael Genesereth. The conceptual basis for mediation
services.IEEE Expert, 12(5):38–47, Sept.-Oct. 1997. also in IEEE Intelligent
Systems.

[57] Ling-Ling Yan, Rene J. Miller, Laura M. Haas, and Ronald Fagin. Data-Driven
Understanding and Refinement of Schema Mappings. InACM SIGMOD Con-
ference, May 2001.

[58] Ling-Ling Yan, M. TamerÖzsu, and Ling Liu. Accessing Heterogeneous Data
Through Homogenization and Integration Mediators. InProceedings of the
Second IFCIS International Conference on Cooperative Information Sys-
tems, pages 130–139. IEEE Computer Society, 1997.

72

[59] Beverly Yang and Hector Garcia-Molina. Designing a Super-peer Network. In
IEEE International Conference on Data Engineering, March 2003.

Acta Universitatis Upsaliensis
Comprehensive Summaries of Uppsala Dissertations

from the Faculty of Science and Technology
Editor: The Dean of the Faculty of Science and Technology

Distribution:
Uppsala University Library

Box 510, SE-751 20 Uppsala, Sweden
www.uu.se, acta@ub.uu.se

ISSN 1104-232X
ISBN 91-554-5770-3

A doctoral dissertation from the Faculty of Science and Technology, Uppsala
University, is usually a summary of a number of papers. A few copies of the
complete dissertation are kept at major Swedish research libraries, while the
summary alone is distributed internationally through the series Comprehensive
Summaries of Uppsala Dissertations from the Faculty of Science and Technology.
(Prior to October, 1993, the series was published under the title “Comprehensive
Summaries of Uppsala Dissertations from the Faculty of Science”.)

Paper A:

c©2003 Springer-Verlag. Reprinted, with permission, from:

Tore Risch, Vanja Josifovski, and Timour Katchaounov. Functional data inte-
gration in a distributed mediator system. InThe Functional Approach to Data
Management. Springer-Verlag, 2003.

Functional Data Integration in a Distributed

Mediator System

Tore Risch
Uppsala University
Tore.Risch@it.uu.se

Vanja Josifovski
IBM Almaden Research Center

vanja@us.ibm.com

Timour Katchaounov
Uppsala University

Timour.Katchaounov@it.uu.se

Abstract

Amos II (Active Mediator Object System) is a distributed mediator
system that uses a functional data model and has a relationally com-
plete functional query language, AmosQL. Through its distributed multi-
database facilities many autonomous and distributed Amos II peers can
interoperate. Functional multi-database queries and views can be de-
fined where external data sources of different kinds are translated through
Amos II and reconciled through its functional mediation primitives. Each
mediator peer provides a number of transparent functional views of data
reconciled from other mediator peers, wrapped data sources, and data
stored in Amos II itself. The composition of mediator peers in terms
of other peers provides a way to scale the data integration process by
composing mediation modules. The Amos II data manager and query
processor are extensible so that new application oriented data types and
operators can be added to AmosQL, implemented in some external pro-
gramming language (Java, C, or Lisp). The extensibility allows wrapping
data representations specialized for different application areas in media-
tor peers. The functional data model provides very powerful query and
data integration primitives which require advanced query optimization.

1 Introduction

The mediator/wrapper approach, originally proposed by [43], has been used
for integrating heterogeneous data in several projects, e.g. [16, 42, 14, 5].
Most mediator systems integrate data through a central mediator server ac-
cessing one or several data sources through a number of ’wrapper’ interfaces
that translate data to a common data model (CDM). However, one of the origi-
nal goals for mediator architectures [43] was that mediators should be relatively
simple distributed software modules that transparently encode domain-specific
knowledge about data and share abstractions of that data with higher layers of
mediators or applications. Larger networks of mediators would then be defined

through these primitive mediators by composing new mediators in terms of
other mediators and data sources.

The core of Amos II is a open, light-weight, and extensible database man-
agement system (DBMS) with a functional data model. Each Amos II server
contains all the traditional database facilities, such as a storage manager, a
recovery manager, a transaction manager, and a functional query language
named AmosQL. The system can be used as a single-user database or as a
multi-user server to applications and to other Amos II peers.

Distribution

Amos II is a distributed mediator system where several mediator peers com-
municate over the Internet. Each mediator peer appears as a virtual functional
database layer having data abstractions and a functional query language. Func-
tional views provide transparent access to data sources from clients and other
mediator peers. Conflicts and overlaps between similar real-world entities be-
ing modeled differently in different data sources are reconciled through the
mediation primitives [18, 17] of the multi-mediator query language AmosQL.
The mediation services allow transparent access to similar data structures rep-
resented differently in different data sources. Applications access data from
distributed data sources through queries to views in some mediator peer.

Logical composition of mediators is achieved when multi-database views in
mediators are defined in terms of views, tables, and functions in other mediators
or data sources. The multi-database views make the mediator peers appear to
the user as a single virtual database. Amos II mediators are composable since
a mediator peer can regard other mediator peers as data sources.

Wrappers

In order to access data from external data sources Amos II mediators may
contain one or several wrappers which process data from different kinds of
external data sources, e.g. ODBC based access to relational databases [11, 4],
access to XML files [28], CAD systems [25], or Internet search engines [22]. A
wrapper is a program module in Amos II having specialized facilities for query
processing and translation of data from a particular class of external data
sources. It contains both interfaces to external data sources and knowledge of
how to efficiently translate and process queries involving accesses to a class of
external data sources. In particular external Amos II peers known to a mediator
are also regarded as external data sources and there is a special wrapper for
accessing other Amos II peers. However, among the Amos II peers special
query optimization methods are used that take into account the distribution,
capabilities, costs, etc. of the different peers [20].

The name server

Every mediator peer must belong to a group of mediator peers. The mediator
peers in a group are described through a meta-schema stored in a mediator
server called name server. The mediator peers are autonomous and there is

2

no central schema in the name server. The name server contains only some
general meta-information such as the locations and names of the peers in the
group while each mediator peer has its own schema describing its local data
and data sources. The information in the name server is managed without
explicit operator intervention; its content is managed through messages from
the mediator peers. To avoid a bottleneck, mediator peers usually communicate
directly without involving the name server; it is normally involved only when
a connection to some new mediator peer is established.

AmosQL

AmosQL is functional language having its roots in the functional query lan-
guages OSQL [31] and DAPLEX [38] with extensions of mediation primitives
[18, 17], multi-directional foreign functions [29], late binding [13], active rules
[39], etc. Queries are specified using the select - from - where construct as
in SQL. AmosQL furthermore has aggregation operators, nested subqueries,
disjunctive queries, quantifiers, and is relationally complete.

Query optimization

The declarative multi-database query language AmosQL requires queries to
be optimized before execution. The query compiler translates AmosQL state-
ments first into object calculus and then into object algebra expressions. The
object calculus is expressed in an internal simple logic based language called
ObjectLog [29], which is an object-oriented dialect of Datalog. As part of the
translation into object algebra programs, many optimizations are applied on
AmosQL expressions relying on its functional and multi-database properties.
During the optimization steps, the object calculus expressions are re-written
into equivalent but more efficient expressions. For distributed multi-database
queries a multi-database query decomposer [20] distributes each object calcu-
lus query into local queries executed in the different distributed Amos II peers
and data sources. For better performance, the decomposed query plans are
rebalanced over the distributed Amos II peers [17]. A cost-based optimizer
on each site translates the local queries into procedural execution plans in the
object algebra, based on statistical estimates of the cost to execute each gener-
ated query execution plan expressed in the object algebra. A query interpreter
finally interprets the optimized algebra to produce the result of a query.

Multi-directional foreign functions

The query optimizer is extensible through a generalized foreign function mech-
anism, multi-directional foreign functions. It gives transparent access from
AmosQL to special purpose data structures such as internal Amos II meta-
data representations or user defined storage structures. The mechanism allows
the programmer to implement query language operators in an external language
(Java, C or Lisp) and to associate costs and selectivity estimates with different
user-defined access paths. The architecture relies on extensible optimization of
such foreign function calls [29]. They are important both for accessing external

3

Application

Mediator

Name Server

Legend:Mediator Mediator

Server access

Name server access

Amos II peer

External systemDB2 Server Web Service

Figure 1: Distributed mediator communication

query processors [4] and for integrating customized data representations from
data sources.

Organization

Next the distributed mediator architecture of Amos II is described. Then the
functional data model used in Amos II is described along with its functional
query language followed by a description of how the basic functional data model
is extended with data integration primitives. After that there is an overview
of the distributed multi-mediator query processing. Finally, related work is
discussed followed by a summary.

2 Distributed Mediation

Groups of distributed Amos II peers can interoperate over a network using
TCP/IP. This is illustrated by Fig. 1 where an application accesses data from
two distributed data sources through three distributed mediator peers. The
thick lines indicate communication between peers where the arrows indicate
peers acting as servers.

The name server is a mediator peer storing names, locations, and other
general data about the mediators in a group. As illustrated by the dotted lines,
mediators in a group communicate with the name server to register themselves
in the group or obtain information about other peers.

The figure furthermore illustrates that several layers of mediator peers can
call other mediator peers. Notice, however, that the communication topology
is dynamic and any peer can communicate directly with any other peer or data
source in a group. It is up to the distributed mediator query optimizer to
automatically come up with the optimal communication topology between the
peers for a given query. The query optimizers of the peers can furthermore
exchange both data and schema information in order to produce an optimized
distributed execution plan.

4

In the figure, the uppermost mediator defines mediating functional views
integrating data from them. The views include facilities for semantic reconcil-
iation of data retrieved from the two lower mediators.

The two lower mediators translate data from a wrapped relational database
and a web server, respectively. They have knowledge of how to translate
AmosQL queries to SQL [11] through JDBC and, for the web server, to web
service requests.

When an Amos II system is started, it initially assumes stand-alone single-
user mode of operation in which no communication with other Amos II systems
can be done. The stand-alone system can join a group by issuing a registration
command to the name server of the group. Another system command makes
the mediator a peer that accepts incoming commands from other peers in the
group.

In order to access data from external data sources Amos II mediators may
contain one or several wrappers to interface and process data from external
data sources. A wrapper is a program module in a mediator having specialized
facilities for query processing and translation of data from a particular kind
of external data sources. It contains interfaces to external data repositories
to obtain both meta-data (schema definitions) and data. It also includes data
source specific rewrite rules to efficiently translate and process queries involving
accesses to a particular kind of external data source. More specifically the
wrappers perform the following functions:

• Schema importation translates schema information from the sources into
a set of Amos II types and functions.

• Query translation translates internal calculus representations of AmosQL
queries into equivalent API calls or query language expressions executable
by the source.

• Source statistics computation estimates costs and selectivities for API
calls or query expressions to a data source.

• Proxy OID generation executes in the source query expressions or API
calls to construct proxy OIDs describing source data.

• OID verification executes in the source query expressions or API calls
to verify the validity of involved proxy OIDs, in case they have become
invalid between different query requests.

Once a wrapper has been defined for a particular kind of source, e.g. ODBC
or a web service, the system knows how to process any AmosQL query or view
definition for all such sources. When integrating a new instance of the source
the mediator administrator can define a set of views in AmosQL that provide
abstractions of it.

Different types of applications require different interfaces to the mediator
layer. For example, there are call level interfaces allowing AmosQL statements
to be embedded in the programming languages Java, C, and Lisp. The call-in
interface for Java has been used for developing a Java-based multi-database
object browser, GOOVI [6].

5

The Amos II kernel can also be extended with plug-ins for customized query
optimization, fusion of data, and data representations (e.g. matrix data). Of-
ten specialized algorithms are needed for operating on data from a particular
application domain. Through the plug-in features of Amos II , domain ori-
ented algorithms can easily be included in the system and made available as
new query language functions in AmosQL. It is furthermore possible to add
new query transformation rules (re-write rules) for optimizing queries over the
new domain.

3 Functional Data Model

The data model of Amos II is an extension of the Daplex [38] functional data
model. The basic concepts of the data model are objects, types, and functions.

3.1 Objects

Objects model all entities in the database. The system is reflective is the sense
that everything in Amos II is represented as objects managed by the system,
both system and user-defined objects. There are two main kinds of representa-
tions of objects: literals and surrogates. The surrogates have associated object
identifiers (OIDs), which are explicitly created and deleted by the user or the
system. Examples of surrogates are objects representing real-world entities
such as persons, meta-objects such as functions, or even Amos II mediators as
meta-mediator objects.

The literal objects are self-described system maintained objects which do
not have explicit OIDs. Examples of literal objects are numbers and strings.
Literal objects can also be collections, representing collections of other objects.
The system-supported collections are bags (unordered sets with duplicates)
and vectors (order-preserving collections). Literal are automatically deleted
by an incremental garbage collector when they are no longer referenced in the
database.

3.2 Types

Objects are classified into types making each object an instance of one or several
types. The set of all instances of a type is called the extent of the type. The
types are organized in a multiple inheritance, supertype/subtype hierarchy. If
an object is an instance of a type, then it is also an instance of all the supertypes
of that type; conversely, the extent of a type is a subset of all extents of the
supertypes of that type (extent-subset semantics). For example if the type
Student is a subtype of type Person, the extent of type Student is also a
subset of the extent of type Person. The extent of a type which is multiple
inherited from other types is a subset of the intersection of its supertypes’
extents.

There are two kinds of types, stored and derived types. Derived types
are used mainly for data reconciliation and are described in the next section.

6

Object

Type

Function

Datasource

ODBC_DS
JDBC_DS

SearchEngine

Relational
Amos

Userobject

User-defined
types

Literal

Collection

is_proxy

imported_types
Charstring

Boolean

sql

sql

sql

name

Bag
Vector

Atom

Figure 2: System type hierarchy

Stored types are defined and stored in an Amos II peer through the create
type statement, e.g.:

create type Person;
create type Student under Person;
create type Teacher under Person;
create type TA under Student, Teacher;

The above statements extend the database schema with four new types: A TA
object is both a Student and a Teacher. The extent of type Person is the
union of all objects of types Person, Student, Teacher, and TA. The extent
of type TA is the intersection of the extents of types Teacher and Student.

All objects in the database are typed, including meta-objects such as those
representing the types themselves. The meta-objects representing types are
also stored types and instances of the meta-type named Type. In the example
the extent of the type named Type is the meta-objects representing the types
named TA, Teacher, Student, and Person.

The root in the type hierarchy is the system type named Object. The
system type Userobject is the root of all user defined types and the extent of
type Userobject contains all user-defined objects in the database.

The major root types in the type hierarchy are illustrated by the function
diagram on Fig. 2 where ovals denote types, thin arrows denote functions, thick
arrows denote type inheritance, and literal function result types are omitted for
readability. The type Datasource and its subtypes and functions are explained
later in Sect. 4.2.

Every object has an associated type set, which is the set of those types that
the object is an instance of. Every object also has one most specific type which
is the type specified when the object is created. The full type set includes
the most specific type and all types above the type in the type hierarchy. For
example, objects of type TA have the most specific type named TA while its full
type set is {TA, Teacher, Student, Person, Userobject, Object}.

The type set of an object can dynamically change during the lifetime of
the object through AmosQL statements that change the most specific type of

7

an object. The reason for such facilities is because the role of an object may
change during the lifetime of the database. For example, a TA might become
a student for a while and then a teacher.

3.3 Functions

Functions model the semantics (meaning) of objects. They model properties of
objects, computations over objects, and relationships between objects. They
furthermore are basic primitives in functional queries and views. Functions are
instances of the system type Function.

A function consists of two parts, the signature and the implementation:
The signature defines the types, and optional names, of the argument(s) and

the result of a function. For example, the signature of the function modeling
the attribute name of type Person would have the signature:

name(Person)->Charstring

Functions can be defined to take any number of arguments, e.g. the arithmetic
addition function implementing the infix operator ’+’ has the signature:

plus(Number,Number)->Number

The implementation specifies how to compute the result of a function given
a tuple of argument values. For example, the function plus computes the
result by adding the two arguments, and name obtains the name of a person
by accessing the database. The implementation of a function is normally non-
procedural, i.e. a function only computes result values for given arguments and
does not have any side effects. The exception is database procedures defined
through procedural AmosQL statements.

Furthermore, Amos II functions are often multi-directional meaning that
the system is able to inversely compute one or several argument values if (some
part of) the expected result value is known [29]. Inverses of multi-directional
functions can be used in database queries and are important for specifying
general queries with function calls over the database. For example, the following
query, which finds the age of the person named ’Tore’, uses the inverse of
function name to avoid iterating over the entire extent of type Person:

select age(p) from Person p where name(p)=’Tore’;

Depending on their implementation the basic functions can be classified
into stored, derived, and foreign functions. In addition, there are database
procedures with side effects and proxy functions for multi-mediator access as
explained later.

• Stored functions represent properties of objects (attributes) locally stored
in an Amos II database. Stored functions correspond to attributes in
object-oriented databases and tables in relational databases.

• Derived functions are functions defined in terms of functional queries
over other Amos II functions. Derived functions cannot have side effects

8

and the query optimizer is applied when they are defined. Derived func-
tions correspond to side-effect free methods in object-oriented models and
views in relational databases. AmosQL has an SQL-like select statement
for defining derived functions and ad hoc queries.

• Foreign functions provide the low level interfaces for wrapping external
systems from Amos II. For example, data structures stored in external
storage managers can be manipulated through foreign functions. Foreign
functions can also be defined for updating external data structures, but
foreign functions to be used in queries must be side effect free.

Foreign functions correspond to methods in object-oriented databases.
Amos II furthermore provides a possibility to associate several imple-
mentations of inverses of a given foreign function, multi-directional for-
eign functions, which informs the query optimizer that there are several
access paths implemented for the function. To help the query processor,
each associated access path implementation may have associated cost and
selectivity functions. The multi-directional foreign functions provide ac-
cess to external storage structures similar to data ’blades’, ’cartridges’,
or ’extenders’ in object-relational databases.

• Database procedures are functions defined using a procedural sublanguage
of AmosQL. They correspond to methods with side effects in object-
oriented models and constructors. A common usage is for defining con-
structors of objects along with associated properties.

Amos II functions can furthermore be overloaded meaning that they can
have different implementations, called resolvents, depending on the type(s)
of their argument(s). For example, the salary may be computed differently
for types Student and Teacher. Resolvents can be any of the basic function
types1. Amos II’s query compiler chooses the resolvent based on the types of
the argument(s), but not the result.

The extent of a function is a set of tuples mapping its arguments and its
results. For example, the extent of the function defined as

create function name(Person)-> Charstring as stored;

is a set of tuples < Pi, Ni > where Pi are objects of type Person and Ni are
their corresponding names. The extent of a stored function is stored in the
database and the extent of a derived function is defined by its query. The
extents are accessed in database queries.

The structure of the data associated with types is defined through a set of
function definitions. For example:

create function name(Person) -> Charstring as stored;
create function birthyear(Person) -> Integer as stored;
create function hobbies(Person) -> Bag of Charstring as stored;
create function name(Course) -> Charstring as stored;
create function teaches(Teacher) -> Bag of Course as stored;

1A resolvent cannot be overloaded itself, though.

9

Integer

Person

Teacher Student

TA

Course

Charstring

name

hobbies

name

teaches

birthyear

enrolled

Figure 3: Function diagram

create function enrolled(Student) -> Bag of Course as stored;
create function instructors(Course c) -> Bag of Teacher t as

select t
where teaches(t) = c; /* Inverse of teaches */

The above stored function and type definitions can be illustrated with the
function diagram of Fig. 3.

The function name is overloaded on types Person and Course. The function
instructors is a derived function that uses the inverse of function teaches.
The functions hobbies, teaches, and enrolled return sets of values. If ’Bag
of’ is declared for the value of a stored function it means that the result of the
function is a bag (multiset)2, otherwise it is an atomic value.

Functions (attributes) are inherited so the above statement will make ob-
jects of type Teacher have the attributes name, birthyear, hobbies, and
teaches.

We notice here that single argument Amos II functions are similar to rela-
tionships and attributes in the entity-relationship (ER) model and that Amos II
types are similar to ER entities. The main difference between an Amos II func-
tion and an ER relationship is that Amos II functions have a logical direction
from the argument to the result, while ER entities are direction neutral. No-
tice that Amos II functions normally are invertible and thus can be used in

2DAPLEX uses the notation ->> for sets.

10

the inverse direction too. The main difference between Amos II types and the
entities in the basic ER model is that Amos II types can be inherited.

Multi-directional foreign functions

As a very simple example of a multi-directional foreign function, assume we
have an external disk-based hash table on strings to be accessed from Amos II.
We can then implement is as follows:

create function get_string(Charstring x)-> Charstring r
as foreign "JAVA:Foreign/get_hash";

Here the foreign function get string is implemented as a Java method get hash
of the public Java class Foreign. The Java code is dynamically loaded when
the function is defined or the mediator initialized. The Java Virtual Machine
is interfaced with the Amos II kernel through the Java Native Interface to C.

Multi-directional foreign functions include declarations of inverse foreign
function implementations. For example, our hash table can not only be accessed
by keys but also scanned, allowing queries to find all the keys and values stored
in the table. We can generalize it by defining:

create function get_string(Charstring x)->Charstring y
as multidirectional

("bf" foreign "JAVA:Foreign/get_hash"
cost {100,1})

("ff" foreign "JAVA:Foreign/scan_hash"
cost "scan_cost");

Here, the Java method scan hash implements scanning of the external hash
table. Scanning will be used, e.g., in queries retrieving the hash key for a given
hash value. The binding patterns, bf and ff, indicate whether the argument or
result of the function must be bound (b) or free (f) when the external method
is called.

The cost of accessing an external data source through an external method
can vary heavily depending on, e.g., the binding pattern, and, to help the query
optimizer, a foreign function can have associated costing information defined
as user functions. The cost specifications estimate both execution costs in
internal cost units and result sizes (fanouts) for a given method invocation. In
the example, the cost specifications are constant for get hash and computed
through the Amos II function scan cost for scan hash.

The basis for the multi-directional foreign function was developed in [29],
where the mechanisms are further described.

3.4 Queries

General queries are formulated through the select statement with format:

select <result>
from <type extents>
where <condition>

11

For example:

select name(p), birthyear(p)
from Person p
where birthyear(p) > 1970;

The above query will retrieve a tuple of the names and birth years of all persons
in the database born after 1970.

In general the semantics of an AmosQL query is as follows:

1. Form the cartesian product of the type extents.

2. Restrict the cartesian product by the condition.

3. For each possible variable binding to tuple elements in the restricted
cartesian product, evaluate the result expressions to form a result tuple.

4. Result tuples containing NIL are not included in the result set; queries
are null intolerant.

It would be very inefficient to directly use the above semantics to execute
a query. It is therefore necessary for the system to do extensive query opti-
mization to transform the query into an efficient execution strategy. Actually,
unlike in SQL, AmosQL permits formulation of queries accessing indefinite ex-
tents and such queries are not executable at all without query optimization.
For example, the previous query could also have been formulated as:

select nm, b
from Person P, Charstring nm, Integer b
where b = birthyear(p) and

nm = name(p) and
b > 1970;

In this case, the cartesian product of all persons, integers, and strings is infinite
so the above query is not executable without query optimization.

Some function may not have a fully computable extent, e.g. arithmetic
functions have an infinitely large extent. Queries over infinite extents are not
executable, e.g. the system will refuse to execute this query:

select x+1 from Number x;

4 Functional Mediation

For supporting multi-database queries, the basic data model is extended with
proxy objects, types, and functions. Any object, including meta-objects, can be
defined by Amos II as a proxy object by associating with it a property describ-
ing its source. The proxy objects allow data and meta-data to be transparently
exchanged between mediator peers.

On top of this, reconciliation of conflicting data is supported through regular
stored and derived functions and through derived types (DTs) [18, 19] that
define types through declarative multi-database queries.

12

4.1 Proxy objects

The distributed mediator architecture requires the exchange of objects and
meta-data between mediator peers and data sources. To support multi-database
queries and views, the basic concepts of objects, types, and functions are gen-
eralized to include also proxy objects, proxy types, and proxy functions:

• Proxy objects in a mediator peer are local OIDs having associated descrip-
tions of corresponding objects stored in other mediators or data sources.
They provide a general mechanism to define references to remote objects.

• Proxy types in a mediator peer describe types represented in other me-
diators or data sources. The proxy objects are instances of some proxy
types and the extent of a proxy type is a set of proxy objects.

• Analogously, proxy functions in a mediator peer describe functions in
other mediators or sources.

The proxy objects, types and functions are implicitly created by the system
in the mediator where the user makes a multi-database query, e.g.:

select name(p) from Personnel@Tb p;

This query retrieves the names of all persons in a data source named Tb.
It causes the system to internally generate a proxy type for Personnel@Tb in
the mediator server where the query is issued, M . It will also create a proxy
function name in M representing the function name in Tb. In this query it is not
necessary or desirable to create any proxy instances of type Personel@Tb in
M since the query is not retrieving their identities. The multi-database query
optimizer will here make such an optimization.

Proxy objects can be used in combination with local objects. This allows for
general multi-database queries over several mediator peers. The result of such
queries may be literals (as in the example), proxy objects, or local objects. The
system stores internally information about the origin of each proxy object so
it can be identified properly. Each local OID has a locally unique OID number
and two proxy objects are considered equal if they represent objects created in
the same mediator or source with equal OID numbers.

Proxy types can be used in function definitions as any other type. In the
example one can define a derived function of the persons located in a certain
location:

create function personnel_in(Charstring l) -> Personnel@Tb
as select p from Personnel@Tb p

where location(p) = l;

In this case the local function personnel in will return those instances of
the proxy type for Personnel in mediator named Tb for which it holds that
the value of function location in Tb returns 1. The function can be used in
local queries and function definitions, and as proxy functions in multi-database
queries from other mediator peers.

Multi-database queries and functions are compiled and optimized through a
distributed query decomposition process fully described in [20] and summarized

13

later. Notice again that there is no central mediator schema and the compila-
tion and execution of multi-database queries is made by exchanging data and
meta-data with the accessed mediator servers. If some schema of a mediator
server is modified, the multi-database functions accessing that mediator server
become invalid and must be recompiled.

4.2 Data source modeling

Information about different data sources is represented explicitly in the Amos II
data model through the system type Datasource and its subtypes (Fig. 2).
Some subtypes of Datasource represent generic kinds of data sources that
share common properties, such as the types Relational and SearchEngine
[22] representing the common properties of all RDBMSs and all Internet search
engines, respectively. Other subtypes of Datasource like ODBC DS and JDBC DS
represent specific kinds of sources, such as ODBC and JDBC drivers. In par-
ticular the system type Amos represents other Amos II peers. Instances of
these types represent individual data sources. All types under Datasource are
collectively called the datasource types.

Since wrappers and their corresponding datasource types interact tightly,
every wrapper module installs its corresponding types and functions whenever
initialized. This reflexive design promotes code and data reuse and provides
transparent management of information about data sources via the Amos II
query language.

Each datasource type instance has a unique name and a set of imported
types. Some of the (more specific) subtypes have defined a set of low-level
access functions. For example the type Relational has the function sql that
accepts any relational data source instance, a parameterized SQL query, and
its parameters. Since there is no generic way to access all relational data
sources this function only defines an interface. On the other hand the type
ODBC DS overloads this function with an implementation that can submit a
parameterized query to an ODBC source. These functions can be used in low-
level mediator queries which roughly corresponds to the pass-through mode
defined in the SQL-MED standard [32]. However normally the low-level data
access functions are not used directly by the users. Instead queries that refer
to external sources are rewritten by the wrapper modules in terms of these
functions. In addition datasource types may include other functions, such as
source address, user names, and passwords.

4.3 Reconciliation

Proxy objects provide a general way to query and exchange data between me-
diators and sources. However, reconciliation requires types defined in terms of
data in different mediators. For this, the basic system is extended with derived
types (DTs), which are types defined in terms of queries defining their extents.
These extent queries may access both local and proxy objects.

Data integration by DTs is performed by building a hierarchy of DTs based
on local types and types imported from other data sources. The traditional
inheritance mechanism, where the corresponding instances of an object in the

14

super/subtypes are identified by the same OID, is extended with declarative
query specification of the correspondence between the instances of the derived
super/subtypes. Integration by sub/supertyping is related to the mechanisms
in some other systems as, e.g., the integrated views and column adding in the
Pegasus system [9], but is better suited for use in an object-oriented environ-
ment.

The extents of derived subtypes are defined through queries restricting the
intersection of the extents of the constituent supertypes. For example:

create derived type CSD_emp under Personnel p
where location(p)=’’CSD’’;

This statement creates a derived type CSD emp whose extent contains those
persons who work in the CSD department. When a derived type is queried the
system will implicitly create those of its instance OIDs necessary to execute
the query.

An important purpose of derived types is to define types as views that rec-
oncile differences between types in different mediator servers. For example, the
type Personnel might be defined in mediator Tb while Ta has a corresponding
type Faculty. The following statement executed in a third mediator, M , de-
fines a derived type Emp in M representing those employees who work both in
Ta and Tb.

create derived type Emp
under Faculty@Ta f, Personnel@Tb p
where ssn(f)=id_to_ssn(id(p))

Here the where clause identifies how to match equivalent proxy objects from
both sources. The function ssn uniquely identifies faculty members in Ta, while
the function id in Tb identifies personnel by employee numbers. A (foreign)
function id to ssn in M translates employee numbers to SSNs.

The system internally maintains the information necessary to map between
OIDs of a derived type and its supertypes.

An important issue in designing object views is the placement of the DTs
in the type hierarchy. Mixing freely the DTs and ordinary types in a type hier-
archy can lead to semantically inconsistent hierarchies [24]. In order to provide
the user with powerful modeling capabilities along with a semantically consis-
tent inheritance hierarchy, the ordinary and derived types in Amos II are placed
in a single type hierarchy where it is not allowed to have an ordinary type as a
subtype of a DT. This rule preserves the extent-subset semantics for all types
in the hierarchy. If DTs were allowed to be supertypes of ordinary types, due
to the declarative specification of the DTs, it would not have been possible to
guarantee that each instance of the ordinary type has a corresponding instance
in its supertypes [24].

The DT instances are derived from the instances of their supertypes ac-
cording to an extent query specified in the DT definition. DT instances are
assigned OIDs by the system, which allows their use in locally stored functions
defined over the DTs in the same way as over the ordinary types. A selective
OID generation for the DT instances is used to avoid performance and storage
overhead.

15

The concept of derived types and its use for data integration is fully de-
scribed in [18].

The regular DTs, defined by subtyping through queries of their supertypes,
provide means for mediation based on operators such as join, selection, and
projection. However, these do not suffice for integration of sources having
overlapping data. When integrating data from different mediator servers it
is often the case that the same entity appears either in one of the mediators
or in both. For example, if one wants to combine employees from different
departments, some employees will only work in one of the departments while
others will work in both of them.

For this type of integration requirements the Amos II system features a spe-
cial kind of DTs called Integration Union Types (IUTs) defined as supertypes
of other types through queries. IUTs are used to model unions of real-world
entities represented by overlapping type extents. Informally, while the regu-
lar DTs represent restrictions and intersections of extents of other types, the
IUTs represent reconciled unions of (possibly overlapping) data in one or more
mediator server or data sources. The example in Fig. 4 illustrates the features
and the applications of the IUTs.

Faculty

University A RDBMS

name
ssn

salary dept Ta

Personnel
name

id
pay

location Tbage

University B RDBMS

Full_time
CSD_A_emp CSD_B_emp

CSD_emp M
name

ssn
salary bonus

office

ODBC ODBC

Figure 4: An Object-Oriented view for the computer science department

In this example, a computer science department (CSD) is formed out of the
faculty members of two universities named A and B. The CSD administration
needs to set up a database of the faculty members of the new department in
terms of the databases of the two universities. The faculty members of CSD can
be employed by either one of the universities. There are also faculty members
employed by both universities. The full time members of a department are
assigned an office in the department.

In Fig. 4 the mediators are represented by rectangles; the ovals in the rect-

16

angles represent types, and the solid lines represent inheritance relationships
between the types. The two mediators Ta and Tb provide Amos II views of the
relational databases University A DB and University B DB. In mediator Ta
there is a type Faculty and in mediator Tb a type Personnel.

The relational databases are accessed through an ODBC wrapper in Ta
and Tb that translates AmosQL queries into ODBC calls. The ODBC wrap-
per interface translates AmosQL queries over objects represented in relations
into calls to a foreign function executing SQL statements [4]. The translation
process is based on partitioning general queries into subqueries only using the
capabilities of the data source, as fully explained in [20].

A third mediator M is setup in the CSD to provide the integrated view.
Here, the semantically equivalent types CSD A emp and CSD B emp are defined
as derived subtypes of types in Ta and Tb:

create derived type CSD_a_emp
under Faculty@Ta f
where dept(f) = ’CSD’;

create derived type CSD_b_emp
under Personnel@Tb p
where location(p) = ’Building G’;

The system imports the external types, looks up the functions defined over
them in the originating mediators, and defines local proxy types and functions
with the same signature but without local implementations.

The IUT CSD emp represents all the employees of the CSD. It is defined
over the constituent subtypes CSD a emp and CSD b emp. CSD emp contains one
instance for each employee object regardless of whether it appears in one of
the constituent types or in both. There are two kinds of functions defined over
CSD emp. The functions on the left of the type oval in Fig. 4 are derived from
the functions defined in the constituent types. The functions on the right are
locally stored.

The data definition facilities of AmosQL include constructs for defining
IUTs as described above. The integrated types are internally modeled by the
system as subtypes of the IUT. Equality among the instances of the integrated
types is established based on a set of key attributes. IUTs can also have locally
stored attributes, and attributes reconciled from the integrated types. See [19]
for details.

The type CSD emp is defined as follows:

CREATE INTEGRATION TYPE CSD_emp
KEYS ssn Integer;
SUPERTYPE OF
CSD_A_emp ae: ssn = ssn(ae);
CSD_B_emp be: ssn = id_to_ssn(id(be));

FUNCTIONS
CASE ae
name = name(ae);
salary = pay(ae);

17

CASE be
name = name(be);
salary = salary(be);

CASE ae, be
salary = pay(ae) + salary(be);

PROPERTIES
bonus Integer;

END;

For each of the constituent subtypes, a KEYS clause is specified. The instances
of different constituent types having the same key values will map into a single
IUT instance. The key expressions can contain calls to any function.

The FUNCTIONS clause defines the reconciled functions of CSD emp, derived
from functions over the constituent subtypes. For different subsets of the con-
stituent subtypes, a reconciled function of an IUT can have different implemen-
tations specified by the CASE clauses. For example, the definition of CSD emp
specifies that the salary function is calculated as the salary of the faculty
member at the university to which it belongs. In the case when s/he is em-
ployed by both universities, the salary is the sum of the two salaries. When the
same function is defined for more than one case, the most specific case applies.
Finally, the PROPERTIES clause defines the stored function bonus over the IUT
CSD emp.

The IUTs can be subtyped by derived types. In Fig. 4, the type Full Time
is defined as a subtype of the CSD emp type, representing the instances for
which the salary exceeds a certain number (50000). The locally stored function
office stores information about the offices of the full time CSD employees. The
type Full Time and its property office have the following definitions:

create derived type Full_Time under CSD_emp e
where salary(e)>50000;

create function office(Full_Time)->Charstring
as stored;

5 Query Processing

The description of type hierarchies and semantic heterogeneity using declara-
tive multi-database functions is very powerful. However, a naive implementa-
tion of the framework could be very inefficient, and there are many opportuni-
ties for the extensive query optimization needed for distributed mediation.

The query processor of Amos II, illustrated by Fig. 5, consists of three main
components. The core component of the query processor is the local query
compiler that optimizes queries accessing local data in a mediator. The multi-
database query compiler, MQC allows Amos II mediators to process queries that
also access other mediator peers and data sources. Both compilers generate
query execution plans (QEPs) in terms of an object algebra that is interpreted
by the QEP interpreter component. The following two sections describe in more
detail the sub-components of the local and the multi-database query compilers.

18

Calculus
Generator

query

Calculus
Optimizer

MDB View
Expander

Local
Cost-based
Optimizer

QEP
Interpreter

object
calculus

object
algebra

Query
Decomposer

result

Algebra
Generator

Decomp.
Tree
Rebalancer

External compilation,
cost and selectivity requests

query
graph

query
graph

MDB
Cost-based
Optimizer

decomp.
tree

decomp.
tree

External subquery
execution requests

External view
expansion requests

cost,
algebra

Local query compiler

Multidatabase
query compiler

object
calculus

object
calculus

object
calculus

object
algebra

object
calculus

External compilation,
cost and selectivity requests

Figure 5: Query processing in Amos II

5.1 Local query processing

To illustrate the query compilation of single-site queries we use the sample ad
hoc query:

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’;

The first query compilation step, calculus generation, translates the parsed
AmosQL query tree into an object calculus representation called ObjectLog [29].
The object calculus is a declarative representation of the original query and is
an extension of Datalog with objects, types, overloading, and multi-directional
foreign functions.

The calculus generator translates the example query into this expression:

{ p, nm |
p = Personnil→Person() ∧
pa = parentPerson→Person(p) ∧
nm = namePerson→Charstring(pa) ∧
′sailing′ = hobbyPerson→Charstring(p)}

The first predicate in the expression is inserted by the system to assert the type
of the variable p. This type check predicate defines that the variable p is bound
to one of the objects returned by the extent function for type Person, Person(),

19

which returns all the instances (the extent) of its type. The variables nm and
pa are generated by the system. Notice that the functions in the predicates
are annotated with their type signatures, to allow for overloading of function
symbols over the argument types.

The calculus optimizer of the query optimizer first transforms the unopti-
mized calculus expression to reduce the number of predicates, e.g. by exploring
properties of type definitions. In the example, it removes the type check pred-
icate:

{ p, nm |
pa = parentPerson→Person(p) ∧
nm = namePerson→Charstring(pa) ∧
′sailing′ = hobbyPerson→Charstring(p)}

This transformation is correct because p is used in a stored function (parent
or hobby) with argument or result of type Person. The referential integrity
system constrains instances of stored functions to be of correct types [29].

The local cost-based optimizer will use cost-based optimization to produce
an executable object algebra plan from the transformed query calculus expres-
sion. The system has a built-in cost model for local data and built-in algebra
operators. Basically the cost-based optimizer generates a number of execution
plans, applies the cost model on each of them, and chooses the cheapest for
execution. The system has the options of using dynamic programming, hill
climbing, or random search to find an execution plan with minimal cost. Users
can instruct the system to choose a particular strategy.

The optimizer is furthermore extensible whereby new algebra operators are
defined using the multi-directional foreign functions, which also provide the
basic mechanisms for interactions between mediator peers in distributed exe-
cution plans.

The query execution plan interpreter will finally interpret the execution plan
to yield the result of the query.

5.2 Queries over derived types

Queries over DTs are expanded by system-inserted predicates performing the
DT system support tasks [18]. These tasks are divided into three mechanisms:
(i) providing consistency of queries over DTs so that the extent-subset seman-
tics is followed; (ii) generation of OIDs for those DT instances needed to execute
the query; and (iii) validation of the DT instances with assigned OIDs so that
DT instances satisfy the constraints of the DT definitions. The system gener-
ates derived function definitions to perform these tasks. During the calculus
optimization the query is analyzed and, where needed, the appropriate func-
tions definitions are added to the query. A selective OID generation mechanism
avoids overhead by generating OIDs only for those derived objects that are ei-
ther needed during the execution of a query, or have associated local data in
the mediator database.

The functions specifying the view support tasks often have overlapping
parts. [18] demonstrates how calculus-based query optimization can be used
to remove redundant computations introduced from the overlap among the

20

system-inserted expressions, and between the system-inserted and user-specified
parts of the query.

Each IUT is mapped by the calculus optimizer to a hierarchy of system gen-
erated DTs, called auxiliary types [19]. The auxiliary types represent disjoint
parts of the outerjoin needed for this type of data integration. The reconcilia-
tion of the attributes of the integrated types is modeled by a set of overloaded
derived functions generated by the system from the specification in the IUT
definition. Several novel query processing and optimization techniques are de-
veloped for efficiently processing the queries containing overloaded functions
over the auxiliary types, as described in [19].

5.3 Multi-database query processing

The Multi-database Query Compiler (MQC) [20, 17] is invoked whenever a
query is posed over data from more than one mediator peer. The goal of
the MQC is to explore the space of possible distributed execution plans and
choose a ’reasonably’ cheap one. As the local query compiler, the MQC uses
a combination of heuristic and dynamic programming strategies to produce a
set of distributed object algebra plans.

The distributed nature of Amos II mediators requires a query processing
framework that allows cooperation of a number of autonomous mediator peers.
The MQC interacts with the local optimizer as well as with the query optimizers
of the other mediator peers involved in the query via requests to estimate
costs and selectivities of subqueries, requests to expand the view definitions
of remote views, and requests to compile subqueries in remote mediator peers.
The generated local execution plan interacts with the execution plans produced
by the other mediator peers.

The details of the MQC are described in [20]. Here we will overview its
main sub-components.

• The query decomposer identifies fragments of a multi-database query, sub-
queries, where each subquery can be processed by a single data source.
The decomposer takes as input an object calculus query and produces a
query graph with nodes representing subqueries assigned to an execution
site and arcs representing variables connecting the subqueries. The bene-
fit of decomposition is twofold. First, complex computations in subqueries
can be pushed to the data sources to avoid expensive communication and
to utilize the processing capabilities of the sources. Second, the multi-
database query optimization cost is reduced by the partitioning of the
input query into several smaller subqueries.

Query decomposition is performed in two steps:

1. Predicate grouping collects predicates executable at only one data
source and groups them together into one or more subqueries. The
grouping process uses a heuristic where cross-products are avoided
by placing predicates without common variables in separate sub-
queries.

21

2. Site assignment uses a cost-based heuristics to place those predicates
that can be executed at more than one site (e.g. θ-joins), eventually
replicates some of the predicates in the subqueries to improve the
selectivity of subqueries, and finally assigns execution sites to the
subqueries.

• The multi-database view expander expands remote views directly or indi-
rectly referenced in queries. This may lead to significant improvement in
the query plan quality because there may be many redundancies in large
compositions of multi-database views.

The multi-database view expander traverses the query graph to send ex-
pansion requests for the subqueries. In this way, all predicates defined in
the same database are expanded in a single request. This approach allows
the remote site to perform calculus simplifications of the expanded and
merged predicate definitions as a whole and then return the transformed
subquery. However, when there are many mediator layers it is not al-
ways beneficial to fully expand all view definitions, as shown in [21]. The
multi-database view expander therefore uses a heuristic to choose the
most promising views for expansion, a technique called controlled view
expansion. After all subqueries in the query graph have been view ex-
panded the query decomposer is called again for predicate regrouping.

• The multi-database (MDB) query optimizer decides on the order of exe-
cution of the predicates in the query graph nodes, and on the direction
of the data shipping between the peers. Execution plans for distributed
queries in Amos II are represented by decomposition trees. Each node in
a decomposition tree describes a join cycle through a client mediator (i.e.
the mediator where the query is issued). In a cycle, first intermediate
results are shipped to the site where they are used. Then a subquery
is executed at that site using the shipped data as input, and the result
is shipped back to the mediator. Finally, one or more post-processing
subqueries are performed at the client mediator. The result of a cycle is
always materialized in the mediator. A sequence of cycles can represent
any execution plan. As the space of all execution plans is exponential
to the number of subqueries in the input query graph, we examine only
the space of left-deep decomposition trees using a dynamic programming
approach. To evaluate the costs and selectivities of the subqueries the
multi-database optimizer sends compilation requests for the subqueries
both to the local optimizer and the query compilers of the remote medi-
ators.

• The decomposition tree rebalancer transforms the initial left-deep decom-
position tree into a bushy one. To avoid that all the data flows through
the client mediator, the decomposition tree rebalancer uses a heuristic
that selects pairs of adjacent nodes in the decomposition tree, merges the
selected nodes into one new node, and sends the merged node to the two
mediators corresponding to the original nodes for recompilation. From
the merged nodes, each of the two mediators generate different decom-
position sub-trees and the cheaper one is chosen. In this way, the input

22

decomposition tree is rebalanced from a left-deep tree into a bushy one.
The overall execution plan resulting from the tree rebalancing can con-
tain plans where the data is shipped directly from one remote mediator to
another, eliminating the bottleneck of shipping all data through a single
mediator. See [17] for details.

• The object algebra generator translates a decomposition tree into a set of
inter-calling local object algebra plans.

6 Related Work

Amos II is related to research in the areas of data integration, object views,
distributed databases, and general query processing. There has been several
projects on intergration of data in a multi-database environment [5, 8, 10, 12,
14, 16, 23, 27, 30, 41, 42]. The integration facilities of Amos II are based on
work in the area of OO views [1, 3, 15, 26, 33, 36, 37, 40].

Most of the mediator frameworks reported in the literature (e.g. [16, 42, 14])
propose centralized query compilation and execution coordination. In [9] it
is indicated that a distributed mediation framework is a promising research
direction, but to the best of our knowledge no results in this area are reported.
Some recent commercial data integration products, as IBM’s Federated DB2,
also provide centralized mediation features.

In the DIOM project [30] a framework for integration of relational data
sources is presented where the operations can be executed either in the mediator
or in a data source. The compilation process in DIOM is centrally performed,
and there is no clear distinction between the data sources and the mediators
in the optimization framework.

The Multiview [36] object-oriented view system provides multiple inheri-
tance and a capacity-augmented view mechanism implemented with a tech-
nique called Object Slicing [26] using OID coercion in an inheritance hierarchy.
However, it assumes active view maintenance and does not elaborate on the
consequences of using this technique for integration of data in autonomous and
dislocated repositories. Furthermore, it is not implemented using declarative
functions for the description of the view functionality.

One of the few research reports describing the use of functional view mech-
anisms for data integration is the Multibase system [8]. It is also based on a
derivative of the DAPLEX data model and does reconciliation similar to the
IUTs in this paper. An important difference between Multibase and Amos II
is that the data model used in Multibase does not contain the object-oriented
concept of OIDs and inheritance. The query optimization and meta-modeling
methods in Amos II are also more elaborate than in Multibase.

The UNISQL [23] system also provides views for database integration. The
virtual classes (corresponding to the DTs) are organized in a separate class
hierarchy. However, the virtual class instances inherit the OIDs from the corre-
sponding instances in the ordinary classes, which prohibits definition of stored
functions over virtual classes defined by multiple inheritance as in Amos II.
There is no integration mechanism corresponding to the IUTs.

23

[35] gives a good overview of distributed databases and query processing. As
opposed to the distributed databases, where there is a centralized repository
containing meta-data about the whole system, the architecture described in
this paper consists of autonomous systems, each storing only locally relevant
meta-data.

One of the most thorough attempts to tackle the query optimization prob-
lem in distributed databases was done within the System R* project [7] where,
unlike Amos II, an exhaustive, cost-based, and centrally performed query opti-
mization is made to find the optimal plan. Another classic distributed database
system is SDD-1 [2] which used a hill-climbing heuristics as the query decom-
poser in Amos II.

7 Summary

We have given an overview of the Amos II mediator system where groups of dis-
tributed mediator peers are used to integrate data from different sources. Each
mediator in a group has DBMS facilities for query compilation and exchange
of data and meta-data with other mediator peers. Derived functions can be de-
fined where data from several mediator peers are abstracted, transformed, and
reconciled. Wrappers are defined by interfacing Amos II systems with external
systems through its multi-directional foreign function interface. Amos II can
furthermore be embedded in applications and used as stand-alone databases.
The paper gave an overview of Amos II’s architecture with references to other
published papers on the system for details.

We described the functional data model and query language forming the
basis for data integration in Amos II. The distributed multi-mediator query
decomposition strategies used were summarized.

The mediator peers are autonomous without any central schema. A special
mediator, the name server, keeps track of what mediator peers are members of
a groups. The name servers can be queried for the location of mediator peers
in a group. Meta-queries to each mediator peer can be posed to investigate the
structure of its schema.

Some unique features of Amos II are:

• A distributed mediator architecture where query plans are distributed
over several communicating mediator peers.

• Using declarative functional queries to model reconciled functional views
spanning over multiple mediator peers.

• Query processing and optimization techniques for queries to reconciled
views involving function overloading, late binding, and type aware query
rewrites.

The Amos II system is fully implemented and can be downloaded from
http://user.it.uu.se/∼udbl/amos. Amos II runs under Windows and Unix.

24

ACKNOWLEDGEMENTS:
The following persons have contributed to the development of the Amos II

kernel: Gustav Fahl, Staffan Flodin, Jörn Gebhardt, Martin Hansson, Vanja
Josifovski, Jonas Karlsson, Timour Katchaounov, Milena Koparanova, Salah-
Eddine Machani, Joakim Näs, Kjell Orsborn, Tore Risch, Martin Sköld, and
Magnus Werner.

References

[1] S. Abiteboul, A. Bonner: Objects and Views. ACM Intl. Conf. on
Management of Data (SIGMOD’91), 238-247, 1991.

[2] P. Bernstein, N. Goodman, E. Wong, C. Reeve, J. Rothnie Jr.:
Query Processing in a System for Distributed Databases (SDD-1).
ACM Transactions on Database Systems (TODS), 6(4), 602-625,
1981

[3] E. Bertino: A View Mechanism for Object-Oriented Databases.
3rd Intl. Conf. on Extending Database Technology (EDBT’92),
136-151, 1992.

[4] S. Brandani: Multi-database Access from Amos II us-
ing ODBC. Linköping Electronic Press, 3(19), Dec., 1998,
http://www.ep.liu.se/ea/cis/1998/019/.

[5] O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase
Systems. Prentice Hall, 1996.

[6] K.Cassel and T.Risch: An Object-Oriented Multi-Mediator
Browser. 2nd International Workshop on User Interfaces to Data
Intensive Systems, Zrich, Switzerland, May 31 - June 1, 2001

[7] D. Daniels, P. Selinger, L. Haas, B. Lindsay, C.Mohan, A.Walker,
P.F.Wilms: An Introduction to Distributed Query Compilation
in R*. 2nd International Symposium on Distributed Data Bases,
291-309, 1982.

[8] U. Dayal, H-Y. Hwang: View Definition and Generalization for
Database Integration in a Multidatabase System. IEEE Transac-
tions on Software Engineering, 10(6), 628-645, 1984.

[9] W. Du, M. Shan: Query Processing in Pegasus, In O. Bukhres,
A. Elmagarmid (eds.): Object-Oriented Multidatabase Systems.
Prentice Hall, 449-471, 1996.

[10] C. Evrendilek, A. Dogac, S. Nural, F. Ozcan: Multidatabase
Query Optimization. Distributed and Parallel Databases, Kluwer,
5(1), 77-114, 1997.

25

[11] G. Fahl, T. Risch: Query Processing over Object Views of Rela-
tional Data. The VLDB Journal, Springer, 6(4), 261-281, 1997.

[12] D. Fang, S. Ghandeharizadeh, D. McLeod, A. Si: The Design, Im-
plementation, and Evaluation of an Object-Based Sharing Mech-
anism for Federated Database System. 9th Intl. Conf. on Data
Engineering Conf. (ICDE’93), IEEE, 467-475, 1993.

[13] S. Flodin, T. Risch: Processing Object-Oriented Queries with
Invertible Late Bound Functions. 21st Conf. on Very Large
Databases (VLDB’95), 335-344, 1995

[14] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajara-
man, Y.Sagiv, J. Ullman, V. Vassalos, J. Widom: The TSIMMIS
Approach to Mediation: Data Models and Languages. Intelligent
Information Systems (JIIS), Kluwer, 8(2), 117-132, 1997

[15] S. Heiler, S. Zdonik: Object views: Extending the Vision. 6th Intl.
Conf. on Data Engineering (ICDE’90), IEEE, 86-93, 1990

[16] V.Josifovski, P.Schwarz, L.Haas, and E.Lin: Garlic: A New Flavor
of Federated Query Processing for DB2, ACM SIGMOD Conf.,
2002.

[17] V.Josifovski, T.Katchaounov, T.Risch: Optimizing Queries in
Distributed and Composable Mediators. 4th Conference on Co-
operative Information Systems, CoopIS’99, 291-302, 1999.

[18] V.Josifovski, T.Risch: Functional Query Optimization over
Object-Oriented Views for Data Integration. Intelligent Informa-
tion Systems (JIIS) 12(2-3), Kluwer, 165-190, 1999.

[19] V.Josifovski, T.Risch: Integrating Heterogeneous Overlapping
Databases through Object-Oriented Transformations. 25th Conf.
on Very Large Databases (VLDB’99), 435-446, 1999.

[20] V.Josifovski and T.Risch: Query Decomposition for a Dis-
tributed Object-Oriented Mediator System. Distributed and Par-
allel Databases J., 11(3), pp 307-336, Kluwer, May 2002.

[21] T.Katchanouov, V.Josifovski, T.Risch: Distributed View Expan-
sion in Object-Oriented Mediators, 5th Intl. Conference on Coop-
erative Information Systems, CoopIS’00, Eilat, Israel, LNCS 1901,
Springer Verlag, 2000.

[22] T. Katchaounov, T. Risch, and S. Zrcher: Object-Oriented Medi-
ator Queries to Internet Search Engines, International Workshop
on Efficient Web-based Information Systems (EWIS), Montpel-
lier, France, September 2nd, 2002.

26

[23] W. Kelley, S. Gala, W. Kim, T. Reyes, B. Graham: Schema Ar-
chitecture of the UNISQL/M Multidatabase System. In W. Kim
(ed.): Modern Database Systems - The Object Model, Interoper-
ability, and Beyond, ACM Press, 621-648, 1995.

[24] W. Kim and W. Kelley: On View Support in Object-Oriented
Database Systems, In Modern Database Systems - The Object
Model, Interoperability, and Beyond, W. Kim (ed.), ACM Press/
Addison-Wesley Publishing Company, New York, NY, 1995.

[25] M.Koparanova and T.Risch: Completing CAD Data Queries for
Visualization, International Database Engineering and Applica-
tions Symposium (IDEAS 2002), Edmonton, Alberta, Canada,
July 17-19, 2002.

[26] H. Kuno, Y. Ra, E. Rundensteiner: The Object-Slicing Tech-
nique: A Flexible Object Representation and Its Evaluation. Univ.
of Michigan Tech. Report CSE-TR-241-95, 1995.

[27] E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, M. Ganesh:
Myriad: Design and Implementation of a Federated Database Sys-
tem. Software - Practice and Experience, John Wiley & Sons,
25(5), 533-562, 1995.

[28] H.Lin, T.Risch, and T.Katchaounov: Adaptive data mediation
over XML data. In special issue on ’Web Information Systems
Applications’ of Journal of Applied System Studies (JASS), Cam-
bridge International Science Publishing, 3(2), 2002.

[29] W. Litwin, T. Risch: Main Memory Oriented Optimization of
OO Queries using Typed Datalog with Foreign Predicates. IEEE
Transactions on Knowledge and Data Engineering, 4(6), 517-528,
1992

[30] L.Liu, C.Pu: An Adaptive Object-Oriented Approach to Integra-
tion and Access of Heterogeneous Information Sources. Distributed
and Parallel Databases, Kluwer, 5(2), 167-205, 1997.

[31] P. Lyngbaek: OSQL: A Language for Object Databases, Tech.
Report, HP Labs, HPL-DTD-91-4, 1991.

[32] J.Melton, J.Michels, V.Josifovski, K.Kulkarni, P.Schwarz, and
K.Zeidenstein: SQL and Management of External Data, SIGMOD
Record, Vol. 30, No. 1, 70-77, March 2001.

[33] A. Motro: Superviews: Virtual Integration of Multiple Databases.
IEEE Transaction on Software Engineering, Vol. 13(7), 785-798,
1987.

[34] K. Orsborn: Applying Next Generation Object-Oriented DBMS
to Finite Element Analysis. In W. Litwin, T. Risch (eds.): Intl.
Conf. on Applications of Databases (ADB’94), Springer, 215-233,
1994.

27

[35] M.T.Özsu, P.Valduriez: Principles of Distributed Database Sys-
tems, Prentice Hall, 1999.

[36] E. Rundensteiner, H. Kuno, Y. Ra, V. Crestana-Taube, M. Jones
and P. Marron: The MultiView project: object-oriented view
technology and applications, ACM Intl. Conf. on Management
of Data (SIGMOD’96), 555, 1996.

[37] M. Scholl, C. Laasch, M. Tresch: Updatable Views in
Object-Oriented Databases. 2nd Deductive and Object-Oriented
Databases Conference (DOOD91), 189-207, 1991.

[38] D. Shipman: The Functional Data Model and the Data Language
DAPLEX. ACM Transactions on Database Systems, 6(1), 140-
173, 1981.

[39] M. Sköld, T. Risch: Using Partial Differencing for Efficient Mon-
itoring of Deferred Complex Rule Conditions. 12th Intl. Conf. on
Data Engineering (ICDE’96), IEEE, 392-401, 1996.

[40] C. Souza dos Santos, S. Abiteboul, C. Delobel: Virtual
Schemas and Bases. Intl. Conf. on Extending Database Technology
(EDBT’92), 81-94, 1994.

[41] S. Subramananian, S. Venkataraman: Cost-Based Optimization
of Decision Support Queries using Transient Views. ACM Intl.
Conf. on Management of Data (SIGMOD’98), 319-330, 1998

[42] A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heteroge-
neous Data Sources with DISCO. IEEE Transactions on Knowl-
edge and Date Engineering, 10(5), 808-823, 1998

[43] G Wiederhold: Mediators in the Architecture of Future Informa-
tion Systems. IEEE Computer, 25(3), 38-49, 1992.

28

104

Paper B:

Timour Katchaounov and Tore Risch. Interface capabilities for query pro-
cessing in peer mediator systems.Technical report 2003-048, Department of
Information Technology, Uppsala University, 2003.

Interface Capabilities for Query Processing in
Peer Mediator Systems

Timour Katchaounov and Tore Risch
Uppsala University

firstname.lastname@it.uu.se

Abstract

A peer mediator system (PMS) is a decentralized mediator system based on
the P2P paradigm, where mediators integrate data sources and other mediators
through views defined in a multi-mediator query language. In a PMS mediator
peers compose views in terms of views in other peers - mediators and sources,
or directly pose queries in the multi-mediator query language to some peer. All
peers are fully autonomous and there is no central catalog or controller. Each peer
in a PMS must provide an interface to its data and meta-data sufficient to allow
the cooperative processing of queries by the PMS. We analyze the computational
capabilities and meta-data that a software system has to export in order to partic-
ipate as a peer in a PMS. For the analysis we identify and compare six classes of
peer interfaces with increasing complexity. For each class we investigate the per-
formance and scalability implications that result from the available capabilities
and required meta-data. Our results are two-fold:i) we provide guidelines for the
design of mediator peers that can make best use of the interfaces provided by the
data sources, andii) we analyze the tradeoffs in the design of inter-mediator in-
terfaces so that mediator peers can efficiently cooperate to process queries against
other composed mediators. Finally we describe the choices made in a concrete
implementation of a PMS.

1 Introduction

Global computer networks, and the Internet in particular, provide the technical means
to interconnect large numbers of distributed software systems owned and maintained
by many independent persons and organizations. This capability to interconnect many
such systems presents many new opportunities for information sharing and reuse.
Most of these distributed systems are deployed and maintained independently of each
other in ways that suit best the local needs of their users. This results in fully au-
tonomous systems that are heterogeneous at many levels starting from the use of
different platforms and languages to heterogeneity at the logical level in the ways
real-world concepts are modeled.

The area of data integration is concerned with the problem of integration of het-
erogeneous data managed and/or produced by many heterogeneous and autonomous
systems, calleddata sourcesto emphasize the data access/management aspect of soft-
ware systems. One approach to integrate many such data sources ismediation[53, 54]
where data from many sources is accessed and combined “on-the-fly” in a coherent

view through a network of mediator components, each specialized in some knowl-
edge domain. Most existing mediator systems, such as [20, 16], reduce the general
mediation concept to centralized architectures that consist of one mediator that inte-
grates many data sources into a coherent view. Such data integration solutions are
suitable for enterprise contexts, due to more or less centralized organizational control
and data ownership. However, as recognized by recent research on data integration
[18, 22, 41, 7], many new application areas exist where centralized coordination is not
feasible, such as scientific cooperation, distributed engineering, and dynamic company
alliances. These areas of human activity may benefit enormously from the ability to
combine information shared by others to produce new information enriched with their
local knowledge.

Peer mediators.

For the integration of many autonomous data sources we use a decentralized data inte-
gration system architecture based on the initial mediation paradigm [53] where many
domain-specialized mediators share their data source abstractions so that other medi-
ators can reuse and combine these abstractions for higher levels of applications and/or
mediators. To allow each of the mediators to be maintained by independent experts
or groups of experts, we design the mediators as database systems with a high-level
query language that allows to definelogical compositionsof peers by defining views
in the mediator peers in terms of views in other mediator and data source peers. The
mediator owners integrate data sources and other mediators through the definition of
views in terms of the mediator query language, and export some of these integrated
views to other mediators and applications. The mediators and the sources are orga-
nized in a distributed system that follows the peer-to-peer (P2P) paradigm, calledPeer
Mediator System (PMS)[25, 31, 46, 30]. In a PMS there is no central catalog or co-
ordinator of any kind, and the mediators are fully autonomous peers that cooperate
together to process queries to their integrated views. A PMS consists of three types of
peers divided into three layers - data sources, mediators and applications. Data sources
manage stored and/or computed collections of data and provide programmatic inter-
faces for the access to their data. Mediators access relevant data from one or more data
sources, transform the data into a common representation, and match and integrate the
transformed data so that mediator users are presented with logically coherent views of
the data sources. Applications accept information requests from the users, send these
requests to the mediator layer and deal with the presentation of mediator replies to the
users. Applications always access the data sources through one or more mediators,
thus any PMS consists of at least one mediator and any number of applications and
data sources. In order to compute answers to user queries, the mediators have their
own query processors that translate logical peer compositions intophysical compo-
sitions that consist of interacting implementations of query operators organized into
query execution plans (QEPs).

The advantages of a P2P approach for mediation are that it allows the domain
experts to own and control independently their mediators in the same way as data
source owners have total control over the data sources. Each mediator may evolve at
its own pace as long as it preserves its public interface. Furthermore, in a PMS for
better scalability the integration effort can be distributed among many domain experts
and reused through logical compositions of mediators. Finally, a P2P architecture

2

promotes reuse of computation resources such as storage, CPU cycles, and specialized
software and hardware.

Problem description.

Among the most important issues in the design of any distributed system are the pro-
gram interfaces between the components of the system, the underlying computational
capabilities exposed through these interfaces, and the information that needs to be ex-
changed between the system’s components, so that all components can cooperate to
execute a common task. Since the main purpose of a PMS is to integrate many data
sources and to fulfill information requests through a declarative query language, the
common task to be executed by all peers in a PMS is that of processing queries. Thus,
an important problem in the design of a PMS is the relationship between the interfaces
of the peers to their data and meta-data, the corresponding computational capabilities
available through these interfaces, and the meta-data that the peers require, so that the
mediator peers can efficiently process queries against many logically composed peers.

Peer interfaces In a PMS there are three types of program interfaces - application to
mediator, mediator to mediator (inter-mediator), and mediator to data source. In gen-
eral it is possible to envision applications that will need to combine data from many
mediators. However such applications will duplicate much of the mediator function-
ality. To simplify such applications, they may always access a network of mediators
through a designated “gateway” mediator. Thus we can consider that applications use
the same inter-mediator interface as the mediators. Since mediator peers can serve as
powerful data sources for other mediators, we treat mediator and data source peers uni-
formly and we indicate the specific type of peers only when necessary. This uniform
treatment of mediators simplifies and generalizes our discussion and allows conclu-
sions to be drawn both about a range of design alternatives for the capabilities and
meta-data for the inter-mediator interfaces together with conclusions about the medi-
ator to source interfaces and required meta-data.

Interface capabilities Peer interfaces can be considered at two levels of interop-
erability. At a syntacticlevel interfaces must match in the data types that can be
exchanged between peers and the agreed protocol. This level of interoperability is ad-
dressed by a wide variety of standards and protocols, here calledphysical interfaces,
starting from message-based protocols implemented directly on top of some transport
protocol as HTTP, to higher abstraction remote procedure call based protocols such as
RPC [8], CORBA [11], JavaRMI, SOAP [4], and even to some degree database access
protocols as ODBC and JDBC. All these access methods provide different degrees of
abstraction and performance. However, most of these interoperability standards pro-
vide none or very limited means to describe the semantics of the functionality that is
invoked through them, e.g. even ODBC varies in terms of the SQL dialects accepted
by data sources. In addition, most of these access methods can be simulated on top of
the others, e.g. CORBA calls can be used to send complex XML documents as asyn-
chronous messages, while HTTP can be used to transport SOAP messages that de-
scribe remote procedure calls. Thus the same computational capability implemented
by a remote peer may be accessed through a variety of physical interfaces independent
of the capability itself.

3

A higher level of abstraction above physical interfaces are the computational ca-
pabilities of the data sources. By capabilities we mean the abstract computations that
a source can perform over some optional input data. The computational capabilities
of a peer available through its low-level interfaces are called theinterface capabilities
of the source. For example the typical interface capabilities of a relational DBMS in-
clude the ability to compile SQL queries and store them for future execution1 and the
ability to directly execute SQL statements or precompiled queries. In this paper we
abstract ourselves from the low-level interfaces, the choice of which has been stud-
ied elsewhere [29, 35, 45]. Our goal is to consider what are the publicly available
computation capabilities, that is interface capabilities, of the peers in a PMS.

In the literature the terms “limited source capabilities” or “limited capabilities” are
usually understood in two ways based on modeling sources as collections of relations.
The first, used in e.g. [56, 14], which we namelimited access capabilities, refers to the
the fact that many sources, such as Web forms and specialized computation sources,
require that some of the attributes of a source relation must be provided in order for a
source relation to be accessible, thus the source’s relations have limited access paths
compared to corresponding relational tables. In relational terminology this means
that source relations do not provide a scan interface. The second view on limited
source capabilities, used in e.g. [52] and here calledlimited query capabilities, is more
general and considers capabilities as the set of queries that a source can compute with
respect to some query language. Our concept of interface capabilities also includes
arbitrary computations that a peer may perform, e.g the ability to precompile a query
and return a query handle, as long as they are accessible by other peers.

Interface capabilities, meta-data, and query processing. Due to the complete de-
centralization of PMSs, the peers have very little information about each other, unlike
distributed DBMSs [44] where there is a centralized catalog. This requires that at
query processing time the peers exchange information needed to compile and evaluate
queries that involve many peers. This can be information about the schema, data statis-
tics, resources, availability, capabilities, etc. of the peers. We use the termmeta-data
to denote all kinds of data used to describe the properties of the actual data that is of
interest to the end users and the properties of the system that is used to manage/access
that data. In particular aschemais a special kind of meta-data that describes the struc-
ture and relationships of data. Schema information is used both by the user to specify
queries and the system to efficiently access the requested data.Technical meta-data
describes technical aspects of data and data sources which are usually not of interest
to the end-user, such as data distribution, access cost, etc. Technical meta-data is used
in query processing, ideally without user involvement.

The more meta-data is available to the peers, the more sophisticated query pro-
cessing can be performed that results in better QEPs either because more alternative
plans can be considered, or because of more precise data statistics.

On the other hand one may expect that the more meta-data is exchanged between
the peers, the higher the overhead both in the exchange and the utilization of the meta-
data. For example, a cost-based query optimizer may send very large numbers of cost
requests to other peers to evaluate the time or resources to compute some operation at
the peers. At the same time a query optimizer “aware” that certain operations can be

1This corresponds to the “prepare” functionality in ODBC/JDBC.

4

computed at more than one peer, may need to explore much larger space of alternative
plans to find an optimal assignment of operations to peers. In large compositions of
peers this may lead to prohibitively high query compilation costs.

The exchange of one kind of meta-data may trigger exchange of other kinds of
meta-data, e.g. view expansion may require the exchange of additional schema in-
formation such as new data types and the schema of new relations; once new re-
mote relations become visible to a query compiler, their access costs have to be re-
trieved/estimated.

Therefore the design of an efficient and effective PMS has to take into account
the tradeoffs between several inter-dependent factors:i) the computation capabilities
of the peers available through their interfaces,ii) the meta-data the peers depend on,
andiii) the query processing techniques that can be applied in the presence of partic-
ular meta-data and interface capabilities. In addition, the more meta-data, the more
advanced interfaces are used by the peers and the more advanced query processing
techniques are applied that utilize this meta-data and interfaces, the more complex can
be the implementation of the mediator peers.

Contributions

This paper investigates qualitatively the relationship between the interface capabilities,
meta-data, and query processing in a PMS and their implications on the performance
and complexity of a PMS implementation.

To make our discussion more concrete, we base it on a specific functional and
object-oriented mediator data model and query language, described in Sect. 2, that
we have implemented in the AMOS II mediator system [46]. We compare six classes
of peer interface capabilities with increasing degree of complexity. In each of them
more meta-data is exchanged between the peers. This allows the mediator peers to
perform more sophisticated query processing and to explore more alternative QEPs.
Our results are based on our experiences with the implementation of some of these
interface classes and the corresponding query processing techniques in the AMOS II
mediator system.

For each class we investigate the performance and scalability implications that
result from the available capabilities and required meta-data. Our results are:

• for each interface class we identify the minimum requirements for the capabil-
ities and the meta-data that a software system has to make available through its
program interfaces to other systems in order to participate as a peer in a PMS
and allow the processing of inter-peer queries,

• we analyze the tradeoffs in the design of inter-mediator interfaces so that me-
diator peers can efficiently cooperate to process queries against other logically
composed mediators,

• we provide some guidelines how to design mediator peers that can make best
use of the interfaces provided by the data sources,

• finally we indicate how these interface classes have been used for query pro-
cessing in the AMOS II mediator system [46].

5

Organization.

The following Sect. 2 introduces the functional mediator data model and query lan-
guage, and related concepts that we use in the rest of this paper for our analysis. In
section 3 we analyze the six interface classes, each in a separate sub-section. We
describe our implementation of the interface classes in the AMOS II peer mediator
system in Sect. 4. Section 6 provides an overview of related work. Finally we sum-
marize and discuss our findings in Sect. 6.

2 Functional Peer Mediators - data model, query lan-
guage and terminology

Many kinds of data sources have an object-oriented (OO) data model, while others
have relational or semi-structured data models. Therefore we believe that object-
orientation is necessary for the integration of many types of data sources with complex
data typically found in, e.g. the scientific and engineering areas. The data sources
may or may not have OO features; however, the mediators in a PMS should have a
data model sufficiently expressive to model all types of data sources.

Below we describe the functional and object-oriented mediator data model and re-
lated concepts that we will use throughout the rest of this paper. A detailed description
of the mediator data model and query language can be found in [46].

Basic concepts. The basic modeling concept in our functional mediator data model
is theobject. Objects are classified intypes. Attributes of objects and relationships
between types of objects are expressed throughfunctions. While objects model real-
world entities, in general functions represent computations. Functions consist of two
parts - atype signatureand animplementation. The type signature defines the types of
the arguments and the results of a function, and a logical direction from the function
inputs to its outputs. For example the function :

grade(student, course) -> integer;

that models the relationship between courses, students and their grades in a university
database, would have the signaturestudent, course→ integer. Theextentof a func-
tion is the set of all tuples that describe the mapping of all inputs to corresponding
outputs.

Kinds of functions. Depending on how a function implementation computes its re-
sult(s) we distinguish several kinds of functions.Storedfunctions store explicitly the
result of a computation,derived functions specify the result of a computation as a
declarative query defined in terms of other functions and types, andforeign functions
represent computations specified in an external language(s) and/or module(s).

Connection to the SQL data model. We relate functions to concepts in the SQL:1999
object-relational data model (as the most popular one) in the following way. Stored
functions correspond to stored relations (tables), derived functions correspond to views,
and foreign functions correspond to user-defined functions (UDFs). Thus, functions

6

are a unifying concept for stored tables, views and various kinds of UDFs (scalar and
table functions, stored procedures) in the relational data model. The uniformity of
the concept of functions greatly simplifies the discussion of many aspects of query
processing that neither depend on the implementation of functions (whether they are
stored, derived or foreign), nor they depend on the kind of functions (whether they
are single or bag-valued, etc.). This allows us to relate our discussion to different data
models and query languages.

Binding patterns and multi-directional functions. In order to model arbitrary n-
ary relationships computable in different directions, functions can bemulti-directional,
that is, given values for some of the function input and/or output variables, the me-
diator can compute the corresponding values for the remaining variables. Function
variables for which values are provided are said to bebound, all other variables are
free, thus thecomputation directionof a function is determined by its bound and the
free variables. The computation direction where the bound variables coincide with the
logical inputs of the function is called theforward direction, all other combinations of
bound and free variables areinverses. Functions computable only in one direction are
said to besingle-directional.

Stored functions are computable in all possible directions, however foreign func-
tions that model arbitrary computations are in general computable only in some di-
rections. To model n-ary relationships that are computable only in some directions,
multi-directional functions are annotated with binding patterns. Abinding pattern B
is a mapping from the set of variablesV of a function definition into the set of symbols
{b, f }, whereb denotes a bound variable, andf a free variable. Binding patterns can be
expressed positionally as sequences of{b, f }, 〈x1, . . . , xn〉, where eachxi corresponds
to the variablevi at positioni in a function definition.

In general different directions of a relationship have to be computed in different
ways. For example the foreign function

power(number base, number exp) -> number root;

can be thought of as an abstract 3-way relation between numbers. This relation is
computable only in four of all possible six directions. These four directions are de-
scribed positionally by the binding patterns:bb f, f bb, b f b, andbbb. Each of the first
three binding patterns requires a different algorithm, correspondingly implemented
by functions that compute the power, the root, and the logarithm of a two numbers.
Thus, each binding pattern is also associated with a concrete implementation in some
procedural language. To allow a cost-based query optimizer to pick the best foreign
function implementation, each binding pattern also has acost functionassociated with
it that computes the execution cost and selectivity of the particular implementation. In
our power funcion example, if the function is invoked with thebbbbinding pattern,
all three implementations can be used to check if three numbers are related by a power
relationship. However we may expect that one of the three algorithms is more efficient
than the others.

Multi-directional functions tie together implementations of algorithms for travers-
ing relationships in different directions. The concept of a multi-directional function is
similar to that of a relation adorned with binding patterns as in [51]. Multi-directional
functions and cost-based optimization with multi-directional functions are described
in more detail in [37].

7

Global queries. A database query is a declarative specification of the result of some
computation. A view is a named query. Queries are expressed through a SQL-like
selectstatements. For example the query:

select name(s)

from student s

where birthyear(s) > 1980;

finds the names of all students born after 1980. Queries that refer to data and/or meta-
data in other peers are calledglobal queries.

When a query is posed to a mediator peer, we call that mediator thequery peer. All
other peers that contain database objects referenced by a query are calledremotepeers.
Both terms are relative to the query and the role of the peer. In order for a mediator
peer to expressglobal queries and views that involve data from other peers, external
meta-data needs to be represented somehow. The termproxy denotes a reference
to any remote database object stored in another peer. In accordance with the basic
functional data model presented above, mediator peers model the contents of other
peers in terms ofproxy objects, proxy functions, andproxy types. Similar to local
functions, proxy functions model both data collections in remote peers, computations
in remote peers, and attributes of remote data items. Proxy types correspond to the
types (or classes) of the remote data items. Proxy objects correspond to individual
data items in remote peers.

3 Classes of Peer Mediator System Interface Capabil-
ities

This section describes and analyses six classes of PMS interface capabilities in terms
of the functional data model presented in Sect. 2. We present each of the interface
classes in order of increasing amount of meta-data needed for query processing, and
increasing space of QEPs that needs to be considered for each class. Each new in-
terface class allows for strictly larger plan spaces to be explored, in which there may
exist better QEPs compared to the preceding classes of interfaces.

The ordering we provide is not definite - some of the interface classes are inde-
pendent of each other and can be combined to form more complex interface classes.
For such complex interface classes the combined effect of the properties of each con-
stituent must be considered, which we leave outside of the scope of this discussion.

Our discussion assumes that there is one mediator peer, thequery peer, to which
queries are posed and the queries reference one or more data sources and/or mediator
peers. The mediator peers may further integrate other logically composed peers. In our
discussion of query optimization for each interface class for brevity we assume that
the mediators use cost-based query optimization, however most of our conclusions
are independent of the particular optimization method, e.g. whether it is exhaustive or
not, or whether it is static (performed before query execution) or dynamic (performed
at query execution time). In Sect. 6 we discuss the importance of dynamic approaches
to query optimization [23, 17] for a PMS and some of the concequences of dynamic
query optimization for each of the interface classes.

8

3.1 Single-Directional Proxy Functions

The simplest possible way to interface peers in a PMS so that mediators can compute
queries that refer to data in other peers is to make proxy functions directly computable.
That is, to associate each proxy function with an implementation that computes the
results of the function by invoking the corresponding computation at a remote peer.
With this approach the interface capabilities of each remote peer are determined by
its proxy functions, and the results of these functions directly represent the contents
of the peers. For example a university may provide a Web site with five HTML forms
that allow to list all students, all courses, all students taking a course, all courses of a
student, and the grade of a student for a course. This Web site can be represented by
five proxy functions2:

all_courses() -> bag of course;

all_students() -> bag of student;

enrolled_in(course) -> bag of <student, grade>;

signed_for(student) -> bag of <course, grade>;

grade(student, course) -> grade;

Figure 1: University data source

3.1.1 Functionality

An implementation of a proxy function has to:i) translate the function parameters
into a format understandable to the remote peer,ii) package the translated parameters
together with additional meta-data that specifies the corresponding remote computa-
tion into a remote procedure call descriptor, and ship this call descriptor to a remote
peer,iii) invoke the corresponding computation at the remote peer,iv) ship back the
computation result(s), andv) translate the results into the local data representation and
return them to the query processor of the mediator peer. We term this functionality as
call shipping.

In order to compute a proxy function through call shipping, all logical inputs of
the proxy function must be bound prior to execution. The result of call shipping is
in general a bag of tuples described by the logical outputs of the function. Since
call shipping computes proxy functions only in their logical direction, we call such
functionssingle-directional proxy functions (SDPF). Notice that with call shipping
the logical direction of an SDPF coincides with its physical direction, thus the type
signature of an SDPF specifies the variable bindings as well. An SDPFF is fully
specified by a 4-tuple〈T, I ,P,C〉, whereT is its type signature,I is an implementation
of F that realizes a call shipping functionality,P is the peer that contains the remote
data collection modeled byF, andC is an identifier for the data collection in the
remote peer.

Since the result of a remote call can be generally multi-valued (a multi-set of
tuples), it can be either fully materialized at the remote peer and shipped back as
a whole, partially materialized and shipped in bulks of tuples, or fully streamed and

2We usebago f to model collections with duplicates (multisets).

9

shipped one tuple at a time to the query peer. The feasibility of these strategies depends
on the capabilities of the source peer. For example many Web sources return their
results as separate pages and provide a navigational interface to retrieve the next set of
results. Such pages with results correspond naturally to bulks of tuples. Simpler Web
sources may fully materialize request results as large documents. Similarly, sources
such as ODBC provide a tuple-at-a-time iterator interface to request results.

3.1.2 Related approaches

We notice that at this level of description, the execution of proxy functions is concep-
tually the same as that of fine grain remote procedure calls, as implemented by e.g.,
Sun RPC [1], CORBA, and SOAP. By “fine grain” we mean the type of access where
remote procedures access and return individual data items or individual data sets. For
example if CORBA is used to implement peer interoperability, then each proxy func-
tion corresponds to a CORBA operation, each proxy type to a CORBA interface, and
each proxy object to a CORBA object.

3.1.3 Querying

Since user queries over many sources with varying capabilities are defined in terms of
proxy functions, an important question is what is the degree of abstraction provided
to the user by the SDPF class of peer interface capabilities?

Many data source peers, especially Web sources, may provide many ways to query
their contents that require or produce overlapping data. As a result there may be more
than one way to retrieve the same information, because there may be several ways
to combine proxy functions into queries that are equivalent. For example, assume
a mediator user wants to specify the following query to the university Web source
described above: “What are the students who have grade ’5’ in all courses?”. Three
variants of the query, specified below in the mediator query language on Fig. 2, are:
Q1)select all courses in the university and all students with their grades enrolled in the
courses, and filter the students with grade ’5’,Q2) select all students in the university
and all courses they are signed for with corresponding grades, and filter the students
with grade ’5’, andQ3) select all courses and all students in the university, get their
grade through thegraderelationship, and check if that grade is ’5’.

The queries express the same information request. However, depending on the
number of students, number of courses and distribution of students per course, one of
the queries may have orders of magnitude better performance that the others. Given
that realistic data sources may have large number of data collections with many ways
to access their data, SDPF interfaces require that the user is familiar with the data
statistics of the source data in order to write efficient queries. An additional problem
is that users may not always be able to discover the right proxy functions to answer
their information need even if they are familiar with the schema of the remote peers.

3.1.4 Query processing

With the SDPF class of interfaces users have to choose themselves the proxy func-
tions that directly correspond to specific ways of accessing the data at the remote
peers. This not only complicates the task of the mediator users, but also prevents the

10

Query Q1:

select s

from student s, course c, grade g

where c = all_courses() and

<s,g> = enrolled_in(c) and

g = 5;

Query Q2:

select s

from student s, course c, grade g

where s = all_students() and

<c,g> = signed_for(s) and

g = 5;

Query Q3:

select s

from student s, course c, grade g

where c = all_courses() and

s = all_students() and

g = grade(s,c) and

g = 5;

Figure 2: Three ways to express the same query with SDPFs.

mediator query optimizer from choosing the best way to retrieve relevant information.
With the SDPF class of interface capabilities query processing costs are distributed
as follows. All query compilation is performed at the query mediator peer because
all other peers are only capable of computing the results of proxy functions for given
arguments. Functions with arguments can be looked at as selections and functions
without arguments as scans. Since these are all operations that remote peers perform,
all other database operations, such as join and union, must be performed by the query
peer. The only functionality the remote peers have from the perspective of a mediator
query peer is that of selections and scans; therefore query execution is fully controlled
by the query peer. Since all communication between the peers is performed via remote
call requests, all data from all remote peers always flows through the query peer. Thus
if the result of some proxy function is needed as input to another one that is computed
at the same remote peer, all data will nevertheless flow through the query peer in a
centralized manner.

To summarize, all query processing except for the computation of the proxy func-
tions is performed by the query peers in a centralized manner with respect to each me-
diator peer. When many levels of peers are composed in terms of each other through
views, query peers can “see” only their immediate neighbors. If these neighbors are
mediators themselves that integrate other peers through views, requests sent to these
mediator peers trigger similar centralized execution, which is “invisible” to the query
mediator that submits a request. As a result all query execution follows exactly the
logical composition of the mediator peers.

11

3.1.5 Meta-Data

A PMS where peers inter-operate through SDPF interfaces requires two kinds of meta-
data. Schema information is necessary that maps the structure of the data items in the
source peers to types in the mediator data model. The proxy functions that model
collections and attributes of data items in remote peers are defined over the mediator
proxy types that represent the corresponding remote data items,student, course, and
grade. This schema information is used by mediator users to specify queries and views
over data in other peers, by the implementations of the proxy functions to convert data
between the mediator and the remote peer data models, and by the query processor
to perform semantic analysis of queries. To allow the mediator to perform cost-based
optimization of queries over many peers, the minimal technical meta-data required is
the cost and selectivity of each proxy function. In addition, other schema information
may be supplied, such as uniqueness constraints for some data item attributes and ex-
tent semantics for proxy functions that are known to compute the complete extension
of remote data collections.

Since many data sources provide very little or no meta-data at all, the mediator data
definition language (DDL) should provide the means for the mediator programmer to
specify all this meta-data when defining the mapping from proxy types and functions
to the corresponding concepts at the remote peers.

Other data source peers, such as RDBMS and the mediator peers themselves, pro-
vide programmatic access to their meta-data. The access to such meta-data can be
implemented based on the reflective nature of the functional data model by using
meta-data proxy functions that access the meta-data interfaces of remote peers and
return meta-objects of typeFunctionandType. Thus meta-data proxy functions can
implement automated mapping between data models of remote peers and the local
data model, so that a schema of any remote peer can be automatically imported as part
of the local schema of a mediator peer.

3.1.6 Discussion

The advantages of the SDPF approach are its simplicity and non-intrusiveness. Proxy
functions can be added to a relational query processor extensible with user-defined
functions (UDFs) because they can be directly implemented as UDFs. The distribution
of the peers is fully encapsulated in the implementation of the UDFs, thus a query
optimizer does not need to deal with distribution. Typically UDFs provide some way
for cost and selectivity information to be associated with them, which allows also to
hide the cost of of distribution. The SDPF interface class also requires very little meta-
data to be exchanged between the peers and does not violate peer autonomy because
the implementation of remote functions is hidden for the other peers.

The problems with the SDPF approach are in thati) users must have knowledge
of data statistics at the sources to produce efficient queries,ii) query specification is
hard due to potentially large numbers of proxy functions and their combinations,iii)
query processing is centralized which requires most processing to be performed by the
query mediator peers,iv) all computations at remote peers are treated as black boxes
modeled by proxy functions, and, as a result,v) the execution of global queries follows
the path of the logical composition of the peers which may result in many redundant
computations because the same computations in the same peers may be redundantly

12

invoked via many different logical paths.
In summary, this is a simple, but potentially very inefficient approach to add MDB

capabilities to a single-site optimizer.

3.2 Multi-Directional Proxy Functions

One of the main disadvantages of the SDPF approach is that it does not provide truly
declarative means for the users to specify queries and views that integrate many peers.
Users need to know which of several alternative ways to access data is the most ef-
ficient one. The main reason for this deficiency is that when proxy functions are
implemented with the SDPF approach, they are executable only in one direction be-
cause they are directly mapped to some procedures at the remote peer. As a result
several proxy functions may represent different ways to access various subsets of the
same data collection, as in Fig. 2.

To alleviate this problem, we notice that all single-directional proxy functions that
access the same data collection can be viewed as alternative ways to compute some
generic function that logically describes the contents of a remote data collection. In
the context of our university Web site example, we notice that the proxy functions
enrolled in, signed f or, and grade (from Fig. 1) in fact relate the same informa-
tion about students - the courses they take and their grades, that is they compute the
same relationship in several directions corresondingly described by the binding pat-
terns f b f , b f f , andbb f. Thus we can represent the three SDPFs through one abstract
proxy function

student_info(student, course) -> grade;

that relates together all three SDPFs as representing the same relationship, and let
the query processor of the mediator choose which SDPF results in best query perfor-
mance depending on the query where the abstract function is used, and the statistics
for each SDPF. As a result remote peers are modeled through sets of such abstract
proxy functions that can be computed in multiple directions, and therefore called
multi-directional proxy functions (MDPF).

3.2.1 Functionality and query processing

Unlike single-directional proxy functions, multi-directional proxy functions are not
always directly computable. Instead, they only describe abstract relationships between
objects of different types at remote peers. An MDPF can be computed cooperatively
by a query peer and the peer where it is defined in two ways that depend on the
capabilities of the source peers.

First, a query peer can substitute at query compile time an MDPF with a concrete
implementation that invokes some computation at a remote peer. For this, an imple-
mentation of multi-directional proxy functions must provide a way to relate an MDPF
with the actual implementations that compute the MDPF in particular directions.

This relationship can be established by defining an MDPFM as a tuple〈T, {F j , Bj}〉

whereT is a type signature, and{F j , Bj} is a set of SDPFsF j , and corresponding bind-
ing patternsBj . Each binding patternBj defines a permutation of the variables inM,
such that the logical inputs ofF j correspond to the bound variables inM. This permu-
tation of variables is required because the SDPFs are computable only in the forward

13

direction. Thus, an implementation of an MDPF must be able to reorder its inputs
to fit the variable order of the invoked SDPF and the results of the SDPF to fit the
signature of its MDPF. With this approach, the query compiler reduces the problem
of computing an MDPF to the computation of some SDPF. Because of this reduction,
this approach is applicable to all kinds of peers accessible through SDPFs.

The second possibility to compute MDPFs is to delegate the choice of the most ef-
ficient computation of an MDPF to the source peer during query execution time. This
requires that the source peer is capable of accepting an MDPF reference together with
the bound parameters and deciding on the fly which is the best implementation to ac-
cess the data collection modeled by the MDPF. The main problem with this approach
is that the query compiler at the query peer can not easily estimate the execution cost
and selectivity of MDPF remote calls at compile time, because variable bindings can
not be known before execution. It remains to be investigated how to process queries
with such dynamic MDPFs.

3.2.2 Related approaches

The ODL object-oriented data definition language, which is a part of the ODMG stan-
dard [10], provides facilities to define inverse relationships as special kind of class
properties. Unlike our functional approach, relationships in ODL can be only binary.
The main limitation of ODL relationships is that it is not possible for the users to
specify user-defined methods that compute the same relationship in different direc-
tions. Instead, the system maintains the relationships transparently for the user. This
is convenient for top-down database design, but limiting when specifying interfaces to
sources with specialized and/or limited capabilities.

3.2.3 Querying

Queries over peers modeled as collections of MDPFs can be expressed in a more
simple and declarative way because many related interface capabilities at the peers
are “hidden” behind one abstract proxy function. For example, all three queries from
Fig. 2 can be expressed through the single query on Fig. 3.

select s

from student s, course c, grade g

where c = all_courses() and

student_info(s,c) = g

g = 5;

Figure 3: Example of query with MDPF interface class.

3.2.4 Meta-Data

Compared to the SDPF interface class, MDPFs require additional meta-data that re-
lates several interface capabilities at a remote peer as computing the same relationship
between data items in different directions. Many data sources do not provide such
meta-data, therefore users must be able to manually define MDPFs in the mediator

14

data definition language, and relate the MDPFs to their corresponding implementa-
tions and binding patterns based on the user’s knowledge of the sources. For some
data sources, such as RDBMS, it may be known in advance that specific kinds of
data collections, e.g. tables and views, can be always accessed in all possible direc-
tions. Such sources allow MDPFs to be automatically generated and related to their
corresponding implementations for different binding patterns.

Since an MDPF relates data items of the same types no matter in what direc-
tion it is computed, all schema related meta-data can be encoded in the MDPF itself.
However, to allow a query processor to choose the most efficient implementation of
an MDPF, the MDPF interface class requires the same technical meta-data as in the
SDPF interface class.

3.2.5 Discussion

The MDPF approach has three major advantages - first, it reduces the total number
of functions that a user must deal with which simplifies the task of specifying queries
and views, second, the user does not have to consider alternative queries for perfor-
mance reasons, and third, the query processor automatically selects the most efficient
implementations of generic proxy functions. Thus the MDPF interface class provides
higher level of abstraction while at the same time it provides improved performance
compared to the SDPF interface class. Practical implementations of MDPF interfaces
require that a mediator query processor can optimize queries in the presence of lim-
ited binding patterns and thus are more complex than that of peers based on the SDPF
interface class. Query processing with limited binding patterns is studied, e.g., in [37]
and later in [14]. Finally, since MDPF is reduced to SDPF, MDPF interface carry over
all other problems characteristic of SDPF.

3.3 Multi-peer Proxy Functions

In a peer mediator system peers may have overlapping capabilities and therefore there
might be a choice where to perform some of the computations in a QEP and conse-
quently where to ship the data necessary for those computations. This choice may
lead to considerable differences in query performance in particular when the pro-
cessing power and network link capacity varies between the peer nodes. Using our
approach to model remote peers as collections of proxy functions,overlapping peer
capabilitiesmean that two or more proxy functions represent equivalent computations
implemented at different peers. Two functions areequivalentif for the same input
they always produce the same output and this holds for all possible legal inputs. Thus
a function can be freely substituted for any of its equivalent functions. Function equiv-
alence does not necessarily mean that two remote computations are implemented in
the same way. If a proxy function represents data that is explicitly stored at a peer,
then equivalent proxy functions represent data replicas. In addition equivalent proxy
functions may represent other equivalent computations, such as an image similarity
matching operator available at several peers. Thus, data replication becomes a special
case of equivalent proxy functions. This means that a query processor that takes into
account function equivalence will automatically take into account data replication.

Since proxy function equivalence stems from the equivalence of the corresponding
computations at remote peers, in the general case the concept of equivalence has to be

15

applied to the participating SDPFs. Equivalence of MDPFs can be defined in different
more or less “strict” ways. Here we consider two MDPFs as equivalent if they are
computable in the same directions and for each direction the corresponding SDPFs
are equivalent. This definition can be relaxed in various ways which are outside the
scope of this work.

3.3.1 Functionality

As we already noticed, one SDPF may be computed through several equivalent com-
putations that are implemented differently in different peers. For example, let us
add to our university scenario one more source peer that provides access to its data
through an ODBC physical interface, and is known to contain a replica of the function
enrolled in. In this case the implementations of the two functions that access the same
data in different peers will be different - one will submit HTTP requests, the other -
ODBC calls. Therefore we can consider that for each set of equivalent SDPFs that
correspond to concrete computations in some peers, there is some abstract function
with a binding pattern common for all the SDPFs. We call such abstract functions
multi-peer proxy functions (MPPF). An MPPF is fully described by a tuple〈T, {F j}〉

whereT is a type signature, andF j is either an SDPF or an MDPF.

3.3.2 Related approaches

The idea of equivalent proxy functions relates to the concept oflocation transparency
in distributed DBMS (DDBMS) [44], federated DBMS (FDBMS) [48], and media-
tor systems [53]. In a DDBMS, for performance and reliability, (partially) replicated
relations are distributed among many nodes. A DDBMS provides full location trans-
parency by choosing automatically which replicas to use for querying, thus all repli-
cated relations at the query language level are similar to MPPFs. There are two main
differences between replication in DDBMSs and MPPFs. First, table replicas in a
DBBMSs are specified in a top-down fashion by the user and are then automatically
maintained by the system, and the users cannot “tell” the DBMS that some external
data collections are in fact replicas. In contrast to that, MPPFs allow mediator users
to specify the equivalence of arbitrary remote data collections that are outside of the
control of the mediator. This can be done on per remote data collection basis either
manually by the mediator users based on their knowledge or automatically by the
mediator system whenever equivalence can be discovered automatically. The second
main difference is that, unlike replication in DDBMSs that relates only stored data,
MPPFs provide a uniform way to treat as equivalent both computations and stored
data in external sources. Both this differences make MPPFs more suitable for data
integration than the automatic top-down approach to replication of DDBMSs.

A federated DBMS integrates multiple export schemas into a federated schema
that includes information about the distribution of the export schemas and the map-
ping between different schema elements of the export schemas and the corresponding
element in the federated schema. At the level of a federated schema data distribution
is invisible for the user in the same way as through MPPFs. However, the design of
a federated schema also requires that semantic heterogeneity of the export schemas
is resolved, thus federated schemas are more general than MPPFs with respect to the
heterogeneity of the component databases.

16

The concept of local-as-view (LAV) schema mappings in mediator systems [36,
50] is similar in that it provides a single logical view over many distributed data col-
lections as MPPFs. However, LAV schema mappings relate not only equivalent data
collections but also ones that represent similar real-world concepts. LAV mappings
are more general than MPPFs and can deal also with semantic data heterogeneity and
specify how to restructure and reconcile related data collections into one coherent
view. MPPFs only account for data collection equivalence and can not handle hetero-
geneity, however query processing with LAV mappings [36] is much more complex
that that with MPPFs.

3.3.3 Query processing

To enable processing of queries over MPPFs, it is necessary that a mediator query
processor takes into account the equivalence of remote functionality, and that it ex-
plores alternative plans where the computation of equivalent functions is performed at
various peers. Thus a mediator query compiler needs to explore a larger search space
where not only the order of the operations matter, but also the peers where operations
are executed. It is shown in [34] that for a System R style optimizer the time complex-
ity of such distributed query optimization isO(s3 ∗3n), wheres is the number of peers
andn the number of relations, while in a single-site optimizer it isO(3n) as shown
in [42]. These results apply only to the case when there are no binding patterns to
consider. The combination of MPPFs with MDPFs may result in even bigger search
spaces for a query optimizer, because it has to consider both alternative peers for the
computation of functions and alternative binding patterns. As a result we may expect
higher compilation cost that increases with the number of peers referenced in a query.

One special type of optimization that a mediator peer should perform is when it
implements locally some function referenced in a global query, that is some of the
MPPFs have local SDPFs in their definitions. In such cases it is always possible to
replace an MPPF with a corresponding local function in its definition to avoid com-
munication.

In all other cases, even when several functions in a QEP can be executed at the
same remote peer, all the data passed between these functions still has to be shipped
through the query peer in a centralized manner. This is due to that MPPFs in a QEP
are replaced by SDPFs which allow only centralized query execution, i.e. the peers
cannot exchange data directly.

3.3.4 Querying

MPPFs provide an even higher level of abstraction above MDPFs because they “hide”
many functions that perform the same computation behind one abstract function. This
reduces even further the number of functions a user must deal with to specify queries.
For example, if several peers provide the same operation, e.g. an image comparison
operation, if the equivalence of these operations is not known to the mediator system,
then it is the user who must choose one of these alternative implementations. In a
similar way as MDPFs provide an advantage over SDPFs, MPPFs are more general
than SDPFs and can be combined with MDPFs to provide a more expressive tool to
describe peer sources. Once the equivalence of functions across peers is established

17

through MPPFs, users need not be aware of distribution and may concentrate on query
semantics, letting the mediator query compiler select the most appropriate peers.

The second advantage of MPPFs is that queries specified in terms of MPPFs need
not be changed when peers are added and removed, or their capabilities are modi-
fied. The only changes needed when the functionality of a peer changes or the peer
is added/removed is that of the definitions of the affected MPPFs. Then the media-
tor query compiler can automatically recompile all affected queries without any user
intervention.

3.3.5 Meta-Data

In addition to the meta-data needed by the SDPF and MDPF interface classes, the def-
inition of MPPFs needs meta-data about the equivalence of functions and operations
defined in different peers. Function equivalence can be established in several ways.
Users can explicitly specify function equivalence via the mediator DDL. Knowledge
about standards, query languages and particular systems can be used, e.g. equiva-
lence of built-in functions in DBMSs can be easily established. Automatic and semi-
automatic means can be used to detect function equivalence as in [55], e.g. functions
with the same name and signature can be considered to have the same semantics. For
functions implemented in a declarative language as parameterized queries the notion
of query equivalence [24] can be used to detect function equivalence. However, in the
general case it is not possible to infer automatically function equivalence. Therefore it
is essential that some peers provide the means for the user to specify and store function
equivalence information. Ideally this information is stored as part of the meta-schema
of the peer(s). MPPFs inherit all other meta-data requirements of SDPFs/MDPFs.

3.3.6 Discussion

Modeling remote peers through MPPFs can considerably reduce query execution times
due to lower network overhead, better utilization of processing power and utilization
of more efficient data access paths at the remote peers. Once the equivalence of some
functionality in a PMS is established, the users may transparently specify queries us-
ing functions as generic concepts without the need to take into account where these
functions are implemented and what are the query performance consequences. MPPFs
also provide better scalability in the data integration process because they allow me-
diators to automatically adjust to changes through query recompilation.

The cost of these advantages is more complex query processing that requires a
distribution-aware query processor. The use of MPPFs expands the search space of a
query compiler which allows more efficient QEPs to be found than in the SDPF and
MDPF approaches. However this may result in considerably higher compilation costs
compared to the use of only SDPFs/MDPFs. As with MDPFs, multi-peer proxy func-
tions inherit all other disadvantages of SDPFs because they are directly replaced by
SDPFs at compile time. Finally, with MPPFs mediators can consider only capabilities
that are already present at the peers.

18

3.4 Plan Shipping

The analysis of the previous three classes of inter-peer interfaces, collectively called
proxy function interfaces, shows that in order to achieve better performance, it is nec-
essary that the peers provide more powerful ways to access their data than through
simple RPCs modeled as directly computable proxy functions. The disadvantages
of the proxy function interfaces are rooted in that from the perspective of the query
peers, all other peers are capable only of computing proxy functions that correspond
to individual data collections or object properties. Thus, query processing based on
proxy function interfaces has to be performed centrally, and data is always shipped
to the computation in the form of call parameters and results. Such centralized query
processing can be suboptimal becausei) even if several computations in a QEP are
performed at the same peer, all intermediate data is transferred across the network
through the query peer, andii) intermediate results between operations in different
remote peers are always communicated through the query peer.

To overcome both limitations it is necessary to decentralize the processing of
global queries in a PMS. Then, computations that can be executed at the same peer
can be grouped together and sent to that peer for execution, so that network trans-
mission of intermediate results is replaced by in-process communication. Operation
grouping may also result in reduction of network traffic because the combined execu-
tion of several operations may produce less data than the execution of each operation
separately. Intermediate results between operations that do not involve the query peer
can be communicated directly between the remote peers much more efficiently than
through the query peer, depending on the network links between the peers.

To decentralize the processing of queries in a PMS, the query peers should be
able to delegate to other peers the computation of portions of queries, here called
query fragments, as whole units of processing. This requirement means that source
peers must have the capability to “understand” and compute such query fragments.
Query fragments, as queries in general, can be represented in two ways - either as
algebraic expressions that describe how to compute a query fragment, or as declarative
expressions that logically specify the desired result. In this section we will consider
the first case when query fragments are communicated as algebraic expressions. The
following Sect. 3.5 discusses the second alternative - that of communicating query
fragments between peers in the form of sub-queries.

In order for a query peer to instruct other peers to perform complex computations
via algebraic expressions, the remote peers must be able to store and execute such
expressions on peer’s request. We term this interface capability asplan shipping.

3.4.1 Functionality

Plan shipping is useful for systems that provide an algebraic interface to their data, but
have no query language or query compiler. Since few systems provide public inter-
faces that allow them to accept QEPs (and thus directly expose their query processors),
and there is no standard for query plans, plan shipping is most applicable to peers of
the same kind that “know” each other’s QEP format, and thus are able to generate and
exchange such sub-plans.

To implement plan shipping it is required that, as minimum, query peers canPSq1)
decompose global plans into sub-plans, each executable by some remote peer, and

19

PSq2)invoke remote plans via some mechanism. Source peers should be able to
PSs1)receive a QEP in some form, andPSs2)compute and return the result of an
invocation of a QEP. Having only these two capabilities means that a query peer has
to submit sub-plans every time it executes an global query. To avoid this overhead,
source peers should be able toPSs3) installsub-plans, that is, to locally store received
plans, return handles for such plans, and invoke plans through such handles.

To enable cost-based query compilation the query peers should be able toPSq3)
estimate the cost of executing sub-plans in another peer, the selectivity of these sub-
plans, and the costs of network communication. Query peers can achieve this either
by running probing queries, or using historical information about query execution. In
addition source peers may be capable ofPSs4)exporting statistics information about
their data.

3.4.2 Related approaches

Plan shipping is used in some DDBMS such as distributed INGRES [12] where one
“master” site decomposes an initial query into sub-queries and sends these subqueries
to its “slave” sites for execution. Some mediator systems with distributed architecture
use plan shipping as well to communicate QEPs to their components. The DISCO
system [49] sends algebraic expressions in terms of a logical algebra to their wrap-
pers. The mediators and the wrappers implement the same universal abstract ma-
chine. Wrappers evaluate sub-queries in this abstract algebra. The MOCHA mediator
system [47] consists of one query processing coordinator (QPC) that performs query
optimization and controls query execution of client queries, and of a number of data
access providers (DAPs) that provide the QPC with a uniform access mechanism to
remote data sources. Similar to DISCO wrappers, DAPs contain a query execution
engine that accepts and executes query plans.

3.4.3 Query Processing

In order to utilize the plan shipping capabilities of the remote peers in a PMS, a me-
diator query processor must be able toi) decompose queries into sub-plans each com-
putable at some peer, and an assembly plan computable at the mediator that composes
the sub-plans,ii) optimize these sub-plans and the mediator assembly plan,iii) even-
tually translate the sub-plans into a representation understandable by the remote peers,
andiv) execute the sub-plans, collect their results and compute with them the assembly
plan to produce the final query result.

Due to the similarity of plan shipping and query shipping (described in Sect. 3.5),
we defer the discussion of query processing for plan shipping to Sect. 3.5.3 where
we point out the differences between query processing for both interface classes and
discuss their advantages and disadvantages.

3.4.4 Meta-Data

Plan shipping assumes that the remote peers are only capable of executing a QEP in
some form, but neither of generating nor refining a QEP. Therefore the query peers
must be able to generate and ship only correct sub-plans to be processed by other
peers. For that a query peer has to “know” about the query capabilities of other peers.

20

By query capabilities here we mean not only the functions and operators that can be
computed by a peer, but also how these functions and operators can be combined to
form complex expressions. As with all other classes of peer interfaces, when a peer
has incomplete knowledge of the query capabilities of other peers, it can compensate
with its own capabilities and perform by itself the computations it can not send to
other peers. Therefore peers must have some way of acquiring, representing and using
knowledge about other peer’s query capabilities.

How can a peer acquire this knowledge? Humans can describe the query capabili-
ties supported by various kinds of peers and store this meta-data at some peer(s). Peers
may export meta-data about their and other peers’ capabilities, and then query peers
can automatically retrieve capability related information. It is very likely that only
incomplete or no knowledge about peer query capabilities is available. In such cases
peers may learn about each other’s capabilities by trial-and-error as in [20]. For this,
it is necessary that a peer can reply that it received an illegal plan. Then other peers
may send various QEPs to probe whether they are executable. Finally, a combined
approach allows to manually describe query capabilities, then other peers can retrieve
this meta-data, and when it is incomplete allow peers to infer query capabilities via
probing.

How to represent and use query capability information? Ideally capabilities should
be modeled explicitly in terms of the data model of the mediator peers. This allows
for high-level declarative access to capabilities meta-data, where all available query
processing techniques can be used in a reflective manner to retrieve and manipulate
this data. Another alternative is to embed the knowledge about peer capabilities in
translator modules that “know” how to generate a QEP executable at a remote peer
from a query in terms of the mediator query language. In this way all knowledge
about peer capabilities is implicit in the code of the translator.

3.4.5 Discussion

Compared to the proxy function interfaces, plan shipping can be expected to provide
considerably better performance due to reduced network costs and load distribution at
query execution time. When a whole sub-plan for a query is executed at another peer,
network costs are reduced because all the data between the operators is exchanged
inside the same peer and therefore network communication is replaced by several or-
der of magnitude faster intra- or inter- process communication (depending on the peer
implementation). Plan shipping also reduces the number of RPC calls made across the
network and replaces them with intra- or inter- process calls. Considering that RPC
calls are orders of magnitude slower than function call in the same process and that in
a query typically there are millions of such calls, we may expect considerable benefits.
Finally, plan shipping can reduce the amount of data transferred over the network by
combining data-reducing operations in the same query fragment.

Peers that have the capabilityPSs3)to store sub-plans for future execution raise
the problem of how to keep the remote sub-plans consistent with the corresponding
plans in the query mediators. There are many kinds of peers such as Web sources,
Internet search engines and RDBMSs, to name a few, that do not export interfaces to
their internal plan representation and therefore plan shipping is not applicable to them.
Another problem with plan shipping is that it requires from the query peer to have very
detailed knowledge about the capabilities of other peers and execution costs of each

21

function and operation. Plan shipping also puts all the query compilation load on the
query peer. In a system with many peers this compilation cost may be substantial.
Finally, plan shipping requires that peers give up their execution autonomy to the
query peers. Many of the disadvantages with plan shipping are alleviated by the more
general query shipping to be discussed next.

3.5 Query Shipping

Many important kinds of data sources, such as database systems, provide access to
their data through high-level declarative interfaces via some query language. Such
sources typically do not allow external systems to submit a pre-compiled QEP in a
directly executable form. Therefore the plan shipping approach can not be applied to
this type of data source peers. An alternative way to delegate the execution of query
fragments to remote peers is to send the query fragments in a declarative form assub-
queriesin terms of a query language supported by the corresponding peers. Peers with
the capability to accept queries through some interface are said to havequery shipping
interface capabilities.

3.5.1 Functionality

For peers to inter-operate via query shipping, the query peers must be able toQSq1)
identify the query fragment(s) of a query that can be computed by remote peers, and
QSq2)submit data requests in the form of sub-queries expressed in the query language
of a source peer.

Compared to all other interface classes discussed so far, query shipping demands
the most advanced capabilities from the source peers. Such peers should be able to
QSs1)accept sub-queries in terms of some query language and locally compile those
sub-queries into sub-plans, andQSs2)execute sub-plans and return their results to
their query peers. Similarly to plan shipping, source peers that allow onlyQSs1)and
QSs2), may require that the query peers ship the same sub-queries many times during
the execution of a query, and these sub-queries are compiled and executed at the source
peers on the fly. This approach is simple, but can be very expensive. Therefore, the
source peers should provide a way toQSs3)precompile a sub-query, store the QEP
for the sub-query, and return a handle for that QEP, andQSs4)allow remote systems
to invoke a QEP through a handle.

Sub-queries are normally computed as parts of larger queries, therefore the same
sub-query may be invoked many times with different values for the constants in the
sub-query. One example is when a remote sub-query produces the data for the inner
collection of a join. Then the sub-query is invoked for each value of the outer col-
lection. A naive approach to execute remote sub-queries is to generate and send one
sub-query per each set of input constants. This can lead to a large number of queries
being sent and compiled at the source peers. Therefore, for better performance, source
peers should be able toQSs5)compile and execute parameterized queries in a way
similar to thepreparefacility in ODBC and JDBC.

22

3.5.2 Related approaches

Query shipping is widely used for query processing in DDBMS [44]; multidatabase
systems, e.g., [39, 43]; and mediator systems, e.g., [20, 16, 38], to name a few. Large
number of projects have considered query processing issues related to query shipping
both for distributed DBMS and centralized mediators. A PMS adds additional com-
plexity to the problem because of the autonomy and decentralization of the peers. As a
result, schema and data statistics are not readily available as in DDBMS, the peers are
not homogeneous in their capabilities and interfaces. Thus query processing in a PMS
must take into account the additional cost of acquiring data statistics and schema infor-
mation about other peers, and compensate for missing capabilities at the remote peers.
In the following sub-section we overview the main query processing steps typical for
query processing with query and plan shipping. Many aspects of these techniques
have been addressed in large number of works, many of which are overviewed in [44]
and in [33].

3.5.3 Query Processing

Similar to plan shipping, query shipping requires that mediator peers identify the
query fragments computable by other peers and request the execution of these frag-
ments in some way. Thus, to utilize the query shipping capabilities of the peers, query
processing in the mediator peers requires the same steps as plan shipping - query
decomposition, fragment translation, fragmented query optimization and fragmented
query execution. Below we describe each of these steps.

• Query decomposition. The most important functionality required to process
queries against peers with both query and plan shipping interfaces isquery de-
composition- the capability of the query peers to split a query into fragments
that can be computed by the source peers. Query decomposition takes a global
query, identifies the remote peers referenced in the query, and splits the query
into query fragments computable at the source peers. The peers in a PMS sys-
tem are heterogeneous in terms of their capabilities, therefore query decomposi-
tion has to take into account the varying capabilities of the peers and utilize these
capabilities. At the same time query decomposition must leave to the query
peer the computation of functions and operations that cannot be processed by
any other source peer. The result of query decomposition is an equivalent repre-
sentation of a query, called afragmented query, where the query fragments can
be treated as atomic units of processing composed in anassembly querycom-
putable at the mediator that composes the intermediate results from the query
fragments into the final query result. The difference between query and plan
shipping is that with query shipping the query fragments are in a declarative
form, here calledsub-queries, while with plan shipping the query fragments
have to have a directly executable algebraic representation assub-plans.

• Fragmented query optimization. There may be many alternative ways with
different performance to decompose a query into query fragments, and to com-
pose these fragments into an assembly plan. Therefore, a mediator query pro-
cessor must be able to find an optimal decomposition of a query into fragments,
and an optimal execution order of the fragments in an assembly plan. The tradi-

23

tional database approach [44, 33] is to use cost-based query optimization to find
optimal global QEPs. In the context of query shipping, cost-based optimization
requires that it is possible to estimate the execution cost and selectivity of each
sub-query at each corresponding peer, and the execution cost of the overall QEP
that combines the results of the query fragments. Given that the cost is known
for each sub-query, the compilation and optimization of the sub-queries them-
selves must be delegated to the respective remote peers, while the mediator peer
optimizes only the assembly plan. If plan shipping is used, the mediator query
optimizer must consider the execution costs of each individual proxy function
and database operation in a query, and find the optimal order of all operations
both in the sub-plans and in the assembly plan.

• Fragment translation. When source peers accept query fragments in a form
different from the one used by the query peer, query fragments have to be trans-
lated in terms of the source peer data access interfaces. This translation step has
to take into account differences in the data models, data representations, and
data access methods. The translation process can augment query fragmenta-
tion when the capabilities meta-data is not detailed enough, so that only correct
translations are produced. In such cases if the translation of a fragment fails it
can be considered that the fragment can not be computed by the source peers.

• Fragmented query execution.Query sub-plans themselves can be viewed as
computations that require some input data and produce some result data. Thus,
sub-plans can be naturally wrapped by SDPFs in the query peer. Implemen-
tations of such SDPFs invoke the corresponding sub-plans installed at remote
peers through the sub-plan handles and, as other SDPFs, translate input and
result data to these sub-plans into appropriate representations. In this way the
assembly QEP in the query peer can be viewed as consisting of SDPFs com-
bined with local operations. Thus all observations about query execution with
SDPFs apply to the execution of decomposed queries.

The major difference between plan shipping and query shipping, is that query ship-
ping communicates requests for complex computations in the form of declarative sub-
queries. These sub-queries are compiled and executed later by the remote peers. As a
result, peers cooperate not only during query execution, but also at query compilation
time. Thus, query shipping provides the means to distribute not only the execution of
queries, but also the query compilation process in a PMS system. Remote peers that
receive sub-queries for compilation can make a local decision based on their own in-
formation on how to process a query, i.e. this is the first class of interface capabilities
where source peers participate in the compilation of a global QEP.

An interesting case of query processing arises when the source peers are capable
of processing global queries themselves. One example of such peers are the mediators
peers. If the source peers support the query shipping approach, then it can be applied
recursively over the sub-queries. The process of query decomposition and optimiza-
tion can be distributed among many peers, where every peer decides how to generate
a QEP for its sub-queries. A global QEP for the whole query is produced by all peers
in a cooperative query compilation process. In this way functions and operations can
propagate through many levels of peers and finally be computed at source peers that

24

the query peer is not even aware of. Such a recursive application of plan shipping is
not possible because the source peers are only capable of query execution.

3.5.4 Meta-Data

Query shipping does not require any additional meta-data to be exchanged between the
peers compared to plan shipping. In fact, plan shipping requires that the cost for each
remote operation and function is available to the query peer, while with query shipping
the source peers have to provide only the total execution cost of a whole sub-query.
Most existing data sources with query interfaces do not provide such information,
thus the query peers need to “quess” the cost of sub-queries, e.g. by probing or using
historical information.

The meta-data required for the plan and query shipping approaches is closely re-
lated to the capabilities of the peers. Below we analyze the peer capabilities that play
a role in the two approaches.

3.5.5 Discussion

Since query shipping allows sub-queries to be executed at remote peers, network trans-
mission costs can be reduced in the same way as with plan shipping. In addition,
query shipping can result in better QEPs for remote sub-queries than plan shipping
because each peer has more complete and up-to-date knowledge of the implementa-
tion of its local functions, operations and data statistics and can produce more efficient
sub-plans than a query peer. In particular, when sub-queries in source peers reference
local views, queries can be merged and optimized together with the expanded view
definitions to simplify the sub-queries and to discover more efficient access paths to
the data. Another performance benefit from query shipping is that it distributes the
load of producing a QEP between the query and the source peers because both the
query peer and its source peers cooperate to compile fragments of MDB queries.

The implementation of interoperable peers via query shipping requires that the
peers provide a query interface to their data and therefore have the capability to pro-
cess queries themselves. Thus, compared with all previous interface classes, query
shipping requires the most complex peer implementation that includes a query com-
piler. Similarly to plan shipping, the ability to store precompiled sub-queries at remote
peers raises the problem of how to keep the remote sub-queries consistent with the
master queries in the query mediators.

3.6 View Definition Shipping

In a PMS, mediator peers can be freely composed logically in terms of other mediators
and data source peers through database views. There is no central control of the data
integration process and no central repository for all integrated views in all mediators.
Instead, the users of each mediator define integrated views over a limited number
of known peers with very little global knowledge about the rest of the PMS and the
composition, capabilities and contents of the other peers. This ad-hoc approach to
distributed data integration may result in a network of logically composed peers with
redundancy because many peers may integrate the same source peers and even the
same remote views through many different logical paths. If query processing in a

25

PMS follows the logical paths between the peers, this may result in many redundant
computations and network data transfers. To alleviate this problem, the query peers
must be able to discover the redundancy in the view definitions of their source peers.
Similar to query processing over views in centralized DBMSs, for this a query peer
must be able to expand the definitions of the views it queries, so that it can analyze
these definitions together and optimize together the expanded view definitions. This
requires that the source peers with a view definition capability provide some interface
to their view definitions, so that the query peers can request these view definitions. We
term thisview definition shipping.

3.6.1 Functionality

In order for peers to exchange view definitions, the query peers have toVSq1)recog-
nize which remote collections referenced in a global query are in fact defined as views,
VSq2)request the definitions of views from remote peers, andVSq3)when necessary,
translate the received view definitions into a local representation. Correspondingly, the
source peers containing views must be able toVSs1)accept view definition requests,
andVSs2)ship view definitions to the query peers.

Source peers with a view definition capability may in turn integrate other peers
through their views. There are two alternatives for a query peer to fully expand all
multi-level view definitions. First, the source peers may return view definitions in a
format that specifies which other remote views are used in a view. Then the query
peer may directly request the definitions of these remote views from their peers. Sec-
ond, the query peer may request that the source peers themselves expand their own
views and recursively request view definitions from their source peers on behalf of the
query peer. The first alternativeVSr1) is applicable in cases when the remote peers
provide a multi-peer query language, and provide their view definitions, but can not be
instructed to expand views themselves. Typically these can be other mediator systems
or federated DBMS as DB2 [28] treated as data sources in the PMS. The second alter-
nativeVSr2)is mainly applicable to the design of the mediators in the PMS, because
it is very unlikely that other systems may be instructed to request views from their
source peers.

3.6.2 Query Processing

The traditional approach to process queries over views in database systems, here called
full view expansion, is to recursively expand all view definitions and replace all view
references in a query with their corresponding definitions until the query references
only stored tables. Applied to a PMS, this approach requires that the query peers re-
cursively request view definitions from their source peers until no views can be further
expanded. After all views are expanded, the merged views can be simplified through
declarative query rewrites, so that all redundant query operations are removed. Some
mediator peers in a PMS may providefully virtual viewsthat only integrate other peers,
but do not contribute their own data or operations. The expansion and simplification
of such views through query rewrites completely removes all references to such fully
virtual views, which reduces the number of peers accessed at query execution time.
Expanded remote view definitions may reveal that several remote peers contain views
that actually use the same remote common sub-views in some source peers. If global

26

queries over such peers are executed without expanding view definitions, then the
query peer will access the same remote views via several different logical paths that
pass through different peers. This may result in many unnecessary data transfers and
redundant re-computations of the same views in the source peers. View expansion al-
lows such redundant view compositions to be discovered and simplified through query
rewrites.

After view expansion and simplification, query processing can continue through
one of the methods for the interface classes described in the previous sections. For
example the use of plan or query shipping allows to combine accesses to the same
sources into single more selective queries and thus further reduce query processing
and network transmission costs.

Full view expansion, however, has some disadvantages. In a PMS with many
levels of composed mediators and sources, the expansion of some views may reveal
that the views are defined in terms of many more other views in many peers. As
a result a mediator query optimizer may have to optimize very large queries over
large number of peers. Thus, full view expansion may result in prohibitively high
compilation costs. One alternative to full view expansion is to limit the expansion
process by some predefined resource, e.g. some number of peers is discovered, or
some number of expansions is performed, or a time-out limit. Another alternative
is to expand only the most “promising” views, that result in improvements for QEP
quality with relatively little compilation cost. We term such a strategyselective view
expansion. The experimental study of the tradeoffs between no view expansion, partial
and full view expansion in [31] shows that the most promising views are the ones that
contain common direct or indirect sub-views. Based on this observation, a heuristic
view expansion approach may consider the topology of the logical composition of the
views in a PMS and select for expansion only the views with common sub-views.

3.6.3 Meta-Data

Apart from the view definitions themselves, query processing with view expansion
requires that the query peers can distinguish which of the proxy functions referenced in
a query or view are defined as views themselves in their peers. The simplest approach
is to use trial-and-error requests and let the query peers send view expansion requests
irrespective of whether proxy functions actually represent remote views and deduce
from the result if a view was successfully expanded. If the remote peers provide such
meta-data, then view meta-data can be attached to proxy functions at their creation
time.

In order to apply selective view expansion, the query peers need additional meta-
data that provides them with enough information to decide which are the promising
views for expansion. For example, remote peers may provide with each view meta-
data about the peers accessed by the view. An overlap between the peers of several
views is a necessary condition for common sub-views and can be used as an identifier
of potential overlapping view definitions.

3.6.4 Discussion

If applied in its complete form view expansion may result in very high compilation
costs that may outweigh the benefit in improved query execution times. Thus, the main

27

complexity in processing queries through view expansion is in implementing a heuris-
tic that can balance the compilation cost with the benefit in QEP quality. View expan-
sion is independent of and can be combined with any of the other interface classes.
It may be particularly beneficial to combine view expansion with query shipping, so
that expanded view definitions are grouped into sub-queries and shipped for remote
processing. In this way many individual requests via different logical paths can be
replaced by a single more selective sub-query. Finally, view expansion may radically
change the execution data flow compared to the logical paths between the mediators.
Unlike all other interface capabilities, view expansion allows that redundant media-
tors are completely bypassed at query execution time and thus remove much of the
overhead of the logical composition of the mediators.

4 Implementation of Peer Mediators

The analysis of inter-peer interface capabilities and the related query processing tech-
niques, presented in the preceding section, is based on our experiences from the
implementation of the AMOS II peer mediator system based on the functional data
model and query language described in Sect. 2. Below we describe our implemen-
tation of five of the six interface classes - SDPF, MDPF, MPPF, query shipping, and
view shipping. We did not implement plan shipping becausei) we did not encounter
data sources that provide a plan shipping interface, andii) as an alternative to query
shipping, plan shipping is less suitable for the implementation of inter-mediator query
processing.

Single-Directional Proxy Functions. The implementation of SDPFs in AMOS II
is based on its built-in generic mechanism for extensibility - foreign functions. Thus,
SDPFs are foreign functions implemented only in the forward direction, where argu-
ments are bound and results computed, that perform the call shipping functionality
described in 3.1.1. In addition to its implementation, each single-directional foreign
function that implements an SDPF is associated with the remote peer where the SDPF
is computed and with the corresponding remote data set represented by the proxy
function. Data sources of the same kind provide the same physical interfaces to their
functionality. For code reuse, proxy functions that access data from sources of the
same kind share the same implementation. Foreign functions provide a generic way
to associate with them either a static vector with cost information or a user-specified
function (possibly foreign too) that dynamically computes the cost and selectivity of
the foreign function. Similar to a shared implementation of all SDPFs for the same
kind of sources, there can be a single source statistics function associated with all
SDPFs for the same kind of sources. Schema information, such as the type signature
and key information of proxy functions, is accessed again throughschema importation
foreign functions that “know” how to retrieve this type of meta-data from the corre-
sponding kind of sources. Schema importation functions are generic per a kind of
source and on invocation automatically create local proxy functions that correspond
to schema objects in a remote source peer. Such functions are not defined for sources
that do not provide an interface to their meta-data, and instead users create proxy
functions manually.

28

The computation of global queries for data integration typically requires joining
data from more than one proxy functions across the network. Therefore specialized
join methods are needed that take into account and minimize network costs. We have
developed three specialized inter-peer join algorithms, described in [26], that take into
account limited access capabilities at the sources and reduce network transmission
costs.

AMOS II mediators do not have special wrapper components separate from the
foreign functions as, e.g., in DB2 Federated DBMS [19]. Instead wrappers in AMOS II
comprise of the implementations of the foreign functions associated with the corre-
sponding proxy functions, the corresponding cost functions, and the schema importa-
tion functions. Notice that all these are generic for a source kind. When more complex
wrappers are needed that require the translation of SDPFs into source-specific access
calls, AMOS II provides a rewrite mechanism that allows rewrite rules to be associated
with the proxy functions of a source kind. For example, all JDBC data sources provide
the sameexecuteQuerymethod which can be wrapped by one generic implementation
associated with all SDPFs that access data in a JDBC source. The query rewrite mech-
anism would translate all SDPFs that reference the same JDBC source into a single
SQL sub-query string and replace all SDPFs of the same source with a single call to
the generic SDPF implementation that wrapsexecuteQuery, with the translated SQL
string as a parameter. For sources that provide their meta-data, the wrapper imple-
mentor can define schema importation functions for each source kind. These schema
importation functions, analogous to theIMPORT FOREIGNSCHEMAstatement in
SQL/MED [6], then can automatically create proxy functions from the schema of each
concrete source and associate these proxy functions with their generic implementation
and cost function.

Multi-Directional Proxy Functions. Multi-directional proxy functions in AMOS II
are based again on the generic foreign function mechanism that allows to define multi-
directional foreign functions and to associate binding patterns and cost functions with
each separate implementation of a foreign function. Whenever sufficient source meta-
data is available, the schema importation function(s) for a kind of sources automati-
cally creates MDPFs and associates them with the corresponding binding patterns and
cost functions. Queries over MDPFs are optimized as any other query over multi-
directional foreign functions by cost-based optimization described in [37].

Multi-peer Proxy Functions. Our current implementation provides limited support
for MPPFs [27] only for mediators and relational DBMS. There are two kinds of
MPPFs. Single implementation functions (SIFs)are functions available only in one
peer. Multiple implementation functions (MIFs)are functions available in all peers.
Proxy functions are in general considered to be MIFs. However, for several special
kinds of peers such as the mediators themselves and relational DBMS it is known that
they always implement certain functions, e.g. inequalities. Such MIFs are known in
advance and are pre-defined per each kind of source. Query optimization in the pres-
ence of MIFs, described in detail in [27], uses a special function placement heuristics
that decides where to compute a MIF.

29

Query shipping. For better performance, inter-mediator query processing employs
a query shipping approach, described in detail in [27]. Query processing is performed
in several steps:i) query decompositionuses a heuristic procedure to form sub-queries
in a way that minimizes data transfer between the peers,ii) cost-based optimization
uses a dynamic programming algorithm to find optimal left-deep plans that combine
the sub-queries into one multi-peer QEP, andiii) plan tree rebalancing[25] merges
groups of nodes in the left-deep plan and replaces some of the right leaves of the tree
with inter-peer sub-plans scheduled for execution at other peers. Tree rebalancing
itself is based on query shipping, because the merged nodes of an inter-peer query
plan are sent to other peers in the form of sub-queries. This allows remote peers to
compile the sub-queries themselves and thus to decide autonomously how to compute
the sub-plan.

AMOS II also supports query shipping for relational DBMS data sources. Since
relational sources support a query language (SQL) different from that of the media-
tors, the mediator peers perform sub-query translation and simplification steps [13] in
addition to the query processing steps for inter-mediator query shipping.

View definition shipping. As pointed out in Sect. 3.6, all previous classes of inter-
faces result in query processing that treats other peers as black boxes, and thus query
execution follows the logical composition of the peers. To improve the performance
of query processing for queries that involve many mediator peers, we implemented
view definition shipping for inter-mediator queries in the form ofdistributed selective
view expansion (DSVE)[31]. With DSVE mediators request the definitions of remote
views that contain common sub-views in lower-level mediators. As shown in [31] this
heuristics is promising in that only the most promising views are expanded so that
compilation cost is reduced while the quality of the inter-mediator QEPs is improved.

5 Related Work

In this section we overview two types of research. First we look at data integration
and/or data management systems with similar P2P architectures to the PMS archi-
tecture we described in Sect. 1. Then we classify into several categories works that
analyze and compare various aspects of the design of interoperable components in
distributed architectures.

5.1 Peer Data Management Systems

Several recent works [18, 21, 7] propose P2P architectures for data integration and
for the management of distributed and autonomous databases. In the vision paper
[18] it is indicated that placement and retrieval of data are fundamental problems in
most P2P systems, and therefore DBMS technology can, and should be applied to
P2P systems. That work concentrates on the problem of data placement in a P2P sys-
tem. Another vision work [7], addresses the problem of semantic inter-dependencies
in between autonomous peer databases in the absence of a global schema. Inter-peer
semantic dependencies are described through coordination formulas in aLocal Rela-
tional Model (LRM)that allows to specify at a logical level the synchronization of
several peer databases.

30

Based on the assumption that data integration systems have one global mediated
schema that integrates all sources, [21] advocates the concept ofpeer data manage-
ment systems (PDMS), as systems that replace the single logical schema of data in-
tegration systems with an interlinked collection of semantic mappings between the
peers’ schemas. The main problem addressed in [21] is that of schema mediation in
a PDMS. Schema mappings between peer databases are expressed in a declarative
language in combined global-as-view (GAV) and local-as-view (LAV) style. With re-
spect to query processing, [21] deals with the problem of how to reformulate an initial
query in terms of schema mappings into a query in terms of the base relations, a prob-
lem calledquery answering, when there are mixed GAV and LAV transitive mappings
between peers.

5.2 Data and query shipping

An important issue in the design of client-server DBMSs is the distribution of process-
ing between clients and servers. To study this issue, [15] first considers two extreme
approaches to distribute query processing between clients and servers. With thedata
shippingapproach all data is shipped from the servers to the clients and all query
operators are executed at the client. Data shipping provides for good utilization of
client resources, and is applicable in environments with powerful client nodes and fast
networks. With thequery shippingapproach (as defined in [15]) on the other hand
queries are submitted for computation at the servers and the clients directly receive
the final results. Query shipping reduces communication costs for selective queries,
shifts the load from the clients to the servers, and thus is suitable for client-server sys-
tems with powerful servers, resource-poor clients, and slow networks. As observed in
[15], neither of the two extreme approaches suits all situations. A natural alternative is
a hybrid shippingapproach where some query operators are performed by the clients
and others by the servers. The experimental study of the three approaches through
a randomized query optimizer and a distributed database simulator show that hybrid
shipping is superior to both extreme approaches due to flexible use of the resources at
the clients and the servers.

Related to our analysis, data shipping as described in [15] corresponds to query
processing for the SDPF interface class. Since the results in [15] refer only to the
distribution of query execution, and do not consider the process of optimization itself,
they are applicable to both query and plan shipping as described in Sect. 3.4,3.5. Hy-
brid shipping assumes that the query operators in a QEP can be computed by many
nodes, thus this approach corresponds to a combination of the query processing ap-
proaches for nodes with both the MPPF and the query shipping interface classes.

5.3 Code shipping

Code shippingis a technique that dynamically extends the capabilities of remote peers
by uploading and installing implementations of new functions/database operations.
Two recent projects that employ code shipping are the MOCHA [47] and ObjectGlobe
[9] prototype systems.

Both works assume that there are one or more libraries of Java classes that im-
plement user-defined types and functions, and that remote peers, which are stand-
alone wrappers, called Data Access Providers in [47], and CPU Cycle Providers in

31

[9], are capable of accepting class/method definitions and installing them locally. In
both projects a centralized query optimizer takes into account the possibility to install
user-defined operators at remote peers whenever the execution of the operators at the
remote sites reduces the network data transfer.

The main advantage of code shipping is organizational. While many database and
mediator systems are extensible, they require the intervention of a database adminis-
trator to install user-defined functions/operators, an approach that cannot scale to large
numbers of peers. Code shipping performs automatic deployment of user-defined
functions/operations whenever there can be a performance benefit from executing the
operations at the remote peers, thus reducing administration costs.

Related to our analysis, query optimization for peers with a code shipping capabil-
ity is similar to that of query optimization for MPPFs. The added meta-data is that of
the location of the function/operation implementations, the size of the implementing
code, and the local cost of extending a peer with new functionality. In terms of query
optimization, the added complexity is that of considering the total cost of installing
a function/operation at a remote peer. Once some remote peers are extended with a
new function, all copies of this function can be considered as SDPFs that implement
on MPPF, and therefore query optimization with code shipping is reduced to query
optimization for MPPFs.

Code shipping poses additional security and interoperability problems that are out-
side of the scope of this work and addressed in [47, 9].

5.4 SQL and Management of External Data

The SQL/MED standard [40, 6], part of SQL:1999, addresses aspects related to the ac-
cess to external data from SQL, and thus is directly related to our analysis. SQL/MED
introduces several new SQL schema concepts in conjunction with SQL syntax exten-
sions, and a set of routines for developing external data source wrappers in a standard-
ized manner. Below we relate the concepts introduced in SQL/MED to concepts in
our functional mediator data model and to our classification of interface capabilities.

Main concepts. Remote data collections in SQL/MED are represented through
the notion of aforeign tableand external data sources are represented via the concept
of a foreign serverthat allows access to a set of foreign tables. Thus a foreign table
in SQL/MED corresponds to the concept of a proxy function in our functional data
model, and a foreign server in SQL/MED corresponds to a peer in our terms. If
in SQL/MED a foreign server is a set of foreign tables, we see a remote peer as a
set of proxy functions.Foreign-data wrappersin SQL/MED are code modules that
provide access to the same kind of foreign servers, and thus they correspond to a set
of SDPF implementations shared among SDPFs for the same kind of peers. Most of
the SQL/MED standard deals with the specification of the APIs used by the foreign-
data wrappers and the SQL servers to communicate during query planning and query
execution.

Single-directional proxy functions. While SQL/MED does not by itself propose
a concept similar to SDPFs, there is a corresponding concept in the SQL Founda-
tion part [3] of SQL:1999 that introduces user-defined functions (UDFs) as functions
implemented in some external language. Scalar UDFs in SQL:1999 correspond to
singleton-valued SDPFs, and table UDFs correspond to bag-valued SDPFs, thus UDFs
and SDPFs allow to express access to the same kind of remote data collections.

32

Multi-directional proxy functions. The closest concept in SQL/MED to MDPFs
is that of foreign tables associated with foreign servers. Each foreign data-wrapper
responsible for the access to a kind of foreign servers implements all functionality
necessary for the access to the remote data collection represented by a foreign table.
Unlike binding patterns for MDPFs, all information about limited source access capa-
bilities is hard-coded in the SQL/MED wrappers and cannot be inspected or modified
from the query language. Thus SQL/MED does not provide the means to freely as-
sociate a group of foreign functions that access the same abstract relation in different
ways as is possible with MDPFs. Instead, UDFs in SQL:1999 and foreign-data wrap-
pers in SQL/MED are separate concepts and UDFs cannot be reused in a incremental
fashion to design wrappers. Instead the functionality of MDPFs in SQL/MED has to
be simulated through a relatively complex wrapper implementation.

Multi-peer proxy functions. SQL/MED introducesroutine mappingsthat al-
low to associate UDFs and built-in SQL functions with procedures in remote servers.
Therefore routine mappings correspond to MPPFs that relate together equivalent SDPFs
in different peers. There is no corresponding facility in SQL/MED that can relate to-
gether several foreign relations in the same way as MPPFs can relate several equivalent
MDPFs.

Plan shipping. SQL/MED does not provide any direct support for plan shipping.
Instead wrappers always receive sub-queries in a declarative form and the way they
produce executable plans for their foreign servers is left to the wrapper implementor.
Thus the SQL query optimizer can not generate by itself QEPs for foreign servers.

Query shipping. The main mode of submitting data requests to foreign servers
in SQL/MED is to send sub-queries to the wrappers for compilation and execution.
Thus SQL/MED fully supports the concept of query shipping as described in this pa-
per. Query compilation with query shipping in SQL/MED is based on a request/reply
paradigm. At compile-time the SQL server requests the execution of sub-queries from
the wrappers. The wrappers in turn return responses that identify which parts of a
sub-query they can handle. The SQL server must compensate for all operations that
the wrappers cannot handle. Thus all information about the capabilities of a kind of
sources is encoded in the corresponding wrapper and is not visible at the query lan-
guage level.

View definition shipping. There is no corresponding capability in SQL/MED that
provides functionality similar to view definition shipping.

Conclusion. SQL/MED by itself does not provide any guidelines how to imple-
ment wrappers and how to compose many peers (some of which SQL servers them-
selves) into a PMS. From this comparison of SQL/MED and our functional approach
to mediation, we conclude that there are many similarities between the two, thus most
of our results are directly applicable to any implementation of a PMS on top of an
SQL:1999-compliant DBMS.

5.5 CORBA interfaces for database interoperability

The CORBA standard [2] provides an interoperability infrastructure that can be used
to bridge platform- and communication- level heterogeneity of multiple databases.
As pointed out in [11, 32] an important issue in the design of CORBA interfaces to
database systems is the degree of granularity of the interface. At the finest level of
granularity database rows or objects are wrapped through CORBA objects and are di-

33

rectly visible through the CORBA Object Request Service. This is a straightforward
way to integrate distributed databases, however this approach has the disadvantage
that most of the processing is performed by the client peer, query execution may re-
sult in very large number of cross-network requests, and it is hard to optimize requests
to remote databases. At the other extreme are coarse granularity interfaces where
remote DBMSs are wrapped through a single CORBA interface. This interface typi-
cally provides methods to query the data at the remote peers through a query language.
The heterogeneity among different databases is resolved by providing different imple-
mentations for the same generic database interface. [11, 32] argue that for database
interoperability it is necessary to use the second coarse-grain interface approach.

Related to our analysis, the fine-grain type of CORBA interfaces to databases cor-
responds to that of the SDPF interface class (Sect. 3.1), where CORBA objects cor-
respond to proxy objects; CORBA methods, relationships and attributes correspond
to single-directional proxy functions. Coarse-grain access to database peers, where
there is one CORBA object that wraps the peer as a whole, corresponds to the query
shipping approach in Sect. 3.5.

5.6 Conclusion

To summarize, existing works compare few design alternatives that correspond to
some of the interface capabilities and corresponding query processing approaches
considered in this paper. In addition, based on our distinction of interface capabilities
and physical interfaces, our study is independent of the particular technology (such
as CORBA, JavaRMI, etc.) used to implement interoperable peers, and therefore our
results have wider applicability than similar works.

To the best of our knowledge there is no systematic study of the interface capa-
bilities of mediator and data source peers, the meta-data that needs to be exchanged
between the peers or provided to the peers, and the corresponding query processing
capabilities enabled and/or required to process queries against composed mediator and
data source peers.

6 Conclusions

We have analyzedi) the relationship between the interface capabilities of mediator and
data source peers in a PMS,ii) the query processing techniques that can be applied
at the mediator peers in the presence of various capabilities, andiii) the meta-data
required for that. We classified peer interface capabilities into several classes with
increasing amount of meta-data and increasing complexity of query processing in the
mediator peers. Below we summarize the results of our analysis and discuss directions
for future work.

Data shipping and computation shipping. Distributed systems in general allow
two ways of cooperative processing - either data is shipped to the computationdata
shipping, or the computation is shipped to the data,computation shipping. With re-
spect to this general sub-division, the first three proxy function interface classes re-
quire “pure” data shipping because they assume that the peers have some pre-existing
fixed computational capabilities and data must be shipped to the peers that perform the

34

computations. Systems cooperating through data shipping may have high data transfer
costs and under/over utilization of the resources at the peers. The last three interface
classes - plan, query and view definition shipping, fall in the category of computation
shipping. Characteristic of all three is that they allow the exchange of computations
in limited non- Turing-complete query languages typical for database systems. The
major advantage of this is that the exchange of computations between peers not only
reduces the amount of data transferred across the network and provides better load
distribution, but also allows computations to be combined at the peers and optimized
together. In a P2P system with ad-hoc structure there may be many redundant com-
putation requests, thus the optimizability of combined computations is very important
so that redundancy can be discovered and removed.

Abstraction and performance. Another dimension for comparison of the six in-
terface classes is the degree of abstraction they allow at the mediator query language
level. The first three data shipping approaches provide an increasing degree of ab-
straction for the user and shift more and more of the performance decisions from the
mediator user to the mediator query processor. For complex queries users may make
suboptimal decisions which combinations of SDPFs result in best performance, thus
the shift to a higher degree of abstraction in terms of MDPFs or MPPFs also results in
better query execution performance.

The three computation shipping interface classes allow for query processing tech-
niques that further improve the performance and scalability of pure data shipping, but
do not add to the expressibility of the mediator queries.

Logical composition and physical query execution. An important characteristic
of the SDPF and MDPF interface classes is that they only allow query execution plans
that follow the logical composition of mediators where every proxy function is com-
puted at its own source peer. The MPPF interface class provides more freedom to
the mediator query optimizer to decide where to compute proxy functions, thus query
execution may differ from the logical peer composition.

The plan and query shipping interface classes provide the means for mediator peers
to instruct remote peers to execute complex computations that relate several proxy
functions at once. In particular, remote mediator peers can be instructed to compute
sub-queries without the involvement of the query mediator. Thus the execution flow
may differ considerably from the logical composition of the peers and follow much
more efficient network routes than that of the logical peer composition.

In its pure form, plan shipping allows more restricted global QEPs than query
shipping because on one hand the query peers do not have knowledge of the imple-
mentation of remote data collections (e.g. views in other mediators), while on the
other hand the remote peers do not have an optimizer of their own and cannot use
their local knowledge to optimize their sub-plans. If plan shipping is combined with
view definition shipping, then the query peers can import the definitions of all remote
views referenced in a query and, given that detailed cost information is available, pro-
duce optimal global QEPs. The retrieval of all necessary meta-data and the subsequent
query optimization by the query peers may be very costly due to large optimizer search
space and large number of network meta-data requests, therefore we consider that plan
shipping is not suitable for data integration systems with a P2P architecture.

35

Query shipping provides more flexibility than plan shipping and allows the query
processors at the remote peers to take their own decisions about the execution of their
sub-queries. Thus, a remote peer that provides a query shipping interface may merge
sub-queries with local view definitions and recursively generate sub-queries of its own
that may be sent to lower levels of peers. As a result query shipping allows cooperating
peers to produce global QEPs that can not be produced by plan shipping. An additional
advantage of query shipping is that it may propagate the execution of a proxy function
through many mediator levels to the peer where it is most efficient to compute that
function.

Finally, view definition shipping allows mediators to merge and analyze together
view definitions from many mediators. The more view definition a query mediator
retrieves the better picture it has of all peers relevant to a query and all operations
performed at these peers. This information allows the query peers to discover redun-
dancies in logically composed mediators and even to bypass redundant mediators for
more efficient global QEPs.

Meta-Data and complexity of mediator implementation. We notice that query
processing for each of the interface classes requires generally more meta-data than the
previous ones. This additional meta-data provides information to the query mediators
to choose from more alternative plans. However, it also requires more complex query
planning that must consider an increasing number of alternative plans.

Design recommendations for PMSs. Based on our analysis of the six interface
classes, we notice that query processing for all of them always reduces inter-peer query
execution to the execution of SDPFs. Thus, a PMS can be designed incrementally
starting from relatively simple mediators, and gradually adding more complex query
processing capabilities that utilize the interface capabilities of the other peers.

The first mandatory step in the design of mediator peers in a PMS is to equip the
mediators with the basic capability to logically relate SDPFs to remote data collec-
tions and to compute these SDPFs efficiently. For mediators based on the relational
data model this means that it must be possible to represent remote data collections
as relations and to compute these relations. When data integration problems require
access to many data collections in many peers, the use of efficient join algorithms be-
tween SDPFs is particularly important. The basic SDPF functionality is sufficient to
provide a fully-functional P2P data integration system and can be easily implemented
on top of any extensible DBMS that supports user-defined functions.

Depending on the capabilities of the other peers, the mediators can be gradually
extended to take into account more powerful kinds of peers that have some query
processing capabilities. The main challenge is to extend the query processor of the
mediators to take into account more meta-data and to explore more alternative query
plans. All five interface classes apart from SDPF are independent of each other, there-
fore the mediators can can be gradually extended in different ways depending on the
design goals.

Since mediators are the peers in a PMS that encode user abstractions over other
peers, the design of the inter-mediators interfaces is crucial for the overall performance
of a PMS. The design of inter-mediator interfaces may be as simple as SDPF, how-
ever, for the scalability of the data integration process, we believe that as minimum

36

mediators must support the MDPF abstraction, and it is desirable that they support
MPPFs. With respect to performance, as shown by [15], it is essential that the media-
tors are capable of query shipping and thus have a query decomposer. Finally, as our
study of logical mediator compositions [31] show, view definition may provide orders
of magnitude improvement in query execution. We do not consider plan shipping to
be suitable for inter-mediator query processing as it requires too much meta-data for
a centralized compilation, it violates mediator autonomy, and it is less flexible than
query shipping in load distribution and data transfer reduction.

Adaptive query processing. Our discussion of query processing for all interface
classes assumed traditional static cost-based optimization which requires reliable cost
estimates in order to produce efficient QEPs. Due to the autonomy and limited in-
terface capabilities of many kinds of data source peers, in a PMS in most cases it is
impossible to perform precise network and data access cost, and selectivity estimates.
Data sources, network conditions and mediator load can all change in an unpredictable
manner. Imprecise and changing costs may lead to sub-optimal query execution plans.
Even if all necessary statistics information is available it is also infeasible to perform
full cost-based query optimization in the traditional System R style due the potentially
very large number of mediators, sources and views, which result in very large opti-
mizer search space and thus very high optimization cost. Therefore it is essential for a
mediator system to dynamically adapt to an unpredictable and changing environment.

A number of research projects, overviewed in [23, 17], have addressed dynamic
and adaptive query processing. Most of the proposed approaches can be directly ap-
plied to query processing for the first three proxy function interface classes and plan
shipping because in all of them query processing is performed in a centralized man-
ner. However, with query shipping and view definition shipping the query processors
of the peers have to cooperate in order to dynamically change a global QEP and adapt
during query processing. Thus adaptivity in a PMS requires not only single-site adap-
tation, but also cooperative adaptation by all participating peers. To the best of our
knowledge, current works do not address issues in cooperative adaptation, thus fur-
ther research is required to investigate adaptive query processing for query shipping
and view definition shipping.

Relationship to Web services. Our analysis is applicable not only to mediator database
systems, but other middleware technologies as well, such as Web services [5]. A naive
fine-grain use of Web services with SOAP RPC corresponds to the SDPF approach.
From our analysis it follows that there is a wide spectrum of design alternatives to
a simple usage of SOAP that both simplify the integration task for the user and may
provide considerable performance improvements. We conclude that Web services may
benefit from providing and standardizing service interfaces that provide computational
capabilities analogous to the five interface classes apart from SDPF. Since the major
performance improvements in a PMS are based on computation shipping capability,
Web services can benefit from declarative descriptions that can be exchanged between
composed services and optimized in similar ways as discussed in Sect. 3.

Future work. To better understand the effects of the various query processing tech-
niques for each interface class, our next step is to study all interface capabilities ex-

37

perimentally. In reality, various interface capabilities may be combined in different
ways, thus we plan to investigate the consequences of such combinations on the search
space for the mediator optimizer and determine if new query optimization strategies
are needed for combined interface capabilities.

References

[1] RPC: Remote Procedure Call Protocol Specification Version 2. Internet Network
Working Group, Request For Comments 1057, June 1988.

[2] Object Management Architecture. John Wiley & Sons, New York, 1995.

[3] ISO/IEC 9075-2:1999, Information technology - Database languages - SQL -
Part 2: Foundation (SQL/Foundation). International Organization for Standard-
ization, 1999.

[4] SOAP Version 1.2 Part 0: Primer. W3C Candidate Recommendation,
http://www.w3.org/TR/soap12-part0/, December 2002.

[5] Web Services Architecture. W3C Working Draft, http://www.w3.org/TR/ws-
arch/, November 2002.

[6] ISO/IEC 9075-9:2003, Information technology - Database languages - SQL -
Part 9: Management of External Data (SQL/MED). International Organization
for Standardization, September 2003.

[7] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John My-
lopoulos, Luciano Serafini, and Ilya Zaihrayeu. Data Management for Peer-to-
Peer Computing: A Vision. InWorkshop on the Web and Databases, WebDB
2002, Madison, Wisconsin, June 2002. SIGMOD 2002.

[8] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems (TOCS), 2(1):39–59, 1984.

[9] Reinhard Braumandl, Markus Keidl, Alfons Kemper, Donald Kossmann,
Alexander Kreutz, Stefan Seltzsam, and Konrad Stocker. ObjectGlobe: Ubiq-
uitous query processing on the Internet.VLDB Journal, 10(1):48–71, 2001.

[10] R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan,
Craig Russell, Olaf Schadow, Torsten Stanienda, and Fernando Velez.The object
data standard: ODMG 3.0. Morgan Kaufmann Publishers Inc., 2000.

[11] Asuman Dogac, Cevdet Dengi, and M. TamerÖszu. Distributed object comput-
ing platforms.Communications of the ACM, 41(9):95–103, 1998.

[12] Robert S. Epstein, Michael Stonebraker, and Eugene Wong. Distributed Query
Processing in a Relational Data Base System. InProceedings of the 1978 ACM
SIGMOD International Conference on Management of Data, pages 169–180.
ACM, 1978.

[13] Gustav Fahl and Tore Risch. Query Processing Over Object Views of Relational
Data.VLDB Journal, 6(4):261–281, 1997.

38

[14] Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query opti-
mization in the presence of limited access patterns. InProceedings of the 1999
ACM SIGMOD international conference on Management of data, pages 311–
322. ACM Press, 1999.

[15] Michael J. Franklin, Bj̈orn Th́or J́onsson, and Donald Kossmann. Performance
Tradeoffs for Client-Server Query Processing. InProceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, pages 149–160.
ACM Press, June 1996.

[16] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajara-
man, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom.
The TSIMMIS Approach to Mediation: Data Models and Languages.Journal
of Intelligent Information Systems (JIIS), 8(2):117–132, April 1997.

[17] Anastasios Gounaris, Norman W. Paton, Alvaro A.A. Fernandes, and Rizos
Sakellariou. Adaptive Query Processing: A Survey. InProc. 19th British Na-
tional Conference on Databases, BNCOD, Sheffield, UK, July 2002. Springer-
Verlag.

[18] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do
for peer-to-peer? InWebDB Workshop on Databases and the Web, June 2001.

[19] Laura Haas, Eileen Lin, and Mary Roth. Data integration through database fed-
eration.IBM Systems Journal, 41(4):578–, 2002.

[20] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Opti-
mizing Queries Across Diverse Data Sources. InProceedings of 23rd Interna-
tional Conference on Very Large Data Bases, VLDB’97, pages 276–285, Athens,
Greece, August 1997. Morgan Kaufmann.

[21] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: data
management infrastructure for semantic web applications. InProceedings of
the twelfth international conference on World Wide Web, pages 556–567. ACM
Press, 2003.

[22] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema Me-
diation in Peer Data Management Systems. In19th International Conference on
Data Engineering, March 2003.

[23] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Desh-
pande, Kris Hildrum, Sam Madden, Vijayshankar Raman, and Mehul A. Shah.
Adaptive Query Processing: Technology in Evolution.IEEE Data Engineering
Bulletin, 23(2):7–18, June 2000.

[24] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of Conjunctive
Queries: Beyond Relations as Sets.TODS, 20(3):288–324, 1995.

[25] Vanja Josifovski, Timour Katchaounov, and Tore Risch. Optimizing Queries in
Distributed and Composable Mediators. InProceedings of the Fourth IFCIS In-
ternational Conference on Cooperative Information Systems, CoopIS’99, pages
291–302. IEEE Computer Society, September 1999.

39

[26] Vanja Josifovski, Timour Katchaounov, and Tore Risch. Evaluation of Join
Strategies for Distributed Mediation. In5th East European Conference on Ad-
vances in Databases and Information Systems, ADBIS 2001, volume 2151 of
Lecture Notes in Computer Science, pages 308–322. Springer-Verlag, Septem-
ber 2001.

[27] Vanja Josifovski and Tore Risch. Query Decomposition for a Distributed Object-
Oriented Mediator System.Distributed and Parallel Databases, 11(3):307–336,
May 2002.

[28] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. Garlic: a new fla-
vor of federated query processing for DB2. InProceedings of the 2002 ACM
SIGMOD international conference on Management of data, pages 524–532.
ACM Press, 2002.

[29] Kim Jungfer, Ulf Leser, , and Patricia Rodriguez-Tome’. Constructing IDL
Views on Relational Databases. InAdvanced Information Systems Engineer-
ing: 11th International Conference, CAiSE’99, volume 1626 ofLecture Notes in
Computer Science, pages 255–. Springer-Verlag, June 1999.

[30] Timour Katchaounov.Query Processing for Peer Mediator Databases. PhD
thesis, Department of Information Technology, Uppsala University, 2003.

[31] Timour Katchaounov, Vanja Josifovski, and Tore Risch. Scalable View Expan-
sion in a Peer Mediator System. InEighth International Conference on Database
Systems for Advanced Application, (DASFAA’03), pages 107–116. IEEE Com-
puter Society, March 2003.

[32] Graham J. L. Kemp, Chris J. Robertson, Peter M. D. Gray, and Nicos Angelopou-
los. CORBA and XML: Design Choices for Database Federations. InPro-
ceedings of the 17th British National Conferenc on Databases, pages 191–208.
Springer-Verlag, 2000.

[33] Donald Kossmann. The state of the art in distributed query processing.ACM
Computing Surveys, 32(4):422–469, September 2000.

[34] Donald Kossmann and Konrad Stocker. Iterative dynamic programming: a new
class of query optimization algorithms.ACM Transactions on Database Systems
(TODS), 25(1):43–82, 2000.

[35] Ulf Leser, Stefan Tai, and Susanne Busse. Design Issues of Database Access in
a CORBA Environment. InWorkshop Integration heterogener Softwaresysteme,
pages 74–87, 1998.

[36] Alon Y. Levy. Logic-based techniques in data integration. pages 575–595, 2000.

[37] Witold Litwin and Tore Risch. Main Memory Oriented Optimization of OO
Queries Using Typed Datalog with Foreign Predicates.IEEE Transactions on
Knowledge and Data Engineering, 4(6):517–528, 1992.

[38] Ling Liu, Calton Pu, and Kirill Richine. Distributed Query Scheduling Service:
An Architecture and Its Implementation.International Journal of Cooperative
Information Systems (IJCIS), 7(2-3):123–166, 1998.

40

[39] Hongjun Lu, Beng-Chin Ooi, and Cheng-Hian Goh. Multidatabase query op-
timization: issues and solutions. InProceedings RIDE-IMS ’93., Third Inter-
national Workshop on Research Issues in Data Engineering: Interoperability in
Multidatabase Systems, pages 137–143, Vienna, Austria, April 1993.

[40] Jim Melton, Jan-Eike Michels, Vanja Josifovski, Krishna G. Kulkarni, and Pe-
ter M. Schwarz. SQL/MED - A Status Report.SIGMOD Record, 31(3), 2002.

[41] Wee Siong Ng, Beng Chin Ooi, Lee Tan, and Aoying Zhou. PeerDB: A P2P-
based System for Distributed Data Sharing. In19th International Conference on
Data Engineering, March 2003.

[42] Kiyoshi Ono and Guy M. Lohman. Measuring the Complexity of Join Enumera-
tion in Query Optimization. InProceedings of the 16th International Conference
on Very Large Data Bases, pages 314–325, Brisbane, Queensland, Australia, Au-
gust 1990. Morgan Kaufmann.

[43] Fatma Ozcan, Sena Nural, Pinar Koksal, Cem Evrendilek, and Asuman Dogac.
Dynamic Query Optimization in Multidatabases.Data Engineering Bulletin,
20(3):38–45, 1997.

[44] M. TamerÖzsu and Patrick Valduriez.Principles of Distributed Database Sys-
tems. Prentice Hall, second edition edition, 1999.

[45] M. Tamer Özsu and Bin Yao. Building component database systems using
CORBA. pages 207–236, 2001.

[46] Tore Risch, Vanja Josifovski, and Timour Katchaounov. Functional Data Inte-
gration in a Distributed Mediator System. InThe Functional Approach to Data
Management. Springer-Verlag, 2003.

[47] Manuel Rodriguez-Martinez and Nick Roussopoulos. MOCHA: A Self-
Extensible Database Middleware System for Distributed Data Sources.SIGMOD
Record, 29(2):213–224, May 2000.

[48] Amit P. Sheth and James A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases.ACM Computing Surveys
(CSUR), 22(3):183–236, 1990.

[49] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling Access to
Heterogeneous Data Sources with DISCO.IEEE Transactions on Knowledge
and Data Engineering, 10(5):808–823, 1998.

[50] Jeffrey D. Ullman. Information Integration Using Logical Views. In6th Inter-
national Conference on Database Theory - ICDT ’97, volume 1186 ofLecture
Notes in Computer Science, pages 19–40. Springer, January 1997.

[51] Jeffrey D. Ullman, Hector Garcia-Molina, and Jennifer Widom.Database Sys-
tems: The Complete Book. Prentice Hall PTR, 2001.

[52] Vasilis Vassalos and Yannis Papakonstantinou. Expressive Capabilities Descrip-
tion Languages and Query Rewriting Algorithms.Journal of Logic Program-
ming, 43(1):75–122, April 2002.

41

[53] Gio Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3):38–49, March 1992.

[54] Gio Wiederhold and Michael Genesereth. The conceptual basis for mediation
services.IEEE Expert, 12(5):38–47, Sept.-Oct. 1997. also in IEEE Intelligent
Systems.

[55] Ling-Ling Yan, Rene J. Miller, Laura M. Haas, and Ronald Fagin. Data-Driven
Understanding and Refinement of Schema Mappings. InACM SIGMOD Con-
ference, May 2001.

[56] Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Jeffrey D. Ullman. Com-
puting Capabilities of Mediators. InProceedings ACM SIGMOD International
Conference on Management of Data (SIGMOD 1999), pages 443–454. ACM
Press, June 1999.

42

148

Paper C:

c©2003 IEEE. Reprinted, with permission, from:

Timour Katchaounov, Vanja Josifovski, and Tore Risch. Scalable view ex-
pansion in a peer mediator system. InEighth International Conference on
Database Systems for Advanced Application, (DASFAA’03), pages 107–116,
IEEE Computer Society, March 2003.

Scalable View Expansion in a Peer Mediator
System

Timour Katchaounov
Uppsala University

Timour.Katchaounov@it.uu.se

Vanja Josifovski
IBM Almaden Research Center

vanja@us.ibm.com

Tore Risch
Uppsala University
Tore.Risch@it.uu.se

Abstract

To integrate many data sources we use a peer mediator framework where
views defined in the peers are logically composed in terms of each other. A com-
mon approach to execute queries over mediators is to treat views in data sources
as ’black boxes’. The mediators locally decompose queries into query fragments
and submit them to the data sources for processing. Another approach, used in
distributed DBMSs, is to treat the views as ’transparent boxes’ by importing and
fully expanding all views and merge them with the query. The black box approach
often leads to inefficient query plans. However, in a peer mediator framework full
view expansion (VE) leads to prohibitively long query compilation times when
many peers are involved. It also limits peer autonomy since peers must reveal
their view definitions. We investigate in a peer mediator framework the tradeoffs
between none, partial, and full VE in two different distributed view composition
scenarios. We show that it is often favorable with respect to query execution and
sometimes even with respect to query compilation time to expand those views
having common hidden peer subviews. However, in other cases it is better to use
the ’black box’ approach, in particular when peer autonomy prohibits view im-
portation. Based on this, a hybrid strategy for VE in peer mediators is proposed.

1 Introduction

There has been substantial interest in using the mediator/wrapper approach for in-
tegrating heterogeneous data [14, 25, 11, 22, 7]. Most mediator systems integrate
data through a central mediator server accessing one or several data sources through
a number of ’wrapper’ interfaces that translate data to acommon data model(CDM).
However, one of the original goals for mediator architectures [27] was that media-
tors should be relatively simple autonomous distributed software modules that encode
domain-specific knowledge about data and share abstractions of that data with higher
layers of mediators or applications. Composite mediators would then be defined in
terms of other mediators and data sources through a high-level declarative language.

Compositionality of mediators allows to reuse available distributed resources on
the Internet and to create new value-added mediation services in terms of existing

ones, while the autonomy of the sources and mediators is preserved. In the observable
future it is most likely that data integration will be mostly a manual task. In order to
scale integration to multiple autonomous sources, it is important that this task can be
distributed among many parties with varying domain knowledge. We believe that a
mediator architecture based on compositions of autonomous mediators is necessary to
build large-scale data integration systems that are easy to tailor to existing infrastruc-
ture.

This paper investigates what are the implications of logical composition of dis-
tributed mediators on query compilation and execution performance and proposes a
query processing technique suitable for the efficient execution of queries over com-
posite mediators.

For our implementation we use the AMOS II peer mediator system [24]. To
achieve modularity and distribution each mediator is an autonomous object-relational
DBMS with its own query processor, storage, and catalog. AMOS II peers share
many of the characteristics of peer-to-peer systems. AMOS II peers are autonomous
because there is no global schema or global coordinator. Every mediator peer can
act both as a client and a server to any number of other mediators. AMOS II peers
communicate over the Internet via query compilation, query costing, view expansion
and query execution requests in order to cooperatively process queries over composite
mediators.

Mediator composition is based on a multidatabase query language that allows me-
diator peers to transparently access views, tables, and functions from remote media-
tors or data sources [23]. Logical composition of mediators is achieved whenmulti-
database viewsare defined in terms of views, tables, and functions in other mediators
or data sources. Multidatabase views make groups of mediator peers and data sources
appear to the user as a single virtual database.

There are two traditional approaches to implement distributed information sys-
tems. The first is theblack boxapproach where distributed modules communicate
with each other through some protocol without revealing the implementation of the
services they export. This is the approach used in CORBA based systems and web
services based on SOAP [3] and WSDL [4]. In the AMOS II peer mediator architec-
ture the black box approach is equivalent to not to expand external views at all. It is
common knowledge that this may lead to suboptimal query execution plans(QEPs)
because of missed optimization opportunities.

On the other end is thefull view expansion(transparent box) approach in dis-
tributed DBMS, where all views are expanded and merged with the query [21], inde-
pendent of the location of the base tables and views that are used in a view definition.
This ‘reveals’ to the query compiler the information ‘hidden’ in the view definitions
which allows for better QEPs. Full view expansion could also remove unnecessary
access to mediator peers. However, in a large scale peer mediator system using a cost-
based query optimizer, full view expansion leads to prohibitively high compilation
cost. Furthermore, full view expansion can only be made when permitted by the peer,
to respect its autonomy.

We generalize both approaches and treat external mediator views asgrey boxes,
that is, when multidatabase views are defined in terms of other multidatabase views
some of the view definitions are revealed to remote clients that query the views. We
do this through a new query compilation technique for peer mediators,distributed
selective view expansion (DSVE). In DSVE, for better overall performance, mediators

2

control the level of transparency of the mediator peers by selectively expanding some
multidatabase views.

To analyze the performance of DSVE we implemented two data integration sce-
narios scaled to up to 19 distributed AMOS II mediators with up to 12 commercial
RDBMS data sources. As reference points we use the black box and the full view ex-
pansion approaches. We investigated the performance for both reference approaches
under varying level of transparency and with respect to both query compilation and
execution times. The analysis shows that DSVE can support the logical composition
of mediators with little overhead and that this approach is superior to both black and
transparent box approaches.

The rest of the paper is organized as follows. Section 2 investigates related work.
Section 3 introduces the scenarios that are used throughout the paper. Section 4 de-
scribes the principles of DSVE and Section 5 investigates its performance followed by
summary and future work in Section 6.

2 Related work

Distributed databases [1, 21] have complete global schemas describing on what sites
different (fractions of) tables are located, while peer mediators do not have complete
knowledge of meta-data from all mediators and data sources. Full expansion of all
possible views in a distributed system with many nodes may be very costly. In [20] a
restricted view expansion strategy for the System R* distributed database [5] is briefly
mentioned but not evaluated.

To the best of our knowledge, there is no other study of the effects of a varying
degree of view expansion in a distributed mediator or database system. No other
mediator system (e.g. [14, 25, 7, 8, 22, 19]) use distributed view expansion.

The peerpeer data management system(PDMS) architecture in [13] differs from
ours by having a centralized catalog and therefore it is closer to a DDBMS. That work
concentrates on data placement for PDMS. In [2] a data model suitable for PDMS is
presented. Neither of the PDMS works studies query processing performance. Based
on the similarity of PDMS with our peer mediator architecture, our results are readily
applicable to the PDMS architecture.

Peer-to-peer(P2P) systems andweb serviceshave addressed the creation of large-
scale integrated systems on the Internet. P2P systems, e.g Gnutella [12] and Freenet
[10], address the problem of large scale sharing and replication of simple information
objects such as files. P2P systems provide simple keyword search capabilities and do
not support high-level abstractions as views. Most of the work on large-scale compo-
sition of distributed systems on the Internet is performed in the context of web services
[6]. Problems related to composition of services are usually investigated from the per-
spective of workflow composition [26]. Our focus is on data integration and not on
workflow/process composition. Web services are based on the SOAP [3] and WSDL
[4] standards which provide no means for view definition exchange. Thus current
proposals for composed web services treat wrapped DBMS views as black boxes.

3

4) Client

Layers

3) Integrator

2) Translator

1) Data source

CLIENT

I01 I23 I89

T

S

.

(b) Common sub-mediator topology

CLIENT

I01 I23 I89

T9

S9

.

S8

T8T3

S3S2

T2T1

S1S0

T0

(a) Tree topology

Figure 1: Logical compositions of mediators

3 Mediator composition scenarios

Having a potentially unlimited number of ways to compose mediators, we imple-
mented for our study two scenarios that are simple enough to analyze the performance
implications of view expansion in a peer mediator system. Our choice of scenarios as-
sumes that data integration is performed with no global control or knowledge. Users
define peer mediator views in terms of views in other mediators without knowing how
those remote views are defined.

The integration scenarios are implemented using the AmosQL query language
[24]. In this paper we define the scenarios in terms of equivalent SQL statements.
Remote views defined in other mediators are referenced asview@server.

When participating in a logical composition, AMOS II peers can play several
roles.Translatorswrap different kinds of data sources and translate their data into the
common data model (CDM) of AMOS II .Integratorsreconcile conflicts and over-
laps between similar real-world entities modeled differently in different sub-mediators
[15, 16]. Users and applications can pose queries to any AMOS II peer, called the
client mediatorfor the queries.

Scenarios. In the first scenario (Figure 1(a)) suppliers store information about parts
in a RDBMS. Each supplier uses a translator that exports a view of the data. Several
independent part resellers integrate information from the suppliers and present an in-
tegrated view hiding their information sources from their clients. A potential customer
runs a mediator client that poses queries to the resellers’ integrators.

In the second scenario (Figure 1(b)) the information about parts from all suppliers
is stored in a single relational database. Each supplier has a single translator exporting
the parts of that supplier. Each of the part resellers then exports an integrated view of
the suppliers as in the first scenario. In a system with a global catalog such a scenario
would look very artificial since the client mediator would discover in advance that all
integrators access the same source of information. However in a peer system, this
knowledge is not readily available. We assume that the integrators did not want to
disclose their information source.

From the mediator client the two scenarios are equivalent and queries posed to the
resellers’ mediators would return exactly the same result. The differences are ‘hidden’
inside the view definitions of resellers’ and suppliers’ mediators.

4

Logical view integration graphs. To describe properties of mdiator compositions
we define alogical view integration graph (LVIG)as a directed acyclic connected
graph where vertices represent mediator peers or data sources and each directed arc
represents the relationship’is defined in terms of’between a multidatabase view in
one mediator and a view or table in another peer. Mediators are represented as ovals
and data sources as rectangles. An LVIG represents a high-level view of the logical
composition of mediators and data sources. Many distributed QEPs can be generated
to compute the result of a query with the same LVIG.

The LVIGs of the two scenarios on Figure 1 differ in the topology of their LVIGs.
Based on that we will name the first one as theTREEscenario and the second one as
the Common Sub-Mediator (CSM) scenario.

3.1 Definitions of the mediators

The mediators and sources in the two scenarios are divided into four layers based on
their roles:

The data source layercontains data stored in RDBMS. In theTREE scenario
the data for ten part suppliers is stored in different relational database tables,PART ,
each stored in its own DBMSSi with the following schema:

CREATE TABLE part
(pnum integer not null,

pname char(16) not null,
quality integer, primary key(pnum))

In theCSM scenario all data about parts is stored in one relational databaseS in
a singlePART table having one more column - a supplier id - and a composite key
consisting of the part number and the supplier id. To simplify it is assumed that the
same ‘real’ part has the same keypnum in every relational source.

The translator layerconsists of mediators providing views over thePART tables.
The translatorsTi andT access the source data through an ODBC wrapper [9]. The
translators could be hosted by independent application service providers or data source
owners. In theTREE scenario there is one translatorTi per relational sourceSi. In
theCSM scenario the single relational sourceS is wrapped by the translatorT . In
addition, inT each part supplier has a view,parti, that selects parts from that supplier.

The integrator layerdefines reconciliation views over thepart views defined in the
translator layer. All integrator views are defined through the template below, where
[i] and [j] are replaced by the indexes of the integrated translators for theTREE
scenario, and the indexes of thePART tables for theCSM scenario, respectively.
Each scenario uses only one of the twoFROM clauses.

CREATE VIEW part@I[ij] as
SELECT p0.pnum, p0.pname,

combine_quality(p0.quality, p1.quality) AS quality
/* TREE scenario: */

FROM part@T[i] p0, part@T[j] p1
/* CSM scenario: */

FROM part[i]@T p0, part[j]@T p1
WHERE p0.pnum = p1.pnum;

5

In theTREE scenario each mediatorIij integrates information about parts from
two translatorsTi andTj in the firstFROM clause. Thepnum attribute of the view is
defined as thepnum property of one of the joined tables. Thequality property is de-
fined by the user-definedcombine quality function that encapsulates the knowledge
of how to combine part qualities from different sources.

The integratorsIij in theCSM scenario combine views of parts from the same
part suppliers as in theTREE scenario. However all the viewsparti in the translator
T are defined in terms of the same relational tablePART in S as reflected by the
secondFROM clause of the template.

From the mediator client both scenarios are indistinguishable as they export ex-
actly the same views. Nevertheless the sources of information of the integrators differ.

Finally, the top layerhas one mediatorCLIENT through which users pose
queries to thepart views defined in the integratorsIij . Depending on the remote
views referenced in a query the corresponding LVIG may look different. The LVIGs
on Figure 1 correspond to queries that reference all five available integrators.

To investigate multidatabase view expansion with respect to the number of partici-
pating mediator peers we use a class of test queries over a varying number ofpart@Iij

views. A sample query over thepart@I01 andpart@I23 views defined in the inte-
gratorsI01 andI23 is shown in Figure 2. Thequality part query stateswhat are the
high-quality parts known to theI01 andI23 integrators, where thequality property
ranges from 1 to 10.

select p1.pname
from part@I01 p1, part@I23 p2
where p1.quality >= 7 and

p2.quality >= 7 and
p1.pnum = p2.pnum;

Figure 2: Queryquality parts over I01 and I23

The quality parts query is scaled by adding morepart@Iij views from other
integrators through equi-joins on thepnum attribute and inequality predicates on each
quality attribute.

4 Multidatabase view Expansion

First the black box approach to process queries over multidatabase views is described,
followed by a discussion of its potential problems. To remedy the major deficiency
of the black box approach, poor QEP quality, we describe how to extend the mediator
query processor with a general mechanism for exchanging view definitions between
the mediator peers. In its simplest form this mechanism is equivalent to full view
expansion. After discussing the advantages and problems of full view expansion we
describe what is needed to achieve the best of both worlds - a generalized approach to
multidatabase view expansion that allows the query optimizer of each mediator peer
to explore the full range of possibilities between no and full view expansion.

6

4.1 Processing multidatabase views as black boxes

Queries in AMOS II are parsed and rewritten [18, 9, 15, 16] into a typed predicate
calculus representation, ObjectLog [18], extending Datalog with predicate type sig-
natures. In this paper we use SQL notation. For local queries rewritten calculus ex-
pressions are transformed by a cost-based query optimizer into an optimized object
algebra expression [18, 9] which is interpreted to produce the query result. For mul-
tidatabase queries, before the query optimization phase, the calculus representation
of the query is decomposed into multidatabase subqueries. At each mediator peer its
cost-based optimizer generates optimized QEPs for the each of the subqueries. The
query decomposition is performed in two main stages [17]: heuristic-basedpredicate
groupingand cost-basedsubquery optimization.

The predicate grouping groups the query predicates into one or more composite
predicates (subqueries). The result is one or more subqueries per each remote peer.
After the predicate grouping phase the query in Figure 2 is divided into two subqueries
(views) SQ@I01 andSQ@I23 that consist of predicates fromI01 andI23 (Fig. 3
and 4).

create view SQ@I01 as
select p0.pnum, p0.pname
from part@I01 p0
where p0.quality > 7;

create view SQ@I23 as
select p0.pnum
from part@I23 p0
where p0.quality > 7;

Figure 3: Subqueries after predicate grouping

select s0.pname
from SQ@I01 s0, SQ@I23 s1
where s0.pnum = s1.pnum;

Figure 4:quality parts after grouping

Thesubquery optimizationphase decides on the execution order of the subqueries
which determines the data flow between the mediators. The two subqueriesSQ@I01
andSQ@I23 are sent for compilation and costing to the integratorsI01 andI23 to
determine variable bindings and execution order for the subqueries. Based on the
binding and cost information an executable plan is produced for the query in the client
mediator and the subqueries in their respective mediators. These optimized plans
for given binding patterns are saved in the mediator databases. The same process is
applied recursively for subqueires that are themselves multidatabase queries in their
respective mediators. Notice that the client mediator does not ‘know’ (and does not
have to know) thatpart@I01 andpart@I23 are actually views.

7

b) Common sub-mediator topology

1

8

7

2

9

6
12

5

103

11

4

a) Treee topology

CLIENT

I23

1

12

11

2 6

13 17

5

3

10

9

7

16

14

20

18
4 8

15 19

I01

T2 T3 T0 T1

CLIENT

S2 S3 S0 S1

I01 I23

T

S

Figure 5: DDFGs for queryquality parts generated by the black box approach

Distributed data flow graphs. A useful tool to understand distributed QEPs is a
graph that represents the flow of data during the execution of a multidatabase query.
A distributed query execution data flow graph (DDFG)is a directed connected graph
where the vertices in the graph represent mediator peers or data sources. There are
two kinds of edges with respect to each vertex:call edges are out-edges that represent
remote subquery execution requests (with optional parameters),data edges are the
in-edges of a vertex representing the incoming flow of tuples that correspond to each
request. All edges are numbered according to their execution order. DDFGs reflect
only the distribution aspects of a query execution plan. Many DDFGs may correspond
to a single multidatabase query.

For thequality parts example query the black box approach to distributed query
compilation described above generates DDFGs similar to those in Figure 5. All other
DDFGs corresponding to the same query are different only in the order the nodes
from the same layer are accessed. As one may expect the DDFGs on Figure 5 are very
similar to the LVIGs for the same query in Figure 1. Thus the black box approach to
query compilation produces QEPs that follow the logical view composition topology.

Advantages and disadvantages of the black box approach.Treating remote views
as black boxes has some advantages. When remote views are not expanded a multi-
database view definition is often smaller and refers to fewer mediators than the ex-
panded one. All the compilation effort spent to generate plans for the remote views
can be reused because AMOS II stores precompiled parameterized views as functions
that can be directly invoked. Therefore we can expect better compilation times when
no views are expanded. Another advantage is that the integrators do not have to re-
veal their view definitions to the client mediator. This respects the autonomy of the
mediators and the black box approach may be the only possible one if a peer mediator
doesn’t reveal view definitions to other mediators.

The main disadvantage of the black-box approach is that it can lead to suboptimal
QEPs. In the context of a peer mediator system sub-optimality can be due to several
reasons. A QEP may not be able to make use of hidden existing indexes in other me-
diators or sources. Similarly it is not possible to increase the selectivity of subqueries
by merging predicates from remote views in different mediators. As in Figure 5 inter-
mediate mediators are accessed despite that their view definitions do not access any

8

b) Common sub-mediator topology

1

2 3

4

a) Treee topology

CLIENT

102
6

12

14

5

3

9

7
11

15

4 8
13

16

T2 T3 T0 T1

S2 S3 S0 S1

CLIENT

T

S

I23 I01

1

I01 I23

Figure 6: DDFGs for queryquality parts generated by the full view expansion ap-
proach

local data. In deep mediator networks this may result in considerable network over-
head and unnecessary load on mediators. In the case of queries with LVIGs having
TREE topology the distributed subquery scheduler at each mediator peer has fewer
options for distributed join ordering. For queries with LVIGs having CSM topology a
client cannot detect that more than one of its sub-mediators access data from the same
source as in the scenario on Figure 5(b).

4.2 Full expansion of multidatabase views

To solve the problems of the black box approach described in Section 4.1 a logical
step is to follow the approach employed in modern DBMSs (distributed or not) - to
fully expand all view definitions. For thequality parts example query this implies
that the definitions of the viewpart in the integratorsI01 andI23 should be revealed
to the client mediator.

After collecting the expanded definitions of all the remote subqueries, the sub-
queries in the original query are replaced by their expanded definitions and all predi-
cates are grouped into subqueries. The query processing continues with the cost-based
subquery optimization phase in the same way as in the black box approach.

Figure 6 shows some possible DDFGs for thequality parts query from Figure 2
after performing full view expansion. TheCLIENT mediator eliminates all redun-
dant mediators (dotted circles). In the theCSM scenario in Figure 6(b) the view
definitions at the two integrators are combined in a single query together with the
query predicates and the translatorT is accessed only once. When supported by the
data sources the combined predicates can be pushed to the sources which may further
improve performance.

While full view expansion is very promising in terms of potential benefits in execu-
tion time, the cost to compile queries over fully expanded views may be prohibitively
high. An expanded remote view definition may reveal that it has been defined through
many mediators thus resulting in an explosion of the number of peers the query op-
timizer must consider. For example if we scale our scenario to ten integrators, each
of them having an integrated view over ten translators, full view expansion of a query
over the ten integrators will lead to a distributed query involving a hundred peers. At

9

b) Common sub-mediator topology

8

5

9

10

3

4

a) Treee topology

CLIENT

I23

1

12

11

2 6

13
17

5

3

10

9

7 16

14

18

4 8

15

I01

T2 T3 T0 T1

CLIENT

S2 S3 S0 S1

I01 I23

T

S

1

2

6

7

Figure 7: DDFGs for queryquality parts generated by thedsve1 strategy

the same time each of the subqueries of the distributed plan may contain many join
predicates. As there is no global catalog in a peer mediator system the query opti-
mizer must execute a remote cost estimate request for every query fragment that can
be executed in a remote peer. This may result in a high cost of getting the cost. Finally
due to incorrect cost estimates typical in a distributed mediator system the optimizer
might still produce sub-optimal QEPs.

Finally, full view expansion does not respect mediator and source autonomy by
forcing all mediators to reveal their view definitions. This makes full VE unsuitable
for integration of data from independent information providers.

4.3 Selective expansion of multidatabase views

A natural idea is to generalize the processing of multidatabase views so that the query
processor adapts itself to the query being compiled, the logical composition topology
of the multidatabase views being queried, and the autonomy requirements of each
mediator peer. Such a general approach should combine the good sides of both the
black box and the full view expansion approaches: reasonable query compilation cost,
good query execution performance, and respect of site autonomy.

We have implemented such a generalized mechanism in the AMOS II mediator
system, nameddistributed selective view expansion (DSVE). It allows to selectively
expand only some of the multidatabase views. DSVE is generic in the sense that it
allows various strategies to be used to select which of the subqueries in a multidatabase
query should be view expanded. In particular, when no remote views are expanded
DSVE is reduced to the black box approach, and when all subqueries are expanded
DSVE is equivalent to the full view expansion approach. We use the termpartial view
expansion (partial VE)for all other DSVE strategies.

To achieve good performance DSVE’s view selection strategy should expand views
if it leads to high QEP quality improvement without dramatically increasing the opti-
mization time for the expanded query. The DSVE strategy should scale well over the
number of remote views. To preserve the autonomy of the mediator peers the strategy
used in DSVE should require as little information as possible to be imported from
mediator peers.

To investigate the tradeoffs between compilation time and QEP quality with vary-

10

ing number of expansions, we start with a family of simple strategies where each
strategy performs a fixed number,NExp, of expansion requests per query. When
NExp is equal or bigger than the total number of subqueries, DSVE is equivalent to
full view expansion. IfNExp = 0 DSVE reduces to the black box approach. Let
us denote each of these strategies asDSV E N . Figure 7 shows the resulting DDFG
after the compilation of thequality parts test query when theDSV E 1 strategy was
used to expand the view in integratorI01. In the following section we perform a set
of experiments where we vary theDSV E N strategy for both the TREE and CSM
mediator composition scenarios from Section 3.

5 Experimental evaluation

The experimental goals are:i) quantify tradeoffs between no, full and partial VE;
ii) test hypothesis that DSVE may lead to best overall performance;iii) understand
properties of a DSVE strategy with good overall performance.

In all experiments we execute scaled versions of the test queryquality parts in
Figure 2 for both scenarios. This allows us to include the topology of the LVIG of
the query as a parameter in the experiments. We investigate the scalability of view
expansion by varying number of expanded views and the number of integrators joined
by the test query.

5.1 Experimental setup

We used three 600 MHz Dell Optiplex GX1 computers with 512 MB RAM running
Windows 2000 interconnected by a fast 100 Mbit LAN. Each of the mediator lay-
ers (client, integrator, translator) run on separate computers. The query compiler
of AMOS II generated synchronous QEPs allowing us to run several mediators on
the same computer without any interference. During the experiments it was ensured
that each of the nodes preallocates enough RAM to complete the experiment without
swapping. All translators accessed a DB2 RDBMS through an ODBC wrapper. The
PART tables in the DB2 databases were populated with synthetic data, all with the
same number of rows and even distribution of all join columns. All join columns of
thePART tables were indexed.

5.2 Compilation tradeoffs

First measurements investigate how the compilation time for a multidatabase query
over multidatabase views depends on the number of view expansions for varying num-
ber of integrator views. Figures 8 and 9 show this dependency for LVIGs with TREE
and CSM topology. Each point in the graphs corresponds to one compilation experi-
ment. There is one curve per fixed number of expansions. Points with the same x-axis
(same number of integrators) correspond to the same query compiled with different
number of view expansions. The curves in the graphs partially coincide when the
number of expansions are equal to or more than the total number of integrators. While
our experiments were performed for all possible numbers of expansions between none
and full, for clarity we removed some the experimental curves that do not change our
conclusions.

11

1

10

100

1000

10000

2 3 4 5 6

tim
e,

 s
ec

.

integrators

expand none
expand 3
expand 4
expand all

Figure 8: Query compilation times for different DSVE strategies,TREE topology

The compilation cost of a multidatabase query is distributed among the compo-
nents of the query compiler: the local query compiler and the distributed query opti-
mizer. Both optimizer components use dynamic programming (DP) to find the optimal
executable order of subqueries and the predicates in subqueries. Therefore query com-
pilation cost depends exponentially both on the number of remote sub-queries and the
number of predicates per sub-query.

Figure 8 shows experimental results for queries with TREE topology LVIGs. The
y-axis of the graph is in logarithmic scale because of high value ranges. As expected,
the more expansions are performed, the longer compilation time. Full VE expansion
leads to exponentially growing compilation time and for 5 integrators it is 186 times
more than with no VE. For 6 integrators and full VE (curveexpandall) the experi-
ment could not complete in 10000 seconds. Two factors contribute to the exponential
behavior of full VE:i) DP is used to find optimal execution order of the remote sub-
queries;ii) in our scenario each expansion of a view on the integrator level reveals two
more views from the translator level, thus increasing the distributed query optimizer
search space. All other strategies result in compilation times between the two naive
strategies: black box (curveexpandnone) and full VE (curveexpandall).

The experiments for queries withCSM LVIG topology (Figure 9) uncover com-
pletely different behavior than with TREE topology. The total time to compile the
worst case of 5 integrators is 257 times less than with the TREE topology. Contrary
to the common belief that the more views are expanded, the higher compilation cost,
here we observe the opposite behavior up to 5 integrators: the more views are ex-
panded, the less compilation time. This unexpected result is due to savings both in
the local and the distributed query optimizer components. When expanded, the views
on the integrator level reveal that they are defined in terms of the same mediator, the
translatorCSM on Figure 1(b). After all expanded views are merged and their predi-
cates are grouped into a single subquery (executed at the translatorT) it is simplified

12

0

2

4

6

8

10

12

14

2 3 4 5 6

tim
e,

 s
ec

.

integrators

expand none
expand 3
expand 4
expand all

Figure 9: Query compilation times for different DSVE strategies,CSM topology

by query rewrites (Section 4.2). As a result the distributed sub-query optimizer at the
client mediator has fewer predicate groups to optimize (just one) while the number of
predicates for the local optimizer does not grow. After the number of integrators grows
over 5, full VE leads to slower compilation time due to the large number of relational
sources being accessed by the large subquery resulting from the view merge. This
subquery is compiled in the translatorT and increases the compilation time there.

We conclude that the more distinct sub-views are revealed by VE, the higher is
compilation cost, and the dependency is exponential in the worst case. Furthermore
if DP is used for query optimization full VE becomes too expensive when it results
in more than 9 to 10 distinct sub-views. Finally, expansion of views with a common
sub-mediator does not increase compilation time dramatically, and in some cases it
may result in lower compilation time.

5.3 Execution plan quality

The next step in our evaluation of VE is to check two hypotheses made earlier:i) the
more views are expanded the better the quality of the resulting QEP andii) partial
VE leads to sufficiently good plans with low compilation costs. Figure 10 represents
the execution time of the test queryquality parts in Figure 2 scaled to 5 integrator
views where allPART tables contain 6000 tuples. The test query is precompiled for
both LVIG topologies (TREE andCSM) with varying number of view expansions
resulting in different QEPs. The number of expansions varies between 0 (black box)
and 5 (full VE). The quality of the QEPs is evaluated by measuring their actual running
time.

For both topologies we observe improvement in the QEP quality in Figure 10
when the number of expansions grows. This confirms assumptioni). Notice that full
VE improves the plan quality in theTREE topology with only 24% while in the

13

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

tim
e,

 s
ec

.

expansions

CSM topology
TREE topology

Figure 10: Plan quality for 5 integrators

CSM topology the improvement is 10 times.
Table 1 compares the ratio between the relative time to compile a query with vary-

ing number of expansions and the corresponding relative quality improvement for the
experiment on Figure 10. The table consists of two similar parts, one for the test query
being compiled and run against a LVIG withTREE topology, and one for theCSM
toplogy. For each topology the first row [abs. comp.] shows the absolute times to
compile the query, the next row [rel. comp.] shows the compilation times relative to
the time for 0 view expansions. The row [improvement] shows the ratio of the ex-
ecution time with no expanded views (as a worst case) to all execution times from
Figure 10. Finally the row [rel. cost for improvement] shows the ratio between the
[rel. comp.] cell and the [improvement] cell which is an estimate of how much did it
cost in compilation time to achieve an improvement in the quality of the QEP.

For theTREE topology the last row [rel. cost for improvement] shows that the
more views we expand the more costly it is to improve the quality of the QEP while at
the same time from row [improvement] we can see that even with full view expansion
(5 expansions) we achieve only minor improvement of 1.28 times (22%) for which
it took 177.9 times longer (983.6 seconds) to compile the query. In this case a good
tradeoff is to perform partial expansion of 3 integrator views which takes only 4.4
times longer (24.3 sec.) to achieve 1.1 times (9%) improvement. Therefore in the
case of aTREE topology partial VE produces a better plan with relatively low cost,
while full VE leads to prohibitively high cost for plan improvement which confirms
assumptionii) . We can also notice that even with no VE at all the resulting QEP is
pretty good.

The compilation and execution of the test queries in theCSM topology exposes
radically different behavior. Partially expanding 3 integrator views improves the plan
quality 5.5 times where the compilation time is 60% of the time for the non-expanded
case. Therefore assumptionii) is true in the case ofCSM topology as well. Full VE

14

number of
expansions 0 1 2 3 4 5
TREE
abs. comp. (sec.) 5.5 5.7 9.5 24.3 231.3 983.6
rel. comp. 1 1.04 1.7 4.4 41.8 177.9
improvement 1 1.01 1.04 1.1 1.1 1.3
rel. cost for
improvement 1 1.03 1.66 3.99 38.38 139.01
CSM
abs. comp. (sec.) 4.6 4.3 3.5 2.9 2.7 3.8
rel. comp. 1 0.9 0.8 0.6 0.6 0.8
improvement 1 1.01 2.7 5.5 8.8 10.2
rel. cost for
improvement 1 0.91 0.28 0.12 0.07 0.08

Table 1: Compilation cost vs quality

in this case leads to 10.2 times improvement in the quality of the QEPs which requires
less time (only 80%) than with no VE.

The conclusions are that in the general case partial VE produces sufficiently good
plans with relatively low compilation cost. If we know that we are compiling a query
over views with aTREE topology of the LVIG, the compilation cost can be radically
reduced by not expanding any views at all without sacrificing the quality of the QEP.
By contrast, when compiling queries against views withCSM topology, full VE can
lead to radical improvements in the quality of the QEPs with very low compilation
cost.

6 Conclusions and future Work

We proposed a new approach,distributed selective view expansion (DSVE), to process
compositions of multidatabase views in a peer mediator system. In DSVE, some of
the views defined in remote mediators are selectively expanded to balance between
query compilation time and QEP quality for best overall performance. To minimize
the number of expansion requests and to allow optimizations of the expanded remote
views DSVE uses predicate grouping to combine query predicates into subqueries. We
present a performance study of DSVE with respect to its scalability over the number of
remote views both for query compilation and query execution. As a reference we use
two traditional approaches, the black box and the full VE approach which are special
cases of DSVE.

The experiments show that neither of the two reference approaches (black box and
full VE) is suitable for a peer mediator system, because none of them performs well in
all cases. Contrary to the common belief that VE is always beneficial, our experiments
show that it is not favorable to always perform full VE because in some cases it leads
to very high compilation costs without radical improvements in query execution time.
In LVIGs with TREE topology VE increases the number of views directly visible to
a client node, and given that cost estimates are highly unreliable in a peer mediator
system, this often results in suboptimal plans. Therefore VE forTREE-like LVIGs

15

defeats its own purpose - to improve the quality of the QEPs. On the contrary, more
view expansions for queries withCSM -like LVIGs result in compilation times orders
of magnitude lower than in aTREE-like LVIG, while the quality of the plans im-
proves up to 12 times. In the case ofCSM -like LVIG topologies VE can drastically
reduce the query execution time when information from several hidden sub-mediators
can be combined. The topology of the LVIG of a multidatabase query plays a crucial
role in the VE process. ForTREE topologies the best strategy is to expand only few
of the remote views while for theCSM topology all (or almost all) views should be
expanded.

The performance improvements of DSVE in processing queries over logically
composed mediators are due to more selective queries, smaller data flows between
the servers, fewer servers involved in the query execution, while spending relatively
little effort in query compilation. Our performance study shows that DSVE allows for
efficient query processing in logically composed mediators.

We are currently designing a view expansion strategy for DSVE that selects for
expansion the views most likely to lead to an improved QEP with low compilation
cost. Such a strategy should utilize the information hidden in the topology of the
LVIG to leverage the common view definitions for better plans and lower compilation
cost. A DSVE strategy should also evaluate the potential number of remote subqueries
it will produce for the distributed optimizer and take into account the total number of
predicates per subquery to reduce the distributed and local query compilation costs.

References

[1] P. M. G. Apers, A. R. Hevner, and S. B. Yao. Optimization algorithms for distributed
queries.IEEE Transactions on Software Engineering, 9(1):57–68, January 1983.

[2] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Za-
ihrayeu. Data management for peer-to-peer computing: A vision.Proc. 5th Intl. Work-
shop on the Web and Databases, WebDB 2002, Madison, Wisconsin, June 2002.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1.W3C Note,
http://www.w3.org/TR/SOAP/, May 2000.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. W3C Note, http://www.w3.org/TR/wsdl, March 2001.

[5] D. Daniels, P. G. Selinger, L. M. Haas, B. G. Lindsay, C. Mohan, A. Walker, and P. F.
Wilms. An introduction to distributed query compilation in R*.Proc. of the 2nd Intl.
Symposium on Distributed Data Bases, 291–309, Berlin, September 1982. North-Holland
Publishing Company.

[6] IEEE Data Engineering Bulletin. Special issue on infrastructure for advanced E-services.
24(1), March 2001.

[7] W. Du and M. Shan. Query processing in Pegasus. In O. Bukhres, A. Elmagarmid
(eds.):Object-Oriented Multidatabase Systems: A Solution for Advanced Applications.
Pretince Hall, Englewood Cliffs, 1996.

[8] C. Evrendilek, A. Dogac, S. Nural, F. Ozcan: Multidatabase Query Optimization.Dis-
tributed and Parallel Databases, Kluwer, 5(1), 77-114, 1997.

[9] G. Fahl and T. Risch. Query processing over object views of relational data.VLDB
Journal, 6(4):261–281, 1997.

[10] Freenet.http://freenet.sourceforge.com/.

16

[11] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ullman,
V. Vassalos, and J. Widom. The TSIMMIS approach to mediation: Data models and
languages.Journal of Intelligent Information Systems, 8(2):117–132, April 1997.

[12] Gnutella.http://www.gnutella.com/.
[13] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do for peer-

to-peer?Proc. 4th Intl. Workshop on the Web and Databases, WebDB 2001, 31–36, June
2001.

[14] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing queries across diverse
data sources.Proc. 23rd Intl. VLDB Conf., 276–285, Athens, Greece, August 1997.

[15] V. Josifovski and T. Risch. Functional query optimization over object-oriented views for
data integration.Journal of Intelligent Information Systems, 12(2-3):165–190, 1999.

[16] V. Josifovski and T. Risch. Integrating heterogenous overlapping databases through
object-oriented transformations.Proc. of 25th Intl. VLDB Conf., 435–446, Edinburgh,
Scotland, UK, September 1999.

[17] V. Josifovski and T. Risch. Query decomposition for a distributed object-oriented media-
tor system.Distributed and Parallel Databases, 11(3):307–336, May 2002.

[18] W. Litwin and T. Risch. Main memory oriented optimization of oo queries using typed
Datalog with foreign predicates.IEEE Transactions on Knowledge and Data Engineer-
ing, 4(6):517–528, 1992.

[19] L. Liu and C. Pu. An adaptive object-oriented approach to integration and access of
heterogeneous information sources.Distributed and Parallel Databases, 5(2):167–205,
April 1997.

[20] G.M.Lohman, C.Mohan, L.M.Haas, D.Daniels, B.G.Lindsay, P.G.Selinger, and
P.F.Wilms. Query processing in R*. In W.Kim, D.S.Reiner, and D.S.Batory (eds.):Query
Processing in Database Systems, 31–47. Springer Verlag, 1985.

[21] M. T. Özsu and P. Valduriez.Principles of Distributed Database Systems. Prentice Hall,
2nd edition, 1999.

[22] K. Richine. Distributed query scheduling in DIOM.Tech. report TR97-03, Comp. Sc.
Dept., Univ. of Alberta, 1997.

[23] T. Risch and V. Josifovski. Distributed data integration by object-oriented mediator
servers. Concurrency and Computation: Practice and Experience, 13(11):933–953,
2001.

[24] T. Risch, V. Josifovski, and T. Katchaounov. Amos II concepts.
http://www.csd.uu.se/∼udbl/amos/doc/, 2000.

[25] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources
with DISCO. IEEE Trans. on Knowledge and Data Engineering, 10(5):808–823, 1998.

[26] VLDB Journal. Special issue on E-services. 10(1), 2001.
[27] G. Wiederhold. Mediators in the architecture of future information systems.IEEE Com-

puter, 25(3):38–49, 1992.

17

Paper D:

c©1999 IEEE. Reprinted, with permission, from:

Vanja Josifovski, Timour Katchaounov, and Tore Risch. Optimizing queries
in distributed and composable mediators. InProceedings of the Fourth IFCIS
International Conference on Cooperative Information Systems, CoopIS’99,
pages 291–302, IEEE Computer Society, September 1999.

Optimizing Queries in Distributed and Composable
Mediators

Vanja Josifovski, Timour Katchaounov and Tore Risch
Laboratory for Engineering Databases

Linköping University
Linköping, Sweden

{vanja, timka, torri }@ida.liu.se

Abstract

The mediator-wrapper approach to integrate data from heterogeneous data sources
has usually been centralized in the sense that a single mediator system is placed be-
tween a number of data sources and the applications. As the number of data sources
increases, the centralized mediator architecture becomes a bottleneck. This paper
presents an architecture for composable and distributed mediator servers, defined in
terms of other mediator servers. The modularity of composable mediators allows to
build larger systems of distributed mediators integrating many data sources, without
the need to maintain a global schema. Composable mediators furthermore provide
data independence by allowing locality of changes in both submediators and data
sources. However, a problem with a distributed and composable mediator architec-
ture is that the query performance may degrade as the number of mediators increases.
We describe some challenges for processing queries in this type of environment, and
propose a distributed query decomposition algorithm that eliminates some of the over-
head of logical mediator composition. For certain mediator compositions it produces
distributed query plans whose inter-mediator data flow is optimal with respect to the
query, but is different from the logical interdependencies between the involved media-
tors. Experimental results show that this strategy improves the query performance and
allows increase of the number of mediators without query performance degradation.

1 Introduction

The wrapper-mediator approach for integration of data from heterogeneous data
sources has been used in several projects [13, 25, 11]. This approach divides a data in-
tegration system into two functional units. The wrapper provides access to the data in
thedata sourcesusing acommon data model(CDM), and a common query language.
The mediator provides a semantically coherent CDM representation of the combined
data from the wrapped data sources, built using reconciliation primitives. Usually the

data sources are distributed to several sites and accessed over some computer network.
The mediator provides transparent access to the combined data from the data sources
through queries to the mediating view The user/programmer does not need to make
individual interfaces to each data source.

Current mediator systems and prototypes [13, 25, 11, 21, 5] are centralized sys-
tems where a single mediator server integrates data through a number of wrappers.
Although indicated in some system architecture overviews, to the best of our knowl-
edge no system allows many distributed mediator servers to interoperate. An original
goal for mediator architectures [26] was that mediators should be relatively simple
abstractions of modules of data and that larger systems of mediators should be com-
posed through these primitive mediators. By making mediators servers composable
and modular by allowing some mediators to act as wrappers for other mediators, it
would be possible to scale the data integration process in the sense that more complex
systems of data sources can be integrated than through a central integration. Com-
posable mediators would allow for conceptual modeling of mediators without detailed
knowledge of the definitions of other mediators and data sources, through modular de-
sign. As for other complex systems, modularity is essential for building large systems
of mediators. Furthermore, modularity also increases the data independence between
applications, mediators, and data sources by allowing for changes in lower level medi-
ators and data sources without changes in higher level systems. When many mediator
servers become available on the computer networks composability will be required for
designing new distributed mediator servers in terms of the existing ones.

The design of composable and distributed mediator servers introduces, however,
some new challenges to be addressed in this paper. For example, a naive implemen-
tation of several levels of mediators as black boxes, as with CORBA technology [24],
would often cause significant performance overhead. While on a conceptual level it
can make the modeling task easier, such black box treatment of mediators would pro-
hibit extensive query processing over submediators. There is a need to minimize the
overhead of the mediator composition hierarchy. CORBA-like technologies further-
more provide only object-instance oriented communication primitives while efficient
query execution requires bulk-oriented inter-mediator communication.

We have developed a distributed mediator system, AMOS II, in which federations
of mediator servers, acting as virtual object-oriented (OO) databases, can intercom-
municate. Each mediator server in the federation has full OO query processing and
cost-based optimization capabilities. It exports to other systems interfaces having ca-
pabilities for i) exchanging meta-data, ii) processing OO queries, iii) estimating query
costs, and iv) bulk-oriented exchange of data. The user can post OO queries to any me-
diator server and the involved mediators in the federation will interoperate to produce
the result as quick as possible.

In such a distributed mediator hierarchy the logical composition of mediators needs
not necessarily be the same as the optimal data flow through the network of mediators
for answering a query. Often it is favorable to do as much data selection as possible
in the data sources and the mediators close to them. If a query needs data from only a
single data source it is better to bypass all intermediate mediators which would then do
no further filtration. It should furthermore be noted that the performance also depends
on the speed of the links between the nodes in the federation and on the computers
involved. A good distributed mediator query optimizer should take into account local
and shipping costs to produce an optimal query execution plan distributed over the

2

mediators.
The query optimization task in AMOS II is distributed over the distributed mediator

servers. For a given mediator query a distributed query processing algorithm produces
a distributed execution plan with optimized data flow that eliminates much of the
overhead of composed mediation. Each local AMOS II optimizer knows the local
access costs and can ask other mediators and data sources about their access costs. No
mediator has total knowledge about all costs.

The query optimizer is thus modular in the sense that it does not work in a central
environment where one mediator system has all knowledge needed for query process-
ing. This eliminates the need for a centralized directory of schema and optimization
information that might become a bottleneck when the number of mediator servers in-
crease. Instead, in the proposed framework, each local query optimizer exchanges
meta-information and costs with the other query optimizers in the federation.

We have done some experiments showing promising results for our distributed me-
diator query optimization techniques. The experiments show that the distributed query
decomposition algorithm can produce better distributed inter-mediator plans than if
data is joined through a central mediator. Furthermore, the reported results show that
the distributed query decomposition algorithm produces plans that allow for increas-
ing the number of involved servers with minimal increase of the query processing
time. The experiments also show that, for a given query, different optimal distributed
query execution plans sometimes need to be produced depending on the communica-
tion speeds between mediator nodes. For example, a personal mediator may reside in
a portable computer and different execution plans are optimal when communicating
with the federation over a telephone line than when the computer is connected to the
LAN.

The paper is organized as follows. Section 2 introduces the terminology and the
features of the AMOS II system. In Section 3 the query decomposition and the dis-
tributed compilation are described. Section 4 presents experimental results showing
the benefits of the proposed strategies. The conclusions are presented in Section 5.

2 Data Integration with AMOS II

The AMOS II system has its roots in the workstation version of the Iris system,
WS-Iris [18]. The core of AMOS II is an open, light-weight, and extensible database
management system (DBMS). To achieve better performance, and because most of the
data reside in the data repositories, AMOS II is designed as a main-memory DBMS.
Nevertheless, it contains all the traditional database facilities, such as a recovery man-
ager, a transaction manager, and a OO query language named AMOSQL [9]. An
AMOS II server provides services to applications and to other AMOS II servers.

AMOS II is a distributed mediator system [26] where a number of mediator servers
communicate over the Internet. Some of these servers can be configured astransla-
tors [7] which wrap different kinds of data sources, e.g. ODBC compliant relational
databases [2] or XML files. We use the term translator since it is a fully fledged
AMOS II system which can wrap more than one data source, contains a complete
query processor, and supports semantic abstractions and conversions of the data in the
data sources through OO views. A translator is thus also a mediator which provide
a virtual OO database server layer that transparently translates data from some data

3

���������	��

��������������

������������� ����
 ���������� !� �"�	#$���%� � �� � �
&�('�) ���+* , � � �

- �+� �/.0���1�2�
3 , � �%�+#

- ���%�+�2���4* �
������45���� �

- ���+����� �&�

6����+� � *����7� �6�� �+� � * ���7� �

- ���+����� �&�

6����+� � *����7� �

89���/�+*
������

89���/�+*
������

Figure 1. Interconnected AMOS II systems

sources.

Users and applications can pose OO queries to any AMOS II server. We call the
server(s) to which some queries are posedclient mediator(s)for those queries. The
other AMOS II servers involved in answering a query are calledserver mediators. For
example, in a mobile environment a portable computer could have a client mediator
that integrates data from several server mediators on a company LAN. Such a scenario
is assumed in our experiments below.

A client mediator can have various types of data sources and access a number
of autonomous server mediators. As opposed to a distributed database environment
where the data, meta-data and optimization information are available in a centralized
repository, in an autonomous environment each server contains only portions of this
data.

Figure 1 illustrates the different roles that an AMOS II server can assume. In this
example, applications access data stored in data sources through a collection of com-
posed mediator servers. The servers may run on separate workstations and provide
data integration, translation, and abstraction services through which different object
view hierarchies are presented in the different mediators, as indicated in Figure 1. The
mediator servers appear as virtual database servers having data abstractions, query in-
terface, and other database functionality. AMOS II mediators are composable since a
mediator server can regard other mediator servers as data sources. A single AMOS II
server can also assume more than one role described in Figure 1 and serve more than
one application simultaneously. Different interconnecting topologies can be used to
connect mediator servers depending on the integration requirements of the environ-
ment. Here, a naive implementation where messages are passed between the several
layers of composed mediator servers may have unacceptable performance. However,
we have developed distributed mediator query optimization techniques that minimize
the overhead of composing mediator servers, to be further elaborated in this paper.

The data model in AMOS II is an OO extension of the DAPLEX [22] functional
data model. It has three basic constructs:objects, types(i.e. classes), andfunctions.
Objects model entities in the domain of interest. An object can be classified into one

4

or more types which makes the objectinstancesof those types. The set of all instances
of a type is called theextentof the type. Object properties and their relationships are
modeled by functions.

The types are divided intostored, derived, proxy, and integration uniontypes,
where the instances ofstoredtypes are explicitly stored locally in AMOS II and cre-
ated by the user, the instances ofderivedtypes [14] are derived through a declarative
query from the instances of one or moreconstituentsupertypes, the instances ofproxy
types represent objects stored in other AMOS II servers or in some of the supported
types of data sources, and the instances ofintegration union types(IUTs) [14] are
defined as unions of instances representing the same real-world entity in different
data sources. Even though the IUTs are outside the scope of this paper, the features
presented in the experiments reported in this work are directly connected with the
processing of queries over the IUTs, which require outer-join based operations trans-
formed into a set of select-project-join queries [15].

The proxy, derived and integrated union types are the core of the integration frame-
work in AMOS II. Composition of such types provide means for resolving a wide
spectrum of semantic heterogeneities between the data and meta-data in the sources.
Queries over the OO views are transformed into queries over data in multiple data
sources. The OO view mediation framework is described in [14, 15].

The AMOS II functions are divided by their implementations into three groups.
The extent of astoredfunction is physically stored in the database.Derivedfunctions
are implemented in the query language AMOSQL.Foreignfunctions are implemented
in some other programming language, e.g. Java, Lisp or C++. Each foreign function
can have several associated access paths and, to help the query processor, each access
path has an associated cost and selectivity function [18].

The AMOSQL query language is based on the OSQL [19] language with exten-
sions of mediation primitives, multi-directional foreign functions [18], overloading,
late binding [8], active rules [23], etc. It contains data modeling as well as querying
constructs. The general syntax for AMOSQL queries is:

select <result>
from <type declarations for local variables>
where <condition>

For example, the following query retrieves the names of the parents of all persons
having ’sailing’ as hobby:

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’

Figure 2 presents an overview of the query processing in AMOS II. The first five
steps, also calledquery compilationsteps, translate the body of a query expressed in
AMOSQL to a query execution plan which is stored with the query.

From the parsed query tree, AMOS II first translates the AMOSQL queries into a
type annotatedobject calculusrepresentation [15].

Next, the calculus optimizer applies rewrite rules to reduce the size of the query
[15].

After the rewrites, queries operating over data outside the mediator are decomposed
into distributed subqueries expressed in anobject algebra, to be executed in different

5

Interpreter
Algebra

result

Generator
Calculus Calculus

object
calculusquery

Optimization

object
calculus

External
requests

Estimator
Cost Algebra

Generator

Single-site
Cost Based
Optimizer

Generator

Decomp.
Tree

decomposition
trees

decomposition
tree

object
algebra

Query decomp. & algebraic optimization

AMOSQL

Figure 2. Query processing in AMOS II

AMOS II servers and data sources. The decomposition uses a combination of heuristic
and dynamic programming strategies. At each site, a single-sitecost-based optimizer
generates optimized execution plans for the subqueries.

An interested reader is referred to [9] for a more detailed description of the AMOS
and AMOS II system and to [18, 7, 8, 14, 15] for more on its query processing.

3 Query Plan Distribution

The distributed mediator framework of AMOS II allows cooperation of a number
of distinct mediators on a query processor level. While distribution is present in any
mediation framework due to the distribution of the data sources, the distributed me-
diator server framework introduces a higher level of interaction among the mediator
systems. In other words, a client mediator does not treat another AMOS II server as
just another data source. More specifically, if we compare the interaction between a
centralized mediator system and a wrapped data source and the interaction between
two AMOS II servers, there are two major differences:

• An AMOS II server can accept compilation and execution requests for general
queries accessing data in more than one source. The wrapper interfaces accept
subqueries that are always over data in a single data source.

• AMOS II supports materialization of intermediate results to be used as input
to locally executed subqueries, generated by query decomposition in another
AMOS II server. A wrapper providesexecutefunctionality for queries to the
data source. The query execution interface of AMOS II, on the other hand,
providesship-and-execute(SAE) functionality, that can first accept and store
locally an intermediate result, and then execute a subquery using it as an input.

These two features influence the design of both the query decomposer and the run-time
support for query execution. Techniques based on these features to achieve improved
query performance are presented in this section. In the remaining of the section, first
we overview the basic decomposition algorithm, and then present a method to improve
the resulting query execution schedules by taking advantage of the features described
above.

6

3.1 Query Decomposition

The query decomposition phase [14] of the query processing in AMOS II is invoked
whenever a query is posed over data from more than one data source. The input
of the query decomposition is a query calculus expression operating over imported
(proxy) and local stored types. The output is an executable algebra plan. The query
decomposition process is divided in 4 phases:

1. Predicate grouping

2. Execution site assignment

3. Execution schedule generation

4. Object algebra generation

The rest of this subsection gives an overview of each of these phases. A more thorough
description can be found in [14].

• Predicate grouping.

This phase attempts to reduce the problem of finding a suboptimal execution
plan by reducing the number of predicates. Predicates executed at the same
data source are grouped into one or more composite predicates that are treated
afterwards as single predicates. For each composite predicate, a temporary de-
rived function is defined locally or at another AMOS II server. The following
grouping heuristic is used:

– Joins are pushed to the data sources whenever possible

– Cross-products are avoided

Within a composite predicate, the optimization is performed in the AMOS II
server where this predicate is forwarded for execution.

• Site assignment (group placement).

This phase uses cost-based heuristics to make the final decision which compos-
ite predicate is executed where, eventually replicates some of the predicates,
and assigns execution sites to those predicates that can be executed at more than
one site (e.g.θ-joins specified by comparison operators). The output of this
phase is a query graph where all the nodes are assigned to some site.

• Cost-based execution scheduling.

In order to translate the query graph from the previous phase into an executable
query plan, the query processor must decide on the order of execution of the
predicates in the graph nodes, and on the direction of data shipping between the
nodes.

Execution schedules for distributed queries in AMOS II are represented byde-
composition trees(DcTs). Each DcT node describes one data cycle through a
client mediator. Fig. 3 illustrates one such cycle. In a cycle, the following steps
are performed:

7

Client Mediator

1

Mediator Server
2

3

4

Figure 3. Query processing cycle, described by a decomposition
tree node

1. Materialize intermediate results in a source where they are to be processed.

2. Execute a subquery function with the materialized data as input

3. Ship the results back to the client mediator

4. Execute one or more subquery functions defined in the client mediator
(post-processing).

Each DcT node stores information about the first three steps in a structure
calledship-and-execute(SAE) structure. The last step is described by a post-
processing structure. The result of a cycle is always materialized in the client
mediator. A sequence of cycles can represent an arbitrary execution plan.

As the space of all execution plans is exponential in the number of participating
databases, we examine only a subset of the family of left-deep decomposition
trees by using dynamic programming and heuristics to prune the search space.
The outcome of this phase is an executable left-deep decomposition tree. Being
central to our discussion, we elaborate more on decomposition tree generation
in the next subsection.

• Algebra generation.

The input to this phase is an executable decomposition tree, which is translated
into equivalent sets of inter-calling local object algebra plans.

3.2 Tree Balancing and Distribution

The query decomposition algorithm as presented above, produces an initialcen-
tralized execution plan. This plan is similar to the execution schedules produced in
other distributed and multidatabase systems, e. g. [3, 13, 17], where the query compi-
lation and execution is a centralized process, managed by a coordinator for distributed
databases, or by a single client mediator. All inter-site result assembling operations
(equi-joins) are performed in the client mediator (coordinator).

This type of plans suffer from heavy involvement of the central client mediator and
high network traffic between the client and server mediators. Furthermore these plans
might contain redundant operations in which intermediate results are shipped from
one server mediator to another, passing through the client mediator.

8

��� � �����
	����� �������

	���� 	���� 	����
�����

Figure 4. Class of centralized data flow patterns in AMOS II

In order to eliminate these problems, an additional query decomposition phase is
introduced after the cost based scheduling, that improves the centralized left-deep
execution schedule produced by the cost based scheduling. It uses a distributed com-
pilation process to translate the input schedule into a plan distributed over all the par-
ticipating servers which communicate the intermediate results directly to each other.

As noted above, in the execution schedules represented by the initial left-deep de-
composition trees of the centralized plans, all data shipped between any of the server
mediators, always passes through the client mediator. A graphical representation of
the data flow patterns generated by these plans is shown in Fig. 4.

The composition of mediators is designed using semantic considerations, as op-
posed to trying to distribute load or other performance considerations. It may intro-
duce considerable performance problems, mostly due to transmission costs between
(possibly) many layers of mediators. In many cases, it might be cheaper if different
server mediators can exchange data directly, independently from the client mediator.
This is even more true in the cases of non-homogeneous execution environments, for
example when the client mediator accesses the server mediators over a slow commu-
nication channel.

In the rest of this section, we present a novel distributed query decomposition
technique, namedTree Distribution, for tree balancing in an environment of dis-
tributed, autonomous mediator systems. It extends the query decomposition process in
AMOS II in order to explore the richer space of execution plans allowing direct com-
munication among the server mediators involved in a query. It distributes not only the
execution, but also the decomposition of the query plans among different servers. Ex-
perimental results show substantial performance improvement over the plans before
the tree distributions.

The class of plans in Fig. 4 are transformed, when favorable, into plans using direct
communication between different server mediators participating in the query without
passing data through the client mediator. The algorithm uses random hill-climbing
with a complexity that is linear in the size of the decomposition tree. Although this
approach does not enumerate all the possible plans, in our experience it suffices for
the typical mix of queries posed to a client mediator. The gains are especially apparent
when the client mediator is hosted on a computer connected to the server mediators
via a slow line.

9

���������	��
���

��
������	��
���� ��� �

�
��������� ���! "�$#% '&$�� '� ���

(�)*) ����� ���! "��#� '&$�� '� ���
+-,

. �/�� '0 . � �/1/032)/)
4�57698*4 2/:3;"23�<� =>2)/)

4�57698*4 2/:3;"23�<� =>? �3�

. �/�� '0 . � �/1/032)/)
@A���CB7���D�
7���

(�)*) ����� ���E /��#� '&$�� '� ���

�F����� �-�! /�$#% '&$�� '� ���

4�57698G6IH$J �<? �) �<K 4 2/:3;<2*�<� =>2)/)>LM4 2/:3;<23�<� =N? �3��,

�
�

:$,

Figure 5. Decomposition tree node merger operation a) before the
merge b) after the merge

3.3 Tree Distribution

Each node of the left-deep tree generated by the cost-based decomposition phase
describes one processing cycle of Fig. 3 above. The data flow presented in Fig. 4
shows that the centralized left-deep plans generate data flow composed of several in-
dividual cycles between the client and server mediators (SM). Note that, in presence of
OO server mediators, this strategy is more general than the strategy used in some other
multidatabase systems (e.g. [20, 12, 17]) where the joins are performed in the client
mediator system over data retrieved from the participating wrapped data sources. The
latter does not allow for mediation of OO sources that access not only stored data, but
also contain programs executed in the data source (e.g. image analysis, matrix opera-
tions). In such cases, it is impossible to retrieve the program logic from the source and
therefore it is necessary to ship intermediate results to the source in order to execute
the programs using the shipped data as input. From this aspect, the strategy is similar,
but more efficient than thebind-joinstrategy in [13] since we use bulk shipping rather
than instance (tuple) shipping.

The main idea of the tree distribution algorithm is to transform the centralized
tree by a series ofnode mergeoperations. A node merge aims to eliminate the data
flow through the client mediator and is applied over two consecutive decomposition
tree nodes (a lower and an upper node) such that the lower node does not specify post-
processing operations in the client mediator (step 4 in Fig. 3). The absence of the post-
processing operations in the lower node means that the data is streamed unchanged
from the server mediator participating in the lower node cycle (e.gSM0), through
the client mediator, to the server mediator participation in the upper node cycle (e.g.
SM1).

The node merge operation produces a new node that substitutes the two merged
node in the DcT, as shown in Fig. 5. The new node has the same post-processing
operations as the upper node. The ship-and-execute (SAE) operations of the new node
are performed by aenvelope functiondefined and compiled at one of the two mediator
servers participating in the processing cycles described by the merged nodes. The
body (predicate) of the envelope function is made by conjuncting the bodies of the
functions specified in the SAE structures of the merged nodes. When the envelope

10

��� � �����
	����� ��� ���

��	
�����
�

��	 �
�

�

��	 �

��	 � �

Figure 6. Class of distributed data flow patterns in AMOS II

function is compiled at one of the server mediators participating in the query, the
generated execution plan contains a processing cycle that ships datasidewaysbetween
the two server mediators, eliminating the involvement of the client mediator. The
merged node describes a cycle where the envelope function is invoked in one of the
server mediators, and the result of its invocation is shipped back to the client mediator.
Note that each envelope function is a derived function (view) over data in more than
one server mediator, and therefore the distributed query compiler generates a new
decomposition tree for it at the server where it is compiled. After repeated recursive
application of node merge operations the query execution plan is described by a set
of decomposition trees stored in both the client mediator and the participating server
mediators. Since these trees are generated by compilation at the server mediators, the
client mediator does not need any optimization information used in the compilation of
the envelope functions.

The the merge operation is applied at a random qualifying point in the tree. If
the new tree has lower execution time than the original, then it is used instead of the
original. The process continues until no beneficial merge operations are performed.
The maximum number of merges during this process is2(n − 1), wheren is the
number of nodes in the input decomposition tree. In its final variant the input tree
might become distributed betweenn− 2 server mediators and the client mediator.

The family of execution plans, generated by this algorithm have the general data
flow pattern of Fig. 6, where all communicating servers can be classified into two
types of groups - groups containing servers which exchange data only with the client
mediator (A in Fig. 6) and groups of servers that communicate directly with each other
in a sequential manner (groupB in Fig. 6). In the plans generated by the transforma-
tions described above, groups of the both type are interchanged. The introduction of
typeB groups into the plans, achieved by the proposed transformation, allows for bet-
ter performance in a common case when a network of server mediators, connected by
fast connections is accessed by a remote client mediator through a slow (modem or
mobile) line.

11

M0

M1

0 t.

10000 t.

Oracle

10000 t.
0 t.
ODBC

M2

M3
10000 t.

10000 t.

10000 t.

10000 t.1

2

3

4

5

6

7

8

(a) Centralized plan

M0

M1

0 t.

Oracle

10000 t. 0 t.
ODBC

M2

M3

10000 t.

10000 t.

10000 t.

0 t.

0 t.
2

1

3

4

5 6
7

8

(b) Distributed plan

Figure 7. Dataflow graphs for Q1, 10000 tuples of size 100 bytes

4 Experimental Evaluation

This section presents the results from a comparison of the centralized plan with the
distributed plan produced by the Tree Distribution algorithm for a class of queries to
a client mediator.

4.1 Experimental environment

The performance experiments were made in two different environments. In both
cases we had up to four server mediator, named M1, M2, M3, and M4, respectively,
running on the same computer, and a client mediator, named M0, executing as a client
on a remote computer, to which the queries were posed. All data was stored in an
Oracle 8 relational data source, and server mediator M1 was acting as a translator
through an ODBC wrapper. The Oracle server was running on the same computer as
the four server mediators. The choice to run the server mediators M1-M4 on the same
computer was made in order to simplify the experimental setting. We use local TCP/IP
communication also between servers running on the same Windows NT workstation,
and we measured that the local TCP/IP performance is actually about 10-15% slower
than inter-computer TCP/IP communication over our 100 Mbit LAN. Furthermore, in
our experiments we do not explore asynchronous server intercommunication which
makes only one system run at the time. Thus this setting is roughly equivalent to
the case when the translators are running on different computers on the LAN. It was
ensured that all participating AMOS II systems fit into main memory, and no swapping
occurred during the experiments.

The hardware used during the experiments was Compaq Professional Workstations
with 200 MHz Pentium Pro CPUs, 128 MB RAM, and a 100 Mbit LAN card, running
Windows NT Workstation 4.0.

In the first set of experiments the client mediator was connected to the server medi-
ators through the LAN, while the second set of experiments were performed with the
client mediator running on a remote NT workstation connected to our LAN over a 128
Kbit ISDN line. This corresponds to the situation where the client mediator resides
in a portable computer which is sometimes connected over a LAN and sometimes
remotely over a slower connection.

12

4.2 Queries and query plans

For the experiments we used a synthetic database with tables having varying num-
ber of tuples. Two types of precompiled queries were used in the experiments. In the
examples we will use AMOSQL syntax. The first query was used to measure scale-up
properties of the tree distribution algorithm as the mediator query spans more servers.
In order to do this, we compiled three similar queries, such that the first one -Q1’
involved two server mediators (M1,M2), the next oneQ1” involved three server me-
diators (M1,M2,M3), andQ”’ was executed over all four servers M1-M4. In each
mediatorMi a function

process@Mi(charstring str, integer sel)→ charstring

was defined, which was simulating processing of data inMi by selectingsel% of it’s
incoming data. For the discussed experiments we choose 100% selectivity (sel = 100)
for all process@Mi functions. In order to extend a query to involve serverMi, a call to
the corresponding functionprocess@Mi was added to the query. ServerM1 wrapped
the relational data source, and theDATA column of a relational tableEMPLOYEE
was accessed by the foreign AMOSQL functiondata(emp) → charstring. As an
example of the three queries, we showQ1” , which involves the client mediatorM0,
and three other server mediators, M1,M2,M3:

select s3
from string d,

string s1,
string s2,
string s3,
employee@M1 e

where d = data(e) and
s1 = process@M1(d, 100) and
s2 = process@M2(s1, 100) and
s3 = process@M3(s2, 100);

Each of the three queries was compiled once using only the centralized query de-
composition technique, and once using also the tree distribution algorithm. Corre-
spondingly, different execution plans were produced by the different decomposition
techniques. In the example case of Q1”, the centralized decomposition produced a
tree-like data flow graph, shown in Fig. 7a, while the distributed algorithm generated
the L-shaped data flow graph, shown in Fig. 7b. Each directed arc of the data flow
graphs is marked by the number of tuples sent in the corresponding direction. The
numbers in the ovals show the order of execution. Considering that each tuple has size
of 100 bytes, the total amount of data sent over the network in case a) is 50000, while
in case b) it is only 30000. Even this simple consideration gives us a hint that case b)
will be considerably more beneficial than case a).

The simplified cost model for evaluating data flow patterns between databases pre-
sented here gives us some insight of the possible benefits of the tree distribution algo-
rithm. Later on, in Sec. 4.3 we present experimental confirmations of our expectations.

The second group of experiments used queryQ2. The major difference between
the group of queriesQ1 and queryQ2 is, that inQ2 we introduced a function defined

13

in the client mediatorprocess@M0(charstring str, integer sel) → charstring,
which restricts data retrieved from the relational data source. In this case we chose
10% selectivity for theprocess@M0 call:

select s2
from string d, string s1, string s2, string m,

employee@M0 e
where d = data(e) and

s1 = process@M1(d, 100) and
m = process@M0(s1, 10) and
s2 = process@M2(m, 100);

4.3 Experimental results

This subsection presents the results from measurements of execution times for
queriesQ1 and Q2 in the two environments described in section 4.1. During the
measurements, each query was executed four times, and the average of the last three
measurements was taken.

Figure 8a compares the performance of the centralized execution plans for queries
Q1’, Q1”, and Q1”’ with the corresponding distributed plans produced by the tree
distribution algorithm. As expected the distributed plans generated by the tree dis-
tribution algorithm are significantly faster than the centralized plans. In particular,
the performance improvements for Q1’, Q1”, and Q1”’ are 33%, 47%, and 49%, re-
spectively. Thus, as the queries span more servers the performance improvement of
the tree distribution algorithm increases. In this case the tree distribution algorithm
produces plans that scale better since they send less data between the servers and the
client mediator M0 than the centralized plans.

In Fig. 8a the connection between M0 and the other servers uses a fast LAN. If a
slower connection is used the performance gains will be larger, as shown in Fig. 8b
where M0 is connected to the server mediators through a slower ISDN connection.
The performance gains are here 50%, 80%, and 86%, respectively. The execution
time is virtually constant, independent on the size of the query, since the amount of
data shipped between the client and server mediators is constant with the distributed
plan.

The latter measurements correspond to a mobile client mediator connected to the
server mediators, while the former measurements could be when the same client me-
diator is docked directly to the company LAN. In these examples the rebalanced plans
are always better, since all selections are in the server mediators M1-M4 and there
are no selections in the client mediator M0. If there were selections in M0, as in Q2,
it could be possible that it would be favorable to use the centralized plan, since the
selection in M2 could restrict the number of shipped tuples. To evaluate this we made
some tests with query Q2, having a selection in M0.

Fig. 9a compares the centralized plan produced for Q2 with the corresponding dis-
tributed plan. As expected, it shows that the centralized plan is better in this case.

In Fig. 9b the query Q2 is tested with an ISDN connection to M0. Because of the
slower connection it is here more favorable to use a distributed plan, since the cost to
ship data to M0 is higher than the costs of shipping many more tuples between the
server mediators. However, in this case our tree distribution algorithm would produce

14

20

25

30

35

40

45

50

55

60

65

2 3 4

S
ec

on
ds

Number of AMOS servers

centr.
distr.

(a) LAN

100

200

300

400

500

600

700

800

900

1000

1100

2 3 4

S
ec

on
ds

Number of AMOS servers

centr.
distr.

(b) ISDN

Figure 8. Execution times for Q1” , 10000 tuples of size 100 bytes

the suboptimal centralized plan, because no node merge would take place. We are
investigating how the tree distribution algorithm can be generalized to handle this case
too. Fig. 9a and 9b also illustrates that there are cases where different strategies are
needed depending on the speed of the connection to M0. In a dynamic (e.g. mobile)
mediator environment this would have to be taken into consideration. The system
could here generate two different distributed plans and use one or the other depending
on if the mobile client mediator is connected via LAN or ISDN. This is an area for
further research.

5 Related Work

The research presented in this paper is related to the areas of data integration and
distributed databases. This section references and briefly overviews some representa-

15

1

2

3

4

5

6

7

8

9

100 500 1000

S
ec

on
ds

Size of tuples in bytes

centr.
distr.

(a) LAN

0

20

40

60

80

100

120

140

160

180

100 500 1000

S
ec

on
ds

Size of tuples in bytes

centr.
distr.

(b) ISDN

Figure 9. Execution times for Q2, 1000 tuples, 2 servers

tive examples of projects in these areas, close to the work presented in this paper. A
more elaborate comparison of the AMOS II system with other data integration systems
is presented in [16].

One of the first attempts to tackle the query optimization problem in distributed
databases was done within the System R* project [3]. In that project an exhaustive,
centrally performed query optimization is made to find the optimal plan. Because
of the problem size, AMOS II searches only a portion of the whole search space
by an exhaustive search strategy. Other phases use heuristics to improve the plan
and reduce the optimization time. The SDD-1 system [10] also uses a hill-climbing
heuristics as in AMOS II to schedule “moves of relations” and “local processing ac-
tions” in that compose the distributed query execution schedule. Another classical
work on query optimization in a distributed database environment is presented in [1].
In this approach, named AHY (Apers-Hevner-Yao), the system performs first local

16

processing over the relations, then it reduces the results by semi-joins, and finally
composes the result at a central site namedevaluation site. This is clearly different
from AMOS II where joins are performed in different servers. All three approaches
perform the query compilation in a single site, as opposed to the distributed query
compilation in AMOS II.

As opposed to the distributed databases, where there is a centralized repository
containing meta-data about the whole system, the architecture described in this pa-
pers consists of autonomous systems, each storing only locally relevant meta-data.
Most of the mediator frameworks reported in the literature (e.g. [13, 25, 11]) propose
centralized query compilation and execution coordination. In [5] it is indicated that
a distributed mediation framework is a promising research direction, but to the ex-
tent of our knowledge no results in this area are reported. Within the same project a
centralized query tree rebalancing is proposed [4].

In the DIOM project [21], the importance of the mediator composability is also
recognized. A framework for integration of relational data sources is presented where
the operations can be executed either in the mediator or in the data source. The query
optimization strategy used first builds a join operator query tree (schedule) using a
heuristic approach, and then assigns execution sites to the join operators using an
exhaustive cost-based search. AMOS II , on the other hand, performs a cost-based
scheduling and heuristic placement. Furthermore, the compilation process in DIOM
is centrally performed, and there is no clear distinction between the data sources and
the mediators in the optimization framework.

6 Summary and Future Work

We have given an overview of the architecture of the AMOS II mediator sys-
tem where federations of distributed mediator servers can be composed by AMOS II
servers. Each AMOS II server has DBMS facilities for query compilation, and ex-
change of data and meta-data with other AMOS II servers. OO views can be defined
where data from several other mediator servers are abstracted, transformed, and rec-
onciled.

The importance was reiterated of being able to logically compose systems of me-
diators without global meta-data knowledge in order to build large data integration
systems.

It was shown how to decrease the overhead of logically composing mediator servers
by a distributed query optimization technique calledTree Distribution. Here, a dis-
tributed compilation algorithm generates distributed execution plans where the opti-
mized data flow is different from the logical mediator composition, and where each
participating mediator interacts only with its neighbor mediator servers.

Performance measurements show that the Tree Distribution algorithm significantly
improves query performance and also allows for scale-up with respect to the number
of mediator servers involved in a query.

The performance improvements are particularly large in an environment with low
bandwidth connections between a client mediator and a set of composed server me-
diators, as e.g. in a mobile environment where a portable computer is connected via
ISDN or a regular phone line to mediator servers communicating via LAN.

We showed that if there are selections in the client mediator different query distri-

17

butions are optimal depending on the speed of the connection and the selectivity of
the selections. Further research is ongoing to handle the larger class of distributed and
multiple query plans required in this situation.

More work is also needed to deal with parallel execution plans, unreliable and
sometimes disconnected connections from the client mediator, and deep mediator
compositions.

References

[1] P. Apers, A. Hevner and S. Yao: Optimization Algorithms for Distributed Queries.
IEEE-TSE, SE-9:1, 1983

[2] Silvio Brandani: Multi-database Access from Amos II using ODBC.
In Linköping Electronic Press, Vol. 3, Nr. 19, Dec. 8th, 1998,
http://www.ep.liu.se/ea/cis/1998/019/.

[3] D. Daniels et al.: An Introduction to Distributed Query Compilation in R*. In H.
Schneider (ed)Distribute Data Bases, North-Holland, 1982

[4] W. Du, R. Krishnamurthy and M-C. Shan: Query Optimization in Heterogeneous
DBMS.18th Conf. on Very Large Databases (VLDB’92), Vancouver, Canada, 1992

[5] W. Du and M. Shan: Query Processing in Pegasus,Object-Oriented Multi-
database Systems, O. Bukhres, A. Elmagarmid (eds.), Pretince Hall, Englewood
Cliffs, NJ, 1996.

[6] G. Fahl, T. Risch, M. Sk̈old: AMOS - An Architecture for Active Mediators.
Workshop on Next Generation Information Technologies and Systems (NGITS’93),
Haifa, Israel, June 1993.

[7] G. Fahl, T. Risch: Query Processing over Object Views of Relational Data.The
VLDB Journal, 6(4), pp 261-281, November 1997.

[8] S. Flodin, T. Risch: Processing Object-Oriented Queries with Invertible Late
Bound Functions,21st Conf. on Very Large Databases (VLDB’95), Zurich,
Switzerland, 1995

[9] S. Flodin, V. Josifovski, T. Risch, M. Sköld and M. Werner: AMOS II User’s
Guide, available athttp://www.ida.liu.se/∼edslab.

[10] N. Goodman, P. Bernstein, E. Wong, C. Reeve and J. Rothnie: Query Processing
in SDD-1: A System for Distributed Databases.ACM-TODS6:4, 1981

[11] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y.Sagiv, J.
Ullman, V. Vassalos, J. Widom: The TSIMMIS Approach to Mediation: Data Mod-
els and Languages.Journal of Intelligent Information Systems (JIIS)Vol 8 No. 2
117-132, Kluwer Academic Pulishers, The Netherlands,1997

[12] B. Finance, V. Smahi J. Fessy: Query Processing in IRO-DB,Int. Conf. on De-
ductive and Object-Oriented Databases (DOOD’95)pp.299-319, 1995

18

[13] L. Haas, D. Kossmann, E. Wimmers, J. Yang: Optimizing Queries accross Di-
verse Data Sources.23th Int. Conf. on Very Large Databases (VLDB97), pp. 276-
285, Athens Greece, 1997

[14] V. Josifovski: Design, Implementation and Evaluation of a a Distributed Media-
tor System for Data Integration: the Story of AMOS II, Ph D Thesis, University of
Linköping, Linköping, Sweden, June 1999

[15] V.Josifovski and T.Risch: Functional Query Optimization over Object-Oriented
Views for Data IntegrationJournal of Intelligent Information Systems (JIIS)Vol 12
No. 2/3, Kluwer Academic Pulishers, The Netherlands, 1999.

[16] V.Josifovski and T.Risch: Comparison of AMOS II with Other Data Integration
Projects. Available at http://www.ida.liu.se/ edslab/amosIIcomp.pdf

[17] E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, M. Ganesh: Myriad: De-
sign and Implementation of a Federated Database System.Software - Practice and
Experience, Vol. 25(5), 553-562, John Wiley & Sons, May 1995.

[18] W. Litwin and T. Risch: Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates.IEEE Transactions on Knowledge
and Data Engineering4(6), pp. 517-528, 1992

[19] P. Lyngbaek et al:OSQL: A Language for Object Databases, Tech. Report, HP
Labs, HPL-DTD-91-4, 1991.

[20] S. Nural, P. Koksal, F. Ozcan, A. Dogac: Query Decomposition and Processing
in Multidatabase Systems.OODBMS Symposium of the European Joint Conference
on Engineering Systems Design and Analysis, Montpellier, July 1996.

[21] K. Richine: Distributed Query Scheduling in DIOM. Tech. Report TR97-03,
Computer Science Department, University of Alberta, 1997

[22] D. Shipman: The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems, 6(1), ACM Press, 1981.

[23] M. Sköld, T. Risch: Using Partial Differencing for Efficient Monitoring of De-
ferred Complex Rule Conditions.12th International Conf. on Data Engineering
(ICDE’96), (IEEE), New Orleans, Louisiana, Feb. 1996.

[24] R. Soley, C. Stone (eds.): Object Management Architecture.John Wiley & Sons,
New York, 1995

[25] A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous Data
Sources with DISCO.Transactions on Knowledge and Data Engineering(TKDE)
vol. 10 No. 5, pp 808-823, 1998

[26] G Wiederhold: Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3), Mar. 1992.

19

Paper E:

c©2001 Springer-Verlag. Reprinted, with permission, from:

Vanja Josifovski, Timour Katchaounov, and Tore Risch. Evaluation of join
strategies for distributed mediation. In5th East European Conference on Ad-
vances in Databases and Information Systems, ADBIS 2001, volume 2151 of
Lecture Notes in Computer Science, pages 308–322, Springer-Verlag, Septem-
ber 2001.

Evaluation of Join Strategies for Distributed

Mediation

Vanja Josifovski∗, Timour Katchaounov and Tore Risch
Uppsala Database Laboratory, Uppsala University, Sweden,

vanja@us.ibm.com, timour.katchaounov@dis.uu.se, tore.risch@dis.uu.se

Abstract

Three join algorithms are evaluated in an environment with distributed
main-memory based mediators and data sources. A streamed ship-out
join ships bulks of tuples to a mediator near a data source, followed by
post-processing in the client. An extended streamed semi-join in addi-
tion builds a main-memory hash index in the client mediator. A ship-in
algorithm materializes and joins the data in the client mediator. The first
two algorithms are suitable for sources that require parameters to exe-
cute a query, as web search engines and computational software, and the
last is suitable otherwise. We compare the execution times for obtaining
all and the first N tuples, and analyze the percentage time spent in sub-
systems, varying the network communication speed, bulk size, and data
duplicates. The join algorithm leads to orders of magnitude performance
difference in different mediation environments.

1 Introduction

Integration of data from sources with varying capabilities has been intensively
studied by the database community in the recent decade. The Amos II system
[8, 9, 17] uses the wrapper-mediator paradigm to integrate data from several
sources. One of the salient features of Amos II is a distributed architecture
where a number of interconnected mediator servers cooperate in providing the
users and the applications with the required view of the data in the sources.
We believe that a distributed mediator architecture is needed because it is
unrealistic to assume that a single mediator server can be deployed in an enter-
prise composed of multiple organizational units. When many mediator servers
become available on the network, composability will be required for designing
new distributed mediator servers in terms of the existing ones, thus reusing me-
diation specifications. Multiple mediators will also alleviate the performance
bottleneck problems that appear when all the queries are handled by a single
mediator.

Having some of the basic assumptions different from the classical database
systems, query processing in a distributed mediator system requires some novel

∗Current address: IBM Almaden Research Center, San Jose, CA 95120, USA

strategies and solutions. One of the major reason for this is the different cost
model in this environment. The I/O and CPU costs used in the traditional
query optimization [14] are largely insignificant here compared to the cost of
accessing data in external sources. While new cost models have been devel-
oped for use in mediator frameworks with centralized architecture [18], no
experimental results are reported using a distributed mediator framework. In
this work we quantify empirically the relations among the different costs in a
wrapper-mediator environment, as for example, the network cost and the data
source access costs.

Traditional data integration systems [11, 16] send all data to the media-
tor for joining. Such ’ship-in’ methods do not allow for integration of ’non-
database’ data sources that require some input, since it is not possible to ship
the programming logic from these systems into the mediator. Also they are
not good for top-N queries where only a first few tuples are retrieved.

Three join algorithms for a distributed mediation environment are presented
and analyzed. An outer collection, generated as an intermediate result of a
previous computation, is joined with an inner collection produced from a data
source. Two ship-out algorithms ship data toward the sources. In these algo-
rithms, intermediate result tuples are shipped to the sources where they are
used as parameters to precompiled query fragments (subqueries or function
calls) of the original query. The first algorithm is an order-preserving semi-join
which is suitable when there are no duplicates in the outer collection. The
second algorithm uses a temporary hash index of possibly limited size to re-
duce the number of accesses to the data sources. It is suitable when there are
duplicates in the outer collection. Both ship-out algorithms are streamed [6]
and the data is shipped between the mediator servers in bulks that contain
several tuples to avoid the message set-up overhead. Finally, for comparison, a
ship-in algorithm is analyzed, which is suitable when the sources cannot accept
parameterized queries and when the data retrieved from the sources is small
enough to be stored in a temporary main-memory index in the mediator.

The algorithms are evaluated in an environment with an ODBC data source
and a mediator server running on Windows NT platforms, connected by ISDN
and LAN. Substantial performance gains were measured (up to factor 100)
when using our framework over an ISDN connection to access a relational
database server, as compared to accessing the relational database with ODBC
directly from the client, since bulk oriented join processing between the me-
diators minimizes ISDN message traffic and eliminates all expensive remote
ODBC calls.

2 Background

As a platform for the work in this paper we use the Amos II mediator database
system [8, 9, 17]. The core of Amos II is an open light-weight and extensible
DBMS. It is a distributed mediator system where both the mediators and
wrappers are fully functional Amos II servers, communicating over the Internet.
For good performance, and since most the data reside in the data sources, each
Amos II server is designed as a main-memory DBMS.

2

Some of the Amos II servers can be configured to wrap different kinds of
data sources, e.g. ODBC compliant relational databases [4] or XML files [12].
Other servers reconcile conflicts and overlaps between similar real-world entities
modeled differently in different data sources, using the mediation primitives
[8, 9, 17] of the query language AmosQL .

Users and applications can pose OO queries to any Amos II server. We call
the server(s) to which application queries are posed client mediator(s) for those
queries. The other Amos II servers involved in answering a query are called
mediator servers. The mediator servers may run on separate workstations and
provide data integration, wrapping, and abstraction services through which
different views are presented in different mediators. For example, in a mobile
environment a portable computer could have a client mediator that integrates
data represented by several mediator servers on a company LAN. A mediator
server can have different types of data sources attached and access a number
of other mediator servers.

The AmosQL query below contains a join and selection over the table A at
the source DB1, and B at DB2, based on values of functions fa and fb:

select res(b)
from A@DB1 a, B@DB2 b
where fa(a) = fb(b);

The query is issued in a client mediator over data that can be either directly
stored in DB1 and DB2 or, if these are Amos II servers, retrieved from wrapped
data sources. Strategies to execute this equi-join will be the focus of this paper.

The queries are rewritten by the optimizer to eliminate redundant compu-
tations. After the rewrites, queries operating over data outside the mediator
are decomposed into distributed query fragments, executed in different Amos II
servers and data sources. The decomposition uses heuristic and dynamic pro-
gramming strategies in three stages [10]: query fragment generation, fragment
placement and fragment scheduling. Each Amos II server uses a single-site cost-
based optimizer to generate optimized execution plans for the query fragments.
The fragments for other types of data sources are handled by the mediator if
the source has no query processing capabilities, or by the source otherwise.

3 Algorithm Descriptions

While a naive data source interface provides only execute functionality for
queries, Amos II also provides bulked ship-out and execute functionality where
a remote Amos II server accepts and store tuples locally in main-memory, and
then executes a query fragment using them as an input. When joining directly
to a data source, the communication is directly with it and the processing is one
tuple at the time for the ship-out algorithms, assuming that storing bulks of the
intermediate results is not possible in data sources because of their autonomy.

3.1 Ship-out Join Algorithms

In general, the ship-out algorithms can be described with the following steps:

3

1. preprocess and prepare the input collection for shipping

2. ship the input collection to a remote site

3. execute the query fragment over the collection at the remote site

4. return result of query fragment execution to the coordinating mediator

5. assemble the result collection to be emitted from the join

Steps 1, 4 and 5 are executed locally, while 2 and 3 are performed at another
Amos II server by its join request handler.

The input collection is a table where some columns are used as parameters
to the remote query fragment; other columns are passed through to the later
post-processing in the mediator, or are assembled as parts of the query result.

A straight-forward implementation of a ship-out equi-join operator would
ship the whole input bulk to the remote site, execute the remote query fragment
on the bulk appending its result to the input, and then ship this result back.
The first improvement of the naive strategy we propose is the project-concat
algorithm (PCA) in Figure 11. It improves the naive strategy by the following
two data transformations based on the semi-join algorithm [2]:

• The input bulk is projected over the data columns that are actually used
in the remote query fragment, before shipping them there.

• After the query fragment is executed the result shipped back to the medi-
ator contains only the relevant columns from the query fragment result.

The difference between PCA and the classical semi-join is in the use of order
for matching the tuples from the joined collections.

The result of the join is assembled by a simple concatenation of the input
and the result shipped back from the remote Amos II mediator or data source.
Since the operations are order preserving, concatenation can be used instead
of a more expensive join.

Table 3.1 illustrates an execution of PCA between the results of query frag-
ments QF1 executed at DB1 and QF2 executed at DB2. The input is a
collection of tuples with columns va and r produced by the execution of the
fragment QF2, and a collection of tuples produced by the execution of QF1
containing va values and keys of table tB. The fragments are joined over va
and the result is represented by column r. Since there are no result columns
that are shipped back from DB1 to DB2, a boolean value is used to identify if
the tuples produced by QF1 have a matching va value in the tuples produced
by QF2. We assume that the fragment at DB1 produces the following table:

va
tB va
ib1 4
ib2 5
ib1 6

1Amos II is object-oriented and steps 2, 3, 5, and 6 handle object identifier (OID) con-
versions, which are not further elaborated here.

4

. . . .

. .
 .

.

Project Deproxify
 OI Ds

Project Concat
Proxify

OIDs

Destr ingify
OIDs

Str ingify
 OIDs

Join Operator Join r equest handler

Materialized bulk from the input

output

1 2 3

8 7 6 5

Execute
 SF

4

Figure 1: Project-concat ship-out algorithm

where ibk denotes a key of tB. The example illustrates the execution over 2
bulks of size 4, named in the example as b1 and b2. In the example, first the
projection strips the r values from the input bulks since they are not used in
the join. Next, the bulks are shipped to DB1 where the query fragment QF1 is
executed. The resulting set of boolean values is shipped back to the mediator.
The concatenation shown in the example is a special case where the executed
function does not return any data used later in the query processing. In this
case, the concatenation of the returned boolean values and the input tuples
actually filters the tuples for which the result is true. The final projection
removes the va values to form the requested result.

The PCA has the advantage of improving the naive implementation, while
preserving the simplicity of the processing. All operations have constant com-
plexity per data item and therefore cheap to perform. Nevertheless, it is in-
efficient when there is a large percentage of duplicates in the input bulk(s),
an expensive query fragment, and/or expensive communication between the
servers involved.

The traditional semi-join algorithm (SJA) [2] improves the performance
of the PCA when duplicates are involved. After projecting the input bulk
over the columns used as input to the remote query fragment, SJA performs
duplicate removal before shipping the data. When there is a large percentage
of duplicates within the bulks, this reduces both the size of the shipped data
and the number of executions of the remote query fragment. The result of the
query fragment execution is shipped back to the calling server where, as in the
previous algorithm, the shipped tuples are concatenated to the result of the
query fragment invocation. Next, an equi-join is performed over the input bulk
and the result of the concatenation. Here, because of the duplicate removal it
is not possible to match the tuples by their rank in the bulk.

5

r va
“T” 5

b1 “V” 4
“K” 5
“M” 3
“L” 5

b2 “M” 2
“G” 4
“Y” 4

πKS−→

va
5

b1 4
5
3
5

b2 2
4
4

to DB1−→ . . .

r
b1 “M”
b2 “M”

πRS←−
r va

b1 “M” 3
b2 “M” 2

concat←−

tmp
false

b1 false
false
true
false

b2 true
false
false

from DB1←− . . .

Table 1: Example execution of equi-join using the project-concat algorithm

The SJA benefits from avoiding shipping duplicate entries over the network
and executing the query fragment for them, but only for duplicates within a
single bulk and with the added costs of the two additional phases of duplicate
removal and equi-join.

To avoid duplicates over different bulks, the algorithm in Figure 2, SJMA
(semi-join with materialized index algorithm) extends SJA by saving the index
built up for the bulks of the outer collection between executions for different
bulks. The shipped data is passed through an additional anti-join over the
set already pruned from duplicates and the temporary index. If a tuple is in
the index, it has already been processed in some of the previous bulks. The
remaining tuples are shipped to the remote site for query fragment execution
as before. Next, new entries are added to the index from the returned result.
Finally, a join between the input bulk and the index is performed as in the
SJA. A comparative execution of SJMA in the same scenario as for the PCA
example is presented in Table 2. Here, the second bulk is reduced to one tuple
before shipping to DB1, since the anti-join eliminates the two tuples present
in the first bulk.

The size of the index in SJMA is proportional to the number of distinct
tuples in the outer collection. The algorithm can be used as a filter even in the
case when the whole index is too big to fit in the memory. When the memory
limit is reached, new entries replace old entries using some replacement criteria.

SJMA does not add substantially to the cost of the SJA, while it offers the
possibility for performance improvements. In fact, it reduces to the SJA in the
case when the whole input is contained in only one bulk.

6

. . . .

. .
 .

.
Project Duplicate

Removal
Anti-semi-join

Deproxify
 OI Ds

Project Equi-j oin
Update
I ndex

Proxify
OIDs

Temp.
Index

Join Operator Join r equest handler

Materialized bulk from the input

output

1 2 3 4

891011

Destr ingify
OIDs

Str ingify
 OIDs

5

7

Execute
 SF

6

Figure 2: Streamed semi-join with a temporary index

3.2 Ship-in Join Method

Unlike the previous two algorithms where the remote query fragment is exe-
cuted using parameters from the tuples of the intermediate result, with the
ship-in join method no intermediate result is shipped to the remote site. Con-
sequently, the query fragment is executed without parameters. This has two
effects:

• Since the remote query fragment is executed once only, it may reduce the
number of accesses to the data source.

• The result size may increase since instead of a semi-join of the query
fragment result and the intermediate result, the whole query fragment
result is sent to the client to be joined there.

While the reduction of the data source accesses may improve the performance,
the increased volume of the data shipped and stored in the mediator are the
possible performance disadvantages of this algorithm. The algorithm is inap-
plicable when the query fragment result is too big for the mediator resources.
This is also the case when the query fragment contains predicates representing
methods/programs in the data source that require parameters to be supplied
from the mediator. With the ship-out method, when there are sufficient re-
sources, the materialized index can persist between the execution of the al-
gorithm for different bulks, reducing further the query processing time. This
case corresponds to hash join algorithms where an index is built for the inner
relation.

7

r va
“T” 5

b1 “V” 4
“K” 5
“M” 3

“L” 5
b2 “M” 2

“G” 4
“Y” 4

πKS−→

va
5

b1 4
5
3

5
b2 2

4
4

dup.
rem.−→

va
5

b1 4
3

5
b2 2

4

anti
semi
join
−→

va
5

b1 4
3

b2 2

to DB1−→ . . .

r
b1 “M”

b2 “M”

πRS←−
r va

b1 “M” 3

b2 “M” 2

equi-
join
←− 4

index
update
←−

tmp
false

b1 false
true

b2 true

from DB1←− . . .

Table 2: Example execution of the semi-join with materialized index algorithm

4 Performance Measurements

In the two scenarios used in the experiments the data source was an ODBC data
source. We performed experiments using both Microsoft Access ODBC and
IBM DB2 ODBC drivers with no significant differences in conclusions. Where
not specifically indicated, the measurements use the Access ODBC driver.

In the first scenario, we deployed an Amos II server at the same workstation
as the source. This server wrapped the source and exported it to the client
mediator running on another Windows NT workstation. We present test results
using this scenario and two different network connection speeds between the
workstations: a 115Kb ISDN connection over the public telephone network in
Sweden; and a 100Mb departmental LAN. We also varied the speed of the
workstation that hosted the client mediator. In one experiment we used a 233
MHz, 32Mb RAM PC, and in the other a 600 MHz, 256Mb RAM PC. In the
second scenario the data source was accessed directly from the client mediator
through the ISDN network connection using DB2’s ODBC interface. In this
case the joins are executed one tuple at a time. We also compared the effects
of different bulks sizes on the query execution time.

The inner collection is obtained from a table stored in the ODBC data
source. The table consisted of three columns: an integer primary key ID, and
two textual columns A and B of fixed length strings with sizes 10 and 250.
The outer collection was stored in the client mediator, where it simulated an
intermediate result. During the execution, the outer collection is bulked and
streamed into the join algorithm one bulk at the time. Both the outer and
inner collection had the same attributes.

Figure 3 shows the results of the execution of the three join algorithms from
the previous section using a 233 MHz Windows NT workstation as a client and
an ISDN connection to the server computer. The X axes in the graphs show the
sizes of the outer collection in percentage of the size of the inner that always
contains 30000 tuples; the Y axes marks query execution times in seconds.
The outer collection is scaled from 17% to same the size as the inner. In these
experiments the outer collection contained 20% duplicates. Each tuple of the

8

outer matches exactly one tuple of the inner. The graph on the left compares
the execution times for a complete evaluation of the join operation. The graph
in the middle compares the times to emit the first 1024 tuples. This coincides
with he bulk size used to execute the query. The graph on the right compares
the SJMA with PC for different percentages of duplicates in join columns of
the collections.

We first analyze the execution times for the complete join operation. Since
the inner collection has constant size, the time spend in the Amos II server of
the inner and the network time are constant for the execution of the ship-in
algorithm. The only increase of execution time is noted in the client: from 8
seconds for a 5000 tuple outer collection, to 16 seconds for a 30000 tuple outer
collection. This is due to the increase of the number of index searches. Nev-
ertheless, this increase in negligible in comparison to the total query execution
time.

0

50

100

150

200

250

0 20 40 60 80 100

project-concat
ship-in
SJMA

(a) Whole result

0

20

40

60

80

100

120

0 20 40 60 80 100

project-concat
ship-in
SJMA

(b) First 1024 tuples

0

50

100

150

200

250

0 20 40 60 80 100

project-concat
unique
20%
50%
75%
all same

(c) SJMA with different percentage
duplicates

Figure 3: Execution times when varying the outer collection size, ISDN, 233
MHz PC

9

Time distribution
Client Server Source Access Net.

Ship-in 10% 1% 4% 85%
Ship-out, PC 5% 3% 43% 49%
Ship-out, SJMA 7% 3% 42% 48%

Table 3: Query execution time distribution, ISDN, 233 MHz PC

The ship-out algorithms show performance that is linear to the size of the
inner collection, outperforming the ship-in algorithm until the outer is about
50% of the inner. SJMA performs better than the PC algorithm. Figure 3c
compares the algorithms for different percentages of duplicates. The PC algo-
rithm performs exactly the same, regardless of the data distribution. SJMA
improves as the number of duplicates of the join columns increases. Note that
even without duplicates, the performance difference of these two algorithms is
small. This shows that in main-memory based mediator systems, the penalty
of the additional steps of the SJMA is low.

Table 3 shows the portions of the time spent in the individual system com-
ponents. The data source access time includes the time spent in the ODBC
interface and the data source. The main portion of the execution of the ship-in
algorithm executed over ISDN is spent on shipping the inner to the client side,
which was consistently around 85% of the query execution time. We can also
note that, due to the main-memory architecture of Amos II, the index build
time in the client is relatively small, around 5% of the whole execution time.
The first tuple is not emitted until the index for the inner is finished, which
is after 95% of the processing time. This makes this algorithm unsuitable for
top-N queries.

The ship-out algorithms spend less time on the network, but more in ac-
cessing the data source. They also emit the first tuple much faster than the
ship-in algorithm (Figure 3b). The experiments show here the time to emit
the first 1024 tuples. When the bulking factor is less than 10, the first tuple
is emitted after less than a millisecond. Furthermore, the bulking factor also
determines the smoothness of the flow of the results. Smaller bulking factor
will allow smoother flow of the results to the application.

Table 4 compares the effect of the distributed Amos II architecture for the
ship-out algorithms. First we used SJMA to access a remote IBM DB2 data
source using DB2’s ODBC interface over an ISDN connection. Due to the
autonomy of the data sources we assume that it is not feasible to materialize
intermediate results in the sources. Even if this was possible, due to the disk
based nature of the DBMS, we could not expect a comparable execution time
as with the main-memory storage used in Amos II. Therefore the join must
be performed one tuple at a time over the remote ODBC. However, when the
source is accessed through an Amos II server located on the same computer
as the source, the join between the client and server mediators is executed in
a bulked manner, using only the local ODBC connection between the server
mediator and the source, leading to performance improvements of orders of
magnitude.

10

outer/inner
Inner size/outer size 17% 33% 66% 100%
through Amos II, all tuples 58 115 245 358
ODBC direct, all tuples 2769 5059 8552 12799
through Amos II, B=1024, first tuple 14 15 15 15
through Amos II, B=1, first tuple 0.7 0.72 0.68 0.71
ODBC direct, first tuple 1.1 0.9 1.2 1.04

Table 4: Direct access to an ODBC source and through Amos II
servers

The time to emit the first tuple when the bulking factor is 1024 is notably
greater when the processing is done through an Amos II server. This actually
represents how long it takes to emit the first 1024 tuples. If fewer tuples are
required, a smaller bulking factor leads to better performance for the top-N
queries when an intermediate Amos II server is used. Even when the bulking
factor is 1 we can note that the use of an intermediate Amos II yields better
performance than accessing the source directly, due to communication protocol
differences. To achieve the best performance, the bulking factor should match
the number of tuples required immediately.

Figure 4 and Table 5 illustrates join execution time on the same client
computer connected with a 100Mb fast LAN to the data source. We can note
that the curves have similar shapes, while the scale is different. The network
cost is eliminated for almost all of the algorithms. In this executions most
of the time is spend in the data source (parameterized and unparameterized
query execution) and in the client for the ship-in algorithm (index build-up
and join). We can also note that when the whole join result is required the
ship-in algorithm outperforms the ship-out in almost all the cases. When the
first-N tuples are required, however, the ship-out algorithms are more efficient.
For the first 1024 result tuples the difference is about 50%. If the number of
requested result tuples is smaller, the difference can be a couple of orders of
magnitude. We have also varied the client computer from a workstation to a
notebook. We noted that the return time for the first tuple is almost constant
for the ship-out algorithms regardless of the power of the client computer. This
can be explained by the fact that in the case of ship-out algorithms, the server
uses the larger share of the workload than with the ship-in algorithms.

Time distribution
Client Server Data source acc. Net.

Ship-in 67% 7% 22% 4%
Ship-out, PC 8% 5% 86% 1%
Ship-out, SJMA 12% 5% 82% 1%

Table 5: Query execution time distribution, 100Mb LAN, 233MHz
PC

11

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

project-concat
ship-in
SJMA

(a) Whole result

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

project-concat
ship-in
SJMA

(b) First 1024 tuples

Figure 4: Join execution times for different outer collection sizes in percentage
of the inner size, 100Mb LAN, client 233MHz PC

5 Related Work

The System R* project [14] is one of the first distributed database prototypes.
In System R*, both ship-in and ship-out strategies are examined. In [15] a disk-
based ship-in strategy (named ship-whole) is implemented with a disk based
b-tree index. This type of implementation leads to considerably different results
where the ship-out method always outperforms ship-in.

Disk-based semi-join algorithms are described in [1, 2, 5, 14]. A sort-merge
join, bloom filter semi-join, and sort-based semi-join are evaluated in [15] for
a distributed database environment. A bloom filter phase can be added to
the ship-out algorithms described in this paper. Nevertheless, this would incur
additional query processing overhead and possibly shipping of some extra tuples
of the inner collection. Bloom filter strategies cannot be used with sources that
cannot enumerate the extent of the inner collection.

Most of the mediator frameworks reported in the literature (e.g. [7, 16, 19])
propose centralized query compilation and execution coordination. In [3] it is
indicated that a distributed mediation framework is a promising research di-
rection, but to the extent of our knowledge the results in this area are sketchy
without experimental support. The protocols for execution of joins between
data in different sources are in most cases based on retrieving the data from
the sources and assembling the results in the mediator [16, 19]. In the DIOM
project [13], a distributed mediator system is presented where the query execu-
tion is performed in two phases: subquery execution and result assembly. The
dataflow is only from the sources to the mediator.

The Garlic mediator system [7] is the only mediator system known to us
that supports ship-out join strategies. The bind join in Garlic sends parameters
to the sources as single tuples of values. In Amos II the data sources are also
accessed one tuple at the time, but the distributed architecture allows for using
bulked protocols over high latency lines between Amos II servers to avoid most
of the processing cost. A Garlic wrapper that has two components, one local

12

and one remote, could achieve the benefits of the approach described in the
paper. Finally, join methods where bulk shipping is combined with hashing
are not applied in Garlic.

6 Summary and Conclusions

An efficient data integration system needs to be able to adapt to different
environments by using different algorithms. The algorithms presented in this
paper allow for balancing the workload between the client and the server, and
for different network use patterns that give wide range of options over different
hardware platforms.

The experimental results showed that for a complete query answer the ship-
in algorithms generally outperform the ship-out algorithms over fast networks.
Over slow networks and with very slow sources, the ship-out algorithms can give
orders of magnitude better performance than ship-in since ODBC over TCP/IP
calls are executed one tuple at a time while bulks of tuples are shipped between
the distributed mediators. For top-N queries where N is considerably smaller
than the result size, the ship-out algorithms with bulking factor N give the best
performance over all the range of hardware and network connections used in
the experiments. These outperform the ship-in algorithms by a few orders of
magnitude. Although the bulking factor greater than 1 provides benefits, too
large bulk sizes lead to reduced query execution efficiency.

In our environment, where the index operations are main-memory based
and relatively cheap, the penalty of SJMA (the Semi-Join with Materialized
index Algorithm) is small and it always performs nearly as well, or better than
PCA (the Project-Concat Algorithm). Nevertheless, PCA uses less memory
and could be much more efficient in memory-limited mediators. A compromise
between these two algorithm is the SJMA with a limited size temporary index
that degenerates to a SJA when the temporary index size is 0. Finally, if
simplicity of implementation is considered the PCA is the algorithm of choice.

Placing an mediator server close to the source allows for bulked execution
of the protocols that might change the query execution time by orders of mag-
nitude, especially in networks with high latency. In cases when the sources
lack filtering capability, the mediator server can also locally filter the query
fragment result and reduce the communication cost even more.

A topic of our current work is a strategy to dynamically select between the
proposed algorithms during run-time. Statistics collected during the execution
can be used to determine if the default choice was the best one. Another open
issue is a method to determine the optimal bulking factor in a multi join query,
by taking in account the tuple sizes, join selectivities and the buffer pool size.

References

[1] P. Apers, A. Hevner, and S. Yao: Optimization Algorithms for Distributed
Queries. IEEE Transactions on Software Engineering, 9(1), 57-68, 1983

13

[2] P. Bernstein and D. Chiu: Using Semi-joins to Solve Relational Queries.
Journal of ACM 28(1), 25-40, 1981

[3] W. Du and M. Shan: Query Processing in Pegasus, In O. Bukhres and A.
Elmagarmid (eds.): Object-Oriented Multidatabase Systems. Pretince Hall,
449-471, 1996.

[4] G. Fahl and T. Risch: Query Processing over Object Views of Relational
Data. The VLDB Journal, Springer, 6(4), 261-281, 1997.

[5] P. Bernstein, N. Goodman, E. Wong, C. Reeve, J. Rothnie Jr.: Query Pro-
cessing in a System for Distributed Databases (SDD-1). ACM Transactions
on Database Systems (TODS), 6(4), 602-625, 1981

[6] G. Graefe and W. J. MCKenna: The Volcano Optimizer Generator: Ex-
tensibility and Efficient Search. 12th Data Engineering Conf. (ICDE’93),
209-218, 1993.

[7] L. Haas, D. Kossmann, E.L. Wimmers, J. Yang: Optimizing Queries across
Diverse Data Sources. 23th Intl. Conf. on Very Large Databases (VLDB’97),
276-285, 1997

[8] V.Josifovski and T.Risch: Functional Query Optimization over Object-
Oriented Views for Data Integration. Intelligent Information Systems (JIIS)
12(2-3), Kluwer, 165-190, 1999.

[9] V.Josifovski and T.Risch: Integrating Heterogeneous Overlapping
Databases through Object-Oriented Transformations. 25th Intl. Conf. on
Very Large Databases (VLDB’99), 435-446, 1999.

[10] V. Josifovski and T. Risch: Query Decomposition for a Distributed Object-
Oriented Mediator System. To appear in J. of Distribued and Parallel
Databases, Kluwer, 2001.

[11] E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, and M. Ganesh: Myr-
iad: Design and Implementation of a Federated Database System. Software -
Practice and Experience, Vol. 25(5), 553-562, John Wiley & Sons, May 1995.

[12] H. Lin, T. Risch and T. Katchanounov: Adaptive data mediation over
XML data. To appear in J. of Applied System Studies (JASS), Cambridge
International Science Publishing, 2001.

[13] L. Liu and Calton Pu: An Adaptive Object-Oriented Approach to Inte-
gration and Access of Heterogeneous Information Sources. Journal of Dis-
tributed and Parallel Databases 5(2), 167-205, Kluwer Academic Pulishers,
The Netherlands, 1997.

[14] G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger and P.
Wilms: Query Processing in System R*. In W. Kim, D. Reiner, D. Batory
(eds.): Query Processing in Database Systems, Springer-Verlag, 1985.

14

[15] L. Mackert and G. Lohman: R* Optimizer Validation and Performance
Evaluation for Distributed Queries. In M. Stonebraker (ed.): Readings in
Database Systems, Morgan-Kaufmann, CA, 1988

[16] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac: Dynamic
Query Optimization in Multidatabases. IEEE Data Engineering Bulletin,
20(3), 38-45, 1997.

[17] T. Risch and V. Josifovski: Distributed Data Integration by Object-
Oriented Mediator Servers. To appear in Concurrency - Practice and Ex-
perience J., John Wiley & Sons, 2001.

[18] M. Roth, F. Ozcan and L. Haas: Cost Models DO MAtter: Providing
Cost Information for Diverse Data Sources in Fededrated System. 25th Intl.
Conf. on Very Large Databases (VLDB99), 599-610, 1999.

[19] A. Tomasic, L. Raschid and P. Valduriez: Scaling Access to Heterogeneous
Data Sources with DISCO. IEEE Transactions in Knowledge and Data En-
gineering, 10(5), 808-823, 1998

15

Paper F:

c©2002 Springer-Verlag. Reprinted, with permission, from:

Timour Katchaounov, Tore Risch, and Simon Zürcher. Object-oriented me-
diator queries to internet search engines. InProceedings of the Workshops
on Advances in Object-Oriented Information Systems, volume 2426 ofLec-
ture Notes in Computer Science, pages 176–186, Springer-Verlag, September
2002.

Object-Oriented Mediator Queries to
Internet Search Engines

Timour Katchaounov, Tore Risch, Simon Zürcher

Uppsala Database Laboratory, Department of Information Technology,
Uppsala University, Sweden

Abstract. A system is described where multiple Internet search engines
(ISEs), e.g. Alta Vista or Google, are accessed from an Object-Relational
mediator database system. The system makes it possible to express object-
oriented (OO) queries to different ISEs in terms of a high level OO schema,
the ISE schema. The OO ISE schema combined with the mediator database
system provides a natural and extensible mechanism in which to express
queries and OO views that combine data from several ISEs with data from
other data sources (e.g. relational databases). High-level OO web queries are
translated through query rewrite rules to specific search expressions sent to
one or several wrapped ISEs. A generic ISE query function sends the
translated queries to a wrapped ISE. The result of an ISE query is delivered as
a stream of semantically enriched objects in terms of the ISE schema. The
system leverages publicly available wrapper toolkits that facilitate extraction
of structured data from web sources, and it is independent of the actual
wrapper toolkit used. One such wrapper toolkit was used for generating
HTML wrappers for a few well-known ISEs.

1. Introduction

To facilitate the combined access to data on the web with data from other databases,
a system called ORWISE (Object-Relational Wrapper of Internet Search Engines)
has been developed that can process queries combining data from different Internet
search engines (ISEs) with data from regular databases and other data sources. The
design of ORWISE leverages available wrapper toolkits to extract information from
web pages. ORWISE has been implemented for three well-known search engines
using a publicly available wrapper toolkit [31].

ORWISE is an extension to the database system Amos II [29], [30], that is based
on the wrapper-mediator approach [34] for heterogeneous data integration. The
core of Amos II is an extensible object-relational database engine having mediation
primitives in a query language AmosQL similar to the OO parts of SQL-99 and
ORWISE thus permits SQL-99 like queries that combine ISE results with data from
other types of sources such as relational databases [10] and XML [23]. Amos II is
suitable for collecting and processing results from ISEs because its purpose is to act
as a fast mediator database which can manage meta-data of heterogeneous and
distributed data sources and efficiently process queries to the sources.

The generalized ISE wrapper manager ORWISE, described in this paper, makes
it possible to easily access one or several ISEs from Amos II using different ISE

 2

wrappers for each engine. Combined with OO mediation facilities [4], [17], it
allows to process OO database queries that combine data from several ISEs with
data from conventional databases and other data sources. In difference to relational
systems for web queries [14], the data produced by ORWISE is not just text strings
but much more semantically rich object structures in terms of an OO schema for
ORWISE, called the ISE schema (Internet search engine schema). The ISE schema
describes capabilities and other properties of the search engines along with the
structure of their results.

ISEs have some special problems compared to ‘conventional’ databases:

• Semi-structured interfaces: There are no standard interfaces to ISEs such as
ODBC and JDBC. Web forms are used for specifying queries and other inputs to
them. The result of an ISE query is a semi-structured web document containing
not just the query result but also auxiliary text, banners, etc., which need to be
filtered out from the query result.

• Query languages: ISEs do not have a standardized query language such as SQL
but every ISE has its own query language with varying syntax and semantics.

• Autonomy: The content, structure and availability are totally controlled by the
information supplier.

• Evolution: Internet sites tend to change very often. A system that accesses a site
has to be very flexible.

• Heterogeneity: The data delivered by ISEs have varying structures and the system
has to reconcile semantic differences.

In order to handle the above problems we need reliable and flexible interfaces to the
ISEs, here termed ISE wrappers, which can programmatically fill and submit web
forms and parse the structure of an ISE result document searching for predefined
patterns. An ISE wrapper must be flexible enough to cope with small changes in the
web sites.

To specify web source wrappers ORWISE utilizes wrapper toolkits to extract
useful information from web pages. ORWISE is designed to be independent of the
actual wrapper toolkits used. We investigated several of them to make sure that the
system works with all of them. For our first implementation we chose W4F [31] to
generate ISE wrappers for three search engines - Google (http://www.google.com),
AltaVista (http://www.altavista.com), and Cora Research Paper Search (Cora)
(http://cora.whizbang.com).

The ISE wrappers are connected to the system through a generic query language
function called orwise, which is a foreign function (implemented in Java)
overloaded for each search engine. It returns objects of an ISE specific type1 that
describes the retrieved query results. New ISE wrappers can dynamically be added
to the system by creating a new subtype of the system type SearchEngine for each
new ISE and then implementing some code (in Java) to interface its ISE wrapper.
The overloading of the function orwise is used for facilitating the plug-in of new ISE
wrappers.

Once a new search engine is connected to the orwise function it can be used in
OO queries. Since the parameters for each implementation of orwise are search
engine specific, such queries will be rather detailed with search engine specific
parameters for, e.g., query strings, site names, etc. The system therefore provides

1 We use the terms ‘type’ and ‘class’ as synonyms.

 3

high-level query functions that can be used for any ISE and where queries are
specified uniformly. For example, the function webSearch is defined for every
search engine to specify OO queries to it in a search engine independent form. The
high-level OO query expressions need to be transformed before the actual call(s) to
orwise is issued. The approach in Amos II is to implement a translator module for
each kind of data source (search engine, relational database, etc.). In the case of
ISEs, the translators rewrite the high-level query into search engine query
specifications containing calls to orwise. Since different search engines have
different ways of specifying searches, they have different rewrite rules.

In summary, ORWISE provides i) the ISE schema for describing and querying
data from any ISE, ii) a mechanism to specify search engine specific translators, and
iii) facilities to allow different wrapper toolkits to be easily plugged into the system.

2. Related work

Many projects (e.g. [11], [16], [21], [27], [33]) use the mediator approach to data
integration in general. The work presented here describes how an object-relational
mediation framework [29] leverages upon an available wrapper toolkit to provide
access to ISEs.

The use of object-relational approach in querying the structure of XML Web
documents has been done, e.g., in [3], [8], [12], [23]. A query language standard for
XML, XQuery [35], is being developed with which the contents of XML documents
can be queried and new XML documents constructed. All major ISEs use HTML,
not XML. General Web query languages for HTML are proposed in [19], [25].
These are general languages for querying well-formed Web documents and not
directly suitable for defining embedded interfaces to ISEs.

By contrast wrapper toolkits [9], [13], [15], [18], [20], [22], [24], [31] specify
programmatic interfaces to web sources handling both sending commands and
extracting structured data from responses. They often include some advanced pattern
matching language to extract data from Web documents as regular expressions
operating on varying levels of granularity. With a wrapper toolkit a web source
wrapper is defined by processing wrapper specifications, consisting of statements to
connect to web sources and to detect the parts of the text to be extracted. They allow
new wrappers to be specified much easier than with manual programming and the
developers need not master a complex query language. A good overview of projects
related to wrapper construction for Web sources can be found in [31].

A wrapper toolkit can be a wrapper-generator that generates code (e.g. Java)
implementing a web source wrapper [1], [2], [24], [31]. It can also be a wrapper-
interpreter where the web source wrapper is specified as commands, which are
interpreted at run time [18], [15]. ORWISE is designed to work with both wrapper-
generators and wrapper-interpreters. Web source wrappers represent data differently
and are not sufficient themselves to combine data from Web sources and
conventional databases. Therefore there is need for data mediation facilities along
the lines of this paper.

In [26] it is shown that an OO query language indeed is very useful for specifying
queries to text engines. Our work differs in that we propose leveraging upon using
external wrapper toolkits, OO query rewrites, and the ISE schema. Furthermore, we
explicitly model the capabilities of the search engines in the ISE schema, rather than

 4

in the internals of the system. The WSQ/DSQ [14] project proposes an architecture
where web searches are specified as SQL queries to two virtual relational tables.
Their relational tables are inflexible for the purpose, compared to our ISE schema.
The focus of the work in [5] is re-write rules and cost models for integrating text
search with other queries. Those rewrite rules are applicable in our translator too.

To the best of our knowledge, no other project proposes a system that uses
inheritance and overloading to model ISEs and their results on the conceptual level,
while at the same time the implementation is independent of, and leverages existing
wrapper toolkits. Another major difference to other projects is that our object-
oriented ISE schema distinguishes between the search engine specific descriptions
of documents and the actual documents. Furthermore, the ISE capabilities are
modeled in the ISE schema too.

3. Scenario

We have implemented the scenario of Figure 1 to illustrate the functionality of the
system. In the scenario, an Amos II mediator is used to process queries that combine
data from a relational DB2 database through ODBC with three ISEs, AltaVista,
Google and Cora. The access to the three Internet search engines uses the ORWISE
wrapper, while the relational database is accessed through an ODBC-wrapper.

AmosQL query

Amos II kernel

ORWISE ODBC wrapper

AltaVista Google Cora DB2

Fig. 1. Mediator scenario.

The relational database stores a table of employees that is mapped to the mediator
type Employee, using the techniques for defining OO views of relational databases
[10]. The following AmosQL query uses Google to find the names of those
employees who are mentioned in some web page in the web site
‘www.csd.uu.se’:

SELECT DISTINCT given_name(e), family_name(e)
FROM Employee e, DocumentView d, Google ise
WHERE d = webSearch(ise, given_name(e)) AND
 d = webSearch(ise, family_name(e)) AND
 host(url(d))=‘ www.csd.uu.se’);

The first two lines of the ‘where’ clause in the query retrieve the documents that
contain given names and family names of employees in the relational database,
while the last line restricts the search to only those persons whose names are found

 5

by Google in web pages on the host‘www.csd.uu.se’. Other text-related
predicates such as ‘near’ can also be added to refine the search. The type
DocumentView represents descriptions of documents returned by an ISE and the
type Google represents the wrapper for Google. The same query can be specified for
Alta Vista by replacing the type Google with AltaVista. It is also possible to specify
queries over several search engines by using the generic supertype SearchEngine
instead of AltaVista or Google.

4. The ISE Schema

Queries to ISEs are posed in terms of the OO database schema on Figure 2.
Inheritance and overloading are used to model heterogeneity of both ISEs and their
results. Furthermore, we separate the description of results returned by ISEs from
the documents themselves. Since Amos II has a functional data model [32], both
type attributes and relationships between types are modeled by functions shown as
think lines on Figure 2. For clarity, the overloaded function orwise is represented as
an attribute of the subtypes of type SearchEngine. The core of the ISE Schema
consists of three base types:

• SearchEngine – this type is used to categorize ISEs. It reflects the fact that search
engines have different query capabilities and parameters. It has a subtype for each
specific ISE normally with only one instance. The generic function orwise is
overridden for each ISE to reflect their different semantics. Analogously each of
them has a specific query rewrite function.

• DocumentView – objects of this type describe the results of a query to different
ISEs. By introducing this type of objects we can distinguish between the
documents themselves and the description of a document by an ISE. Document
views often contain information about a document that is not part of the
document itself and is imprecise or outdated. They may use different formats
from the document itself; e.g. the Cora ISE returns HTML descriptors of
PostScript documents. Differentiating between documents and views over
documents allows for more precise queries.

• Document – describes document objects themselves. Subtypes of Document may
describe document objects with different structure. The problem of querying
structured documents is outside the scope of this work and has been addressed by
other researchers [6], [28]. All this work can be easily reused in our system due to
the flexibility of our OO data model.

 6

DataSource
name

SearchEngine
rewrite

AltaVista
orwise,
rewrite

Google
orwise,
rewrite

Cora
orwise,
rewrite

Relational
DocumentView

title, description

Url
protocol, host,
port, file, ref

AltaVistaView
date, size,
language

GoogleView
size

CoraView
authors, details,
bibtex

orwise url

Document
...

document

Type
attribute, ...

Legend:

referring
page

cached
copy

functionis-a

Object

Fig. 2. The ISE schema

The two classes DataSource and Relational are part of the general Amos II meta-
type hierarchy. The type DataSource serves as the base type of all meta-types for
different kinds of data sources accessible through the mediator system. One such
meta-type is Relational, which describes relational data sources. It has the function
sql, analogous to the orwise function of SearchEngine. In our current
implementation, the type SearchEngine has three subtypes for each of the wrapped
search engines AltaVista, Google and Cora. Each of them defines its own version of
the orwise function and specific rewrite rules. Correspondingly the type
DocumentView has three subtypes: AltaVistaView, GoogleView and CoraView,
where each of them has additional properties. For example, of the three ISEs only
AltaVista returns the language of a document, while only Google may provide a
locally cached copy of it’s indexed documents, accessible through the function
cached_copy. Finally, Document objects may be accessed and queried further
through the document function of the type DocumentView. The type Url is an
example of semantic enrichment of the ISE query results, as they return URLs as
strings.

5. The ORWISE Architecture

Figure 3 shows the layered architecture of the system. The left part shows how
ORWISE is interfaced with the Amos II kernel, while the right part shows the layers
of ORWISE itself.
The architecture is designed to fulfill several requirements:

• It provides a uniform interface from the Amos II query processor to any ISE.
• It can use any existing general wrapper toolkits.

 7

• It is independent of the wrapper toolkits used.
• It is possible to easily add a new ISE wrapper without any changes to the rest of

the system.
• There is no need to modify the definitions of wrappers generated by wrapper-

generators.

AmosQL query

Amos II query
processing
kernel

ISE Schema

Rewrite
rules

Translator

Query execution engine

Foreign function interface

ORWISE

execution plan

orwise call

ISE
interface
layer

AltaVista Google Cora

http

orwise foreign
function call

AltaVista
interface

Google
interface

Cora
interface

ISE
wrapper
layer

AltaVista
wrapper

Google
wrapper

Cora
wrapper

ISE
layer

DocumentView
objects

call
Wrapper

specifications

Fig. 3. System architecture.

The two layers ISE interface and ISE wrapper fulfill these requirements. This
architecture permits any wrapper toolkit to be used and different kinds of wrapper
toolkits can even be combined.

The ISE interface layer defines an interface between the Amos II kernel and the
underlying ISE wrapper layer used for interfacing each search engine. The
functionality common for every ISE wrapper, such as instantiating ISE specific
DocumentView objects and emitting the result stream, is encapsulated in this layer. It
is called by the query processor and it calls the ISE wrapper for the chosen search
engine. The basic foreign function interface of Amos II allows new ISE interfaces to
be dynamically added to a running system. The ISE wrappers are specified by some
external wrapper toolkit(s) chosen for each particular search engine. Therefore, the
functionality they expose can be very different and cannot be directly used by
ORWISE. The ISE interface therefore must instantiate objects, convert strings to
URL objects or numbers, etc.

The ISE wrapper layer consists of the modules specified through the wrapper
toolkit. It forms and sends HTTP requests to an ISE server and then extracts the
results from the so received HTML page. The input to a wrapper toolkit is a
specification of request submission and data extraction rules for a web source. The
chosen W4F [31] toolkit is a wrapper-generator, which generates Java classes per
wrapped data source. In this case the layer consists of the generated code. For
wrapper-interpreters the interpreter together with the specifications is the layer.

With this layered architecture, the following steps are needed to add a new search
engine to ORWISE:

1. Design an ISE wrapper for the specific search engine by using a chosen wrapper
toolkit. For example in the case of W4F this involves specifying the extraction
rules in terms of the HEL extraction language from which a Java class is
generated per each wrapped web source. By contrast, wrapper-interpreters are

 8

directly called from the ISE interface layer using the wrapper specifications as
parameters.

2. Create types in the mediator database as subtypes of SearchEngine and
DocumentView.

3. Design an ISE interface module as the overloaded Amos II foreign function,
orwise, calling the ISE wrapper module from step 1.

Once step 1-3 are completed the ISE is already queryable directly through orwise.
However, the queries can be complex and very ISE dependent. Efficient and
transparent queries to an ISE therefore requires an additional step:

4. Design the rewrite rules needed for the ISE to translate between, e.g., webSearch
calls and the particular orwise calls.

6. Translating ORWISE Queries

Queries calling the webSearch function combined with other Web document related
predicates are translated to an equivalent but more efficient query containing
optimized calls to the function orwise overloaded for specific ISEs. The function
webSearch could be defined as a query calling orwise without any translation.
However such untranslated execution may be significantly less efficient. In our
example, the Google query is translated to the following orwise query:

SELECT given_name(e), family_name(e)
FROM Employee e, DocumentView d, Google gse
WHERE d = orwise(gse, given_name(e) + ’ ‘ +
family_name(e), 20, ’www.csd.uu.se’, ‘english’);

where the signature of orwise is Google specific. Here orwise for Google takes the
parameters query, result size, language restriction, and host. The function is defined
as a foreign AmosQL function that calls the underlying ISE wrapper for Google.
The example illustrates the semantic rewrite of the original query by the translator,
where several calls to webSearch and host are combined into one call to Google’s
orwise. The translator also added the default specifications of ‘english’ as language
and that only the first 20 results should be returned. The result of orwise is a stream
of GoogleView objects. The translator for each ISE knows how to generate
optimized orwise calls with specific parameters expressing ISE supported
capabilities.

As shown in the example, queries to a search engine will contain subqueries
expressed using the specific query language of the ISE, which is usually different for
different ISEs. In the example above the string “given_name(e) + ’ ‘ +
family_name(e)” is an example of the construction of a conjunctive query to
Google (it uses AND by default). During query translation, there are possible query
transformations that can dramatically improve performance and result quality. We
have implemented some translator rules to show the usefulness of the system and
can utilize other results in related areas [5], [6].

 9

7. Summary

A flexible system for querying Internet search engines through an OO mediator
database system was presented. The system has the following unique combination of
features:

1. Data about both the search engine capabilities and the results they return were
modeled in an OO ISE schema in a mediator database.

2. The ISE schema permits transparent queries to ISEs with different capabilities
and result structures. The mediation facilities provide for processing
heterogeneous queries that combine data from ISEs with data from other data
sources.

3. New kinds of ISEs can be easily plugged in. The system assumes the ISEs are
autonomous and outside the control of the query processor.

4. The system is designed to be independent of the wrapper toolkits used for
specifying the ISE wrappers. Several such publicly available toolkits were
evaluated to choose one for the implementation.

5. The query processor provides a mechanism to plug in OO search engine specific
rewrite rules for translating OO queries into the parameterized orwise calls. The
system is independent of the actual rewrite rules to utilize previous work in this
area.

References

1. B. Adelberg: NoDoSe – A Tool for Semi-Automatically Extracting Structured and
Semistructured Data from Text Documents, SIGMOD 1998 Conference: 283:294, 1998.

2. N. Ashish, C. Knoblock: Semi-automatic Wrapper Generation for Internet Information
Sources. CoopIS’97 Conference: 160-169, 1997.

3. G. Arocena, A. Mendelzon: WebOQL: Restructuring Documents, Databases, and Webs. In
Proc. ICDE'98, Orlando, 1998.

4. O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase Systems. Prentice Hall,
1996.

5. V. Christophides, S. Abiteboul, S. Cluet, M Scholl: From Structured Documents to Novel
Query Facilities. SIGMOD 1994 Conference: 313-324, 1994.

6. S. Chaudhuri, U. Dayal, T. W. Yan: Join Queries with External Text Sources: Execution
and Optimization Techniques. SIGMOD 1995 Conference: 410-422, 1995.

7. C. Chang, H. Garcia-Molina, A. Paepcke: Predicate rewriting for translating Boolean
queries in a heterogeneous information system. ACM Trans. on Information Systems,
17(1), 1999.

8. Donald D. Chamberlin, Jonathan Robie, Daniela Florescu: Quilt: An XML Query
Language for Heterogeneous Data Sources. WebDB’2000: 53-62, 2000.

9. A. Firat, S. Madnick, M. Siegel: The Caméléon Web Wrapper Engine, First Workshop on
Technologies for E-Services, Cairo, 2000.

10. G. Fahl, T. Risch: Query Processing over Object Views of Relational Data, The VLDB
Journal , 6(4), 261-281, 1997.

11. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, V.
Vassalos, J. Widom: The TSIMMIS Approach to Mediation: Data Models and Languages.
Intelligent Information Systems (JIIS), Kluwer, 8(2), 117-132, 1997

12. R. Goldman, J. McHugh, J. Widom: From Semisturctured Data to XML: Migrating the
Lore Data Model and Query Language, WebDB’99, 1999.

 10

13. J. Gruser, L. Raschid, M. Vidal, L. Bright: Wrapper Generation for Web Accessible Data
Sources. CoopIS’98 Conference: 14-23, 1998

14. R. Goldman, J. Widom: WSQ/DSQ: A Practical Approach for Combined Querying of
Databases and the Web. SIGMOD 2000 Conference: 285-296, 2000.

15. G. Huck, P. Fankhauser, K. Aberer, Erich J. Neuhold: Jedi: Extracting and Synthesizing
Information from the Web. CoopIS’98 Conference: 32-43, 1998.

16. L. Haas, D. Kossmann, E. L. Wimmers, J. Yang: Optimizing Queries across Diverse Data
Sources. 23rd Intl. Conf. on Very Large Databases (VLDB'97), 276-285, 1997

17. V. Josifovski, T. Risch: Integrating Heterogeneous Overlapping Databases through
Object-Oriented Transformations, 25th Conference on Very Large Databases (VLDB'99),
435-446, 1999.

18. T. Kistlera, H. Marais: WebL: a programming language for the Web. In WWW7, Brisbane,
Australia, http://www.research.digital.com/SRC/WebL/, 1998.

19. D. Konopnicki, O. Shmueli. W3QS: A query system for the World Wide Web. 21st
Conference on Very Large Databases (VLDB'95), 54–65, Zurich, Switzerland, 1995.

20. N. Kushmerick, D. Weld, R. Doorenbos: Wrapper Induction for Information Extraction.
IJCAI’97 Vol. 1: 729-737, 1997.

21. L. Liu, C. Pu: An Adaptive Object-Oriented Approach to Integration and Access of
Heterogeneous Information Sources. Distributed and Parallel Databases, Kluwer, 5(2),
167-205, 1997.

22. L. Liu, C. Pu, W. Han: XWRAP: An XML-Enabled Wrapper Construction System for
Web Information Sources. ICDE 2000: 611-621, 2000.

23. H. Lin, T. Risch, T. Katchanounov: Adaptive data mediation over XML data. To be
published in special issue on "Web Information Systems Applications" of Journal of
Applied System Studies (JASS), Cambridge International Science Publishing, 2001.

24. G. Mecca, P. Merialdo, P. Atzeni: ARANEUS in the Era of XML. IEEE Data
Engineering Bulletin, Special Issue on XML, September, 1999.

25. A. O. Mendelzon, G. Mihaila, T. Milo: Querying the World Wide Web. International
Journal on Digital Libraries, 1(1), 54-67, April 1997.

26. A. Paepcke: An Object-Oriented View Onto Public, Heterogeneous Text Databases.
Proceedings of the Ninth International Conference on Data Engineering (ICDE’93), 1993.

27. D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, J. Widom: Querying Semistructured
Heterogeneous Information. In Deductive and Object-Oriented Databases, Proceedings of
the DOOD'95 conference, 1995, LNCS Vol. 1013, 319-344, Springer 1995.

28. D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, J. Widom: Querying Semistructured
Heterogeneous Information. In Deductive and Object-Oriented Databases, Proceedings of
the DOOD'95 conference, 1995, LNCS Vol. 1013, 319-344, Springer 1995.

29. T. Risch, V. Josifovski: Distributed Data Integration by Object-Oriented Mediator
Servers, To be published in Concurrency – Practice and Experience J., John Wiley &
Sons, http://www.csd.uu.se/~udbl/publ/concur00.pdf, 2001.

30. T. Risch, V. Josifovski, T. Katchaounov: Amos II Concepts,
http://www.csd.uu.se/~udbl/amos/doc/amos_concepts.html, 2000.

31. A. Sahuguet, F. Azavant: Building Intelligent Web Applications Using Lightweight
Wrappers, Data and Knowledge Engineering, 36(3), 283-316, March, 2001.

32. D. W. Shipman: The Functional Data Model and the Data Language DAPLEX, TODS,
6(1), 140-173, 1981.

33. A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous Data Sources
with DISCO. IEEE Transactions on Knowledge and Date Engineering, 10(5), 808-823,
1998

34. G. Wiederhold: Mediators in the architecture of future information systems, IEEE
Computer, 25(3), 38–49, 1992.

35. XQuery: A Query Language for XML, W3C Working Draft, 15 February 2001,
http://www.w3.org/TR/xquery/.

