
 Uppsala Student Thesis
 Computing Science No. 268
 2004-01-30
 ISSN 1100-1836

Translating XQuery expressions to Functional
Queries in a Mediator Database System

A student project paper by
Tobias Hilka

Advisor and Supervisor
Tore Risch

January 2004

Uppsala Database Laboratory
Uppsala University

P.O. Box 513
S-751 20 Uppsala

Sweden

 2

Contents
1 INTRODUCTION..3

1.1 XML ..3

1.2 XPath...4

1.3 XQuery..4

2 FIRST APPROACH ..7

3 TRANSLATION ..10

3.1 AmosQL and XQuery..10

3.2 The Parts of FLWOR expressions..11
3.2.1 Simple Query using for ...11
3.2.2 Where Clause ...12
3.2.3 Order By Clause..15
3.2.4 special return clause ..16
3.2.5 Multiple for clauses..16
3.2.6 Combination of for and let clause ...18

3.3 Restrictions ...20

4. TRANSLATION RULES ...21

5. IMPLEMENTATION OF THE QUERY TRANSLATOR......23

6. CONCLUSION AND FUTURE WORK24

7. REFERENCES..25

APPENDIX A: TRANSLATED QUERIES26

A.1 TC/MD ...26

A.2 TC/SD...31

A.3 DC/MD...36

A.4 DC/SD...41

 3

1 Introduction

This report on my student project will discuss some approaches of translating
XQuery expressions into functional queries in a mediator database system. The
mediator database system used is AMOS II (Active Mediator Object
System)[1][2]. This system uses a functional data model and is based on the query
language AmosQL. This language is relationally complete object-oriented and is
similar to the object-oriented parts of SQL-99.

An Amos II database system can integrate data of different type into its own
object-oriented database using wrappers. The wrappers process data from
different external sources such as ODBC based relational databases, CAD systems
or internet search engines. This results in a common data model and a query
language for heterogeneous data.

AMOS II can not only be used as a stand-alone database system but also
interoperate with many other independent AMOS II system over a communication
network such as the internet. Applications can access data stored in some AMOS
II database using other AMOS II databases called mediators. These mediators
combine the underlying data sources in the needed way to offer a high-level
abstraction. This greatly simplifies accessing heterogeneous data sources at the
application level. The mediator system themselves can also manage data of its
own.

The data stored in an AMOS II database resides in main memory until it is stored
explicitly to hard disk. There are two kinds of interfaces between AMOS II and
the programming language Java called the callin and the callout interfaces[3].
Using the callout interface, the programmer can define foreign AMOS II functions
in Java. These functions can freely be used in database queries. To manipulate the
database, foreign functions written in Java use the callin interface by calling
AmosQL statements or functions.

The purpose of the project presented here was to find a way to translate XQuery
expressions into queries expressed in AmosQL. Since XQuery is a very powerful
language, not all constructions that are possible with XQuery can be translated to
AmosQL. I used the well known XMLSchema based Waterloo benchmark for
XML databases[4] and the queries used to generate workload.

1.1 XML

XML stands for Extensible Markup Language and was standardized by the
W3C[5]. It is designed to structure, store and send information. The tags used in
XML are not predefined like in HTML and can be defined using a Document
Type Definition (DTD) or an XML Schema[6]. Because of that, XML is
extensible. With this standard it is possible to exchange data (e.g. over the
internet) between different systems that are not able to communicate otherwise.
Since its introduction by the W3C, XML has gained attention throughout the
industry and is very widely used in software development.

 4

1.2 XPath

As increasing amounts of information are stored, exchanged, and presented using
the XML format, the ability to intelligently query XML data sources becomes
increasingly important.

The primary purpose of XPath[7] is to address parts of an XML document. It
operates on its abstract, logical structure. XPath gets its name from its use of a
path notation as in URLs for navigating through the hierarchical structure of an
XML document. In addition to its use for addressing, XPath is also designed so
that it has a natural subset that can be used for matching (testing whether or not a
node matches a pattern).

The primary syntactic construct in XPath is the expression. One important kind of
expression is a location path which selects a set of nodes relative to the context
node. There are two kinds of location path: relative location paths and absolute
location paths. A relative location path consists of one or more location steps
separated by ‘/’. The steps are composed from left to right. Each step selects a set
of nodes relative to the context node. Every node in this set will be used as
context node for the following step. An absolute location path consists of ‘/’
optionally followed by a relative location path. A ‘/’ by itself selects the root node
of a document which contains as a child the element node for the document,
which will be used as context node for the following step. A location path itself
consists of the following parts: an axis, specifying the tree relationship between
the nodes, a node test, specifying the node type and name of the nodes to be
selected and optional predicates, refining the nodes selected by the location step.
For example, in "child::paragraph[position()=last()]", child is
the name of the axis, paragraph is the node test and
[position()=last()] is a predicate selecting the last paragraph child of the
context node. The example uses the unabbreviated syntax. There are a number of
syntactic abbreviations which make it possible to write the example as
paragraph[last()].

A fully working extension to the AMOS II system, evaluating XPath expressions
was done in a previous project called AXE[]. The AXE extension is used in this
current project for the necessary evaluation of XPath expressions.

1.3 XQuery

XQuery Version 1.0 [8] is an extension to the XPath language. Therefore they
share the same data model. Any expression that is syntactically valid and executes
successfully in both languages will return the same result. XQuery is designed to
be a language in which queries are concise and easily understood. It is also
flexible enough to query a broad spectrum of XML information sources, including
both databases and documents.

The basic building block of XQuery is the expression. There are several kinds of
expressions provided by XQuery. This work focused on the translation of the so

 5

called FLWOR-exrpressions as presented in the queries of the Waterloo
benchmark. These expressions support iteration and binding of variables to
intermediate results. This kind of expression is often useful for computing joins
between two or more documents and for restructuring. The name FLWOR
(pronounced “flower”) consists of the first letter of the keywords for, let,
where, order by and return.

The purpose of the for and let clauses is to generate a sequence of bound
variables, the tuple stream. The simplest example of a for clause contains one
variable and an associated expression. It evaluates the expression and iterates over
the items in the resulting sequence, binding the variable to each item in turn.
A for clause may also contain multiple variables, each with an associated
expression. In this case, the for clause iterates each variable over the items that
result from evaluating its expression. The resulting tuple stream contains one tuple
for each combination of values in the Cartesian product of the sequences resulting
from evaluating the given expressions.

A let clause may also contain one or more variables, each with an associated
expression. The difference compared to a for clause is that a let clause binds
each variable to the result of its associated expression, without iteration. The
variable bindings generated by let clauses are added to the binding tuples
generated by the for clauses. If there are no for clauses, the let clauses
generate one tuple containing all the variable bindings.

A simple example will illustrate that:
- Query 1:
 for $s in (<x/>, <y/>, <z/>)
 let $i := (<a/>,)
 return <out>{$s}{$i}</out>

 Output:

 <out> <x/> <a/> </out>
 <out> <y/> <a/> </out>
 <out> <z/> <a/> </out>

- Query 2:

 for $i in (<a/>,)
 for $s in (<x/>, <y/>, <z/>)
 return <out>{$s}{$i}</out>

 Output:

 <out> <x/> <a/> </out>
 <out> <y/> <a/> </out>
 <out> <z/> <a/> </out>
 <out> <x/> </out>
 <out> <y/> </out>
 <out> <z/> </out>

- Query 3:

 6

 let $i := (<a/>,)
 let $s := (<x/>, <y/>, <z/>)
 return <out>{$i}{$s}</out>

 Output:

 <out> <x/> <y/> <z/> <a/> </out>

The optional where clause serves as a filter for the tuples generated by the for
and let clauses. It is evaluated once for each tuple. If the effective boolean value
of the where-expression is true, the tuple is used in the execution of the return
clause. If it is false, the tuple is discarded.

The return clause is evaluated once for each tuple in the stream and the results
of these evaluations are concatenated to form the result of the FLWOR
expression.

The order by clause contains one or more ordering specifications. For each
tuple in the stream, these specifications are evaluated. In the current version of
this project, only ordering specifications that are results of the FLWOR expression
can be used as ordering key.

 7

2 First Approach

The first approach to the translation of XQuery to AmosQL was to use a system
developed at UBDL that uses XML Schema to generate a database schema for
AMOS II [9].
The basic idea behind this project was to parse a given XML Schema definition
and translate it into the corresponding schema definitions in AMOS II. In other
words, to dynamically generate a file containing the type and function definitions
corresponding to the imported XML Schema. After the XML Schema
specification is imported to AMOS II it is possible to populate the AMOS II main-
memory database with any XML document that is described by this schema. After
the schema is imported to AMOS II and the database is populated it is possible to
state arbitrary queries over the imported data using AmosQL.
Here is an example of a XML Schema file describing a note:

<schema>
 <element name=”note”>
 <complexType>
 <sequence>
 <element name=”to” type=”string”/>
 <element name=”from” type=”string”/>
 <element name=”heading” type=”string”/>
 <complexType>
 <element name=”body” type=”string”/>
 <attribute name=”lang” type=”string”/>
 </complexType>
 </sequence>
 </complexType>
 </element>
</schema>

The corresponding AMOS II schema would look like this:

create Type XS_note;
create Type XS_to;
create Type XS_from;
create Type XS_heading;
create Type XS_body;

create function XS_to(XS_note)->XS_to as stored;
create function XS_from(XS_note)->XS_from as stored;
create function XS_heading(XS_note)->XS_heading as stored;
create function XS_body(XS_note)->XS_body as stored;
create function XS_to(XS_to)->charstring as stored;
create function XS_from(XS_from)->charstring as stored;
create function XS_heading(XS_heading)->charstring as stored;
create function XS_body(XS_body)->charstring as stored;
create function XS_lang(XS_body)->charstring as stored;

As you can see, all <element> tags are translated in AMOS II types. For every
element there is a function inserted which returns the element of a given the
parent node. For all <element> and <attribute> tags of type string in XML
Schema a function returning the corresponding string of the element is returned.

 8

A simple example of a possible translation of an XQuery query to an AmosQL
Query using this database schema is

TC/MD_Q1:
Return the title of the article that has matching id attribute value (1).

XQuery:
for $art in input()/article[@id=”1”]
return
 $art/prolog/title

AmosQL:
select XS_title(XS_title(XS_prolog(a)))
from XS_article a
where XS_id(a)=1;

The translation is possible in simple cases like the example above. An example
using some more advanced features of the XQuery language is the following:

TC/MD_Q9:
Return all author names (several consecutive elements unknown) of the article
with matching id attribute value (2).

for $art in input()/article[@id="2"]
return
 $art//author[position()=last()]/name

The [position()=last()] predicate was added to make the problems of the
translation more obvious.

First of all, it is very hard to translate queries that use the “descendant-or-
self::node()“ axis. In abbreviated syntax this expression would be”//” like
in the example above. The meaning of this construct is: select all nodes named
author that are descendants of the document root node article[@id="2"].
The predicate is evaluated after the selection (see later). Since there is only the
parent or the child of a node known, constructs like this need a
descendant(object) function. Such a function could be constructed by a
generic function which looks up all corresponding functions to this object in the
schema and creates some kind of descendant function.

Another problem of this approach can not be solved. It concerns the non-
document-preserving storage of the XML document in the database. There is no
way to translate queries that refer to the structure of the document. Predicates like
“[postion()=last()]” of the example can not be translated. Once stored in
the database, the order of the elements is lost.

The main interest of the translation of XML Schema into the corresponding
AMOS II schema was data-centric which means, only the content of an XML
document is important. This type of documents are mostly intended to be
processed by software. One example for this kind of documents would be air
travel information. Document-centric documents (or text-centric as in the
waterloo benchmark) in contrast are mostly for human consumption. The structure

 9

of the document and particularly the order of the elements are of great interest.
Documents-centric documents are for example web pages or user manuals.

Data centric queries are relatively easy to express over the translated
XMLSchema using AmosQL. However, XQuery is mainly document centric and
the queries are specified as paths through the document. Because of this the
method of querying the translated data centric XMLSchema document is not so
straight forward with XQuery. Therefore we decided to base the query translator
on the document centric AXE system representation that represent the document
structure explicitly and uses XPath to navigate the document structure.

 10

3 Translation

Since the first approach turned out to be not capable to satisfy the requirements of
document-centric query expressions, a new approach was taken. This new
approach uses the AXE system developed at the UBDL.

As mentioned before, the AXE system is a general wrapper for schema-free XML
documents. It also includes an implementation of XPath expressions. To represent
the XML structure in AMOS II, the system used a DOM-like database schema.
DOM stands for Document Object Model. It is a specification to describe the
structure of documents and the way to access and manipulate documents. DOM
uses a tree like object graph to model the documents that it represents. The
mapping to the AMOS II database schema is done in a rather straightforward way.

With the help of the document preserving storage in the database and the
implementation of the XPath expressions this system is suitable to serve as a
platform for translating XQuery expressions to AmosQL.

The current version of the translator only works with AXE Version 12.

3.1 AmosQL and XQuery

The most flexible way to specify queries in AmosQL is to use the select
statement. The simplified syntax of a select statement that is used for this
translation is

select-stmt ::= "select" ["distinct"] expr-commalist
 [from-clause]
 [where-clause]
from-clause ::= "from" variable-declaration-commalist

variable-declaration ::= type-name variable-name |
 "bag of" type-name variable-name

where-clause ::= "where" predicate-expression

The [into-clause] of the original syntax is skipped because for the translation there
is no use to have temporary variables in the AMOS II system.
Even more simplified, the select statement has the following format:

select result
from type extents
where condition

The general semantic of an AmosQL query is

- form the Cartesian product of the type extents
- restrict it by the condition
- for each possible variable binding to tuple elements in the restricted

cartesian product, evaluate the result expressions
- result containing NIL are not included in the result set

 11

Since it would be very inefficient to execute the query like this, the select
statement passes a query optimization before being executed.
The partial grammar of the XQuery FLWOR expressions that can be translated
looks like this:

FLOWRExpr ::= (ForClause | LetClause)+ WhereClause? OrderByClause?
“return” ExprReturn

Translating the whole scope of possible constructs of FLWOR expressions is far
beyond the scope of this work, therefore some restrictions were made.

ForClause ::= "for" "$" VarName "in" PathExpr ("," "$" VarName
 "in" PathExpr)*
LetClause ::= "let" "$" VarName ":=" PathExpr ("," "$" VarName
 ":=" PathExpr)*
WhereClause ::= "where" Expr
OrderByClause ::= "order" "by" OrderSpec
PathExpr ::= ("/" RelativePathExpr?) | ("//" RelativePathExpr) |
 RelativePathExpr
ExprReturn ::= ((count(VarName)) | (VarName PathExpr)) | ("{"
 (count(VarName)) | (VarName PathExpr) "}")*
OrderSpec ::= VarName PathExpr

The OrderSpec part has to be one of the elements in ExprReturn since the sorting
abilities of AMOS II are very restricted.

3.2 The Parts of FLWOR expressions

To illustrate the way the XQuery queries are translated into AmosQL some simple
examples from the Waterloo benchmark are used. In this benchmark the
expression text-centric is used for the expression document-centric documents
that was used so far. The queries are split into four groups:

- Text-Centric/Single-Document (TC/SD),
- Text-Centric/Multiple-Document (TC/MD)
- Data-Centric/Single-Document (DC/SD)
- Data-Centric/Multiple-Document (DC/MD)

As an orientation for the reader, the group and the number of the queries are given
for every example.

The translated queries were generated by a software tool which was implemented
during this project. Some of the queries may have been written in an easier way
by the user. Since translation rules are used for generating the AmosQL queries
they may look a little complicated. The translation rules will be explained in
chapter 4.

The path expressions used in the waterloo benchmark usually start with a function
called input(). This is the unnamed input set of the database and is skipped in
the translation of the expressions.

3.2.1 Simple Query using for

TC/MD_Q1:

 12

Return the title of the article that has matching id attribute value (1).

XQuery:
for $art in input()/article[@id=”1”]
return
 $art/prolog/title

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='1']")
and r0=evaluate(f0, "/prolog/title");

As you can see, for every for statement a new type extent is inserted in the
from-clause. The same is done for every return statement. Furthermore, the
name of the variable from the return statement is inserted into the result clause.
To get the requested nodes, the

 evaluate(node subtree, charstring expression) -> bag of node b

function of the AXE system is used. It takes a node (the root node for this
evaluation) and an expression as arguments, evaluates the expression and returns a
bag of nodes matching this expression. As you can see, in the statement for the
result variable, f0 (each node returned by the evaluate function of the for
clause) is used as root node. Therefore, only the relative path from this node to the
result node is used, just as it is expressed in the XQuery statement.

The query above can also be written in a much more simple:
select r
from node x, node r
where r=evaluate(x, "/article[@id='1']/prolog/title");
As mentioned before, the reason for the more complicated queries are the
translation rules used to generate the queries.

3.2.2 Where Clause

An example using a simple where clause is

TC/MD_Q2:
Find the title of the article(s) authored by (Ben Yang).

XQuery:
for $prolog in input()/article/prolog
where $prolog/authors/author/name="Ben Yang"
return
 $prolog/title

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/article/prolog")
and tmp_f0=evaluate(f0, "/.[authors/author/name='Ben Yang']")
and r0=evaluate(tmp_f0, "/title");

 13

This simple where clause is directly translated into a call to the evaluate
function using f0, the variable it refers to, as root node. It uses the abbreviated
syntax of XPath "/.[predicate]". Because of the slash, the evaluation starts
with the root node (here all prologs). The "." takes the current node and the
condition in brackets is evaluated to restrict the current node. Since f0 contains
all nodes named "prolog" which have the parent node "article", this
statement selects only the "prolog" nodes, which have an author named "Ben
Yang" following the given path. After that, the "title" of the
"prolog"(respectively the "article") is extracted.
There are some more complicated ways of expressing a where clause.

empty(pathExpr)
A query that illustrates the empty(pathExpr) function is

TC/MD_Q14:
List article title that does not have genre element.

XQuery:
for $a in input()/article/prolog
where empty ($a/genre)
return
 <NoGenre>
 {$a/title}
 </NoGenre>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article/prolog")
and notany(evaluate(f0, "/genre"))
and r0=evaluate(f0, "/title");

The empty expression of XQuery is directly translated into a call to the
evaluate function, using the variable of the for statement as root node and
passing the returned nodes to the AmosQL function notany. This function
returns true if the bag passed as argument is empty.

contains(pathExpr, String)
The contains function is illustrated using the following example.

TC/MD_Q17:
Return the titles of articles which contain a certain word ("hockey").

XQuery:
for $a in input()/article
where contains ($a//p, "hockey")
return
 $a/prolog/title

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article")

 14

and some(select x from node x, text t where x=evaluate(f0, "//p")
 and like(nodeValue(t), "*hockey*") and parentNode(t)=x)
and r0=evaluate(f0, "/prolog/title");
The contains function of XQuery is translated into a rather complicated
expression in AmosQL. The inner query within the some function uses the
evaluate function to get all the nodes named p which are descendants of the
root node f0. Then, an element of type text is used to compare the string, given
by the contains function to the value of this element. The function

like(Charstring string, Charstring pattern) -> Boolean b

of AmosQL is used for the comparison. The text element is a child node of a p
node. If at least one of these elements exist, the some(bag of node) ->
boolean function of AmosQL will return true and the tuple will be used to
evaluate the result expression.

Two more complicated expressions of XQuery are some and every. These
expressions require special treatment.

some …
One example showing the use of the some expression is

TC/MD_Q6:
Find titles of articles where both keywords ("the" and "hockey") are mentioned in
the same paragraph of abstracts.

XQuery:
for $a in input()/article
where some $b in $a/body/abstract/p satisfies
 (contains($b, "the") and contains($b, "hockey"))
return
 $a/prolog/title

AmosQL:
select r0
from node f0, node xf0, node w, node r0
where f0=evaluate(xf0, "/article")
and some(select x from node x, text t where x=evaluate(w, "/.")
 and like(nodeValue(t), "*the*") and parentNode(t)=x)
and some(select x from node x, text t where x=evaluate(w, "/.")
 and like(nodeValue(t), "*hockey*") and parentNode(t)=x)
and w=evaluate(f0, "/body/abstract/p")
and r0=evaluate(f0, "/prolog/title");

Inner queries are used to evaluate the XQuery some expression. One for each
statement of the some expression. The first call to the evaluate function in each
inner query selects all elements, that are addressed by the path of the new variable
$b plus additional path given for each statement (in this case, no additional path is
given, so "." is inserted). The contains function is translated with the help of a
text element which is child of a node x and the like function of AmosQL.

every…
An example will illustrate the every expression.

 15

TC/MD_Q7:
Find titles of articles where a keyword ("hockey") is mentioned in every
paragraph of abstract.

XQuery:
for $a in input()/article
where every $b in $a/body/abstract/p satisfies
 contains($b, "hockey")
return
 $a/prolog/title

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article")
and count(select x from node x, text t where x=evaluate(f0,
 "/body/abstract/p")and like(nodeValue(t), "*hockey*") and
 parentNode(t)=x)
=count(select x from node x where x=evaluate(f0,
 "/body/abstract/p"))
and r0=evaluate(f0, "/prolog/title");

The every function of XQuery is translated to AmosQL using two calls of the
count function. The idea behind this is to have one inner query which has no
restrictions and selects all the nodes of a path (in this case, the second call to
count) without restriction. A second inner query(in this case the first one) selects
all nodes of a path with the restriction given by the every statement. If the count
of both queries is the same, every node of the given path satisfies the condition.

3.2.3 Order By Clause

The following example demonstrates the translation of the order by clause.

TC/MD_Q11:
List the titles of articles that have a matching country element type (Canada),
sorted by date.

XQuery:
for $a in input()/article/prolog
where $a/dateline/country="Canada"
order by $a/dateline/country
return
 <Output>
 {$a/title}
 {$a/dateline/country}
 </Output>

AmosQL:
sort((select r0, r1
 from node f0, node xf0, node tmp_f0, node r0, node r1
 where f0=evaluate(xf0, "/article/prolog")
 and tmp_f0=evaluate(f0, "/.[dateline/country='Canada']")
 and r0=evaluate(tmp_f0, "/title")
 and r1=evaluate(tmp_f0, "/dateline/date")

 16

), 2, 'inc');
In this example there are two results, therefore two type extents are inserted. The
order by clause is not directly translated. As mentioned before, only elements that
appear as results of the query can be used as sorting key. The reason for this is the
sorting function of AMOS II:

 sort(bag b, integer pos, charstring order) -> vector v

This function takes a bag, containing the tuples to sort, an integer, giving the
position in the tuple by which to sort (starting with 1), and a string, either 'dec'
or 'inc' giving the order of the sorting.

3.2.4 special return clause

The normal way of the translation of the return clause is obvious looking at the
examples in this chapter. The return clause is translated into a call of
evaluate… .
If the only result value is the count of a bag of nodes, the translation is different.
Looking at a simple example will demonstrate it. The query returns the number of
articles in the database.

XQuery:
let $a := input()/article
return count($a)

AmosQL:
count(
 select in(r0)
 from bag of node l0, bag of node r0
 where l0=(select evaluate(x, "/article ") from node x)
 and r0=l0
);

The statement for f0 selects all articles. The statement for r0 also select all
articles since the root node of the evaluate call is f0 and the path is ".". After
building the query, the count function is applied on the results of the query (all
articles).

3.2.5 Multiple for clauses

Using multiple for clauses are mostly used to have some kind of relationship
between the different clauses. One possibility to express this relationship is
directly in the for clause. The following example illustrates this.

TC/MD_Q4:
Find the heading of the section following the section entitled "Introduction" in a
certain article with id attribute value (4).

XQuery:
for $a in
input()/article[@id="4"]/body/section[@heading="introduction"],
$p in input()/article[@id="4"]/body/section[. >> $a][1]

 17

return
 <HeadingOfSection>
 {$p/@heading}
 </HeadingOfSection>

AmosQL:
select r0
from node f0, node xf0, node f1, node xf1, attr r0
where f0=evaluate(xf0,
 "/article[@id='4']/body/section[@heading='introduction']")
and f1=evaluate(f0, "following-sibling::node()[1] ")
and f1=evaluate(xf1, "/article[@id='4']/body/section")
and nodeName(r0)="heading"
and ownerElement(r0)=f1;

In this example the first section following a certain section with an attribute
heading and value "introduction" should be returned. First, the section with the
attribute heading and the value "introduction" is bound to f0. Then two
expressions are used to get the relationship. The first expression of f1 returns all
sections in the article (with id value 4). The second one returns the first ([1])
section following (following-sibling::node()) the section returned by
f0. The root node of this expression is f0.
Looking at the return statement, the special treatment of an attribute as return
value is shown. Since attributes are not stored as nodes, attr r0 has to be
inserted into the type extents instead of node r0. An attribute always belongs to
an element. Therefore the function ownerElement(attr a) -> node n is
called. Since several attributes can belong to one element, the name of the
attribute has to be checked using the nodeName(attr a) -> charstring
function.

Another possibility of getting some kind of relationship between several for
clauses is to use the where clause.

TC/MD_Q19:
Retrieve the headwords of entries cited, in etymology part, by certain entry with
id attribute value (E1).

XQuery:
for $a in input()/article[@id="7"]/epilog/references/a_id,
 $b in input()/article
where $a = $b/@id
return
 <Output>
 {$b/prolog/title}
 </Output>

AmosQL:
select r0
from node f0, node xf0, node f1, node xf1, text tf0, node zf0,
 attr zf1, node r0
where f0=evaluate(xf0, "/article[@id='7']/epilog/references/a_id")
and f1=evaluate(xf1, "/article")
and zf0=evaluate(f0, "/.")
and parentNode(tf0)=zf0

 18

and nodeName(zf1)="id"
and ownerElement(zf1)=f1
and nodeValue(tf0)=nodeValue(zf1)
and r0=evaluate(f1, "/prolog/title");

In this case temporary variables named zf0 and zf1 are introduced to express
the condition of the where clause. Furthermore, a type extent text is introduced
to match the string representation of the node value of node. The function
nodeValue applied on a node does not return the string representation of this
node. Therefore the text type extent has to be introduced. Applying the
nodeValue function on an attribute returns the string representation and no
text type extent is needed. zf0 contains the nodes named a_id, which were
already selected by f0. This expression is introduced because in case that the path
does consist of several steps, they are performed here. zf0 contains the parent
nodes of the text type extent. zf1 is of type attr and contains the id attribute
of the nodes selected by f0.

3.2.6 Combination of for and let clause

This section will deal with the combination of a for and a let clause which is
used by some queries in the waterloo benchmark.
There are basically two different kinds of combination of these two clauses. The
first one introduced here is to get the count of a bag of objects.

TC/MD_Q3:
Group articles by date and calculate the total number of articles in each group.

XQuery:
for $a in distinct-values (input()/article/prolog/dateline/date)
let $b := input()/article/prolog/dateline[date=$a]
return
 <Output>
 <Date>{$a/text()}</Date>
 <NumberOfArticles>{count($b)}</NumberOfArticles>
 </Output>

AmosQL:
select distinct r0, count(r1)
from node f0, node xf0, bag of node l0, text f0t, node r0, bag of
 node r1
where f0=evaluate(xf0, "/article/prolog/dateline/date")
and l0=(select x from node x, text t, node x1 where x=evaluate(x1,
 "/article/prolog/dateline/date")
 and nodeValue(t)=nodeValue(f0t) and parentNode(t)=x)
and parentNode(f0t)=f0
and r0=evaluate(f0, "/text()")
and r1=l0;

The for clause selects all disctinct values of the nodes called "date". The
let clause selects in each iteration of the for clause all the datelines who
have the same date as the date selected by the for clause.
To express the different kind of variable bindings of the let clause compared to
the for clause, an inner query is used. This inner query also uses a text type

 19

extent to get the string representation of the date. The type extent of the
corresponding expression of the let clause is bag of node and not simply
node as in case of the for clause. Therefore the function count(bag of
object o) -> integer can be applied and will return the number of
objects in this bag.

The other possibility is very similar to the combination of two for clauses. The
example given here will show it.

DC/MD_Q4
List the item id of the previous item of a matching item with id attribute value (8).

XQuery:
let $item := input()/items/item[@id="8"]
for $prevItem in input()/items/item[. << $item]
 [position() = last()]
return
 <Output>
 <CurrentItem>{$item/@id}</CurrentItem>
 <PreviousItem>{$prevItem/@id}</PreviousItem>
 </Output>

AmosQL:
select r0, r1
from node f0, node xf0, bag of node l0, attr r0, attr r1
where f0=evaluate(in(l0), "preceding-
 sibling::node()[position()=last()]")
and f0=evaluate(xf0, "/items/item")
and l0=(select evaluate(x, "/items/item[@id='8'] ") from node x)
and nodeName(r0)="id"
and ownerElement(r0)=in(l0)
and nodeName(r1)="id"
and ownerElement(r1)=f0;

As mentioned before there is no big difference between the combination of two
for clauses and the combination of a for clause and a let clause as shown
here.
The type extent of the let clause is still a bag of node (l0). Later, the function
in(bag of object o) -> bag of object x is applied on l0.
Therefore, at this point, there is no difference in treatment between for and let
clauses. The only difference is that in case on of the element extracted by the let
clause should be used as a root node of an evaluation, the function in(bag of
object o) -> bag of object x has to be applied (first condition in the
AmosQL where clause). If the in(…) function is not applied during evaluation
like here through the ownerElement(r0)=in(l0) and the results of the let
clause are directly results of the query, the in(…) function is applied "at the end"
in the select statement (e.g. select in(r0)).

Since the direct translation of the variable binding done by the let clause is not
possible, it is mostly treated the same as a for clause.
The difference is only obvious when using the count(…) function.

 20

3.3 Restrictions

As mentioned before, not all expressions of the XQuery language can be
translated into AmosQL statements. Nevertheless almost all queries of the
Waterloo benchmark can be translated.

One that could not be translated was for example DC/SD_Q10.

for $a in input()/catalog/item
where $a/date_of_release gt "1990-01-01" and
 $a/date_of_release lt "1995-01-01"
order by $a/publisher/name
return
 <Output>
 {$a/title}
 {$a/publisher}
 </Output>

The results of this query should be ordered by the name of the publisher. In the
current version of this project, only order by clauses which are also mentioned
in the return clause can be evaluated. In the return clause, only publisher is
returned, not his name. Therefore the translation is not possible.

Another one that could not be translated is DC/SD_Q20.

for $size in input()/catalog/item/attributes/size_of_book
where $size/length*$size/width*$size/height > 500000
return
 <Output>
 {$size/../../title}
 </Output>

In this query a calculation of an integer is done in the where clause
($size/length*$size/width*$size/height > 500000). This is not
supported in the current version.

Another problem is the evaluation of XPath expressions with the AXE system.
This system does not support character escapes (like 'eq' instead of '=') according
to the XML rules. Therefore characters like comparison characters have to be
written in their normal representation and not using their escape characters.

 21

4. Translation Rules

A brief summary of the necessary steps to perform the translation is given here.
For the translation of multiple for/let clauses with references to each other please
see 3.2.2.

For every for statement do the following:

• insert a new node type extent into the from clause
• insert a node x type extent into the from clause for temporary results
• insert a new statement looking like

 varName=evaluate(x, ”path”) into the where clause

For every let statement do the following:

• insert a new bag of node type extent into the from clause
• insert a node x type extent into the from clause for temporary results
• insert a new statement looking like

 varName=evaluate(x, ”path”) into the where clause

For every where statement do the following:

• simple case (where … = "…")
 insert into the where clause:
 refVarName=evaluate(refVarName, "/.[predicate]")

• empty(…)
 insert into the where clause:
 notany(evaluate(refVar, "path"))

• contains(…)
 insert inner query into the where clause (see 3.2.2)

• some …
 insert some(inner query) into the where clause (see 3.2.2)

• every …
 insert
 count(innerQuery)=count(innerQueryNoConditions)
 into the where clause (see 3.2.2)

For the order by statement do the following:

• write query as sort(query, pos, 'inc'|'dec')
 where query is the original query, pos is the position of the order key
 and 'inc'|'dec' is the sort order

For every return statement do the following:

• insert a new node/bag of node/attr type extent into the from
clause, depending on the referenced variable

• insert varName/in(varName)/count(varName) into the select
clause

• if a path expression is to be returned:
 insert a new statement looking like

 varName=evaluate(refVarName, “path”)

 22

 into the where clause, the refNameVar was declared in some for or
 let statement

• if an attribute is to be returned:
 insert
 ownerElement(varName) = refVarName
 and
 nodeName(varName) = "nodeValue"
 into the where clause

• if count(bag of object) is to be returned:
 insert
 varName = evaluate(refVarName, "path") into the where
 clause
 and
 if count is the only return value:
 rewrite query as count(query)
 if count is not the only return value:
 add count(varName) to the select clause

 23

5. Implementation of the query translator

The query translater implemented in this project consist of two Java classes. The
Translator class does the actual translation of the XQuery expression to the
AmosQL expression. The XQueryTrans class is the driver class for the
communication with the AMOS II database.

The function evalXQuery(String strXQueryExpression) of the XQueryTrans class
takes the XQuery expression as argument and calls the Translator class. The
Translator class does the actual translation to an AmosQL expression. This
expression is returned to the XQueryTrans class which calls AMOS II and
executes the AmosQL query.

To use this extension in AMOS II the following statement has to be executed:

create function evalxquery(Charstring expression) -> bag of Node
 as foreign "JAVA:XQueryTrans/evalXQuery";

With this statement a function called evalxquery is added to the AMOS II
database system. It takes the XQuery expression as an argument. The return value
is bag of node. The definition as foreign function is done by the statement as
foreign "JAVA:XQueryTrans/evalXQuery. The keyword JAVA means
that the extension is written in java. The name of the java class is XQueryTrans
and the name of the function to call is evalXQuery.

After executing this statement the XQuery extension can be used as a regular
function of AMOS II.

AMOS II

Database system

XQuery Extenstion

evalXQuery

Translator

Class

AmosQL
Query

AmosQL query String

XQuery query String

XQueryTrans
Class

 24

6. Conclusion and future work

XML is nowadays very common in use and it is therefore necessary to find a way
to query the data of this format. Intelligent queries are necessary to deal with the
large amount of data that needs to be processed.

In this paper, ways to translate XQuery expressions into queries of the Functional
Database system AMOS II with its query language AmosQL were discussed. The
first approach using an XMLSchema translator developed at UDBL was not able
to deal with the whole scope of the XQuery queries. That system translated XML
Schema definitions into corresponding AMOS II database schema definitions.
Because of the data centric approach assumed by the XMLSchema translator, i.e.
focussing on the storage of the data rather than on the structure of the document,
constructs of XQuery dealing with the document centric elements could not be
translated. In general XQuery expressions are over the document structure, not the
XMLSchema data schema and therefore the translated XMLSchema is of no use
for XQuery translation.

The other approach using the AXE system developed at the UDBL was capable to
deal with both data-centric and document-centric XML documents and the
corresponding queries. Due to the large complexity of XQuery, restrictions have
to be made to build a translator. These restrictions where made by focusing only
on the queries given by the Waterloo benchmark. Some more restrictions have to
be made since they are not supported in AMOS II, for example the restrictions
concerning the order by clause.

A complete query translator was implemented. This system is able to translate
queries expressed in XQuery into corresponding queries in AmosQL using the
database schema and functions given by the AXE system.

This implementation leaves some room for optimization and simplification of the
generated expressions. This can be done as a future work.

Some restrictions had to be made to implement the translation. This can be a
starting point for future work.
The restrictions that had to be made when translating the queries of the Waterloo
benchmark concern the order by clause of a FLWOR expression and the
calculation of values within a where clause.
The biggest restriction that had to be made concerns disallowing nested FLWOR
expressions such as a FLWOR expression in a return clause. Such expressions are
not present in the Waterloo benchmark.

Utilization of indexes is always wanted in a database environment. Since
functions are needed to have indexes, it is not possible to use this mechanism in
the current version. Future work can therefore use the first approach given in
chapter 2 and combine it with the current version of this project to a hybrid
system. The first approach was not implemented yet and can be done in the future.

Currently no syntax check is made for the queries expressed in XQuery. This
could be added in future versions.

 25

7. References

[1] Risch, T.; Josifovski, V.; Katchaounov, T. (2000):
 AMOS II Concepts
 http://www.dis.uu.se/~udbl/amos/doc/amos_concepts.html

[2] Risch, T.; Josifovski, V.; Katchaounov, T. (2000):
 Functional Data Integration in a Distributed Mediator System
 http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf

[3] Elin, D.; Risch, T.(2000):
 Amos II Java Interfaces
 http://user.it.uu.se/~torer/publ/javaapi.pdf

[4] Bin Yao, B.; Ozsu, M.T.; Keenleyside, J. (2003)
 XBench - A Family of Benchmarks for XML DBMSs
 http://db.uwaterloo.ca/~ddbms/projects/xbench/

[5] Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Maler, E. (2000):
 Extensible Markup Language (XML) 1.0 (Second Edition)
 W3C Recommendation
 http://www.w3.org/TR/REC-xml

[6] Thompson, H.S.; Beech, D.; Maloney, M.; Mendelsohn, N. (2001):
 XML Schema Part 1: Structures
 W3C Recommendation
 http://www.w3.org/TR/xmlschema-1/

[7] Clark, J.; DeRose, S. (1999)
 XML Path Language (XPath) Version 1.0
 W3C Recommendation
 http://www.w3.org/TR/xpath

[8] Boag, S.; Chamberlin, D.; Fernández, M.F.; Florescu, D.; Robie, J.;
 Siméon, J. (2003):
 XQuery 1.0: An XML Query Language
 W3C Working Draft
 http://www.w3.org/TR/xquery/
[9] Johannson, T.; Heggbrenna, R. (2003):
 Importing XML Schema into an Object-Oriented Database Mediator
 System
 Uppsala Master's Theses in Computer Science no. 260

 26

Appendix A: Translated Queries

A.1 TC/MD

TC/MD_Q1:
Return the title of the article that has matching id attribute value (1)
for $art in input()/article[@id="1"]
return
 $art/prolog/title

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='1']")
and r0=evaluate(f0, "/prolog/title");

TC/MD_Q2:
Find the title of the article authored by “Ben Yang”
for $prolog in input()/article/prolog
where $prolog/authors/author/name="Ben Yang"
return
 $prolog/title

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/article/prolog")
and tmp_f0=evaluate(f0, "/.[authors/author/name='Ben Yang']")
and r0=evaluate(tmp_f0, "/title");

TC/MD_Q3:
Group articles by date and calculate the total number of articles in each group
for $a in distinct-values (input()/article/prolog/dateline/date)
let $b := input()/article/prolog/dateline[date=$a]
return
 <Output>
 <Date>{$a/text()}</Date>
 <NumberOfArticles>{count($b)}</NumberOfArticles>
 </Output>

AmosQL:
select distinct r0, count(r1)
from node f0, node xf0, bag of node l0, text f0t, node r0, bag of
 node r1
where f0=evaluate(xf0, "/article/prolog/dateline/date")
and l0=(select x from node x, text t, node x1 where x=evaluate(x1,
 "/article/prolog/dateline/date")
 and nodeValue(t)=nodeValue(f0t) and parentNode(t)=x)
and parentNode(f0t)=f0
and r0=evaluate(f0, "/text()")
and r1=l0;

TC/MD_Q4:
Find the heading of the section following the section entitled “Introduction" in a
certain article with id attribute value (4).

 27

for $a in
input()/article[@id="4"]/body/section[@heading="introduction"],
$p in input()/article[@id="4"]/body/section[. >> $a][1]
return
 <HeadingOfSection>
 {$p/@heading}
 </HeadingOfSection>

AmosQL:
select r0
from node f0, node xf0, node f1, node xf1, attr r0
where f0=evaluate(xf0,
 "/article[@id='4']/body/section[@heading='introduction']")
and f1=evaluate(f0, "following-sibling::node()[1] ")
and f1=evaluate(xf1, "/article[@id='4']/body/section")
and nodeName(r0)="heading"
and ownerElement(r0)=f1;

TC/MD_Q5:
Return the headings of the first section of a certain article with id attribute value
(2).
for $a in input()/article[@id="2"]
return
 <HeadingOfSection>
 {$a/body/section[1]/@heading}
 </HeadingOfSection>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='2']")
and r0=evaluate(f0, "/body/section[1]/@heading");

TC/MD_Q6:
Find titles of articles where both keywords (“the" and “hockey") are mentioned in
the same paragraph of abstracts.
for $a in input()/article
where some $b in $a/body/abstract/p satisfies (contains($b, "the")
and contains($b, "hockey"))
return
 $a/prolog/title

AmosQL:
select r0
from node f0, node xf0, node w, node r0
where f0=evaluate(xf0, "/article")
and some(select x from node x, text t where x=evaluate(w, "/.")
 and like(nodeValue(t), "*the*") and parentNode(t)=x)
and some(select x from node x, text t where x=evaluate(w, "/.")
 and like(nodeValue(t), "*hockey*") and parentNode(t)=x)
and w=evaluate(f0, "/body/abstract/p")
and r0=evaluate(f0, "/prolog/title");

TC/MD_Q7:
Find titles of articles where a keyword (“hockey") is mentioned in every
paragraph of abstract.
for $a in input()/article
where every $b in $a/body/abstract/p satisfies contains($b,
"hockey")

 28

return
 $a/prolog/title

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article")
and count(select x from node x, text t where x=evaluate(f0,
 "/body/abstract/p")and like(nodeValue(t), "*hockey*") and
 parentNode(t)=x)
=count(select x from node x where x=evaluate(f0,
 "/body/abstract/p"))
and r0=evaluate(f0, "/prolog/title");

TC/MD_Q8:
Return the names of all authors (one element name unknown) of the article with
matching id attribute value (2).
for $art in input()/article[@id="2"]
return
 $art/prolog/*/author/name

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='2']")
and r0=evaluate(f0, "/prolog/*/author/name");

TC/MD_Q9:
Return all author names (several consecutive element unknown) of the article with
matching id attribute value (2).
for $art in input()/article[@id="2"]
return
 $art//author/name

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='2']")
and r0=evaluate(f0, "//author/name");

TC/MD_Q10:
List the titles of articles sorted by country.
for $a in input()/article/prolog
order by $a/dateline/country
return
 <Output>
 {$a/title}
 {$a/dateline/country}
 </Output>

AmosQL:
sort((select r0, r1
 from node f0, node xf0, node r0, node r1
 where f0=evaluate(xf0, "/article/prolog")
 and r0=evaluate(f0, "/title")
 and r1=evaluate(f0, "/dateline/country")
), 2, 'inc');

 29

TC/MD_Q11:
List the titles of articles that have a matching country element
type (Canada), sorted by date.
for $a in input()/article/prolog
where $a/dateline/country="Canada"
order by $a/dateline/date
return
 <Output>
 {$a/title}
 {$a/dateline/date}
 </Output>

AmosQL:
sort((select r0, r1
 from node f0, node xf0, node tmp_f0, node r0, node r1
 where f0=evaluate(xf0, "/article/prolog")
 and tmp_f0=evaluate(f0, "/.[dateline/country='Canada']")
 and r0=evaluate(tmp_f0, "/title")
 and r1=evaluate(tmp_f0, "/dateline/date")
), 2, 'inc');

TC/MD_Q12:
Retrieve the body of the article that has a matching id attribute value (4).
for $a in input()/article[@id="4"]
return
 <Article>
 {$a/body}
 </Article>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='4']")
and r0=evaluate(f0, "/body");

TC/MD_Q13:
Construct a brief information on the article that has a matching id attribute value
(5), including title, the name of _rst author, date and abstract.
for $a in input()/article[@id="5"]
return
 <Output>
 {$a/prolog/title}
 {$a/prolog/authors/author[1]/name}
 {$a/prolog/dateline/date}
 {$a/body/abstract}
 </Output>

AmosQL:
select r0, r1, r2, r3
from node f0, node xf0, node r0, node r1, node r2, node r3
where f0=evaluate(xf0, "/article[@id='5']")
and r0=evaluate(f0, "/prolog/title")
and r1=evaluate(f0, "/prolog/authors/author[1]/name")
and r2=evaluate(f0, "/prolog/dateline/date")
and r3=evaluate(f0, "/body/abstract");

TC/MD_Q14:
List article title that doesn't have genre element.
for $a in input()/article/prolog

 30

where empty ($a/genre)
return
 <NoGenre>
 {$a/title}
 </NoGenre>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article/prolog")
and notany(evaluate(f0, "/genre"))
and r0=evaluate(f0, "/title");

TC/MD_Q15:
List author names whose contact elements are empty in articles.
for $a in input()/article/prolog/authors/author
where empty($a/contact/text())
return
 <NoContact>
 {$a/name}
 </NoContact>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article/prolog/authors/author")
and notany(evaluate(f0, "/contact/text()"))
and r0=evaluate(f0, "/name");

TC/MD_Q16:
Get the article by its id attribute value (4).
for $a in input()/article[@id="4"]
return
 $a

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article[@id='4']")
and r0=evaluate(f0, "/.");

TC/MD_Q17:
Return the titles of articles which contain a certain word (“hockey").
for $a in input()/article
where contains ($a//p, "hockey")
return
 $a/prolog/title

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/article")
and some(select x from node x, text t where x=evaluate(f0, "//p")
and like(nodeValue(t), "*hockey*") and parentNode(t)=x)
and r0=evaluate(f0, "/prolog/title");
TC/MD_Q18:
List the titles and abstracts of articles which contain a given phrase (“the
hockey").
for $a in input()/article

 31

where contains ($a//p, "the hockey")
return
 <Output>
 {$a/prolog/title}
 {$a/body/abstract}
 </Output>

AmosQL:
select r0, r1
from node f0, node xf0, node r0, node r1
where f0=evaluate(xf0, "/article")
and some(select x from node x, text t where x=evaluate(f0, "//p")
 and like(nodeValue(t), "*the hockey*") and parentNode(t)=x)
and r0=evaluate(f0, "/prolog/title")
and r1=evaluate(f0, "/body/abstract");

TC/MD_Q19:
List the names of articles cited by an article with a certain id attribute value (2).
for $a in input()/article[@id='2']/epilog/references/a_id,
$b in input()/article
where $a = $b/@id
return
 <Output>
 {$b/prolog/title}
 </Output>

AmosQL:
select r0
from node f0, node xf0, node f1, node xf1, text tf0, node zf0,
 attr zf1, node r0
where f0=evaluate(xf0, "/article[@id='2']/epilog/references/a_id")
and f1=evaluate(xf1, "/article")
and zf0=evaluate(f0, "/.")
and parentNode(tf0)=zf0
and nodeName(zf1)="id"
and ownerElement(zf1)=f1
and nodeValue(tf0)=nodeValue(zf1)
and r0=evaluate(f1, "/prolog/title");

A.2 TC/SD

TC/SD_Q1:
Return the entry that has matching headword ("the").
for $ent in input()/dictionary/e
where $ent/hwg/hw="the"
return
 $ent

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[hwg/hw='the']")
and r0=evaluate(tmp_f0, "/.");

TC/SD_Q2:
Find the headword of the entry which has matching quotation year (1900).
for $ent in input()/dictionary/e

 32

where $ent/ss/s/qp/q/qd="1900"
return
 $ent/hwg/hw

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[ss/s/qp/q/qd='1900']")
and r0=evaluate(tmp_f0, "/hwg/hw");

TC/SD_Q3:
Group entries by quotation location in a certain quotation year (1900) and
calculate the total number entries in each group.
for $a in distinct-values
(input()/dictionary/e/ss/s/qp/q[qd="1900"]/loc)
let $b := input()/dictionary/e/ss/s/qp/q[loc=$a]
return
 <Output>
 <Location>{$a/text()}</Location>
 <NumberOfEntries>{count($b)}</NumberOfEntries>
 </Output>

AmosQL:
select distinct r0, count(r1)
from node f0, node xf0, bag of node l0, text f0t, node r0, bag of
 node r1
where f0=evaluate(xf0, "/dictionary/e/ss/s/qp/q[qd='1900']/loc")
and l0=(select x from node x, text t, node x1 where x=evaluate(x1,
 "/dictionary/e/ss/s/qp/q/loc") and nodeValue(t)=nodeValue(f0t)
 and parentNode(t)=x)
and parentNode(f0t)=f0
and r0=evaluate(f0, "/text()")
and r1=l0;

TC/SD_Q4:
List the headword of the previous entry of a matching headword ("you").
let $ent := input()/dictionary/e[hwg/hw="you"]
for $prevEnt in input()/dictionary/e[hwg/hw << $ent]
 [position() = last()]
return
 <Output>
 <CurrentEntry>{$ent/hwg/hw/text()}</CurrentEntry>
 <PreviousEntry>{$prevEnt/hwg/hw/text()}</PreviousEntry>
 </Output>

AmosQL:
select r0, r1
from node f0, node xf0, node zf0, bag of node l0, node r0, node r1
where zf0=evaluate(in(l0), "hwg/hw")
and zf0=evaluate(in(l0), "hwg/hw/preceding-
 sibling::node()[position() = last()]")
and f0=evaluate(xf0, "/dictionary/e")
and l0=(select evaluate(x, "/dictionary/e[hwg/hw='you'] ") from
 node x)
and r0=evaluate(in(l0), "/hwg/hw/text()")
and r1=evaluate(f0, "/hwg/hw/text()");

TC/SD_Q5:
Return the first sense of a matching headword ("that").

 33

for $a in input()/dictionary/e
where $a/hwg/hw="that"
return
 $a/ss/s[1]

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[hwg/hw='that']")
and r0=evaluate(tmp_f0, "/ss/s[1]");

TC/SD_Q6:
Return the words where some quotations were quoted in a certain year (1900).
for $word in input()/dictionary/e
where some $item in $word/ss/s/qp/q
 satisfies $item/qd eq "1900"
return
 $word

AmosQL:
select r0
from node f0, node xf0, node w, node xw, node r0
where f0=evaluate(xf0, "/dictionary/e")
and xw=evaluate(w, "/.[qd eq '1900']")
and w=evaluate(f0, "/ss/s/qp/q")
and r0=evaluate(f0, "/.");

TC/SD_Q7:
Return the words where all quotations were quoted in a certain year (1900).
for $word in input()/dictionary/e
where every $item in $word/ss/s/qp/q
 satisfies $item/qd eq "1900"
return
 $word

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and count(evaluate(f0, "/ss/s/qp/q[qd eq '1900']"))
=count(evaluate(f0, "/ss/s/qp/q"))
and r0=evaluate(f0, "/.");

TC/SD_Q8:
Return Quotation Text (one element name unknown) of a word ("and").
for $ent in input()/dictionary/e
where $ent/*/hw = "and"
return
 $ent/ss/s/qp/*/qt

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[*/hw = 'and']")
and r0=evaluate(tmp_f0, "/ss/s/qp/*/qt");

TC/SD_Q9:

 34

Return Quotation Text (several consecutive element names unknown) of a word
("or").
for $ent in input()/dictionary/e
where $ent//hw = "or"
return
 $ent//qt

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[//hw = 'or']")
and r0=evaluate(tmp_f0, "//qt");

TC/SD_Q10:
List the words and their pronunciation, alphabetically, quoted in a certain year
(1900).
for $a in input()/dictionary/e
where $a/ss/s/qp/q/qd = "1900"
order by $a/hwg/hw
return
 <Output>
 {$a/hwg/hw}
 {$a/hwg/pr}
 </Output>

AmosQL:
sort((select r0, r1
 from node f0, node xf0, node tmp_f0, node r0, node r1
 where f0=evaluate(xf0, "/dictionary/e")
 and tmp_f0=evaluate(f0, "/.[ss/s/qp/q/qd = '1900']")
 and r0=evaluate(tmp_f0, "/hwg/hw")
 and r1=evaluate(tmp_f0, "/hwg/pr")
), 1, 'inc');

TC/SD_Q11:
List the quotation locations and quotation dates, sorted by date, for a word
("word").
for $a in input()/dictionary/e[hwg/hw="the"]/ss/s/qp/q
order by $a/qd
return
 <Output>
 {$a/a}
 {$a/qd}
 </Output>

AmosQL:
sort((select r0, r1
 from node f0, node xf0, node r0, node r1
 where f0=evaluate(xf0, "/dictionary/e[hwg/hw='the']/ss/s/qp/q")
 and r0=evaluate(f0, "/a")
 and r1=evaluate(f0, "/qd")
), 2, 'inc');

TC/SD_Q12:
Retrieve the senses of a word ("his").
for $a in input()/dictionary/e
where $a/hwg/hw="his"
return

 35

 <Entry>
 {$a/ss}
 </Entry>

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[hwg/hw='his']")
and r0=evaluate(tmp_f0, "/ss");

TC/SD_Q13:
Construct a brief information on a word ("his"), including: headword,
pronunciation, part_of_speech, first etymology and first sense definition.
for $a in input()/dictionary/e
where $a/hwg/hw="his"
return
 <Output>
 {$a/hwg/hw}
 {$a/hwg/pr}
 {$a/hwg/pos}
 {$a/etymology/cr[1]}
 {$a/ss/s[1]/def}
 </Output>

AmosQL:
select r0, r1, r2, r3, r4
from node f0, node xf0, node tmp_f0, node r0, node r1, node r2,
 node r3, node r4
where f0=evaluate(xf0, "/dictionary/e")
and tmp_f0=evaluate(f0, "/.[hwg/hw='his']")
and r0=evaluate(tmp_f0, "/hwg/hw")
and r1=evaluate(tmp_f0, "/hwg/pr")
and r2=evaluate(tmp_f0, "/hwg/pos")
and r3=evaluate(tmp_f0, "/etymology/cr[1]")
and r4=evaluate(tmp_f0, "/ss/s[1]/def");
TC/SD_Q14:
List the ids of entries that do not have variant form lists and etymologies.
for $a in input()/dictionary/e
where empty($a/vfl) and empty($a/et)
return
 <NoVFLnET>
 {$a/@id}
 </NoVFLnET>

AmosQL:
select r0
from node f0, node xf0, attr r0
where f0=evaluate(xf0, "/dictionary/e")
and notany(evaluate(f0, "/vfl"))
and notany(evaluate(f0, "/et"))
and nodeName(r0)="id"
and ownerElement(r0)=f0;

TC/SD_Q17:
Return the headwords of the entries which contain a certain word ("hockey").
for $a in input()/dictionary/e
where contains ($a, "hockey")
return
 $a/hwg/hw

 36

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and some(select x from node x, text t where x=evaluate(f0, "/.")
 and like(nodeValue(t), "*hockey*") and parentNode(t)=x)
and r0=evaluate(f0, "/hwg/hw");

TC/SD_Q18:
List the headwords of entries which contain a given phrase ("the hockey").
for $a in input()/dictionary/e
where contains($a, "the hockey")
return
 $a/hwg/hw

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/dictionary/e")
and some(select x from node x, text t where x=evaluate(f0, "/.")
and like(nodeValue(t), "*the hockey*") and parentNode(t)=x)
and r0=evaluate(f0, "/hwg/hw");

TC/SD_Q19:
Retrieve the headwords of entries cited, in etymology part, by certain entry with
id attribute value (E1).
for $ent in input()/dictionary/e[@id="E1"],
 $related in input()/dictionary/e
where $ent/et/cr = $related/@id
return
 <Output>
 {$related/hwg/hw}
 </Output>

AmosQL:
select r0
from node f0, node xf0, node f1, node xf1, text tf0, node zf0,
 attr zf1, node r0
where f0=evaluate(xf0, "/dictionary/e[@id='E1']")
and f1=evaluate(xf1, "/dictionary/e")
and zf0=evaluate(f0, "/et/cr")
and parentNode(tf0)=zf0
and nodeName(zf1)="id"
and ownerElement(zf1)=f1
and nodeValue(tf0)=nodeValue(zf1)
and r0=evaluate(f1, "/hwg/hw");

A.3 DC/MD

DC/MD_Q1:
Return the customer id of the order that has matching id attribute value (1).
for $order in input()/order[@id="1"]
return
$order/customer_id

AmosQL:

 37

select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order[@id='1']")
and r0=evaluate(f0, "/customer_id");

DC/MD_Q3:
Group orders with total amount bigger than a certain number(11000.0), by
customer id and calculate the total number of each group.
for $a in distinct-values (input()/order
 [total > 11000.0]/customer_id)
let $b := input()/order[customer_id=$a]
return
 <Output>
 <CustKey>{$a/text()}</CustKey>
 <NumberOfOrders>{count($b)}</NumberOfOrders>
 </Output>

AmosQL:
select distinct r0, count(r1)
from node f0, node xf0, bag of node l0, text f0t, node r0, bag of
 node r1
where f0=evaluate(xf0, "/order[total > 11000.0]/customer_id")
and l0=(select x from node x, text t, node x1 where x=evaluate(x1,
 "/order/customer_id") and nodeValue(t)=nodeValue(f0t) and
 parentNode(t)=x)
and parentNode(f0t)=f0
and r0=evaluate(f0, "/text()")
and r1=l0;

DC/MD_Q4
List the item id of the previous item of a matching item with id attribute value (8).
let $item := input()/items/item[@id="8"]
for $prevItem in input()/items/item[. << $item][position()=last()]
return
 <Output>
 <CurrentItem>{$item/@id}</CurrentItem>
 <PreviousItem>{$prevItem/@id}</PreviousItem>
 </Output>

AmosQL:
select r0, r1
from node f0, node xf0, bag of node l0, attr r0, attr r1
where f0=evaluate(in(l0), "preceding-
 sibling::node()[position()=last()]")
and f0=evaluate(xf0, "/items/item")
and l0=(select evaluate(x, "/items/item[@id='8'] ") from node x)
and nodeName(r0)="id"
and ownerElement(r0)=in(l0)
and nodeName(r1)="id"
and ownerElement(r1)=f0;

DC/MD_Q5:
Return the first order line item of a certain order with id attribute value (2).
for $a in input()/order[@id="2"]
return
 $a/order_lines/order_line[1]

AmosQL:
select r0

 38

from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order[@id='2']")
and r0=evaluate(f0, "/order_lines/order_line[1]");

DC/MD_Q6:
Return invoice where some discount rates of sub-line items are higher than a
certain number (0.02).
for $ord in input()/order
where some $item in $ord/order_lines/order_line
 satisfies $item/discount_rate gt 0.02
return
 $ord

AmosQL:
select r0
from node f0, node xf0, node w, node xw, node r0
where f0=evaluate(xf0, "/order")
and xw=evaluate(w, "/.[discount_rate gt 0.02]")
and w=evaluate(f0, "/order_lines/order_line")
and r0=evaluate(f0, "/.");

DC/MD_Q7:
Return invoice where all discount rates of sub-line items are higher than a certain
number (0.02).
for $ord in input()/order
where every $item in $ord/order_lines/order_line
 satisfies $item/discount_rate gt 0.02
return
 $ord

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order")
and count(evaluate(f0, "/order_lines/order_line[discount_rate gt
 0.02]"))
=count(evaluate(f0, "/order_lines/order_line"))
and r0=evaluate(f0, "/.");

DC/MD_Q8:
Return the order line item ids of an order with an attribute value (3).
for $a in input()/order[@id="3"]
return
 $a/*/order_line/item_id

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order[@id='3']")
and r0=evaluate(f0, "/*/order_line/item_id");

DC/MD_Q9:
Return the item ids of an order with id attribute value (4).
for $a in input()/order[@id="4"]
return
 $a//item_id

AmosQL:

 39

select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order[@id='4']")
and r0=evaluate(f0, "//item_id");

DC/MD_Q10:
List the orders (order id, order date and ship type), with total amount larger than a
certain number (11000.0), ordered alphabetically by ship type.
for $a in input()/order
where $a/total gt 11000.0
order by $a/ship_type
return
 <Output>
 {$a/@id}
 {$a/order_date}
 {$a/ship_type}
 </Output>

AmosQL:
sort((select r0, r1, r2
 from node f0, node xf0, node tmp_f0, attr r0, node r1, node r2
 where f0=evaluate(xf0, "/order")
 and tmp_f0=evaluate(f0, "/.[total gt 11000.0]")
 and nodeName(r0)="id"
 and ownerElement(r0)=tmp_f0
 and r1=evaluate(tmp_f0, "/order_date")
 and r2=evaluate(tmp_f0, "/ship_type")
), 3, 'inc');

DC/MD_Q11:
List the orders (order id, order date and order total), with total amount larger than
a certain number (11000.0), in descending order by total amount.
for $a in input()/order
where $a/total gt 11000.0
order by $a/total descending
return
 <Output>
 {$a/@id}
 {$a/order_date}
 {$a/total}
 </Output>

AmosQL:
sort((select r0, r1, r2
 from node f0, node xf0, node tmp_f0, attr r0, node r1, node r2
 where f0=evaluate(xf0, "/order")
 and tmp_f0=evaluate(f0, "/.[total gt 11000.0]")
 and nodeName(r0)="id"
 and ownerElement(r0)=tmp_f0
 and r1=evaluate(tmp_f0, "/order_date")
 and r2=evaluate(tmp_f0, "/total")
), 3, 'dec');

DC/MD_Q12:
List all order lines of a certain order with id attribute value (5).
for $a in input()/order[@id="5"]
return
 <Output>
 {$a/order_lines}

 40

 </Output>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order[@id='5']")
and r0=evaluate(f0, "/order_lines");

DC/MD_Q14:
List the ids of orders that only have one order line.
for $a in input()/order
where empty($a/order_lines/order_line[2])
return
 <OneItemLine>
 {$a/@id}
 </OneItemLine>

AmosQL:
select r0
from node f0, node xf0, attr r0
where f0=evaluate(xf0, "/order")
and notany(evaluate(f0, "/order_lines/order_line[2]"))
and nodeName(r0)="id"
and ownerElement(r0)=f0;

DC/MD_Q16:
Retrieve one whole order document with certain id attribute value (6).
for $a in input()/order[@id="6"]
return
 $a

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/order[@id='6']")
and r0=evaluate(f0, "/.");
DC/MD_Q17:
Return the ids of authors whose biographies contain a certain word ("hockey").
for $a in input()/authors/author
where contains ($a/biography, "hockey")
return
 <Output>
 {$a/@id}
 </Output>

AmosQL:
select r0
from node f0, node xf0, attr r0
where f0=evaluate(xf0, "/authors/author")
and some(select x from node x, text t where x=evaluate(f0,
 "/biography") and like(nodeValue(t), "*hockey*") and
 parentNode(t)=x)
and nodeName(r0)="id"
and ownerElement(r0)=f0;

DC/MD_19:
For a particular order with id attribute value (7), get its customer name and phone,
and its order status.

 41

for $order in input()/order, $cust in input()/customers/customer
where $order/customer_id = $cust/@id
 and $order/@id = "7"
return
 <Output>
 {$order/@id}
 {$order/order_status}
 {$cust/first_name}
 {$cust/last_name}
 {$cust/phone_number}
 </Output>

AmosQL:
select r0, r1, r2, r3, r4
from node f0, node xf0, node f1, node xf1, text tf0, node zf0,
 attr zf1, node tmp_f0, attr r0, node r1, node r2, node r3,
 node r4
where f0=evaluate(xf0, "/order")
and f1=evaluate(xf1, "/customers/customer")
and zf0=evaluate(f0, "/customer_id")
and parentNode(tf0)=zf0
and nodeName(zf1)="id"
and ownerElement(zf1)=f1
and nodeValue(tf0)=nodeValue(zf1)
and tmp_f0=evaluate(f0, "/.[@id = '7']")
and nodeName(r0)="id"
and ownerElement(r0)=tmp_f0
and r1=evaluate(tmp_f0, "/order_status")
and r2=evaluate(f1, "/first_name")
and r3=evaluate(f1, "/last_name")
and r4=evaluate(f1, "/phone_number");

A.4 DC/SD

DC/SD_Q1
Return the item that has matching item id attribute value (I1).
for $item in input()/catalog/item[@id="I1"]
return
 $item

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/catalog/item[@id='I1']")
and r0=evaluate(f0, "/.");

DC/SD_Q2
Find the title of the item which has matching author first name (Ben).
for $item in input()/catalog/item
where $item/authors/author/name/first_name = "Ben"
return
 $item/title

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/catalog/item")

 42

and tmp_f0=evaluate(f0, "/.[authors/author/name/first_name =
 'Ben']")
and r0=evaluate(tmp_f0, "/title");

DC/SD_Q3:
Group items released in a certain year (1990), by publisher name and calculate the
total number of items for each group.
for $a in distinct-values (input()/catalog/item
 [date_of_release >= "1990-01-01"]
 [date_of_release < "1991-01-01"]/publisher/name)
let $b := input()/catalog/item/publisher[name=$a]
return
 <Output>
 <Publisher>{$a/text()}</Publisher>
 <NumberOfItems>{count($b)}</NumberOfItems>
 </Output>

AmosQL:
select distinct r0, count(r1)
from node f0, node xf0, bag of node l0, text f0t, node r0, bag of
 node r1
where f0=evaluate(xf0, "/catalog/item
 [date_of_release >= '1990-01-01']
 [date_of_release < '1991-01-01']/publisher/name")
and l0=(select x from node x, text t, node x1 where x=evaluate(x1,
 "/catalog/item/publisher/name") and nodeValue(t)=nodeValue(f0t)
 and parentNode(t)=x)
and parentNode(f0t)=f0
and r0=evaluate(f0, "/text()")
and r1=l0;

DC/SD_Q4:
List the item id of the previous item of a matching item with id attribute value
(I2).
let $item := input()/catalog/item[@id="I2"]
for $prevItem in input()/catalog/item
 [. << $item][position() = last()]
return
 <Output>
 <CurrentItem>{$item/@id}</CurrentItem>
 <PreviousItem>{$prevItem/@id}</PreviousItem>
 </Output>

AmosQL:
select r0, r1
from node f0, node xf0, bag of node l0, attr r0, attr r1
where f0=evaluate(in(l0), "preceding-sibling::node()[position() =
 last()]")
and f0=evaluate(xf0, "/catalog/item")
and l0=(select evaluate(x, "/catalog/item[@id='I2'] ") from node
 x)
and nodeName(r0)="id"
and ownerElement(r0)=in(l0)
and nodeName(r1)="id"
and ownerElement(r1)=f0;

DC/SD_Q5:
Return the information about the _rst author of item with a matching id attribute
value (I3).

 43

for $a in input()/catalog/item[@id="I3"]
return
 $a/authors/author[1]

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/catalog/item[@id='I3']")
and r0=evaluate(f0, "/authors/author[1]");

DC/SD_Q6:
Return item information where some authors are from certain country (Canada).
for $item in input()/catalog/item
where some $auth in
 $item/authors/author/contact_information/mailing_address
 satisfies $auth/name_of_country = "Canada"
return
 $item

AmosQL:
select r0
from node f0, node xf0, node w, node xw, node r0
where f0=evaluate(xf0, "/catalog/item")
and xw=evaluate(w, "/.[name_of_country = 'Canada']")
and w=evaluate(f0,
 "/authors/author/contact_information/mailing_address")
and r0=evaluate(f0, "/.");

DC/SD_Q7:
Return item information where all its authors are from certain country (Canada).
for $item in input()/catalog/item
where every $add in
 $item/authors/author/contact_information/mailing_address
 satisfies $add/name_of_country = "Canada"
return
 $item

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/catalog/item")
and count(evaluate(f0,
"/authors/author/contact_information/mailing_address[name
 _of_country = 'Canada']"))
=count(evaluate(f0,
 "/authors/author/contact_information/mailing_address"))
and r0=evaluate(f0, "/.");

DC/SD_Q8:
Return the publisher of an item with id attribute value (I4).
for $a in input()/catalog/*[@id="I4"]
return
 $a/publisher

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/catalog/*[@id='I4']")
and r0=evaluate(f0, "/publisher");

 44

DC/SD_Q9:
Return the ISBN of an item with id attribute value (I5).
for $a in input()/catalog/item
where $a/@id="I5"
return
 $a//ISBN/text()

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/catalog/item")
and tmp_f0=evaluate(f0, "/.[@id='I5']")
and r0=evaluate(tmp_f0, "//ISBN/text()");

DC/SD_Q10:
List the item titles ordered alphabetically by publisher name, with
release date within a certain time period (from 1990-01-01 to 1995-01-01).
for $a in input()/catalog/item
where $a/date_of_release gt "1990-01-01" and
 $a/date_of_release lt "1995-01-01"
order by $a/publisher/name
return
 <Output>
 {$a/title}
 {$a/publisher}
 </Output>

AmosQL:
not supported in current version
unordered query generated:
select r0, r1
from node f0, node xf0, node tmp_f0, node tmp_tmp_f0, node r0,
 node r1
where f0=evaluate(xf0, "/catalog/item")
and tmp_f0=evaluate(f0, "/.[date_of_release gt '1990-01-01']")
and tmp_tmp_f0=evaluate(tmp_f0, "/.[date_of_release lt '1995-01-
 01']")
and r0=evaluate(tmp_tmp_f0, "/title")
and r1=evaluate(tmp_tmp_f0, "/publisher");

DC/SD_Q11:
List the item titles in descending order by date of release with
date of release within a certain time range (from 1990-01-01 to 1995-01-01).
for $a in input()/catalog/item
where $a/date_of_release gt "1990-01-01" and
 $a/date_of_release lt "1995-01-01"
order by $a/date_of_release descending
return
 <Output>
 {$a/title}
 {$a/date_of_release}
 </Output>

AmosQL:
sort((select r0, r1
 from node f0, node xf0, node tmp_f0, node tmp_tmp_f0, node r0,
 node r1
 where f0=evaluate(xf0, "/catalog/item")

 45

 and tmp_f0=evaluate(f0, "/.[date_of_release gt '1990-01-01']")
 and tmp_tmp_f0=evaluate(tmp_f0, "/.
 [date_of_release lt '1995-01-01']")
 and r0=evaluate(tmp_tmp_f0, "/title")
 and r1=evaluate(tmp_tmp_f0, "/date_of_release")
), 2, 'dec');

DC/SD_Q12:
Get the mailing address of the _rst author of certain item with id attribute value
(I6).
for $a in input()/catalog/item[@id="I6"]
return
 <Output>
 {$a/authors/author[1]/contact_information/mailing_address}
 </Output>

AmosQL:
select r0
from node f0, node xf0, node r0
where f0=evaluate(xf0, "/catalog/item[@id='I6']")
and r0=evaluate(f0,
 "/authors/author[1]/contact_information/mailing_address");

DC/SD_Q14:
Return the names of publishers who publish books between a period of time (from
1990-01-01 to 1991-01-01) but do not have FAX number.
for $a in input()/catalog/item
where $a/date_of_release gt "1990-01-01" and
 $a/date_of_release lt "1991-01-01" and
 empty($a/publisher/contact_information/FAX_number)
return
<Output>
 {$a/publisher/name}
</Output>

AmosQL:
select r0
from node f0, node xf0, node tmp_f0, node tmp_tmp_f0, node r0
where f0=evaluate(xf0, "/catalog/item")
and tmp_f0=evaluate(f0, "/.[date_of_release gt '1990-01-01']")
and tmp_tmp_f0=evaluate(tmp_f0, "/.[date_of_release lt '1991-01-
 01']")
and notany(evaluate(tmp_tmp_f0,
 "/publisher/contact_information/FAX_number"))
and r0=evaluate(tmp_tmp_f0, "/publisher/name");

DC/SD_Q17:
Return the ids of items whose descriptions contain a certain word ("hockey").
for $a in input()/catalog/item
where contains ($a/description, "hockey")
return
 <Output>
 {$a/@id}
 </Output>

AmosQL:
select r0
from node f0, node xf0, attr r0
where f0=evaluate(xf0, "/catalog/item")

 46

and some(select x from node x, text t where x=evaluate(f0,
 "/description") and like(nodeValue(t), "*hockey*") and
 parentNode(t)=x)
and nodeName(r0)="id"
and ownerElement(r0)=f0;

DC/SD_Q19:
Retrieve the item titles related by certain item with id attribute value (I7).
for $item in input()/catalog/item[@id="I7"],
 $related in input()/catalog/item
where $item/related_items/related_item/item_id = $related/@id
return
 <Output>
 {$related/title}
 </Output>

AmosQL:
select r0
from node f0, node xf0, node f1, node xf1, text tf0, node zf0,
 attr zf1, node r0
where f0=evaluate(xf0, "/catalog/item[@id='I7']")
and f1=evaluate(xf1, "/catalog/item")
and zf0=evaluate(f0, "/related_items/related_item/item_id")
and parentNode(tf0)=zf0
and nodeName(zf1)="id"
and ownerElement(zf1)=f1
and nodeValue(tf0)=nodeValue(zf1)
and r0=evaluate(f1, "/title");

DC/SD_Q20:
Retrieve the item title whose size (length*width*height) is bigger than certain
number (500000).
for $size in input()/catalog/item/attributes/size_of_book
where $size/length*$size/width*$size/height > 500000
return
 <Output>
 {$size/../../title}
 </Output>

AmosQL:
not supported in current version
query generated:
select r0
from node f0, node xf0, node tmp_f0, node r0
where f0=evaluate(xf0, "/catalog/item/attributes/size_of_book")
and tmp_f0=evaluate(f0, "/.[length*$size/width*$size/height >
 500000]")
and r0=evaluate(tmp_f0, "/../../title");

