
���'HVLJQ��,PSOHPHQWDWLRQ�DQG�(YDOXDWLRQ
���RI�D�'LVWULEXWHG�0HGLDWRU�6\VWHP
���IRU�'DWD�,QWHJUDWLRQ

���Vanja Josifovski

'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH
/LQN|SLQJV�XQLYHUVLWHW
6���������/LQN|SLQJ��6ZHGHQ
/LQN|SLQJ������

/LQN|SLQJ�6WXGLHV�LQ�6FLHQFH�DQG�7HFKQRORJ\
'LVVHUWDWLRQ�1R�����

Linköping Studies in Science and Technology

Dissertation No. 582

'HVLJQ��,PSOHPHQWDWLRQ�DQG�(YDOXDWLRQ�RI
D�'LVWULEXWHG�0HGLDWRU�6\VWHP�IRU�'DWD�,QWHJUDWLRQ

9DQMD�-RVLIRYVNL

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 1999

Abstract

An important factor of the strength of a modern enterprise is its capability
to e�ectively store and process information. As a legacy of the mainframe
computing trend in recent decades, large enterprises often have many iso-
lated data repositories used only within portions of the organization. The
methodology used in the development of such systems, also known as legacy
systems, is tailored according to the application, without concern for the
rest of the organization. From organizational reasons, such isolated systems
still emerge within di�erent portions of the enterprises. While these systems
improve the e�ciency of the individual enterprise units, their inability to
interoperate and provide the user with a uni�ed information picture of the
whole enterprise is a \speed bump" in taking the corporate structures to the
next level of e�ciency.
Several technical obstacles arise in the design and implementation of a system
for integration of such data repositories (sources), most notably distribution,
autonomy, and data heterogeneity. This thesis presents a data integration
system based on the wrapper-mediator approach. In particular, it describes
the facilities for passive data mediation in the AMOSII system. These facil-
ities consist of: (i) object-oriented (OO) database views for reconciliation of
data and schema heterogeneities among the sources, and (ii) a multidatabase
query processing engine for processing and executing of queries over data in
several data sources with di�erent processing capabilities. Some of the major
data integration features of AMOSII are:

� A distributed mediator architecture where query plans are generated
using a distributed compilation in several communicating mediator and
wrapper servers.

� Data integration by reconciled OO views spanning over multiple me-
diators and speci�ed through declarative OO queries. These views are

i

ii

capacity augmenting views, i.e. locally stored attributes can be associ-
ated with them.

� Processing and optimization of queries to the reconciled views using
OO concepts such as overloading, late binding, and type-aware query
rewrites.

� Query optimization strategies for e�cient processing of queries over a
combination of locally stored and reconciled data from external data
sources.

The AMOSII system is implemented on a Windows NT/95 platform.

Acknowledgments

Foremost, I would like to thank my advisor, Professor Tore Risch for giving
me a chance to work on such an exciting project. His expertise and exuberant
enthusiasm were of great help in shaping the achievements of this work. I am
also grateful to the other present and past members of the EDSLAB research
group at Link�oping University for valuable advice and discussions. Special
thanks go to Timour Katchaounov who implemented and evaluated (and
also named) the decomposition tree distribution. It was not as easy a task
as we expected it to be. Gundars Kulpus implemented the type importation
and the proxy types hierarchy de�nition. I also thank J�orn Gebhardt for the
careful proof-reading of the query decomposition description.

I thank my closest family for the generous support and gentle care dur-
ing my twenty-three years of education. This thesis concludes not only the
biggest project of my life, but probably the biggest project of my mother's
life too. My father has always been there to put me back on track when I
strayed. My grandfather Jon�ce Josifovski inspired me to pursue a carrier in
science by telling me those fantastic stories as a young boy. I am also grateful
to the Erma family for accepting me as one of their own, especially to my
Milli who endured so much stress in the course of this work.

This work was funded by ECSEL, the Excellence in Computer Science
and Engineering in Link�oping Program.

iii

To my grandfather Ivan Pendarovski - Van�co,
for his love and care

iv

Contents

1 Introduction 1

2 Data Integration by Multidatabase Systems 5

2.1 Enabling technologies . 5
2.1.1 Database systems . 6

2.1.2 Networking technologies 9

2.1.3 The object-oriented paradigm 10
2.2 A taxonomy of the data integration research 12

2.2.1 Global schema systems 14

2.2.2 Federated architecture 15
2.2.3 Multidatabase languages 16

2.3 Autonomy of the data sources 16
2.4 Data and schema heterogeneity 17

2.5 Query processing and data integration 20

3 An Overview of the AMOSII System 23

3.1 Data model . 24

3.2 Query language . 26
3.3 Query processing in AMOSII 28

4 Data Integration by Derived Types 35

4.1 Object-oriented view system design 36

4.1.1 Derived types . 36
4.1.2 Generation of OIDs for the DT instances 38

4.1.3 Derived types and inheritance 40
4.1.4 Derived subtyping language constructs 41

4.2 Querying derived types . 43

4.2.1 Overview of the derived types implementation 44

v

vi Contents

4.2.2 Proxy types and objects 45

4.2.3 DT extent function and template 48

4.2.4 Generation of OIDs for DT instances 55

4.2.5 Processing of queries using locally stored functions . . 56

4.2.6 The Transformation algorithm 59

4.3 Database updates and coercing 61

5 Integration of Overlapping Data 63

5.1 Integration union types . 65

5.2 Modeling and querying the integration union types 68

5.2.1 Late binding over derived types 70

5.2.2 Normalization of queries over the integration union types 73

5.2.3 Managing OIDs for the IUTs 75

5.3 Performance measurements 77

6 Query Decomposition and Execution 87

6.1 Query decomposition . 88

6.1.1 Data source types and functions with multiple imple-
mentations . 90

6.1.2 The predicate grouping phase 93

6.1.3 MIF predicates execution site assignment 97

6.1.4 Cost-based scheduling 105

6.1.5 Decomposition tree distribution 112

6.2 Object algebra generation and run-time support 117

6.2.1 Object algebra generation 117

6.2.2 Inter AMOSII communication and the SAE operator . 119

7 A Survey of Related Approaches 131

7.1 Multidatabase systems . 132

7.1.1 Disco . 132

7.1.2 Garlic . 134

7.1.3 Pegasus . 136

7.1.4 TSIMMIS . 140

7.1.5 Multibase . 141

7.1.6 Data Joiner . 142

7.1.7 MIND . 143

7.1.8 IRO-DB . 146

7.1.9 DIOM . 149

Contents vii

7.1.10 UNISQL . 152
7.1.11 Remote-Exchange . 152
7.1.12 Myriad . 153

7.2 Object-oriented views . 155
7.2.1 Multiview . 155
7.2.2 O2 Views . 157

8 Summary and Conclusions 159

A Abbreviations 163

References 165

viii Contents

List of Figures

2.1 An MDBMS reference architecture 13

3.1 Interconnected AMOSII servers 24

3.2 Query processing in AMOSII 28

3.3 Two algebraic representations of the example query 32

4.1 Integration by derived types (subtyping) 37

4.2 Integration by integration union types (supertyping) 40

4.3 Placing the proxy types in the type hierarchy 46

5.1 An Object-Oriented View for the Computer Science Depart-
ment Example . 66

5.2 IUT implementation by ATs 69

5.3 Query: select salary(e) from csd emp e; 79

5.4 Query: select salary(e) from csd emp e where ssn(e) = 1000; . 82

5.5 Selecting salary for the CSD employees with and without
range selection (salary(e) > 2000) 83

5.6 a) Queries with locally materialized functions over IUTs. b)
Queries calling several derived functions over IUTs. 84

5.7 Comparison of execution times over a 10Mb network with an
ISDN network. 85

6.1 Query Decomposition Phases in AMOSII 89

6.2 Data source capabilities hierarchy 92

6.3 MIF predicate site assignment heuristics 99

6.4 Query graph grouping sequence for the example query 101

6.5 Case 5 example and the possible outcomes 102

6.6 A query processing cycle described by a DcT node 107

6.7 Two decomposition trees for the example query 109

ix

x List of Figures

6.8 Two tree generation rules: a) adding a local SF to a partial
tree, b) adding a remote SF to a partial tree 111

6.9 Node merge: a) the original tree b) the result of the merger
operation . 114

6.10 Execution diagrams of the decomposition tree of the example
query before node merge and after 115

6.11 Project-concat SAE implementation 123
6.12 SAE by semi-join . 125
6.13 SAE by semi-join and a temporary index 128

Chapter 1

Introduction

An important factor of the strength of a modern enterprise is its capability
to e�ectively store and process information. As a legacy of the mainframe
computing trend in the previous decades, large enterprises often have many
isolated data repositories used only within portions of the organization. The
methodology used in the development of such systems, also known as legacy
systems, is tailored according to the application, without concern for the rest
of the organization.

While these systems contributed to faster development of the companies
in the past, their inability to interoperate and provide the user with a uni�ed
information picture of the whole enterprise is a \speed bump" in the process
of taking the corporate structures to the next level of e�ciency. This phe-
nomenon is exempli�ed in the new international corporations build by global
mergers. The informational assets of such companies are both geographically
and structurally far apart.

The recent development of the network technology provided the cor-
ner stone for the integration of legacy systems. Faster network technologies
bridged the physical gap between these systems. Nevertheless, this did not
eliminate the burden of accessing the legacy systems in their diverse native
formats. A study of the data processing patterns of the Fortune 500 compa-
nies conducted at the beginning of the 90s [40] has shown that over 80% of
the surveyed companies accessed data in multiple systems.

Another recent trend is that dumb terminals as access points are replaced

1

2 Introduction

by more powerful workstations having substantial processing capabilities,
but which are nevertheless too small to hold all the data that a user might
need. The power and the network connection capability of these workstations
can vary considerably in a large enterprise: from a stationary workstation
with a network connection of few million bits per second, to hand held devices
with network links of only few thousands bits. It would be a great expense for
a company to adjust the corporate software for these di�erent circumstances.
A solution is to have an adaptable system that can take advantage of the
di�erent con�gurations without changing the software implementation.

Users, on the other hand, require simple and fast access to the informa-
tion. \Simple" usually means that the picture of the data in the enterprise
corresponds to the user's view of the enterprise and its position in it. Mainly,
this translates into three technical requirements:

1. Location transparency: the user is not aware of the physical location of
the data. The data access is uniform regardless of whether the infor-
mation is stored locally in the user's workstation, or in a systems half
way around the globe.

2. Heterogeneity transparency: some of the legacy systems might provide
equivalent, complementary or conicting information. In such cases,
the data must be reorganized, so that the user gets a picture of the
data where the redundancies are eliminated and conicts are resolved.

3. Autonomy: The existing systems and applications should function as
before, without any modi�cation and dependencies to the added inte-
gration framework.

In the last two of decades, research in the area of data integration has
contributed several classi�cations of the challenges in this area, and proposed
a number of solutions. The wrapper-mediator approach, described in [85],
divides a data integration system into two functional units. The wrapper
provides access to the data in the data sources using a common data model
(CDM), and a common query language (CQL). The mediator provides a
semantically coherent CDM representation of the combined data from the
wrapped data sources.

This thesis presents a design, an implementation, and an evaluation of
a mediator database system named AMOSII. In this system, the problem of
data integration is tackled from a database perspective. The database �eld
is one of the better established �elds within computer engineering, with a

3

well-developed theoretical background and a large number of commercial
products that have bene�ted from it. The main objective of database re-
search is to explore how to store and query large amounts of data. The
AMOSII project adapts and combines some results of the database research
with an array of novel ideas in order to tackle the data integration problem.
The data integration functionality of AMOSII is provided by two conceptual
units:

� An OO database view system provides a coherent and uni�ed view to
the data integrated by the mediator.

� Amultidatabase query processing engine processes the queries over data
in multiple repositories.

The rest of this thesis is organized as follows. Chapter 2 introduces the
�eld of data integration and places the presented work in the context of
related research. It also introduces the basic terminology and gives a more
precise de�nition of the data integration problem. The basic features of the
AMOSII system that are used as a basis for the work in this thesis are
presented in chapter 3. The OO view system is described in chapters 4 and
5. Chapter 4 introduces the basics of the OO view system for data integration
in AMOSII. Chapter 5 extends the concepts in chapter 4 to integration of
sources with overlapping data. The multidatabase query processing facilities
are presented in chapter 6. A detailed comparison of AMOSII with some
other related research prototypes and commercial products in the area is
presented in chapter 7. A summary is given in chapter 8.

4 Introduction

Chapter 2

Data Integration by

Multidatabase Systems

The term multidatabase management system (MDBMS) implies a system
consisting of several databases. In the literature, this term has been mainly
used to describe systems providing various degrees of integration and inter-
operability among a number of databases or other types of data sources. We
note here that, in spite the implications of the name, one of the most im-
portant goals of MDBMS research is to encompass data sources that are not
databases. Nevertheless, the databases remain one of the most important
type of data sources. This chapter introduces the research in MDBMSs by
�rst giving an overview of the technologies that contributed to its prolifera-
tion. Next, a short taxonomy of the data integration research encompassing
the �eld of MDBMSs is presented. Finally, some issues characteristic for
MDBMSs are discussed.

From the various overviews of the multidatabase research �eld, for an
interested reader we single out [69], [5] and [7], also used in the preparation
of this chapter.

2.1 Enabling technologies

MDBMS research emerged as a result of the advances in several related dis-
ciplines and by increasing sophistication of the users' demands. This section
provides a short overview of the most inuential areas from the aspect of
the work presented in this thesis.

5

6 Data Integration by Multidatabase Systems

2.1.1 Database systems

A database represents a collection of information managed by a database
management system (DBMS). The DBMS allows the user to [83]: create new
databases and their logical descriptions named schemas; store securely large
amounts of data; query and modify the database using a query language;
and control the simultaneous access to the data by a multitude of users.

Databases and DBMSs play a major role in almost all areas where com-
puters are used. The �rst commercial DBMSs, developed in the 1960s, came
into existence when the complexity of the applications dealing with large
amounts of data could not be e�ciently satis�ed by the �le system services.
Since then, typically the development of DBMS technology has been classi-
�ed by the methodology for describing the schema and the data, named data
model. Di�erent models have emerged in the last four decades. Examples of
the earlier models are the hierarchical and the network data models in which
the data in the database is represented in the form of a graph. The query
languages for querying this data allow the user to navigate through the data
graph. Writing such navigational programs is hard. Also, the graph repre-
sentation used in the queries closely followed the physical layout of the data
on the storage device. Any change in the storage patterns require changing
the applications.

In the early 1970s the relational data model was proposed in [10]. This
model has been the single most inuential idea in the development of the
DBMSs to date. According to this model, the user views the data in the
database in the form of simple tables, consisting of one or more labeled
columns. The table entries are named rows or tuples. Each column of each
row contains a value that can contain a number, string of characters, or
other simple concept from the real world. A special NULL value speci�es
the absence of a user-supplied value.

This conceptual view of the data in the relational model is close to many
of the traditional, non-electronic data representations. The DBMS, however,
can internally store the data in more complicated structures that allow faster
access and manipulation of the data. A change of the storage structures does
not change the queries, speci�ed in a formalism named relational calculus.
There are a few languages that provide a \friendly" syntax for the relational
calculus, the most widely used of which is IBM's Structured Query Language
(SQL). The relational calculus and the SQL languages are declarative, i.e.
the user only speci�es whatis to be retrieved from the database and not how

2.1 Enabling technologies 7

is it retrieved. Therefore, the relational calculus is used to state non-ordered
descriptions of the user's queries. In order for the DBMS to execute the
query, it must translate this to a program that precisely describes how the
data is retrieved from storage. These programs in the relational DBMSs are
usually described by a formalism named relational algebra. Some of the more
typical relational calculus and algebra operators are:

� selection (�): selects a subset of the input table based on a condition
(e.g. all employees that have salary larger than a certain amount)

� projection (�): selects a subset of the columns of the input table (e.g.
selects the salaries from an employee table containing the employee
names and salaries)

� join (1): produces a new table by matching the tuples of two input
tables by given conditions (e.g. returns a table containing the names,
salaries and social security numbers of employees, by matching the
rows of two tables one containing the names and the social security
numbers, and another containing the salaries and the social security
numbers)

These three operators are considered the basis of any relational DBMS query
processor. Queries composed of these three operators are named select-join-
project queries.

The process of translation of the calculus queries into relational algebra
programs is called query processing. Typically, a calculus expression trans-
lates into many equivalent algebra expressions, also named query execution
plans (QEPs), that all produce the same result, but use di�erent orderings
of the operators and algorithms for their evaluation. Di�erent plans often re-
quire di�erent execution times that may vary by several orders of magnitude.
Consequently, it is of great importance that the DBMS chooses a plan with
a low execution time. The process of selecting a plan with as low as possible
an execution time is named query optimization. The query optimization is
one of the most critical and complex phases of query processing.

Although the relational data model, calculus and algebra solved many
of the problems present in the previous approaches, almost three decades of
usage has exposed a number of limitations. The research community reacted
to this by developing a row of post-relational models and approaches. One of
the more successful has been the Object-Oriented (OO) approach. Systems

8 Data Integration by Multidatabase Systems

that provide an OO data model and a declarative query language have re-
cently been named Object-Relational (OR). AMOSII is one such system. A
brief overview of the OO data model is presented later in this section.

The users of a database can each require di�erent data representations
and queries. The design of the database schema should aim to satisfy the
representational needs of the majority of the users. Nevertheless, this is not
always possible and a database schema might be suitable for some of the
users, but compel others to write long and tedious queries in order to obtain
the result in the required format. The database view mechanism alleviates
this problem by allowing de�nition of virtual schemas for di�erent users.
These are de�ned using stored query speci�cations that transform the data
from the stored format to the format required by a user. To the user, the view
is transparent and has the appearance of an ordinary schema. Queries over
the views are translated by the DBMS into queries over the database schema.
Views are a well established technology, present in almost every commercial
relational DBMS. Views in OO and OR systems have been a subject of
intense research in the last decade and the �rst commercial products are
starting to emerge.

Another popular dimension of classi�cation of the DBMSs is their ar-
chitecture. Here, one of the classi�cations is into centralized and distributed
systems. The former type represents systems where all the data is stored
in a single repository and all the accesses are processed by a single DBMS.
The technically more advanced distributed DBMSs store the data in multi-
ple repositories and access it by a cooperating set of DBMSs. A distributed
architecture provides improved performance, reliability and availability, but
has an increased complexity compared to the centralized one.

This thesis presents a distributed multidatabase architecture for data in-
tegration, that has it origins in the distributed DBMS approach, but dif-
fers from it by not assuming homogenous, cooperating systems providing a
uniform interface. Furthermore, the data in a distributed database is dis-
tributed, stored and updated under the strict control of the DBMS. This
thesis explores a system that has no control over these issues.

There is an extensive literature on the subject of databases and DBMSs,
to name just a few of the more popular text books: [83, 18, 72]. A classical
textbook on distributed databases is [61].

2.1 Enabling technologies 9

2.1.2 Networking technologies

The technological limitations of the size and the complexity of a single system
led to the development of the computer networks. A computer network is de-
�ned in [61] as: an interconnected collection of autonomous computers capa-
ble of exchanging information. This de�nition states two main requirements:
that the systems are interconnected, i.e. that they can exchange information,
and that the systems run their own programs in an autonomous manner.
Besides the computers, often referred to as nodes or sites, the network also
contains communication links and specialized network tra�c management
equipment to increase e�ciency and manageability.

The interaction of the network sites can be modeled by di�erent
paradigms. Two of the most popular are peer-to-peer, where nodes treat
each other as equals, and client-server where the clients send requests for
processing to the servers that return the replies to the calling clients. In mul-
titasking systems, a site in a network is not necessarily a physical computer,
but it can rather be represented by a single process running on a computer.
Therefore, more than one logical site can reside on a single physical site.

The development of networking technology has been one of the most in-
uential factors in the rapid growth of the computing industry in the last
two decades. This development has shifted the accent from development of
isolated centralized systems to connected and distributed decentralized sys-
tems. The impact of this shift can be seen in an array of new computer
network-based products that have changed the world, such as the Internet
and digital mobile telephony, that are two of the most dynamically develop-
ing �elds in the area.

Although there are many parameters that illustrate the advances of com-
puter network technology, the two most commonly used are the increase in
the availability of network connections and their capacity [39]. While only
a decade ago the most common network connection to an end user was
9600 bits/second (baud), today's local area networks (LANs) easily reach
the 109 baud mark. 128 Kbaud Integrated Services Digital Network (ISDN)
connections are readily available in almost all households and o�ces in the
developed countries. In the coming years, technologies such as the broadband
network standard named Asynchronous Transfer Mode (ATM) will increase
these limits by some orders of magnitude. This technology is available for
both local and wide area networks and will provide services with a band-
width of up to 150 Mbaud. In digital mobile telephony the bandwidth is

10 Data Integration by Multidatabase Systems

still largely limited (e.g. 9600 baud for the GSM standard), but the newly
announced standards such as the Wireless Collision Detection Media Access
(WCDMA) developed by a few European vendors will lift this limitation to
around 2 Mbaud.

A classical textbook on computer networks is [79].

2.1.3 The object-oriented paradigm

While the relational model proved successful in business applications, it
proved to be ine�cient in the support of applications as CAD/CAM sys-
tems, o�ce automation and scienti�c databases. These applications require
a more complex structure of the data, longer-transaction duration, new data
types (e.g. multimedia, matrices, documents), and non-standard application-
speci�c operations [18].

The Object-Oriented (OO) model was developed to cope with these re-
quirements. The origins of this model are in the OO programming languages
that started with the language SIMULA in the late 1960s. Since then, a vari-
ety of research prototypes and, to some extent, commercial database product
have adopted this model. As opposed to the relational model, there is still no
widely accepted standard for an OO data model and query language. Two
most notable e�orts are the Object Database Management Group (ODMG)
standard [9], and the OO version of the SQL language standard SQL3 [74].

In the OO model, the real world entities are modeled as objects classi-
�ed into classes. The objects belonging to a class are called class instances.
The set of all class instances make the class extent. The designer has the
capability to model both the structure of the objects as a set of attributes
(roughly corresponding to the table columns in the relational model), as
well as operations (or methods) that can be performed over the objects of
a particular class. The methods are speci�ed in a procedural or declarative
language. The set of all attributes and methods applicable to the objects of
a certain class is the interface, or behavior of that class. The designer can
also specify that some of the attributes/methods can be used only internally
within other methods, exposing to the user of the objects only a part of the
interface. This technique is called encapsulation and provides for increased
maintainability of the code.

As opposed to the relational model where the tuples of interest are iden-
ti�ed by unique combinations of their column values (keys), in the OO model
each object is assigned by the system an immutable, unique object identi�er

2.1 Enabling technologies 11

(OID). The OIDs can be used by the user to directly access the object in-
stance. They can also be stored as attribute values of other objects. While
in the relational database, all the data accesses are performed by relational
calculus queries, in an OO database the objects can be accessed by navi-
gating through the graph of objects connected by edges of OID as attribute
values. We note here that as opposed to the network data models where the
links are physical pointers, the OIDs are logical pointers independent of the
physical storage implementation.

Another important feature of the OO model is class inheritance. This
mechanism allows a class to be de�ned as a subclass of another class, named
superclass. The subclass inherits all the attributes and methods of the su-
perclass, and can also de�ne its owns. The directed graph of the classes and
the inheritance dependencies is usually called class hierarchy. Some of the
systems support multiple inheritance where a class can inherit from more
than one superclass. The usual semantics is that an instance belonging to a
class, also belongs to all of it superclasses (extent-subset semantics).

The class hierarchy and the extent-subset semantics set a stage for poly-
morphic behavior of the class instances. This means that a method can have
di�erent implementations for di�erent instances of a class, depending on
which of its subclasses the instance belongs to. Inversely, multiple imple-
mentation de�nitions are allowed for a single method in di�erent classes.
When such a method is invoked over a set of instances of that class, the
system invokes the most speci�c implementation. For example, let's assume
that a class shape is de�ned with two subclasses circle and square that
de�ne a method area() calculating the area of a particular shape. When the
method area() is invoked over a set of shapes, the circles should be processed
by the implementation de�ned for circles, while the squares with the imple-
mentation de�ned for squares. The instances of the type shape exhibit in
this case non-uniform (polymorphic) behavior. Polymorphism requires that
method implementations are chosen during run-time, when the query or the
program is executed. The mechanism that allows this is hence called late
binding, as opposed to early binding where the method implementation is
chosen during compile time.

12 Data Integration by Multidatabase Systems

2.2 A taxonomy of the data integration research

Research in the �eld of data integration systems has identi�ed two basic ap-
proaches. One uses eager materialization of local copies of the queried data
from the data sources, trying to reduce the response time by performing most
of the costly operations before the query is issued [34]. The other approach,
which we name passive, fetches the required data when it is requested. Which
of the two approaches yields better results depends on factors such as avail-
able resources, the size of the data, and the query and update frequencies.

Eager materialization has an advantage when, for example, the update
frequency of the data is low, the sources support active mechanisms for prop-
agating the changes to the data integration system, and the data integration
system has available resources to maintain the materialized data. A variant
of the eager approach, data warehousing, performs a materialization of all
the data from the sources that might be needed in the user queries in ad-
vance, before the queries are executed. In this way, queries that do not have
strict currency requirements, in the presence of adequate resources, can be
executed over local copies of the data. Another variant of the eager material-
ization uses active maintenance of the local copies by incrementally applying
the changes of the original data to the copies. This variant is adequate when
the change rate is low, and the data sources can provide means for actively
propagating the changes.

By contrast, the passive approach has advantages when the user's sys-
tem is too small to host the materialized data that he queries, or when the
maintenance of the materialized copy is too costly to perform (e.g. because
of large volume of updates). Also, the passive approach is less intrusive to-
wards the autonomy of the data sources. It has been identi�ed that both
approaches are important and complementary to each other [87] [34].

The work presented in this thesis is based on the passive approach. Ac-
cordingly, the rest of this section discusses data integration architectures
based on the passive approach, that are also the data integration systems
most often associated with the term \multidatabase management systems"
as de�ned above. In [69], a reference MDBMS architecture is presented (Fig-
ure 2.1). This architecture is based on mappings between schemas on 5 levels:

� Local schema A local schema represents the data in a data source.
There is one local schema for each data source. The local schemas are
expressed using a local data de�nition language and a local data model,
if such exist. Non-database data sources might describe the local data

2.2 A taxonomy of the data integration research 13

Export
Schema

Component
Schema

Local
Schema

Global Schema

External
Schema

External
Schema

External
Schema

External
Schema

Data
Source

Export
Schema

Component
Schema

Local
Schema

Data
Source

Export
Schema

Component
Schema

Local
Schema

Data
Source

. . . .

. . . .

Figure 2.1: An MDBMS reference architecture

and its organization using other formalisms.

� Component schema A component schema is a CDM representation
of a local schema. The local schema is translated into a CDM repre-
sentation if the CDM is di�erent than the local data model, otherwise
the local and the component schemas are the same.

� Export schema In some architectures, each data source decides the
portion of the data that is going to be available for non-local access.
The export schema models the portion of the component schema visible
non-locally. It is also expressed in the CDM.

� Federated or Global schema A federated (global) schema is an
integration of all the export schemas. Depending on the particular
framework applied, this schema can be called either global or federated.

14 Data Integration by Multidatabase Systems

The term global schema is used when there is only one such schema.
There can be more than one federated schema.

� External schema An external schema represents a subset of the
global schemas tailored for a particular user or group of users.

Depending on the level of integration, MDBMSs can be classi�ed into 3
categories [5]: global schema systems, federated databases and multidatabase
language systems. These categories reect design e�orts to accommodate the
conicting requirements of achieving an e�cient and usable system by larger
level of sharing on one side, and preserving the autonomy of the data sources,
on the other. On the one extreme of this spectrum are systems that are close
to the distributed databases in building a global integrated schema of all the
data in the sources. The opposite side represents systems that provide just
basic interoperation capabilities and leave most of the integration problem
to the user. The rest of this section overviews the features of each of these
categories.

2.2.1 Global schema systems

Historically the �rst approach to building an MDBMS is the approach where
the export schemas of multiple databases are integrated into a single global
view (schema). According to the reference architecture, the export and com-
ponent schemas are equal and there is a single global schema. The user is
not aware of the distribution and the heterogeneity of the integrated data
sources. Furthermore, if the schema does not change frequently, it can be
stored locally, at the client, for faster access. Nevertheless, this approach has
been shown to exhibit the following problems [5]:

� Since the general problem of integrating even only two schemas is un-
decideable, the process of integration of multiple schemas is very hard
to automate. Global schema integrators must be familiar with all the
naming and structure conventions of all the data sources and integrate
them into a cohesive single schema without changing the local schemas.

� There are two basic approaches to integrating the component schemas
into a global schema. In the �rst, the component schemas are inte-
grated pair-wise. A hierarchical application of the integration leads to
a schema integrating all the component schemas. The other approach
is to integrate all the component schemas at once. Both approaches

2.2 A taxonomy of the data integration research 15

have problems. The �rst one could produce di�erent results when dif-
ferent integration orders are used, while the other one is usually too
di�cult.

� It is necessary for the component databases to reveal some information
about the semantics of their data for this type of schema integration
to be possible. This violates the autonomy of the data sources.

2.2.2 Federated architecture

In the federated MDBMS (FMS) the export schemas are only a subset of
the component schemas. Each data source is given control over the portion
of the data that will be exported. The federated schema does not need to
be an integration of all the export schemas. It can integrate only portions
of the export schemas of interest to the users using the federated schema.
More than one federated schema can be de�ned according to the users' re-
quirements. Each user can then further re�ne its export schema to �t his
own requirements. The wrapper-mediator approach used in this work is a
variant of the federated architecture approach.

In a tightly coupled FMS, the mappings between the di�erent schemas is
kept in a federation directory, accessed during the processing of the queries
over the federated schemas. Maintaining the directory creates an overhead
in this type of system. The size of the directory can grow dramatically as the
number of data sources and users increase. It can also become a performance
bottleneck when accessed by a large number of users. These problems are
reminiscent of the problems of maintaining a global schema described above.

Loosely coupled systems do not have a centralized directory. The user
creates and maintains his own integrated schema in the form of a local view.
The maintenance problems noted above disappears. A possible drawback of
this approach is that more than one user might need to perform the same
view modeling, without the possibility of reusing the de�nitions. Further-
more, a change in an export schema a�ects all the users who have a view
dependent on it.

A solution to the problems noted above is to allow a gradual transition
from the federated into export schemas by a hierarchy of small intermediate
schemas. This approach breaks the repository into smaller and more main-
tainable units, while allowing reuse of the view speci�cation and modularity
in the view de�nition and change. Because of these advantages, this is the
approach of choice for the design of the system presented in this thesis.

16 Data Integration by Multidatabase Systems

2.2.3 Multidatabase languages

This approach does not provide any type of global schema. The only means
of accessing the data in the data sources is by language primitives for speci�-
cation of queries over data stored in multiple sources. In the reference archi-
tecture, this means that the user explicitly sees all the component schemas
of the integrated sources. The multidatabase language approach is usually
used for integration of data sources that are databases.

An important feature of the multidatabase languages are constructs that
allow for iteration over the meta-data of the local and remote databases.
Queries can be de�ned that iterate over all known databases, or a set of
tables in the databases based on some regular expression [51]. These are
translated into multiple queries that are executed by the relevant systems.
Because, the operations performed over the local tables need not be the same
in all databases, the translation process is capable of generating queries that
use di�erent operators in di�erent systems in order to construct the required
result (e.g. some database might contain the requested result in a single table,
while others in a set of tables that need to be joined �rst). There are limited
constructs for resolution of naming, scaling and unit discrepancies of the
data in the data sources by user de�ned expressions.

The main criticism of the multidatabase language approach is the low
level of transparency provided to the user. The user is responsible for �nding
the relevant information, understanding each database schema, detecting
and resolving the semantic conicts, and �nally, building the required view
of the data in the sources [5]. The advantages of the approach are that it
is not intrusive against the autonomy of the data sources and there is no
global/federated schema maintenance and access overhead.

2.3 Autonomy of the data sources

As opposed to the distributed DBMSs where the nodes are under the control
of a single authority, the autonomous data sources treat the MDBMS only
as another client. The requests to the data sources are performed using the
interfaces available for the clients. More speci�cally, the autonomy of the
data sources can be classi�ed in several di�erent categories [69, 86]:

� Design Autonomy: The data source manager decides what data is
stored in the database and how is it stored and interpreted. This in-

2.4 Data and schema heterogeneity 17

cludes the choices of data model, query language, database constraints,
etc.

� Communication Autonomy: The data source decides which re-
quests it will answer and when it will answer them. In other words,
the services provided to the MDBMS are decided by a local database
manager.

� Execution Autonomy: The MDBMS cannot make any assumptions
about the algorithms and methods used in the data sources to process
the requests. The execution strategy is decided locally in the data
sources. Also, no assumptions can be made about the relative order of
execution of concurrent requests.

� Association Autonomy The data sources decide how much of its
data and processing capabilities it will share with the MDBMS. It can
limit the access to only a portion of all the available data. The query
requests can be limited to certain types of operations (e.g. projection,
selection and join) or certain functions (e.g. matrix addition and multi-
plication). Furthermore, the sources are not obliged to expose internal
data as, for example, statistical data or execution time estimates.

2.4 Data and schema heterogeneity

One of the major challenges in integrating multiple heterogeneous data
sources is in understanding and translating the data from all the data sources
into a common context [5] . The main di�culty in this process is the pres-
ence of semantic heterogeneity among the data and meta-data (schema) in
the di�erent data sources. A data item in one data source can correspond,
complement or conict with data in the other data sources. In order to
present the user with coherent view of the data in the sources, the system
needs to provide some means of reconciliation of the semantic heterogeneity.

The most cited cause for semantic heterogeneity is the design autonomy
of the data sources. To illustrate such a case, we consider an example of
two databases storing the salaries of the employees of a company formed
by a merger of one Swedish and one US company. The Swedish company
database stores the salary amounts in crowns, while the database in the
US stores the amounts in dollars. A user presented with, for example, two

18 Data Integration by Multidatabase Systems

salaries for the same person working in both countries cannot easily perceive
the exact amount of the person's salary in the local currency.

In order to design a system with reconciliation facilities, �rst a classi�ca-
tion of the possible semantic heterogeneity is needed. The literature provides
several such classi�cations, three more extensive of which that take into ac-
count an OO data model are [44], [70] and [31]. In the rest of this section, a
short summary of the classi�cation in [31] is presented. In this classi�cation,
the semantic heterogeneities are �rst divided into three groups:

� Heterogeneities between Object classes

� Heterogeneities between Class structures

� Heterogeneities between Object instances

The heterogeneities between object classes are further classi�ed into dif-
ferences in:

� Extents: (i) the extents can represent di�erent parts (entity sets) of
the real world (e.g. two classes representing colors can have di�erent
numbers of colors in them); (ii) the intersection of the extent can be
anything from equal to both the extents, to an empty set; (iii) an
extent of a class in one source might correspond to the extents of
several classes in the other sources, etc.

� Names: (i) same name can be used for di�erent concept (homonyms);
(ii) the same concept can be named di�erently in di�erent data sources
(synonyms).

� Attributes and methods: (i) the absence of a method or an at-
tribute; (ii) arity di�erences; (iii) attribute constraints di�erences (e.g.
minimum/maximum value, NULL value, minimum/maximum arity,
uniqueness, etc.)

� Semantics and syntax of domains: (i) semantic domain di�erences
include di�erences in the internal OID formats of the data sources, dif-
ferences in the key values of corresponding class entities due to di�erent
coding of the keys, di�erences in dimensions, units and scale, etc. (ii)
the syntactic domain di�erences are in the coding ranges, the length of
the literal types, character/numerical di�erences, coding of dates, etc.

2.4 Data and schema heterogeneity 19

� Constraints besides the already mentioned simple constraints, each
of the data sources can enforce di�erent complex constraints based on
more than one class in the schema.

The class structure heterogeneities are divided into:

� Generalization/Specialization inconsistencies: two correspond-
ing classes might have a di�erent number of super-/sub- classes, or the
subclass membership can be over di�erent criteria (e.g. a class truck
subclass of class vehicle can be populated using di�erent criteria in
di�erent data sources).

� Aggregation/Decomposition inconsistencies: based on the prop-
erties of the object graph represented by the objects, the navigational
links, their arity, and interactions. Three types of aggregations (i.e.
interactions among objects and their attributes) are de�ned: a sim-
ple aggregation, where the object does not depend on its attributes;
composition aggregation, where the attribute must have a value for
the object to exist (e.g. keys); and collection aggregation where the
attribute can be multivalued. This class of inconsistencies deals with
cases where the corresponding attributes in di�erent data sources are
of di�erent aggregation types, or have di�erent constraints on their
value sets in the case of a collection aggregation.

� Schematic Discrepancies: some concepts represented as data in one
of the data sources are represented as meta-data in another. For exam-
ple, one relational source might contain tables cars and trucks, while
another models the same concepts using a single table named vehi-
cle, and an attribute in this table to distinguish between the types of
vehicles.

Finally, the object instances heterogeneities are classi�ed into:

� Presence/Absence: an object of a class in one of the sources has no
corresponding object in the corresponding class in the other source.

� Discrepancies in attribute arity: the corresponding multivalued
attributes of two corresponding objects from di�erent data sources
have di�erent arities.

� Value Discrepancy: the corresponding attributes of two correspond-
ing objects from di�erent data sources have di�erent values.

20 Data Integration by Multidatabase Systems

The integration framework presented in this thesis will mostly concen-
trate on resolving the semantic heterogeneity of object classes and object
instances among the data sources. Nevertheless, its exible structure allows
for extensions that would cover most of the other heterogeneities.

2.5 Query processing and data integration

One of the reasons for the success of the database technology is the capability
of the DBMSs to accept declarative query requests from the user. As noted
earlier, the user only needs to specify what is to be retrieved, rather than how
it is retrieved. In other words, queries are not programs stating precisely how
the data is retrieved. The burden of making a query execution plan from a
query is taken by the DBMS. In an multidatabase environment consisting of
heterogeneous and autonomous data sources, this task becomes even more
demanding.

Resolving heterogeneity usually requires advanced queries containing op-
erators that are more complex than in the traditional select-project-join
queries. An example of such an operator, used in this work to integrate
overlapping data from di�erent sources, is the outer-join operator. This op-
erator returns not only the matching tuples of the operands, but also the
non-matching tuples, padded by NULL values. This operator does not have
the associativity and commutativity properties used heavily in optimization
of regular join-based queries.

Another issue is the di�erence in the capabilities of the participating
data sources. While in the distributed database framework all nodes have
the same functionality, here some nodes might not even be databases (e.g.
an e-mail system). This makes the query compilation and the division of the
tasks among the nodes harder than in distributed databases.

The autonomy of the data sources also greatly inuences the query pro-
cessing in an MDBMS. As the MDBMS interacts with the data sources only
via an external interface, the internal statistical information needed for the
query optimization is not available. Obtaining this type of information is typ-
ically very hard in an MDBMS operating over autonomous sources. In this
thesis we do not elaborate on this problem. A few solutions to the problem
have been proposed in the literature: query sampling in [88], query probing
and piggyback in the same reference, and calibration and regression in [31].
A survey of these techniques is presented in [5].

2.5 Query processing and data integration 21

The MDBMS environment is also much more dynamic in comparison
with the classical distributed database environment. Here, the participating
data sources are free to withdraw from the system or refuse certain requests.

22 Data Integration by Multidatabase Systems

Chapter 3

An Overview of the AMOSII

System

The AMOSII system was developed from the AMOS system which has its
roots in the workstation version of the Iris system, WS-Iris [52]. The core
of AMOSII is an open, lightweight, and extensible database management
system (DBMS). The aim of the AMOSII architecture is to provide for e�-
cient integration of data stored in di�erent repositories by both active and
passive techniques. To achieve better performance, and because most of the
data resides in the data repositories, AMOSII is designed as a main-memory
DBMS. Nevertheless, it contains all the traditional database facilities, such
as a recovery manager, a transaction manager, active rules, and an OO query
language. A running instance of AMOSII, named an AMOSII server (or sim-
ply server), provides services to applications, as well as to other AMOSII
servers.

Figure 3.1 illustrates the di�erent roles that an AMOSII server can as-
sume. In this example, several applications access data stored in several data
sources through a collection of interconnected AMOSII servers. AMOSII
servers can run on separate workstations and provide di�erent types of data
integration services. One server is designated to be a name server and pro-
vide information about the locations of the servers on the net. Di�erent in-
terconnecting topologies can be used to connect the servers depending on the
integration requirements of the environment. Also, a single AMOSII server
can perform more than one task described in the �gure and serve more than
one application simultaneously. Each AMOSII is a fully edged DBMS and

23

24 An Overview of the AMOSII System

Pricing
Data Feed

Purchasing Prod. Estimates Design / Analysis

Manufact.
System

Materials
Database

Name Server

Mediator

TranslatorTranslator

Mediator

Translator

Local
Data

Local
Data

Figure 3.1: Interconnected AMOSII servers

can store data locally. Imported and local data is described in each AMOSII
by an OO type hierarchy.

In [23], an approach to wrapping relational data sources with AMOSII
is described. Here, the sources are not only wrapped, but also some query
optimization techniques are used to simplify the queries on both local and
relational data. Therefore, to distinguish between the wrapper subsytem in
AMOSII, and an AMOSII server having the role of wrapping a data source
with this extended functionality, the second is named translator. The term
wrapper will be used to represent the wrapper subsystem.

This thesis describes the design and implementation of the mediation
services in AMOSII.

3.1 Data model

The data model in AMOSII is an OO extension of the DAPLEX [71] func-
tional data model. It has three basic constructs: objects, types (i.e. classes),

3.1 Data model 25

and functions. Objects model entities in the domain of interest. An object
can be classi�ed into one or more types which make the object instances of
those types. The set of all instances of a type is called the extent of the type.
Object properties and their relationships are modeled by functions.

The types in AMOSII are divided into literal and surrogate types. The
literal types, e.g. int, real and string, have a �xed (possibly in�nite) extent
and self-identifying instances. Each instance of a surrogate type is identi-
�ed by a unique, system-generated object identi�er (OID). The types are
organized in a multiple inheritance, supertype/subtype hierarchy that sets
constraints on the classi�cation of the objects. One example of such a con-
straint is: If an object is an instance of a type, then it is also an instance of
all the supertypes of that type; conversely, the extent of a type is a subset of
the extents of its supertypes (extent-subset semantics). The AMOSII data
model supports multiple inheritance, but requires an object to have a single
most speci�c type.

The surrogate types are divided into stored, derived, proxy, and integra-
tion union types:

� The instances of stored types are explicitly stored locally in AMOSII
and created by the user.

� The extent of a derived type (DT) is a subset of an intersection of the
extents of the constituent supertypes. The instances of the supertypes
are selected and matched using a declarative query. DTs are described
in chapter 4.

� The proxy types represent objects stored in other AMOSII servers or
in some of the supported types of data sources. The proxies are also
described in chapter 4.

� The integration union types (IUTs) are de�ned as supertypes of other
types. An IUT extent contains one instance for each real-world entity
represented by the (possibly overlapping) extents of the subtypes. The
integration union types are the subject of chapter 5.

The functions are divided by their implementations into three groups.
The extent of a stored function is physically stored in the database. Derived
functions are implemented in a declarative OO query language AMOSQL.
Foreign functions are implemented in some other programming language, e.g.
Lisp, Java or C++. Each foreign function can have several associated access

26 An Overview of the AMOSII System

paths having di�erent implementations and, to help the query processor,
each access path has an associated cost and selectivity 1 function [52]. This
mechanism is called a multi-directional foreign function.

3.2 Query language

The AMOSQL query language is based on the OSQL [53] language with
extensions of mediation primitives, multi-directional foreign functions [52],
overloading, late binding [26], active rules [75], etc. It contains data modeling
constructs as well as querying constructs. The following example illustrates
the data de�nition constructs of AMOSQL by de�ning a type person and
three stored functions over this type: hobby returning character strings, name
returning a single character string, and parent returning person objects:

create type person;

create function hobby(person) -> string as stored;

create function name(person) -> string key as stored;

create function parent(person) -> person as stored;

. . .

The keyword key limits the arity of a result or an argument to 0 or 1. The
general syntax for AMOSQL queries is:

select <result>

from <type declarations for local variables>

where <condition>

The following example illustrates how functional views are de�ned with
AMOSQL. Assuming the three stored functions parent, name and hobby from
the example above, it de�nes a derived function that retrieves the names of
those children of a persons having 'sailing' as a hobby:

create function sailing_children(person p) -> string as

select n

from person c

where parent(c) = p and

name(c) = n and

hobby(c) = 'sailing';

1The term \selectivity" is used throughout this thesis for the quantity commonly re-
ferred by both selectivity (when lower than 1) and fan-out (when greater than 1)

3.2 Query language 27

The query optimizer optimizes the function body and associates the pro-
duced query execution plan with the function. Since functions are used to
represent properties of objects (i.e. methods) as e.g. sailing children, the
function bodies are always optimized assuming that the variables in the func-
tion arguments are bound while the other variables are initially unbound but
will be assigned values when the function is executed. The term \bound"
indicates that the variable has an assigned value before the execution of the
function takes place. The result of an execution of a query is a subset of the
unbound variables in the query. The variables which are neither in the result
nor in the argument set of the query are named local variables. The local
variables are unbound when a function execution begins. If, for example, the
AMOSQL variable :ip represents a person instance, the expression:

sailing_children(:ip);

Invokes the function body with the variable p bound and the result variable
n unbound. Alternatively, the query:

select p

where sailing_children(p) = ``Tore'';

invokes the same function with the variable n bound, and the variable p
unbound. The query retrieves the parents having a child named Tore with
hobby sailing.

The ad hoc queries in AMOSQL are treated as functions without argu-
ments. For example, assume the following query that retrieves the names of
the parents of all persons having 'sailing' as hobby:

select p, name(parent(p))

from person p

where hobby(p) = 'sailing';

AMOSII processes this query by generating an anonymous function with no
arguments, query(), which is executed immediately and then discarded:

create function query()-> <person, string>

as select p, name(parent(p))

from person p

where hobby(p) = 'sailing';

28 An Overview of the AMOSII System

3.3 Query processing in AMOSII

Figure 3.2, presents an overview of the query processing in AMOSII. The
�rst �ve steps, also called query compilation steps, translate the body of a
function (query) expressed in AMOSQL to a query execution plan which is
stored with the function. To illustrate the query compilation we use the ad
hoc query above.

Interpreter
Algebra

result

Generator
Calculus Calculus

object
calculusquery

Optimization

object
calculus

External
requests

Estimator
Cost Algebra

Generator

Single-site
Cost Based
Optimizer

Generator

Decomp.
Tree

decomposition
trees

decomposition
tree

object
algebra

Query decomp. & algebraic optimization

AMOSQL

Figure 3.2: Query processing in AMOSII

From the parsed query tree, the calculus generator generates an object
calculus expression. In the object calculus expressions, function symbols are
annotated with signatures consisted of argument and the result types. Next,
the calculus expression is transformed into a attened form consisting of a set
of equality predicates. The left-hand side of the equality predicates can be a
single variable or a constant. It can also be a tuple of variables or constants
when the right-hand side returns a tuple as a result. The right-hand side
of a predicate can be an unnested function call, a variable, or a constant.
The equality operator has semantics as in the DAPLEX query language
where if the right hand side is multi-valued (bag), then the right hand side
is compared (in case of a constant) or assigned (in case of a variable) to
each of the values in the bag. The head of the calculus query expression
contains the result variables. In the rest of the thesis, all calculus expressions
will be shown in a attened form. As an example, we consider the calculus
representation of the ad hoc query above:

3.3 Query processing in AMOSII 29

f p; nm j
p = Personnil!person() ^
pa = parentperson!person(p) ^
nm = nameperson!string(pa) ^
0sailing0 = hobbyperson!string(p)g

The �rst predicate in the expression is inserted by the system to assert the
type of the variable p. It de�nes that the variable p is bound to one of the
objects returned by the extent function of type Person, named Person() and
returns all the instances of this type. Besides being used to generate the ex-
tent of a type, the extent function can be also used to test if a given instance
belongs to a type. Therefore, a predicate containing a reference to an extent
function is called a typecheck predicate. An extent function accesses the deep
extent of the type, i.e. it includes the extents of all the subtypes. By con-
trast, the shallow extent function considers only the immediate instances of
the type. By convention, the shallow extent functions are named by pre�xing
the type name by the pre�x Shallow, e.g. ShallowPersonnil!Person().

AMOSII supports overriding and overloading of functions on the types
of their arguments and results, i.e. their full signatures. Each function name
refers to a generic function which can have several associated type resolved
functions annotated with their signatures. During the calculus generation,
each generic function call in a query is substituted by a type resolved one.
Late binding is used for the calls which, due to polymorphism, cannot be
resolved during query compilation [26].

Next, the calculus optimizer applies rewrite rules to reduce the number
of predicates. In the example, it removes the type check predicate:

f p; nm j
pa = parentperson!person(p) ^
nm = nameperson!string(pa) ^
0sailing0 = hobbyperson!string(p)g

The type check predicate can be removed because p is used in a stored
function (parent or hobby) with an argument or result of type Person. The
referential integrity system of the stored functions constrains the instances
of a stored function to the correct type [52]. If there is no such constraining
function the query processor will retain type check predicates to guarantee
that derived functions return correct result. For example, if the argument
types of the functions parent and hobby had been supertypes of person, the

30 An Overview of the AMOSII System

type check for p would have remained in the query to limit the processed
instances to only the ones included in the person extent. As will be shown,
the type check removal is particularly important for multi-database queries
where type checks often need to cross database boundaries and are expensive.

Another rewrite rule used in this work is the predicate uni�cation rule
described in [23]. With this rule, two predicates with the same name and
the same variables or constants for the key arguments can be combined into
one. After the substitution, the non-key arguments of these predicates are
pair-wise uni�ed throughout the query. For example, in the following calcu-
lus expression:

f n1 j
n1 = nameperson!charstring(p) ^
n2 = nameperson!charstring(p) ^
foocharstring!boolean(n1) ^
foocharstring!boolean(n2) g

the argument of the function nameperson!charstring is a key and therefore
the �rst two predicates can be replaced by one:

f n1 j
n1 = nameperson!charstring(p) ^
foocharstring!boolean(n1) ^
foocharstring!boolean(n1) g

This predicate is then further reduced to

f n1 j
n1 = nameperson!charstring(p) ^
foocharstring!boolean(n1) g

The transformation is not correct if the transformed predicates have side-
e�ects in the database or in the system's environment. The foreign functions
in AMOSII are the only place in AMOSII where such side e�ects can be
made2. Foreign functions that cause side-e�ects are tagged with a side-e�ect
ag which will prevent application of this rewrite rule.

Because the example query is over local types, it passes una�ected

2Database procedures speci�ed in AMOSQL extended with procedural constructs can
have side e�ects too. In this case they are treated as foreign functions.

3.3 Query processing in AMOSII 31

through the query decomposition stage and is processed only by the cost-
based single-site algebra optimizer. If some part of the query is to be executed
by another AMOSII server, the system will use primitives that allow for
sending function de�nitions between the servers for local optimization and
evaluation. The query decomposition will be discussed in detail in chapter
6.

The object calculus query representation is declarative and does not pre-
scribe a certain evaluation order of the calculus predicates describing func-
tion calls. By contrast, the expressions in the object algebra [23] have a well
de�ned evaluation order and are, in addition to the type annotations, anno-
tated with binding patterns indicating which variables are input and which
are output in each function call [52].

The calculus optimization process takes advantage of the declarative un-
ordered format and the unspeci�ed binding patterns of the object calculus for
detection of optimization possibilities with the goal of reducing the number
of query predicates by removing unnecessary computations. This optimiza-
tion is rule-driven and much simpler than the transformations made during
the cost-based algebraic optimization.

The query algebra used in AMOSII has six operators f�;�;[;\;1; g,
the �rst �ve of which have the same semantics as in the relational algebra.
The last one, the operator, performs function application, and is similar
to the generate operator of [77]. A formal de�nition of these operators can
be found in [23]. Note that a selection operator is missing since it can be
speci�ed using a function application where some of the arguments are bound
to constants, as shown in the next example.

Each type-resolved function in AMOSII can have several implementa-
tions with di�erent binding patterns. Figure 3.3 shows two execution plans
for the example query, expressed in the query algebra. In Figure 3.3a, a
straight-forward translation of the query calculus expression to an algebra
expression is given. The rectangles in this �gure represent algebraic oper-
ators. The variables bound after each operator application are shown in-
between the operators. The plan in �gure 3.3a �rst applies the function
name() over all the instances of type person; next, the children of a person
are found by applying the function parent() \backwards" - giving a person
as an input and retrieving its children; the third operator performs a selec-
tion based on the children's hobbies; and �nally the required variables are
projected from the selected tuples. The second plan, shown in Figure 3.3b,
is more optimal. It �rst selects the persons with the required hobby, then

32 An Overview of the AMOSII System

[name (p) = n]

[.hobby (off)= 'sailing']

Person

<p>

<p,n>

<p,n,off>

[hobby (p) = 'sailing']

[parent (p) = d]

[name (d) = n]

Person

<p>

<p>

<p,d>

<p,n>

[parent (off) = p]

bb

<p,n,off>

π

(p, n ,off).<p,name>

<p,n>

b)a)

bf bb

bf

bf

fb

π

γ

γγ

γ

γ γ

Figure 3.3: Two algebraic representations of the example query

�nds their parents, and �nally retrieves the parents' names. Note that each
function is superscripted with the binding pattern used for its execution (al-
though the functions are also type resolved, the type information is omitted
for clarity). The vector representing the binding pattern has length equal
to the added lengths of the function argument and result tuples. Each of
the argument and result variables is associated with a ag in the binding
pattern vector. In the �gure, \f" is used for the free (unbound) variables
and \b" is used for the bound variables. For example, the \fb" binding pat-
tern for the function parent() means that the result is bound (a parent is
given), while the argument is free (a child is returned). This kind of invo-

3.3 Query processing in AMOSII 33

cation is related to the inverse function mechanism in some other models.
Nevertheless, in AMOSII a function can be de�ned and executed using ar-
bitrary binding patterns, generalizing thus the inverse function concept over
functions with multiple arguments and results. Stored functions, as parent,
can be e�ciently executed with di�erent binding patterns in the presence of
matching secondary indices. Foreign functions can also have more than one
implementation with di�erent binding patterns and di�erent user-supplied
cost and selectivity functions [52].

The interested reader is referred to [27] for a more detailed description
of the AMOS and AMOSII system and to [52, 23, 26] for more on the query
processing in AMOSII. Previous work on data integration within the AMOS
project is reported in [84].

34 An Overview of the AMOSII System

Chapter 4

Data Integration by Derived

Types

This chapter presents the basis of the Object-oriented (OO) view mechanism
in AMOSII, used to provide the user with a uni�ed appearance of data in
di�erent repositories. Queries over the views are transformed into queries
over the data in the repositories. Passive data mediation, as described in
this thesis, requires that the mediator system provides for complete and
consistent answers to the queries over the OO views at the time when the
queries are issued. An advantage of the passive approach described in this
chapter is that it provides an e�cient view support mechanism by describ-
ing the system tasks using predicates inserted in the calculus representation
of the queries over the integrated views. This allows for query optimiza-
tion of the view support tasks together with the user-speci�ed part of the
query. Another advantage is that the view maintenance operations, as well
as the user-speci�ed operations, are speci�ed and performed over a set of
objects/tuples as opposed to individual instances.

The focus of the chapter is a query transformation technique that, for a
certain class of queries, allows for a reduction of the number of predicates
by applying calculus-based optimization. The calculus-based optimization
removes redundant computations that often result from merging system-
speci�ed and user-speci�ed predicates in the query. This reduces the query
complexity and, because it is performed by simple rewrite rules, it imposes a
minimal increase in the query processing time. The cost-based optimization
executed later in the query processing is concerned with the order of the

35

36 Data Integration by Derived Types

execution rather than the removal the redundant computations.

The rest of the chapter is organized in two sections. Section 2 introduces
the OO views architecture for database mediation. Section 3 describes the
query transformation techniques for the queries over the OO views and the
use of rewrite rules to reduce the number of query predicates.

4.1 Object-oriented view system design

This section presents the design principles behind the OO view mechanism
for data integration in AMOSII. Views as a tool for data abstraction and
restructuring have been extensively studied in the context of the relational
databases. The design of a view mechanism in an OO environment is more
complex in particular with regards to inheritance and object identity. Inher-
itance and views have common aims (i.e. data abstraction and code reuse),
and therefore the two mechanisms must be combined in a semantically clear
manner. Two important issues in OO view system design are the format of
the OIDs of the view objects and their life span. Additional issues for views
de�ned over data in multiple data sources are non-intrusive mechanisms for
view maintenance, managing semantic heterogeneity, and representation of
OIDs in a distributed environment.

4.1.1 Derived types

To provide data integration features in AMOSII, the type system is extended
with derived types (DTs) de�ned as subtypes of other types, and integration
union types (IUTs), de�ned as supertypes of other types. Data integration
by DTs and IUTs is performed by building an OO view type hierarchy
based on local types, and types imported from other data sources, including
other AMOSII servers. The traditional inheritance mechanism, where the
corresponding instances of an object in the super/subtypes are identi�ed by
the same OID, is extended with declarative speci�cation of the correspon-
dence between the instances of the derived super/subtypes. Integration by
sub/supertyping is related to the mechanisms in some other systems as, for
example, the integrated views and column adding in the Pegasus system [17],
but is better suited for use in an OO environment.

Figure 4.1 shows an example of using DTs for data integration by sub-
typing. In the example, the data stored in an employee database is integrated
with data from a database containing sporting information. The solid ovals

4.1 Object-oriented view system design 37

Person

SPORT_DB User_Defined

Local

HOBBY
SOCSECN

Junior

User_Defined

Local Derived

NAME
AGE
STATUSSSN

SALARY
POSITION

SPORT_BONUS

BONUS

EMPLOYEE_DB

Sporty_emp

PayRec

Emp

Manager

P_Person

Person

Proxy

Figure 4.1: Integration by derived types (subtyping)

represent ordinary types while the dashed ovals are types created by the
user and the system during the OO view de�nition process. Stored functions
de�ned over the types in the �gure are shown beside the type ovals. The
types User De�ned, Derived and Proxy are system-de�ned and part of the
meta-model in AMOSII. They are de�ned in both databases, but are not
shown in Sport Database for reasons of clarity. There is a type Person in
both databases storing information about a set of persons. The de�nition of
the derived portion of the type hierarchy is in the example done as follows.
First, the DT Emp is created to represent the persons having a pay record.
The DTManager is a subtype of the DT Emp representing the employees for
which the stored function position has the value 'Manager'. DTs can be used
to integrate types in more than one data source by subtyping from types
imported from other data sources. In the example, the DT Sporty Emp is
de�ned as a subtype of the local DT Emp and the type Person in the sport
database. Its instances represent persons that are represented by an instance
of both type Emp in the employee database, and type Person in the sport
database.

The de�nition of the Sporty Emp DT is stored in the type hierarchy of
Employee DB. Sport DB stores no information about this type. To record
that Sporty Emp inherits from a type in another data source, the system au-

38 Data Integration by Derived Types

tomatically imports the type Person from Sport DB into the Employee DB
database and de�nes a proxy type for it, named in the Figure P Proxy. The
proxy type mechanism is described in greater detail in the next section.

Figure 4.1 also illustrates some of our design choices. First, to be able to
perform data integration by subtyping a multiple inheritance mechanism is
required for the DTs. Second, it can be noticed in the example that stored
functions (e.g. sport bonus in Sporty Emp) can be de�ned over DTs, which
makes the DTs a capacity-augmented view mechanism [66]. DTs can be used
in function de�nitions as ordinary types and any function can have DTs as
argument or result domains.

4.1.2 Generation of OIDs for the DT instances

There are three basic choices for the format of OIDs representing DT in-
stances. The �rst is to use the OIDs from the corresponding supertype
objects [67]. This is not suitable in our case because it is not compatible
with multiple inheritance. The second alternative is to use a stored query
expression instead of an OID and construct the required DT instances by
evaluating this expression [43]. With this approach, it would be di�cult to
have functions whose argument domain is a DT since it is not convenient
to manipulate expressions as database objects. The third alternative, is to
generate new unique OIDs for the DT instances [66]. With this method, the
same conceptual object (i.e. representing the same real world entity) is repre-
sented by di�erent OIDs in di�erent types. Therefore, to be able to evaluate
inherited functions over the DT instances, their OIDs need to be mapped to
the OIDs of the corresponding instances of the type over which a function
was de�ned, by a process named OID coercion 1. The cost of OID coercion
is the main weakness of this approach. Nevertheless, we chose this approach
for the following two reasons: First, the major cost of a query is in accessing
the data sources and shipping data among the AMOSII servers, and not in
the coercion. In AMOSII, the hash tables used in the coercion are stored
in a main-memory database that makes the coercion inexpensive. Second,
expressing the coercion by predicates permits some query optimization that
further reduces the coercion cost, as described in the next section.

Although the generation of OIDs for the DT instances allows for using
the DTs as domains for function arguments and results, most queries over
DTs require only a few or no OIDs and it would be a severe performance

1In the text we use the terms \OID coercion" and \instance coercion" interchangeably.

4.1 Object-oriented view system design 39

impairment to generate OIDs for the entire extents of all the DTs in each
query. The OID generation cost includes the creation of a new OID and the
storage of the coercion information in internal tables. To minimize this cost,
and to avoid unnecessary creation of OIDs, the query processor analyzes the
query to �nd out which query variables represent instances that need to be
assigned OIDs. OID generation predicates are added only for query variables
in the query result or used as arguments of foreign functions. Other queries
are transformed so no OID generation is needed, as shown below. The query
performance is thus not degraded by the OID generation mechanism. In
queries requiring DT OIDs, these are generated selectively for those instances
satisfying the rest of the query predicates, thus generating OIDs for only
parts of the DT extents in order to avoid unnecessary performance and
storage overheads.

DT OIDs stored in local functions can be used in queries issued after their
generation. Then the system has to assert that the instances they represent
still comply with the declarative conditions stated in the DT de�nition, i.e.
that they are still valid. Assuming non-active and autonomous data sources,
the system has to add run-time checks in the queries to check the validity of
those DT instances that are previously imported from external data sources
and stored in local functions in the mediator. These validation checks must
access the corresponding data sources to check the validity of the exported
DT instances. If the query does not access imported DT OIDs stored locally,
the instances are retrieved directly from the data sources and no validation
is needed.

The validity of a DT instance depends on the existence and validity of
the corresponding supertype instances whose OIDs are stored in the coercion
tables. When a DT instance is validated, the validation condition is executed
only over these instances. This de�nition of the validity of a DT instance
based on a validation condition over a tuple of supertype OIDs is consistent
with the OO structure of the database, and is e�cient to implement.

An instance is present in the mediator until it is used in a query where
it fails the validation test. A garbage collection of the DT instances can be
implemented to periodically run the validation test, deleting the instances
not satisfying the test.

40 Data Integration by Derived Types

4.1.3 Derived types and inheritance

An important issue in designing an OO view system is the placement of the
DTs in the type hierarchy. The obvious approach would be to place the DTs
in the same hierarchy as the ordinary types. However, mixing freely DTs
and ordinary types in a type hierarchy can lead to semantically inconsistent
hierarchies [45]. In order to provide the user with powerful modeling capabil-
ities along with a semantically consistent inheritance hierarchy, the ordinary
and derived types in AMOSII are placed in a single type hierarchy where
it is not allowed to have an ordinary type as a subtype of a DT. This rule
preserves the extent-subset semantics for all types in the hierarchy. If DTs
were allowed to be supertypes of ordinary types, due to the declarative spec-
i�cation of the DTs, it would not be possible to guarantee that each instance
of the ordinary subtype (created explicitly by the user) has a corresponding
instance in its derived supertypes.

Student

Person
Student

Person

User_Defined User_Defined

Local

imS

imP

Junior

IPerson

IStud

DB1 DB2

Local Derived

locP

locS

Proxy

Figure 4.2: Integration by integration union types (supertyping)

In Figure 4.1 the view is constructed by subtyping. As noted earlier,
the AMOSII integration framework also allows de�nition of declaratively
de�ned IUTs as explicit supertypes of other types. Although the IUTs are
described in detail in the next chapter, to complete the discussion on the

4.1 Object-oriented view system design 41

integration framework, Figure 4.2 presents an example of integration by
IUTs. The example shows a de�nition of an integrated view of two person
databases DB1 and DB2. The data in both databases is structured in two
user-de�ned types: a type named Person that contains data about a set of
persons, and its subtype Student representing the persons who are students.
The example establishes the IUT IPerson and IStud in DB1 to provide an
integrated view of the data in the databases. These types represent the
union of the real world entities represented by the instances of the integrated
types in the both databases. In the example, the proxy types imP and imS
represent the types Person and Student from DB2, imported into DB1. IUTs
can also be subtyped by DTs. In this example the type Junior represents
a specialization of the type IStud containing all junior students. The same
schema was used in both databases in order to simplify the example. Using
DTs, IUTs and derived functions, he presented integration framework can
handle all schema heterogeneities that do not require higher-order language
constructs.

4.1.4 Derived subtyping language constructs

For de�ning DTs as subtypes of other types, AMOSQL has the following
construct:

CREATE DERIVED TYPE type_name

SUBTYPE OF sut1, sut2, ...

COMPOSE compose_expression

VALIDATE validate_expression

[HIDE fn1, fn2, ...]

[PROPERTIES (prop1 type_prop1,)] ;

The subtype of clause establishes the DT as a subtype of other types in
the hierarchy. The compose expression and validate expression are boolean
expressions which, when conjoined, make the condition that a combination
of supertype instances needs to satisfy to compose a new DT object. The
condition in compose expression is evaluated only when an OID is generated
for a new instance of a DT. By contrast, the condition speci�ed with the
validate expression is also evaluated each time a query accesses OIDs of the
DT stored locally in the mediator. The splitting of the composition and val-
idation expressions was motivated by the observation that data integration
is often performed on the basis of some key functions that do not change

42 Data Integration by Derived Types

over the lifetime of the instance (i.e. that are functionally dependent on the
OIDs of the integrated instances). In these cases, it is not necessary to eval-
uate the full condition every time a DT instance is validated, but instead
only the validate expression is evaluated over the corresponding instances of
the supertypes. Alternatively, in order to avoid the burden of this splitting,
the user could specify the condition as one expression, and then it could be
separated by the system into composition and validation expressions based
on the key information of the stored and the foreign functions used in the
expression. A drawback of this approach is that it cannot detect conditions
over non-key function that do not change during the existence of an instance
(e.g. that the age of a person has passed some limit). In the following ex-
ample, de�ning three of the DTs in Figure 4.1, the condition expression is
divided into the two parts:

create derived type Emp

subtype of Person P, PayRecord PR

compose ssn(P) = ssn(PR)

validate status(P) = 'working';

create derived type Sporty_Emp

subtype of Person@SPORT_DB p, Emp e

compose ssn(e) = adjust_ssn(socsecn(p));

create derived type Junior

subtype of Sporty_Emp se

validate age(se) > 26;

The function adjust ssn converts a social security number stored in
SPORT DB to the format used in EMPLOY EE DB. This can be any
kind of function de�ned locally or in SPORT DB, over strings and return-
ing integers.

There is one instance of type Emp for each person having a pay record and
status 'working'. Since the social security number does not change during
the existence of a Person, the conditions involving the functions ssn and
socsecn are in the compose clause of the de�nitions. On the other hand, the
status and the age of a person can change and therefore the conditions over
these functions are placed in the validate clauses.

The clauses hide and properties, which for brevity were not used in the
examples, serve to list the functions of the supertypes not inherited by the

4.2 Querying derived types 43

DT, and to de�ne new stored functions, respectively.

4.2 Querying derived types

DTs di�er from ordinary types in a number of ways. First, the extents of
DTs are not stored in the database as the extents of ordinary types, but
are de�ned by declarative functions. Next, if a function inherited by a DT is
called in a query, the system needs to coerce the argument DT OIDs to the
corresponding OIDs of the supertype where the function is de�ned. Here,
although the instances have di�erent OIDs, they correspond to the same
conceptual object. Finally, the system must check the validity of the DT
OIDs stored in local functions, when used after their creation.

These di�erences make the queries over DTs more complex and time-
consuming than the queries over ordinary types. Naive evaluation of queries
over the DTs, where the DTs are treated in the same way as the ordinary
AMOSII types, leads to a very ine�cient query evaluation strategy. It would
�rst retrieve the extents of the DTs in the query, generate OIDs for them,
and then apply the selection condition of the query. Arguments to function
calls used in the query must be coerced correctly.

An analysis of the execution plans showed that most of the overhead can
be avoided by introducing query transformations to:

� Avoid unnecessary OID generation.

� Reduce the coercion to a minimum.

� Allow for early application of selections in order to process only por-
tions of the DT extents.

� Reuse OIDs stored in local functions instead of regenerating DT ex-
tents.

In order to achieve these goals, the OO views de�nitions are translated
into system-de�ned derived functions. The calculus generator analyzes the
query and, if the query is speci�ed over DTs, inserts calls to these functions
into the calculus representation of the query. Many OO view-support tasks
traverse the type hierarchy and have common subtasks. The predicate rep-
resentation of the derived function bodies allows these common subtasks to
be identi�ed and eliminated from the query together with overlaps between

44 Data Integration by Derived Types

user-de�ned and system-inserted predicates. Of particular interest in a view
mechanism for data integration is to minimize operations that cross database
boundaries in communication with other databases, or that access external
data sources. Furthermore, the predicate-based view support approach al-
lows selections from di�erent query parts, such as user-speci�ed and DT
subtyping conditions, to be uni�ed, optimized together, and applied as close
as possible to the data sources. When a data source supports selection appli-
cation (e.g. relational databases), the selections can be applied in the data
source itself [23].

Although the common subexpression elimination mechanism allows for
substantial reductions of queries over DTs, this alone does not remove all the
redundancies in the queries. Therefore, two additional DT speci�c transfor-
mations are introduced to further eliminate redundant computation: First,
queries over DTs having all functions inherited from their supertypes are
transformed into queries over their supertypes. This eliminates all OID gen-
eration and coercion, as will be shown. Second, for queries accessing locally
stored functions over DTs the system tries to reuse the locally stored DT
OIDs instead of naively regenerating the DT extent again. The presence of a
locally stored function limits the instances of interest to those stored in the
function. However, since the OIDs stored in the local function were generated
in previous transactions, and because of the autonomy of the data sources,
the system needs to make sure that these OIDs still represent valid DT in-
stances satisfying the validation condition of the DT. This validation could
be avoided in some cases by, for example, the distributed query invalidation
mechanism of [33].

In the rest of this section we will �rst describe how the DTs are
modeled by AMOSII types and derived functions. Then, the query trans-
formations are described in detail using example queries entered in the
EMPLOY EE DB mediator, over the views de�ned in the previous section.
The section concludes with an algorithm for the calculus transformations.

4.2.1 Overview of the derived types implementation

Each DT in AMOSII is implemented by an ordinary local type named im-
plementation type. The system automatically generates stored coercion func-
tions over the implementation types to represent the mappings between those
DT instances assigned OIDs and the tuples of corresponding instances of
the DT's direct supertypes. All coercion functions are de�ned by the generic

4.2 Querying derived types 45

function coerce, overloaded on both its argument and result. Coercion be-
tween an instance of a DT and its indirect supertypes is done by composition
of coercion functions. The coercion functions are not accessible by the user.
They are maintained by the system and used in system-de�ned functions
generated from the DT de�nitions. For each DT the system generates three
such functions: An extent function, a validation function, and an OID gen-
eration function. Informally, the extent function contains the subtyping con-
dition and a call to the OID generation function. If invoked naively, it would
generate all the tuples of the supertype objects that compose an object of
the DT, and then invoke the OID generation function over these tuples to
obtain OIDs for the DT instances. The OID generation function returns an
already generated OID for each particular tuple of supertype instances, if
such exists; otherwise, it creates a new OID and stores it in the coercion
functions together with the tuple of supertype OIDs. Unlike the extent func-
tion, that contains the entire subtyping condition, the validation function
contains only the DT validation condition. The validation function is used
to check if a DT OID still represents a valid instance when used after its cre-
ation. The rest of this section presents the concepts named above in greater
detail. To introduce the DT implementation, �rst the proxy mechanism for
representation of data and types stored outside the mediator is presented.

4.2.2 Proxy types and objects

When a type from another data source is used for the �rst time as a supertype
of a local DT, then it is either imported implicitly by the system (when an
AMOSII data source is used), or explicitly by the IMPORT TYPE clause.
Locally, for each imported type (distinguished by the type and data source
name) a proxy type is created. All proxy types are subtypes of the type
Proxy. For example, there is a proxy type, P Person, de�ned for the type
Person from the sport database. Figure 4.3 shows the proxy type hierarchy
for the de�nition of the DT Sporty Emp type in Figure 4.1. The proxy type
hierarchy is �rst divided into di�erent kinds of data sources. In the Figure,
two kinds are shown: AMOSII data sources and ODBC data sources. This
classi�cation is not to be confused with the data source capability hierarchy
described in chapter 6. Each data source is represented by a type placed
under the type corresponding to the data source kind. There can be more
than one data source of the same kind. Types imported from a data sources
are placed in the type hierarchy under the type representing the source. Non-

46 Data Integration by Derived Types

OO data sources have at proxy hierarchies (each proxy type is a child of the
type representing the data source kind). The proxy types of OO data sources
that can provide the required meta-data information are organized in a type
hierarchy that is a subset of the type hierarchy in the exporting mediator,
and contain all the types imported from the source to date. Locally de�ned
DTs that are subtypes of types in other data sources are placed as subtypes
of the corresponding proxy types.

AMOSII

locally or in sport_db

other derived types which

SPORT_BONUSSporty_Emp

other proxy types from sport_db

Sport_DB other types of sources

P_Person

EMPLOYEE_DB

Proxy

ODBC

other AMOSII sources

.

.

.

.

.

inherit from person@sport_db

Figure 4.3: Placing the proxy types in the type hierarchy

4.2 Querying derived types 47

After de�ning a proxy type, the system retrieves the signatures of the
functions de�ned over the type in the exporting AMOSII server. If the argu-
ment and the result types of a remote function are known to the importing
mediator (i.e. if they are system-de�ned types or previously imported user-
de�ned types) a local corresponding proxy function is de�ned. The proxy
function has the same signature as the remote function, but an empty
body. Although the proxy functions and the proxy type extent functions
are treated as ordinary functions throughout the calculus oriented query
processing steps, they are not executed as ordinary functions. The decom-
position algorithm groups them, and schedules them for execution in other
AMOSII servers. In the calculus-based query processing phases, they provide
information for type checking and query transformation as described below.

For each proxy type, a system-de�ned stored function is generated that
maps instances of the proxy type into instances of type foreign oid. This
system type is used to represent the stringi�ed OIDs received from other
AMOSII servers when parts of query plans are evaluated there. The OIDs
are transmitted among the mediators and stored in their native format with-
out origin or typing information added. The OIDs generated by an AMOSII
server are unique only within that server. The system makes no e�ort to
generate \universal OIDs" unique in all AMOSII servers, like, for example,
in the CORBA architecture [58]. In a CORBA environment, OIDs represent
services and are designed to be transmitted alone. Therefore, every OID
contains all the information needed to identify its origin. In a bulk data pro-
cessing environment such as ours, the OIDs are passed in large collections
having few di�erent types and a common origin. Consequently, it is advan-
tageous to condense the meta-information about the structure (types) and
the origin of the transmitted OIDs with the transmission protocol. When an
AMOSII server receives OIDs from another server, it stores them in their
native format, while the meta-information is captured in the server's schema
and the functions generated from the DT de�nitions. As a result of this kind
of architecture, imported OIDs are stored in the mediator server, but they
cannot be interpreted there. The user does not have direct access to the
imported OIDs, but only to their proxy type instances. The system uses
the imported OIDs only in operations executed in the server where they
originate from. The main bene�ts from this approach are a simpler OID
generation method, lower communication cost, and lower storage overhead
due to smaller OIDs.

The name service in AMOSII provides means for a mediator to locate

48 Data Integration by Derived Types

other AMOSII servers that contain the types to be imported. AMOSII also
provides an interface for providing information about the types to be im-
ported by other mediators. This however, is not possible when types are
imported from other types of data sources2. For this purpose, AMOSQL
is expanded with constructs for data source declaration and explicit type
importation:

IMPORT TYPE type_name@data_source

[KEYS (key_list)]

[FUNCTIONS (function_list)];

The KEYS clause de�nes a set of functions to be imported and used in
the generation of OIDs for the instances of the proxy types representing
data coming from non-OO sources. The FUNCTIONS clause can be used to
import additional functions. The IMPORT TYPE clause can also be used to
import types from AMOSII servers, when the user prefers to explicitly name
the functions to be imported. If we assume that Sport DB is an ODBC data
source, then the data source declaration and the importation of the type
Person would be speci�ed as following:

DECLARE odbc DATA SOURCE Sport_DB;

IMPORT TYPE Person@Sport_DB

KEYS (ssn integer)

FUNCTIONS (hobby string);

In a query retrieving instances of the type Person@Sport DB, the generated
calculus will instead use the proxy type P Person. When OIDs are to be
retrieved for instances of types imported from non-OO data sources, the
wrapper amends the query so that the key functions (attributes) are retrieved
instead. These are then used in the generation of the proxy instance OIDs, in
a manner similar to the usage of stringi�ed OIDs for proxy OID generation
as described above. For more detail the reader is referred to [23].

4.2.3 DT extent function and template

The extent function of a DT is a system-generated derived function. The
general form of the extent function is:

2While some types data of sources (e.g. databases) can provide the necessary informa-
tion for automatic type importation, there are data sources that do not have this capability,
making these language constructs necessary.

4.2 Querying derived types 49

CREATE FUNCTION dt() -> dt AS

SELECT genOID(s1, s2, ..., sn)

FROM sut1 s1 , sut2 s2 ... sutn sn

WHERE dt_compose_expression(s1, s2, ..., sn) AND

dt_validate_expression(s1, s2, ..., sn);

where \dt" is the name of the DT, sut1 : : : sutn are the supertypes from
the subtype of clause, and genOID<sut1;sut2;:::sutn>!dt is the OID genera-
tion function for the DT. Dt compose expression and dt validate expression
are copied from the DT de�nition. If we represent these expressions as un-
expanded derived functions, the calculus form of the body of the extent
function would be:

f r j
s1 = sut1nil!sut1() ^
s2 = sut2nil!sut2() ^
: : :

dt compose expressionsut1;sut2:::sutn!boolean(s1; s2; s3; : : : ; sn) ^
dt validate expressionsut1;sut2:::sutn!boolean(s1; s2; s3; : : : ; sn) ^
r = genOIDsut1;sut2:::sutn!dt(s1; s2; s3; : : : ; sn)g

Now we consider the problem of calculating the result of a function inher-
ited by a DT. To illustrate the steps needed for this we use the DT Emp and
the function nameperson!string from the example above, although the same
principles apply for any DT and any inherited function. The query on the
left below retrieves the names of all the employees; the calculus generated
for this query is given on the right:

select name(se)
from Emp se;

f n j
e = Emp() ^
p = coerceemp!person(e)
n = nameperson!string(p)g

The extent function Emp() produces the instances of the DT Emp. The
stored function name stores OIDs of type Person. Since the instances of the
DT Emp have OIDs di�erent from the OIDs of the corresponding instances
in the DT Person, they need to be coerced before applying the function
name de�ned over Person instances. Expanding the Emp() extent function
produces the following:

50 Data Integration by Derived Types

f n j
p = Personnil!person() ^
pr = PayRecnil!payrec() ^
emp compose expression<person;payrec>!boolean(p; pr) ^
emp validate expression<person;payrec>!boolean(p; pr) ^
p = coerceemp!person(e) ^
n = nameperson!string(p) ^
e = genOID<person;payrec>!emp(p; pr)g

Notice that this query can be simpli�ed by removing calls to the OID gen-
eration and coercion functions since the variable e is not used in the result.

In this simple example it is easy to spot and remove the unnecessary
predicates. In a more elaborate example with several nested DT extent and
coercion functions it would be di�cult to perform these removals. Therefore,
for this type of optimization we have developed an approach in which the
optimized query is generated by a set of transformations from the initial
query calculus representation. During these transformations, instead of a
complete extent function, an extent template (ET) is used. For each DT, an
ET is generated from the calculus representation of the extent function. ETs
have signatures and bodies. The signature contains a name, a list of substitute
variables (SVs), and list of types associated with the SVs. The SVs are the
variables used as arguments of the OID generation function in the extent
function (s1 : : : sn in the general form of the extent function above). There
is one SV for each supertype of the DT. The body is a predicate template
consisting of the extent function body without the OID generation predicate.

The term 'template' is used instead of 'function' because the ETs do not
satisfy all the formal requirements to be classi�ed as functions. Templates
are used only for function transformations and have only calculus represen-
tations that cannot be executed. Also, the template expansion rules di�er
from the rules used for function expansion. The following example shows the
ETs for the DTs Sporty Emp andJunior and Emp in Figure 4.1:

4.2 Querying derived types 51

signature:
ET sporty emp<P Person;emp> : px; e

body:
px = P Personnil!P Person() ^
e = ET emp<person;payrec> ^
sssn = socsecP Person!string(px) ^
essn = ssnperson!int(e) ^
essn = adjust ssnstring!int(sssn)

signature:
ET juniorsporty emp : se

body:
se = ET sporty emp<P Person;emp> ^
a1 = ageperson!int(se) ^
26 > a1

signature:
ET emp<person;payrec> : p; pr

body:
assn = ssnpayrec!int(pr) ^
assn = ssnperson!int(p) ^
0working0 = statusperson!string(p)

By convention, ET names begin with the ET pre�x. Each template name
is subscripted with the SV types, while the SVs are listed after the colon.
An expression with a variable as the left-hand side and an ET as a right-
hand side is named an ET declaration. An ET declaration is added to the
query for each variable declared with a DT. It asserts the type of a DT
variable, analogous to the extent function of the ordinary types. When a DT
is de�ned by subtyping from other DTs, its ET body can contain nested ET
declarations, as for ET sporty emp and ET junior above.

The ET body contains predicates to assert that a tuple of instances
of the supertypes composes an instance of the DT. Because the ETs are
not complete functions, a calculus expression containing ETs is considered
incomplete. In the calculus generation phase, the incomplete calculus ex-
pression containing ET declarations is transformed to a complete calculus
expression by a series of transformations performed until there are no more
ET declarations. In such a transformation, an ET declaration of a variable
is removed from the query if the variable can be type checked by being used

52 Data Integration by Derived Types

as a function argument of the same DT. Otherwise, ET expansion is per-
formed. During ET expansion, �rst the ET declaration is substituted by the
ET body. Then, each occurrence of the variable declared by the ET decla-
ration is substituted in the rest of the query predicates by a SV in the ET
signature having the same type or a supertype of the argument's type. An
ET expansion transforms a query over a DT into a query over its super-
types, thus avoiding OID generation and run-time coercion. Note that this
kind of variable substitution di�ers from the substitution in normal function
expansion where the argument and result variables in the function body are
substituted to match the parameters.

The ET expansion process is illustrated through the example query be-
low on the left over the schema in Figure 4.1. It is �rst translated to an
incomplete calculus expression given below on the right:

select salary(j), age(j)
from Junior j
where hobby(j)='golf';

f sal; a j
j = ET juniorSporty Emp ^
sal = salarypayrec!int(j) ^
a = ageperson!int(j) ^
0golf 0 = hobbyP Person!string(j)g

The ET declaration of the variable j is not removed because j is not used
as an argument or result of type Junior in any function in the query. There-
fore, this ET is expanded and all occurrences of j in the query body are
substituted by the template variable se in ET sporty emp. The expression
produced by this expansion (the �rst expression below) contains an ET dec-
laration ET sporty emp. Analogous to the variable j ET declaration, this
ET is also expanded yielding the second expression below:

f sal; a j
se = ET sporty emp<P Person;emp> ^
a1 = ageperson!int(se) ^
26 > a1 ^
sal = salarypayrec!int(se) ^
a = ageperson!int(se) ^
0golf 0 = hobbyP Person!string(se)g

(1)

4.2 Querying derived types 53

f sal; a j
px = P Personnil!P Person() ^
e = ET emp<person;payrec> ^
sssn = socsecP Person!string(px) ^
essn = ssnperson!int(e) ^
essn = adjust ssnstring!int(sssn) ^
a1 = ageperson!int(e) ^
26 > a1 ^
sal = salarypayrec!int(e) ^
a = ageperson!int(e) ^
0golf 0 = hobbyP Person!string(px)g

(2)

In the salary and age functions, the variable se of type Sporty Emp is
substituted by the SV e of type Emp through which these functions are in-
herited in Sporty Emp. By contrast, in the hobby function, se is substituted
by the variable px since this function is inherited through the P Person

type.

Finally, the ET declaration of the the variable e is expanded. After this
expansion the query expression does not contain any ET declarations:

f sal; a j
px = P Personnil!P Person() ^ (*)
assn = ssnperson!int(p) ^ (2)
assn = ssnpayrec!int(pr) ^
0working0 = statusperson!string(p) ^
sal = salarypayrec!int(pr) ^
sssn = socsecP Person!string(px) ^ (*)
essn = adjust ssnstring!int(sssn) ^
essn = ssnperson!int(p) ^ (2)
a1 = ageperson!int(p) ^ (1)
26 > a1 ^
a = ageperson!int(p) ^ (1)
0golf 0 = hobbyP Person!string(px)g (*)

The �rst nine predicates are results of ET declaration expansions. The last
three predicates originate in the original query. The calculus optimizer fur-
ther reduces the example expression by unifying pair-wise the predicates
indicated by the same number on the far right (the re-write rule is described
in [23]). In case (1) there is an overlap between the user-speci�ed query pred-

54 Data Integration by Derived Types

icates and the validation expression of DT Junior. In case (2) the de�nitions
of the DTs Sporty Emp and Emp overlap. The query calculus expression
now contains six system-inserted predicates. The result of the query opti-
mization is then processed by the query decomposition algorithm that, in
this example, combines the three predicates marked with (*) for execution
in the sport database. There, the local optimizer will further remove the
type check predicate (the �rst predicate) since it has the information needed
to deduce its redundancy. The queries produced by the decomposer in the
mediator and sent to the two servers are:

in EMPLOYEE DB
f sal; a; sssn j
assn = adjust ssnstring!int(sssn) ^
assn = ssnperson!int(p) ^
assn = ssnpayrec!int(pr) ^
0working0 = statusperson!string(p) ^
sal = salarypayrec!int(pr) ^
a = ageperson!int(p) ^ 26 > ag

in SPORT DB
f sssn j
sssn = socsecPerson!string(px) ^
0golf 0 = hobbyPerson!string(px)g

The queries are executed in each of the servers and then an equi-join over
sssn is performed in the site determined by the query decomposer, based on
the costs of execution and data transfer. The only data transferred between
the servers will be the set of social security numbers of the relevant persons,
thereby avoiding generation of OIDs for the queried types.

The transformations of the extent templates shown above reduce the
need for run-time coercing. In this example, where the query does not return
OIDs and is not evaluated over local functions storing DT OIDs, no coercion
or OID generation predicates are needed in the �nal query. By modeling
the extent generation by predicates these predicates are uni�ed with user
speci�ed selections that further reduce the processing.

4.2 Querying derived types 55

4.2.4 Generation of OIDs for DT instances

The preceding subsection demonstrated calculus generation and optimiza-
tion where the generation of OIDs for the DT instances can be avoided alto-
gether. This subsection briey describes how the DT instances are assigned
OIDs in queries requiring this. Let's consider the following set command:

set sport_bonus(e) = 1000 from emp e where salary(emp) > 1000;

Here, the system �rst retrieves OIDs of type Emp, and then stores them
with the bonus in the locally stored function sport bonus. The generation of
DT OIDs in this update query cannot be avoided.

An OID is generated for a DT instance if it is a part of the query result or
used as an argument to a foreign function. OID generation functions are im-
plemented as system-generated foreign functions taking as argument a tuple
of DT supertype OIDs and returning a DT OID. If for the given arguments
there is an already generated OID, it is returned without creating a new one.
The OID generation functions are de�ned by the system as resolvents of the
overloaded function genOID.

When, a calculus variable ranges over DT instances assigned an OID,
the extent template de�ning this variable is replaced with the expanded
extent function. The following example illustrates this process. The query
on the left returns an instance of the DT Manager. The expanded object
calculus generated for this query (shown on the right) contains two OID
generation predicates. When an OID for a DT instance is generated, the
OIDs of the corresponding instances in the derived supertypes need to be
generated too. Therefore, in the example, the system also inserts an OID
generation predicate for the DT Emp.

select m into :john
from manager m
where name(m) = 'John'

f m j
s = ssnperson!int(p) ^
s = ssnpayrec!int(pr) ^
0John0 = nameperson!string(p) ^
0Manager0 = positionpayrec!string(pr) ^
e = genOID<person;payrec>!emp(p; pr) ^
m = genOIDemp!manager(e) g

The into clause stores the query result into an AMOSQL variable.
To limit the OID generation to only the requested DT instances, the

OID generation predicates should appear late in the �nal query execution
plan after query conditions restricting the number of generated OIDs. The

56 Data Integration by Derived Types

optimizer is aware of this, and after performing the cost-based optimization
it moves the OID generating expressions to the end of the query execution
plan, preserving their relative order. Because the displaced expressions have
low cost and selectivity 1, this transformation does not a�ect the overall
query cost. This strategy is applicable to queries where OIDs are generated
for DT instances in the query result, as in the example above. When the
generated OIDs are used in some foreign functions, more elaborate interac-
tions between the calculus generator and the algebra generator are required.
This mechanism is not described in this thesis.

4.2.5 Processing of queries using locally stored functions

As shown above, instances of a DT from a data source can be assigned OIDs
and stored in local functions over the DT. These stored functions can be
later referenced in user queries. Then, because the data in the data source
can change without the control of the mediator, DT OIDs retrieved from
the locally stored functions need to be validated. Note, however, that no
action is needed when new instances are added in the data sources, since
these new instances must be �rst stored in a local function in the mediator
before any validation is needed. For example, if a person takes up gol�ng and
thus becomes a Sporty Emp, this person's OID need not be validated until
it is stored in a local function. Furthermore, the fact that the locally stored
functions are cheap to access, and most often store only portions of the DT
extent, can be used by the optimizer to produce plans operating only over
the DT instances stored in these functions instead of the entire DT extent.

To illustrate the processing of queries with locally stored functions over
DTs, we extend the example from section 3.4.2 with a predicate (underlined)
over the locally stored function sport bonus, de�ned over the instances of the
DT Sporty Emp:

select age(j), salary(j)
from Junior j
where hobby(j)='golf' and

sport bonus(j) > 100;

f a; sal j
j = ET juniorSporty Emp ^
b = sport bonussporty emp!int(j) ^ b > 100 ^
a = ageperson!int(j) ^
sal = salarypayrec!int(j) ^
0golf 0 = hobbyP Person!string(j)g

As in the previous example, �rst a reference to ET junior is inserted and
expanded. The resulting query contains an ET declaration of the variable se

4.2 Querying derived types 57

with ET sporty emp. Furthermore, the variable j is substituted by the vari-
able se throughout the query. At this point, since the variable se is used as
an argument of the function sport bonussporty emp!int, ET sporty emp is not
expanded, but instead removed. The variable se in this case iterates only
over the already materialized portion of the extent of Sporty Emp, stored
in sport bonussporty emp!int.

For a correct expression, the transformed query expression needs to be
extended with predicates to perform the coercion and validation of the in-
stance OIDs of Sporty Emp. This can be described as:

f a; sal j
b = sport bonussporty emp!int(se) ^ b > 100 ^
validate se ^
coerce se to p of person ^
a = ageperson!int(p) ^
a1 = ageperson!int(p) ^ 26 > a1 ^
coerce se to pr of payrec ^
sal = salarypayrec!int(pr) ^
coerce se to px of P Person ^
0golf 0 = hobbyP Person!string(px)g

(1)
(2)

(3)

(4)

The lines in bold give abstract descriptions of the operations added by the
system. The numbers on the far right are for reference purposes. The predi-
cates containing the variable a1 are inserted when the ET of type Junior is
expanded.

The validation function ensures that the corresponding instances of the
supertypes are still present and valid in the data sources, and that the vali-
dation condition evaluated over these instances still holds. Its general form
is:

CREATE FUNCTION validate_DT(DT obj) -> boolean AS

SELECT TRUE

FROM sut1 st1, sut2 st2, ...

WHERE st1 = coerce(obj) AND

validate_st1(st1) AND

st2 = coerce(obj) AND

validate_st2(st2) AND ...

validate_predicate;

The function coerces the argument to each of the corresponding super-

58 Data Integration by Derived Types

type instances, validates these instances, and then evaluates the validation
condition. For example, the validation function for the DT Emp in Figure
4.1 is as follows:

CREATE FUNCTION validate_emp(emp e) -> boolean

SELECT TRUE

FROM Person p, Payrec pr

WHERE p = coerce(e) AND status(e) = 'working' AND

pr = coerce(e);

The validation function of a proxy type performs a check whether the
corresponding foreign OID instance exists in the database it originates
from. This is implemented by a single type check predicate.

The coercion and validation in the example above require the following
11 predicates to be inserted into the query:

e = coercesporty emp!emp(se) ^ pi0 = coercesporty emp!P Person(se) ^(1)
p = coerceemp!person(e) ^ pr = coerceemp!payrec(e) ^
0working0 = statusperson!string(p) ^ pi0 = P Personnil!P Person() ^
e1 = coercesporty emp!emp(se) ^ p = coerceemp!person(e1) ^ (2)
e2 = coercesporty emp!emp(se) ^ pr = coerceemp!payrec(e2) ^ (3)
px = coercesporty emp!P Person(se) (4)

The numbers on the left match the predicate groups with the correspond-
ing task in the previous query. After inserting these predicates in the query,
the optimizer, by predicate uni�cation and type check removal, reduces the
number of system inserted predicates from 11 to 6. In addition, the query
optimizer removes one of the calls to the age function. The resulting query
is:

f a; sal j
b = sport bonussporty emp!int(se) ^ b > 100 ^
e = coercesporty emp!emp(se) ^
p = coerceemp!person(e) ^ 0working0 = statusperson!string(p) ^
a = ageperson!int(p) ^ 26 > a ^
pr = coerceemp!payrec(e) ^ sal = salarypayrec!int(pr) ^
px = coercesporty emp!P Person(se) ^
px = P Personnil!P Person() ^

0golf 0 = hobbyP Person!string(px)g

The query decomposer will divide the query predicates into two functions:
one executed in EMPLOY EE DB and the other in SPORT DB. The

4.2 Querying derived types 59

EMPLOY EE DB function contains all the predicates except the last two.
The function in SPORT DB is compiled from the last two predicates and
the typecheck is removed by the optimizer (the EMPLOY EE DB function
below is abbreviated for brevity):
in EMPLOYEE DB
f a; sal; px j
b = sport bonussporty emp!int(se) ^
. . .
px = coercesporty emp!P Person(se)g

in SPORT DB
f px j
0golf 0 = hobbyPerson!string(px)g

Notice that in this case OIDs are shipped from one AMOSII server to an-
other. Assuming that the function sport bonus in EMPLOY EE DB has
a smaller extent than the function hobby in SPORT DB, the decomposer
will generate a schedule in which the function on the left above is executed
�rst and the stored OIDs are shipped to SPORT DB. There, the function
on the right is executed, performing an equi-semi-join of the shipped OIDs
with the function hobby.

4.2.6 The Transformation algorithm

We conclude the discussion of the DT query transformations with an al-
gorithm for the described transformations. The input of the algorithm is
a conjunction of predicates and a list of result variables. The output is a
predicate in which all the DT extent functions have been transformed or
expanded. The algorithm assumes that the input predicate is a conjunction
of simple (non-derived) predicates and DT extent functions. Nevertheless,
it can easily be expanded to predicates containing nested disjunctions and
derived predicates. Also, single argument functions are assumed, to simplify
the presentation.

The following functions are assumed to be prede�ned: et body(dt) returns
the body of the extent template of dt; et sv(dt) returns the substitution
variables from the signature of the extent template of dt; type(var) returns
the type of a calculus variable; expand function substitutes a function call
with its already expanded function body; the '<'and '�' operators represent
subtype/supertype comparison; the [operator is used for appending con-

60 Data Integration by Derived Types

junctions of predicates and adding a predicate to a conjunction.

expand DT extent functions(P; resV ars;) � > PR

oidGen := resV ars;

PR := P;

while 9 J 2 PR : J � (X = dtnil!dt()) ^
dt() is extent func: of the DT dt

REST := PR� dtnil!dt();
if X 2 oidGen then do

/* generate OIDs for the supertypes */

oidGen := oidGen [et sv(dt);
PR := expand function(dtnil!dt()) [REST;

else
if 9 J 2 REST : J � (fat(X)) ^ at � dt ^ fat is stored func: then

PR := expand function(validateat(X)) [REST;

else
for each R 2 REST

if R � (Qbt(X)) then do /* R is over the variable X */

T := (Qbt(Y)) ^ Y 2 et sv(dt) ^ type(Y) � bt;

PR := PR [T

else
PR := PR [R;

end if
end for each
PR := PR [et bodytype!predicate(dt)

end if
end if

end while

The while loop is executed until there are no more DT extent functions
in the predicate. For a chosen DT extent function, the �rst if checks if the
DT variable belongs to the set of variables representing instances that are
to be assigned OIDs. If so, the DT extent function is substituted with its
body and the variables representing instances of the supertypes are added
to the list of types for which OIDs are generated. Else, if there is a predicate
containing a locally stored function over the DT dt in PR, then the validation
function is inserted and expanded; otherwise the predicate is traversed, all
occurrences of the variable X are substituted with the supertype variables,
and the template body is appended.

4.3 Database updates and coercing 61

4.3 Database updates and coercing

In the polymorphic data model of AMOSII, a stored function de�ned over
a type can store not only objects of that type, but also of all its subtypes.
If instances returned by an evaluation of a stored function are used as ar-
guments of another (consumer) function, they �rst need to be coerced. The
coercion starts at the most speci�c type and ends in the type used in the
consumer function argument declaration. Because of the polymorphism, the
instances returned by the producer function can be of di�erent most spe-
ci�c types, forcing the system to choose among di�erent coercing sequences
during runtime. This would require a complicated coercing expression that
would degrade query performance. The following example illustrates this
situation:

create function best_employee()->Emp e;

select m into :best_manager

from manager m

where bonus(m) = 1000000;

set best_employee() = :best_manager;

select name(best_employee());

In the example, �rst a function with no argument storing an instance of type
Emp is created. Then, a manager is selected into the variable :best manager.
The set command sets the value of the function best employee() to
:best manager. This operation is possible because the type Manager is a
subtype of the type Emp. Now, when the name of the employee stored in
best employee() is requested, the coercion function needs to determine the
most speci�c type of the stored instance (i.e. Emp or Manager) to be able
to de�ne the coercing process from that type to the type Person where the
function name is de�ned.

To resolve this problem, AMOSII asserts that the most speci�c type
of the stored instances is the same as the type speci�ed in the function's
de�nition. This is done by coercing the DTs' instances to the type in the
function's de�nition when they are stored in a function. Assuming higher
frequency of queries than updates, this enhances the performance of the
system. In the example above, when the set command is executed, the
instance stored in :best manager is coerced to its corresponding Emp instance
before it is stored.

62 Data Integration by Derived Types

Chapter 5

Integration of Overlapping

Data

The data and the meta-data (schema) in the data sources can have conict-
ing and overlapping portions. For example, two universities can each have
employee databases organized in di�erent ways with corresponding entities
bearing di�erent names. Also, there might exist employees employed by both
universities. The previous chapter described a framework for reconciliation
of naming, scaling and other object class heterogeneity. This chapter will con-
centrate on a framework for mediating a coherent view of databases in the
presence of object instance heterogeneity, where there is an overlap between
the sets of real-world entities represented by the data in the sources.

In particular, this chapter deals with managing OO mediator views de-
�ned as unions of real-world entities from other AMOSII systems and data
sources. Our mediating union views are modeled by a mechanism called inte-
gration union types (IUTs) based on OO queries and views. The IUTs model
unions of real-world concepts similar to [14, 17], but opposed to unions of
type extents from di�erent databases as in [81, 36]. IUTs have reconciliation
facilities that allow the user to specify how overlaps and conicts between
data from di�erent sources are resolved.

Users and applications using a mediator often need to associate some lo-
cally relevant data to the data integrated from the data sources. We call such
mediators, permitting local methods and attributes in the OO views, capac-
ity augmenting mediators. Capacity augmentation for the IUTs is achieved
by making the instances of the IUTs �rst-class objects with their own OIDs

63

64 Integration of Overlapping Data

that can be used in locally stored attributes and methods as ordinary OIDs.
The data sources are autonomous and can be updated outside the control

of the mediators. The system must therefore guarantee the consistency and
completeness of queries to the capacity augmented mediators in the presence
of updates to the data sources. Our framework for IUTs guarantees that
queries to the mediators are consistent and complete when the data sources
are updated without any need for a noti�cation mechanism. The queries over
the integrated views always return all answers that meet the query condition,
and only those answers that qualify, based on the current state of the data
in the data source, regardless of any state materialized in the mediator.

It is challenging to achieve acceptable performance of OO queries over
IUTs, in particular when the integrated extents have overlaps [14, 17].
Such overlaps require outer-join-based query processing techniques having
increased complexity compared to inner joins. Furthermore, queries involv-
ing both local and remote data should take advantage of the fast access to
local data to improve performance.

This chapter presents a combination of query processing strategies that
signi�cantly improve the performance of queries over IUTs in capacity aug-
mented mediators. The main principles of these strategies are:

1. The IUTs are internally represented as a set of auxiliary views, over
which the reconciliation is speci�ed by a set of overloaded auxiliary
methods (queries). This is supported by extending the overloading
mechanism to cover declaratively de�ned OO views.

2. The queries over the IUTs containing outer-joins and reconciliation
are translated into queries containing late bound calls of the auxiliary
methods, over the auxiliary views.

3. In order to permit further query rewrites, the late bound queries are
translated into disjunctive query expressions. These model the origi-
nal query by joins and anti-semi-joins that are easier to rewrite and
optimize.

4. Novel, type-aware query rewrite techniques remove inconsistent dis-
juncts and simplify the transformed disjunctive queries.

5. To e�ciently support consistent and complete query answers the sys-
tem uses a novel technique for selective OID generation and validation
of the OO view instances, based on declarative queries.

5.1 Integration union types 65

6. Finally, local main-memory indexes created on-the-y in mediators
eliminate repeated accesses to data sources.

Experimental results show that the combination of the above methods
has drastically better performance than a naive CORBA-like integration that
resolves late binding on an object instance level at run time. The perfor-
mance is drastically reduced even if only some of the combined optimization
methods are relaxed.

The chapter is organized as follows. Section 5.1 describes the OO views
framework and how is it used to model the user's view of the data in the
repositories. Section 5.2 describes the system support for the ITs and the
processing of the queries over the ITs. In section 5.3 some experimental
results are presented and discussed.

5.1 Integration union types

The integration union types (IUTs) provide a mechanism for de�ning OO
views capable of resolving semantic heterogeneity among meta-data and data
from multiple data sources. Informally, while the DTs represent restrictions
(selections) and intersections of extents of other types, the IUTs represent
reconciled unions of data in one or more AMOSII servers or data sources.

The description of the IUTs in this section is from a perspective of a
database administrator who models and de�nes a mediating view used later
by the users. From the users' perspective, there is no di�erence between
querying IUTs and ordinary types. The view de�nition process will be il-
lustrated by an example of a computer science department (CSD) formed
from the faculty members of two universities named A and B. The CSD
administration needs to set up a database of the faculty members of the new
department in terms of the databases of the two universities. The faculty
members of CSD can be employed by either one of the universities. There
are also faculty members employed by the both universities. The full-time
members of a department are assigned an o�ce in the department.

One possible system architecture for the data integration problem de-
scribed above is presented in Figure 5.1. In this �gure, the mediators and
translators are represented by rectangles; the ovals in the rectangles repre-
sent types, while the solid lines represent inheritance relationships between
the types. The two translators TA and TB provide a representation of the
university databases in the CDM of AMOSII. In TA, there is a type Faculty

66 Integration of Overlapping Data

locat ion

CSD_emp

Faculty

A_emp

CSD_Aemp

Ta

Uni A
 DB

Personnel

B_emp

CSD_Bemp

Tb

Uni B
 DB

socsec
age

salar y
name

pay
dept

ssn
name

Full_Time

cour ses
bonus

salar y
name
ssn

office

Figure 5.1: An Object-Oriented View for the Computer Science Department
Example

and in TB a type Personnel. A mediator is setup in the CSD to provide the
integrated view. Here, the types CSD A emp and CSD B emp are de�ned as
subtypes of the types in the translators:

create derived type CSD_A_emp

subtype of Faculty@Ta

where dept(A_emp) = ``CSD'';

create derived type CSD_B_emp

subtype of Personnel@Tb

where location(B_emp) = ``G house'';

The system imports the external types, looks up the functions de�ned over

5.1 Integration union types 67

them in the originating mediators, and de�nes local proxy types and func-
tions with the same signature, but no implementation. In this example, the
extents of the DTs are speci�ed as subsets of the extents of their supertypes
by using simple selections, but in general the subtyping condition can also
be joins.

The IUT CSD emp represents all the employees of the CSD. It is de�ned
over the constituent types CSD A emp and CSD B emp. CSD emp contains
one instance for each employee, regardless of whether it appears in one of
the constituent types or in both. There are two kinds of functions de�ned
over CSD emp. The functions on the left of the type oval in Figure 5.1 are
derived from the functions de�ned in the constituent types. These reconciled
functions have more than one overloaded implementation, one for each pos-
sible combination of constituent types instances, matching an IUT instance.
The functions on the right are locally stored functions.

The data de�nition facilities of AMOSQL include constructs for de�ning
IUTs as described above. The type CSD emp is de�ned as follows:

CREATE INTEGRATION TYPE csd_emp

KEYS ssn INTEGER;

SUPERTYPE OF

csd_A_emp ae: ssn = ssn(ae);

csd_B_emp be: ssn = id_to_ssn(id(be));

FUNCTIONS

CASE ae

name = name(ae);

salary = pay(ae);

CASE be

name = name(be);

salary = salary(be);

CASE ae, be

salary = pay(ae) + salary(be);

PROPERTIES

courses BAG OF STRING;

bonus integer;

END;

The IUT csd emp de�nition reveals some details not apparent from the
graphical representation of the integration scenario. The �rst clause de�nes
a set of keys and their types. In the example, the key is single valued of

68 Integration of Overlapping Data

type integer. For each of the constituent subtypes, a key expression is given
to calculate the value of the key from the instances of this subtype. The
instances of di�erent constituent types having the same key values will map
into a single IUT instance. The key expressions can contain both local and
remote functions.

The FUNCTIONS clause de�nes the reconciled functions of CSD emp, de-
rived from the values of the functions over the constituent types. For di�erent
subsets of the constituent types, a reconciled function of an IUT can have
di�erent implementations speci�ed in the CASE clauses. For example, the
de�nition of CSD emp speci�es that the salary function is calculated as the
salary of the faculty member at the university to which it belongs. In the
case when she is employed by both universities, the salary is the sum of the
two salaries. When the same function is de�ned for more than one case, the
most speci�c case applies. If no single most speci�c case exists (e.g. name),
the system assumes \any" semantics and chooses one based on a heuristic
to improve the performance of the queries over these functions.

Finally, the PROPERTIES clause de�nes the two stored functions over the
IUT CSD emp. At any time after the de�nition of an IUT, the user can
add stored or derived functions. The derived functions can be based on
any functions already de�ned in the mediator, regardless whether they are
implemented locally or in some other AMOSII server.

The IUTs can be subtyped by DTs as any other types. In the example in
Figure 5.1, the type Full Time representing the full time employees is de�ned
as a subtype of the type CSD emp. The locally stored function o�ce stores
the information about the o�ces of the full time CSD employees.

5.2 Modeling and querying the integration union

types

Every instance of an IUT corresponds to either an instance in one of the two
constituent types, or to one instance in both of them. Therefore, the extent
of an IUT can be divided into three subsets (Figure 5.2a). Two sets contain
the IUT instances corresponding to an instance in a single constituent type.
The third set contains the IUT instances corresponding to instances in both
constituent types. Since the extent subsets can be de�ned by declarative
queries, we can de�ne each of them as a DT, named an auxiliary type (AT).
The three ATs generated for each IUT form an inheritance hierarchy as

5.2 Modeling and querying the integration union types 69

shown in Figure 5.2b.

A function f de�ned over an IUT can have a di�erent implementation for
each of these three subsets (i.e. for each CASE clause). It can be thus de�ned
for the whole extent of the IUT by being overloaded on the ATs. A call to
f for an IUT will then result in a late bound function call, to be discussed
below.

CSD_emp

A_emp B_emp

CSD_Aemp

Only_A A_and_B Only_B

a)

b)

CSD_Bemp

CSD_Aemp extent CSD_Bemp extent

A and B only in Bonly in A

Figure 5.2: IUT implementation by ATs

The ATs are generated by the system and are not visible to the user.
Each AT corresponds to a CASE clause in the IUT de�nition. By using the
speci�cations from the KEYS clause of the IUT de�nition, two functions are
generated for each constituent type. The overloaded function keyCT!key types

calculates the key of an instance of a constituent type CT . The function Al-
lkeysCT() returns all the keys for the type CT . With these functions de�ned,
the AT de�nitions for the example are:

70 Integration of Overlapping Data

create derived type Only_A

subtype of CSD_Aemp ae

where key(ae) not in AllkeysCSD_Bemp();

create derived type Only_B

subtype of CSD_Bemp be

where key(be) not in AllKeysCSD_Aemp();

create derived type A_and_B

subtype of CSD_Aemp ae, CSD_Bemp be

where key(ae) = key(be);

The �rst two subtypes represent keys based on anti-semi-joins of the
integrated types. The third is a join of the integrated types.

Next, the system creates the IUT and makes the ATs its subtypes. The
overloaded function resolvents are then de�ned over the IUT and each of the
ATs. The AT resolvents are generated from the FUNCTIONS clause in the
IUT de�nition. The resolvent for the IUT itself is de�ned as false since all
the instances of the IUT belong to one of the ATs, giving the optimizer a
hint to reduce the execution plans.

The extents of the ATs represent mutually exclusive sets of real world
entities. The union of these extents forms the extent of the IUT which there-
fore contains one instance for each entity. From the user's point of view, the
only di�erence between the IUTs and the ordinary types is that no objects
can be explicitly created in the IUTs. The extent of the IUTs are completely
derived from the extents of the ATs.

5.2.1 Late binding over derived types

To process queries over the system-generated OO views having overloaded
functions, we developed a novel late binding mechanism for e�cient handling
of declarative view de�nitions in a multiple AMOSII servers environment. A
late bound function call f(a) is �rst translated into a calculus late binding
operator (LBO) whose �rst argument is a tuple of the possible resolvents of
f sorted with the least speci�c type �rst, and the second argument is a. For
functions used when an IUT is modeled by ATs, the late binding calculus
expression is:

LBO(< fiut; fat1; :::; fatn >; a)

5.2 Modeling and querying the integration union types 71

where the ATs at1 : : : atn are subtypes of iut. Based on the types of the
argument a, LBO chooses the most-speci�c resolvent, executes it over the
argument, and returns the result(s).

In our previous work, we have developed a corresponding algebraic late
binding operator for the ordinary types, the Dynamic Type Resolver (DTR)
[26]. DTR, as most late binding mechanisms described in the literature (e.g.
[24]), processes one tuple at a time and selects the query plan of a resol-
vent based on the type of a. This mode of processing is not suitable for
the IUT queries for the following reasons. First, because the resolvents are
functions de�ned over data in multiple sources, processing a tuple at a time
results in calling remote functions in an RPC manner. Second, it requires
the instances to have assigned OIDs, leading to OID generation for all the
instances processed in a query, and not only for the ones requested by the
user. Furthermore, such a late binding mechanism assumes that the type
information of the argument object is explicitly stored with its OID. By
contrast, the types in the IUT are de�ned implicitly by queries, and IUT
instances can obtain and drop a type dynamically and outside the control
of the mediator, based on the state of the data in the sources. Therefore,
the use of late binding as above leads into partitioning the query into three
separate subqueries: the resolvent function bodies (i.e. the expressions in the
CASE clauses), the AT subtyping conditions, and the predicate in the query.
This separation will prohibit query rewrite techniques from eliminating com-
mon subexpressions and other query reduction methods as described in [42]
and [23].

In order to overcome these limitations, the LBO is translated into an
equivalent disjunctive object calculus predicate, which is then combined and
optimized with the rest of the query. AMOSII supports multimethods and
overloading on all function arguments and the translation algorithm can
handle this too. Since the focus of this chapter is the use of these concepts
for processing of queries over the IUTs, here we only present a simpli�ed
version of the algorithm that handles overloading on a single argument.

In the translated disjunctive calculus expression every branch (disjunct)
is a conjunction of a typecheck for an AT and a call to the overloaded function
f corresponding to the AT. The translation algorithm is:

generate lb calculus(resolvents) � > disjunctive predicate

result = fres jg; /*empty disjunction predicate */

while resolvents != � do

72 Integration of Overlapping Data

head = first(resolvents);

/* the argument type for the head function */

th = arg type(head);

if 6 9f 2 resolvents j subtype of(argtype(f); th) then
result = append(result, _farg = th() ^ res = fth(arg)g);

else
wset = ftp j subtype of(tp; th) ^

6 9f 2 resolvents j subtype of(tp; argtype(f))g
for each tp in wset

result = append(result,

_farg = Shallow tp(), res = fth(arg)g));
end if
resolvents = resolvents - head;

end while
return result;

end;

First, append, and � perform the usual set operations, and arg type re-
turns the argument type of a function. The algorithm traverses the sorted
list of resolvents. If the type hierarchy rooted in the argument type of a
resolvent does not intersect with the hierarchies of the argument types of
some resolvents in the rest of the list, then a conjunction of an ordinary
(deep) typecheck and the resolvent call is added as a new disjunct to the
result. Otherwise the new disjunct will instead contain a shallow typecheck.
Notice that for IUTs there will be no shallow typechecks, because there are
never any subtypes of the system-generated ATs. Since the type checks are
mutually exclusive, only one resolvent will be evaluated.

To illustrate the translation process we examine the translation of the
LBO for the function salary over the IUT CSD emp:

LBO(< salarycsd emp!int; salaryOnly A!int;

salaryOnly B!int; salaryA and B!int >; arg)

is translated into:

f s j
(arg = only Anil!only a() ^ s = salaryonly A(arg)) _
(arg = only Bnil!only b() ^ s = salaryonly B(arg)) _
(arg = A and Bnil!a and b() ^ s = salarya and b(arg))g

5.2 Modeling and querying the integration union types 73

The expression is a disjunction of only three disjuncts. No disjunct is gener-
ated for the �rst resolvent salarycsd emp!int since it is de�ned as false.

After the query normalization, the extent functions of the ATs are ex-
panded by substituting them with their bodies containing the expressions
from the CASE clauses of the IUT de�nition. These expressions in turn ref-
erence the extent functions of the constituent types, which are DTs and
the expansion continues until no DT extent functions are present. This pro-
cess makes visible to the query decomposer i) the query selections de�ned
by the user, ii) the conditions in the IUT, and iii) the DT de�nitions. The
query decomposer combines the predicates, divides them into groups of pred-
icates executable at a single mediator, translator or data source, and then
schedules their execution. As opposed to dealing with parametric queries
over multiple databases, as would have been the case with a tuple-at-the-
time implementation of the late binding, the strategy ships and processes
data among the mediators, translators, and data sources in bulks containing
many tuples. The size of a bulk is determined by the query optimizer to max-
imize the network and resource utilization. The results in the next section
demonstrate how the bulk-processing allows for query processing strategies
with substantially better performance than the instance-at-the-time strate-
gies. Furthermore, this strategy allows the optimizer to detect and remove
unnecessary OID generations for the instances not in the query result.

5.2.2 Normalization of queries over the integration union

types

If there are disjunctive predicates, we need to normalize the query to disjunc-
tive normal form in order to separate the subqueries for the individual data
sources. One drawback of the query normalization is that it duplicates pred-
icates in several di�erent disjuncts of the normalized disjunctive predicate.
To avoid some of the unnecessary duplication, we use a query normaliza-
tion which is aware of the multidatabase environment. The normalization
algorithm is based on the principle that as many as possible of the normal-
ization decisions should be delegated to the sites where the predicates are
executed. Therefore the query decomposer analyzes the elements of a dis-
junctive predicate and groups together the disjuncts executed in the same
mediator, translator, or data source capable of processing disjunctions.

Another source of disjunctions in queries over IUTs are the late bound
functions from above, which are translated to disjunctions. A full disjunctive

74 Integration of Overlapping Data

normalization would then produce a cross product of the disjuncts in all the
late bound IUT functions. For example the query:

select salary(e), ssn(e) from csd_emp e;

produces the calculus expression:

f sal; ssn j
(arg = only Anil!only a() ^ sal = salaryonly A(arg)) _
(arg = only Bnil!only b() ^ sal = salaryonly B(arg)) _
(arg = A and Bnil!a and b() ^ sal = salarya and b(arg)) ^

(arg = only Anil!only a() ^ ssn = ssnonly A(arg)) _
(arg = only Bnil!only b() ^ ssn = ssnonly B(arg)) _
(arg = A and Bnil!a and b() ^ ssn = salarya and b(arg))g

The expression is then normalized into 9 disjuncts, one for each combina-
tion of the disjuncts in the two disjunctive predicates above. This expression
shows the �rst two disjuncts:
f sal; ssn j
(arg = only Anil!only a() ^ sal = salaryonly A(arg) ^
arg = only Anil!only a() ^ ssn = ssnonly A(arg)) _

(arg = only Bnil!only b() ^ sal = salaryonly B(arg) ^
arg = only Anil!only a() ^ ssn = ssnonly a(arg)) _ : : :g
We can see that each disjunct contains two typecheck predicates for the

variable arg. This will also be the case in the remaining six disjuncts not
shown above. Based on the presence of more than one typecheck over the
same variable in a conjunctive predicate and on the properties of the type hi-
erarchy, the disjuncts generated by the query normalization can be rewritten
into a simpler form or eliminated.

Since an object can have only one most speci�c type, two typecheck
predicates for a single variable of two unrelated types are always rewritten
to false, and the disjunct is removed. When the types are related, depending
on whether the typechecks are deep or shallow, the result of the rewrite is
either false or the more speci�c typecheck predicate.

These rewrite rules eliminate in the example above all six disjuncts in
which the typecheck is not performed over the same type (they remove the
second of the two disjuncts shown above). In the remaining three it leaves
just a single typecheck predicate transforming the query into the following

5.2 Modeling and querying the integration union types 75

predicate which will be shown to be signi�cantly faster than the original
query:
f sal; ssn j
(arg = only anil!only a() ^
sal = salaryonly a(arg) ^
ssn = ssnonly a(arg)) _

(arg = only bnil!only b() ^
sal = salaryonly b(arg) ^
ssn = ssnonly b(arg)) _

(arg = a and bnil!a and b() ^
sal = salarya and b(arg) ^
ssn = ssna and b(arg))g

5.2.3 Managing OIDs for the IUTs

The IUT instances are assigned OIDs when used in locally stored functions.
For example, a query giving a bonus of $1000 to all employees in the depart-
ment with salary lower than $1000 can be speci�ed as:

set bonus(csde) = 1000 from CSD_emp csde

where salary(csde) < 1000;

In order to manipulate the IUT OIDs we have generalized the framework
developed for handling OIDs of DT instances presented in the previous chap-
ter to the IUTs. As noted previously, the DT functionality is modeled with
three functions: the OID generation function, the extent function, and the
validation function. Next we describe how the system generates each of these
functions for the IUTs.

Since an IUT is a supertype of the corresponding ATs, every AT instance
is also an instance of the IUT. Each distinct real-world entity is always
represented by an instance in exactly one of the ATs. Therefore, the extent
of an IUT is a non-overlapping union of the extents of the ATs and the
extent function of an IUT is a disjunction of the extent functions of its ATs.

The OID generation function assigns an OID to a DT instance. In the
case of DTs, the OID generation function is called by the extent function.
Since the extent function of an IUT only references the extent functions of
its ATs, there is no need for OID generation functions for IUTs. The IUT

76 Integration of Overlapping Data

instances are thus assigned OIDs by the OID generation functions of the
ATs.

If the ATs were treated as ordinary DTs, the assignment of OIDs to the
AT instances would be made independently of the other ATs of an IUT. On
the other hand, due to the nature of the conditions used in the ATs de�nition,
instances 'drift' from one AT to another. For example, let's assume that John
Doe is an employee of University A, and also a member of the CSD in the
example above. When his bonus is assigned, the system will generate an OID
for the instance representing John Doe in the AT Only A and use this OID in
the stored function bonus to relate John with his bonus. If John now gets an
appointment at University B, he still belongs to the CSD emp IUT, but an
instance representing him appears in the type A and B, while the instance
in the type Only A is removed. If the newly created instance in A and B
has a di�erent OID from the old instance in Only A, then John cannot be
matched with his bonus stored in the database using the old OID.

The example shows that the OID assignment for instances of the ATs
must be coordinated, so the instances representing the same real-world en-
tity can move from one AT to another, while preserving their identity. An
instance is related to a real world entity through its key, so to solve the
problem, the OID assignments of the ATs are controlled by a function stor-
ing the generated OIDs along with the keys. When a new AT OID is to be
generated, the OID generation function �rst checks if there is a stored OID
with a matching key. If so, it adjusts the type of the stored OID and returns
it as result. Otherwise, it generates a new OID. We notice here that, because
the selections are pushed to the data sources and due to the OID generation
removal mechanism described in chapter 4, only a subset of the whole IUT
extent is assigned OIDs in queries containing selections. Very often, queries
require function values and not the OIDs of the queried types. In these cases
no OIDs will be generated at all.

In chapter 3 an example was presented on how the typecheck predicate
of a variable can be removed from a query when the variable is used in
a predicate with a locally stored function of that type. This mechanism,
described in greater detail in [52], is extended to apply over the IUTs. An
advantage of removing the typecheck is that the costly generation of the IUT
extent is not needed, but instead only the already generated OIDs stored in
the local function are used. However, when dealing with stored DT or IUT
instances, we need to make sure that they are still valid, i.e. that the data
sources still contain the corresponding instances.

5.3 Performance measurements 77

A straightforward solution to the problem of validating an IUT instance
is to test which of the three IUT ATs it belongs to. It is, however, su�cient to
validate an IUT instance by testing the existence of a corresponding instance
having the same key in one of the two integrated sources; the intersection
AT need not be tested. This condition can be expressed by a two-branch
disjunctive predicate instead of a three-branch one in the straightforward
solution. The gain is due to the fact that we are not interested in exactly
which AT an IUT instance belongs to, but if it belongs to any of the ATs. As
an example we present the calculus representation of the validation function
body for the CSD emp type from the example above:

validatecsd emp(e)
(ssn = skeycsd emp!integer(e) ^
ssn = ssncsd a emp!integer(csda)) _

(ssn = skeycsd emp!integer(e) ^
id = idcsd b emp!string(csdb) ^
ssn = id to ssnstring!integer(id))

The variables csdb and csda are local variables.

The validation method described above su�ces when a query contains
only locally stored functions over an IUT, while not containing late bound
functions over the same IUT. When a query contains both locally stored and
late bound functions, the system needs to determine which AT an IUT in-
stance belongs to, in order to execute the right resolvent. Since an instance
can drift between the ATs, the system must determine the AT member-
ship for the IUT instances at query time. In order to do this, a disjunctive
predicate similar to the one described earlier in this section is used. The
only di�erence is that here the typecheck predicates are replaced with the
corresponding validation predicates.

5.3 Performance measurements

The AMOSII system with the mediation features described in this thesis
is implemented on Windows NT. We will present an overview of some ex-
perimental results obtained from running the system over 10Mb Ethernet
and ISDN networks. The results demonstrate how the techniques presented
above drastically reduce the response times.

78 Integration of Overlapping Data

The experiments are performed for a scenario similar to the running
example above. We used two Compaq Professional Workstation 5000 with
200MHz Pentium processors and 64 MB memory, connected through a 10Mb
Ethernet network. We also performed the same tests using a 64kb ISDN
connection over the public telephone network in Sweden.

One of the workstations hosted an ODBC data source and an associated
AMOSII system as a translator. For the experiments we used Microsoft
Access as a relational data source because of its availability, but the results
apply to any other ODBC data source. On the second workstation, another
AMOSII server represented another data source. To be able to quantify the
di�erence in the times between the processing in AMOSII and in the ODBC
data source, the data was here stored directly in the AMOSII's main-memory
database. The second workstation also hosted the mediator system where the
queries were issued. The three AMOSII servers just described will be referred
to in the rest of this section as Ta (the ODBC translator), Tb (the AMOSII
storing data locally) and the mediator for the AMOSII server where the
queries are issued.

In the experiments, we scaled simultaneously the tables Faculty in the
ODBC data source and the extent of the type Personnel stored in Tb from
1000 to 30000 tuples. From these tuples, 10% are selected to be members of
each of the types A emp and B emp (i.e. members of the CSD), which are
the constituent types for the integration type CSD emp. Between these two
types, we assume that half of the instances are overlapping (represent the
same persons), meaning that the size of the extent of the type CSD emp is
15% of the cardinality of the table. For example, when the size of both the
Faculty table in the ODBC source and the extent of the type Personnel in
Tb is 30000, there are 3000 instances of each selected as working in the CSD
department by the conditions in the de�nition of the derived types A emp
and B emp. From each of these two sets of 3000 instances, 1500 appear only
in one of these types and 1500 appear in the both constituent types. The
extent of integrated type CSD emp therefore has 4500 instances.

The experiments are based on queries over the IUT CSD emp. The
queries are simple in order to analyze certain features of the system. Also, we
have chosen queries that are the building blocks of most user-speci�ed queries
over the IUTs. More speci�cally the test cases can be divided into i) queries
over reconciled IUT functions, and ii) queries calling locally stored functions
over the IUT. In the former group we �rst investigate queries with no selec-
tion, exact match, and range selections. Then we present results when more

5.3 Performance measurements 79

than one function is used in the same query, to investigate the performance
impact of the type-aware rewrites. Queries with locally stored functions are
investigated in one example. We conclude the tests by comparing the times
for some queries over the 10Mb network with the times obtained when the
same queries were executed over an ISDN network. Notice that the y-axis
in all the graphs represents response time in seconds and the x-axis repre-
sents the number of tuples in the test databases. All the measurements are
performed with preoptimized queries.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5000 10000 15000 20000 25000 30000

DTR
Single instance

No subq. mat.
Subq. mat.

(a) DTR strategy

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000

Single instance
No subq. mat.

Subq. mat.

(b) Other strategies

Figure 5.3: Query: select salary(e) from csd emp e;

Figure 5.3 shows the execution time of a query retrieving the salaries of
the CSD employees. We examine 4 di�erent strategies. The graph on the
left shows that the \DTR" strategy using pure late binding on an instance
level is by orders of magnitude worse that the remaining three strategies.
This strategy, �rst generates OIDs for all instances in the extent of the
type CSD emp. Then, DTR is executed over each of the OIDs, choosing
the resolvent. Finally, the chosen resolvent is executed. The resolvent body
also contains predicates to con�rm the right AT of the argument, which
causes the typecheck to be executed once again before the function value is
calculated.

The left part of Table 1 shows the percentage of the time spent in the
three cooperating AMOSII servers, and the network time for each of the

80 Integration of Overlapping Data

Time distribution
Mediator Ta Tb Net.

DTR 23% 69% 1% 7%

Single instance 5% 80% 3% 12%

No subq. mat. 3% 91% 3% 3%

Subq. mat. 27% 22% 32% 19%

Table 5.1: Query execution time distribution for the 4 evaluation strategies

examined strategies. For the DTR strategy, the biggest portion of the query
execution time is spent in Ta for accessing the relational data source. Table
5.2 presents the number of ODBC calls issued by the data source Ta for the
di�erent strategies. The DTR strategy issues by far the most of such calls.
The number of calls is a linear function of the data sizes in the sources, but
as the data volume grows, each of these calls demands more time, explaining
the hyper-linear growth in the query execution time. We can also note that
the DTR strategy spends 23% of the time in the mediator. This is due
to OID generation, function resolution, and execution of the protocol for
shipping instances among di�erent AMOSII servers. The OID generation for
IUT instances requires that OIDs are generated for the constituent types,
which in turn triggers proxy object generation for the instances imported
from the translators. Since the DTR operator is executed over each instance
individually, a large amount of computation is involved.

The lower part of the graph in Figure 5.3a is enlarged in Figure 5.3b.
Here, we can see the remaining 3 query processing strategies. The uppermost
curve represents a strategy in which the late bound function call is substi-
tuted by a disjunctive predicate, but the data shipment is still one instance
at the time. This type of nested loop join over a network is named bind-join
in [36]. Query rewrites eliminate OID generation, duplicate condition eval-
uations, and run-time function resolution. Also, the number of ODBC calls
in Ta is reduced by two thirds. All of this reduces the query execution time
by nearly 10 times. Nevertheless, the ODBC calls are still the main factor
in the query execution cost. We can also note that the relative network cost
has risen to 12%.

The �rst step into designing a better strategy is to pass the instances in
bulks instead of an instance-at-a-time protocol. While this strategy, due to
the fast networks used, does not radically improve the result (the next curve
in the graph in Figure 5.3b), it does lower the relative network cost to 3%

5.3 Performance measurements 81

and makes the �nal query strategy possible.

ODBC requests / DB size
1000 t. 5000 t. 10000 t. 30000 t.

DTR 251 1251 3001 9017

Single instance 102 502 1002 3002

No subq. mat. 102 502 1002 3002

Subq. mat. 3 3 3 6

Table 5.2: Number of data source accesses for the 4 evaluation strategies

The �nal strategy, which again reduces the response time by a couple of
orders of magnitude, is based on the observations that most of the ODBC
queries are issued to compute the extents of the ATs which involve anti-
semi-joins translated into nested subqueries inside a not exists operator. In
order to avoid the cost of repeated data access using parametric queries, we
execute a single non-parametric query and materialize an index over all the
parameter values in Ta. In this example the index contains the ssn for the
10% employees of University A who are also in CSD. In this way, we reduce
the ODBC requests to one per bulk sent from the mediator to the translator.
Being a main-memory based database, AMOSII facilitates a very fast index
build-up for data sizes which can �t into the memory of the translator.
For this type of query where the materialized index is used repeatedly, this
strategy is clearly advantageous. We can also see that the distribution of
the query execution time in the last strategy is balanced evenly among the
participating AMOSII servers and the network. Note that there is one access
to the data source per disjunction branch of the query. Therefore, the skew
in the data distribution will not a�ect the query execution times.

The cost of executing a non-parametric query and building an index
on-the-y has to be compared with the cost of completing the query with-
out the index. In the next experiment, we executed a query containing
an exact match selection using the same 4 strategies. The DTR strat-
egy is again by far the worst, as shown in Figure 5.4a. On the other
hand, the di�erences among the other strategies is not as large as in
the previous experiment (Figure 5.4b). Also, here the strategy without
index materialization for the nested subquery performs the best. This
is due to the fact that the non-parameterized query used to compute

82 Integration of Overlapping Data

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000

DTR
Single instance
No subq. mat.

Subq. mat.

(a) DTR strategy

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000

Single instance
No subq. mat.

Subq. mat.

(b) Other strategies

Figure 5.4: Query: select salary(e) from csd emp e where ssn(e) = 1000;

the index has a larger cost than the parameterized query retrieving only
the data matching a particular input tuple. In general the index mate-
rialization is favorable when: size(input) � cost(parameterized query) >

cost(non parameterized query) + cost(index generation).

In the next experiment we examine queries with non-equality selections,
e.g. range selections. While the DTR strategy is able to apply the selections
encapsulated in the DT condition, it is not e�cient when the query contains
non-equality conditions, since such conditions are then not pushed into the
resolvents. In Figure 5.5a the execution times of a query containing a range
selection is compared with the execution times of a query without any se-
lection. It can be seen that the cost is about equal. In Figure 5.5b, on the
other hand, there is clear di�erence between the execution times of the same
queries using disjunctive predicates to model the late binding. This is due to
the fact that the selection is pushed all the way down to the data sources.

Next, we measure the execution time for queries containing locally stored
functions over an IUT. In this experiment, we created a locally stored func-
tion o�ce over the type CSD emp storing only 15 rows, and then executed a
query to retrieve the o�ces stored in this function. Figure 5.6a compares the
execution times of a naive strategy where the system generates the OIDs for
the type extent and then applies the locally stored function with the strat-
egy where the IUT instances of interest are retrieved from the locally stored
function and then validated as described previously. Since the cardinality of

5.3 Performance measurements 83

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5000 10000 15000 20000 25000 30000

No selection
Range selection

(a) DTR strategies

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000

No selection
Range selection

(b) disjunctive pred. with subquery
materialization strategies

Figure 5.5: Selecting salary for the CSD employees with and without range
selection (salary(e) > 2000)

a locally stored function is always smaller than the cardinality of the whole
type extent, and the validation of an already generated OID is cheaper than
a new OID generation, the validation strategy always outperforms the naive
strategy.

The graph in Figure 5.6b demonstrates the speedup obtained by type-
check removal using type-aware rewrites described in the previous section.
The query is normalized to a disjunction with 9 branches, 6 of which are
removed by the optimizer. The execution times on the other hand show
greater than linear speedup and scalability as could be expected from the
analysis of the number of the disjunctive branches. This is due to the fact
that the 3 remaining branches after the query transformation are single type
queries with a selection condition. The rest of the 6 queries are e�ectively
join queries over di�erent ATs. In these cases, the AT extent functions and
the extent functions of the constituent types are expanded for both the ATs
appearing in the typecheck predicates. The optimizer cannot infer on the ba-
sis of these predicates that the whole disjunct will not produce any results.
The resulting query execution strategy cannot therefore take advantage of
the selections, and ships data proportional to the size of the extents of the
constituent types. This leads to execution times with linear growth with the
size of the extents, as opposed to the much slower growth of the execution

84 Integration of Overlapping Data

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

with typecheck (extent materialization)
typechek removed

(a) select o�ce(e) from csd emp e;

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

without multiple typecheck removal
multiple typecheck removal

(b) select salary(e), name(e) from
csd emp e where name(e)="John";

Figure 5.6: a) Queries with locally materialized functions over IUTs. b)
Queries calling several derived functions over IUTs.

time when the rewrite rule for removal of the typechecks is applied.
Finally, we briey compare the execution times obtained over a 10Mb

network with the results of the experiments using an ISDN connection over
a public telephone network. Keeping all the parameters of the testing the
same, the di�erence in the times can be attributed to the properties of the
networks. The graph in Figure 5.7a shows that when the number of the
manipulated tuples is low, the results are proportional. However, when the
amount of shipped tuples increases, as with the query without selection
used in Figure 5.7b, the execution times over ISDN rise faster than over
the 10Mb network. Closer examination revealed that ISDN execution times
follow the number of data bulks sent over the network. We can conclude
that the unproportional increase is due to the fact that the message setup
time compared to the transmission time per unit is higher in ISDN networks
than it is in the 10Mb Ethernet. The optimizer should probe the network
and determine the bulking factor according to these parameters. This will
be one of the topics of future investigation.

5.3 Performance measurements 85

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000

exact match ISDN
exact match 10Mb

(a) Exact match selection

0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000 30000

no selection ISDN
no selection 10MB

(b) No selection

Figure 5.7: Comparison of execution times over a 10Mb network with an
ISDN network.

86 Integration of Overlapping Data

Chapter 6

Query Decomposition and

Execution

This chapter describes the second functional unit of the data integration
facilities in AMOSII: the multidatabase query processor. It consists of two
units:

� Query decomposer

� Query execution run-time support

The goal of the query decomposition is, given a query over multiple data
sources, to search the space of possible execution schedules and choose a
\reasonably" cheap one. The run-time support provides protocols for e�-
cient execution of the schedules produced by the query decomposer. The
query decomposer and the query run-time support are closely related to
each other. The query decomposition estimates query schedule costs based
on the properties of the applied execution algorithms. The run-time support
takes as input an algebra plan generated by the query decomposer.

As noted earlier, AMOSII is a distributed mediator system. This implies
a framework that allows cooperation of a number of distinct AMOSII servers
on a query processor level. While distribution is present in any mediation
framework due to the distribution of the data sources, the distributed media-
tor framework in AMOSII introduces a higher level of interaction among the
AMOSII servers. In other words, an AMOSII server does not treat another
AMOSII server as just another data source. More speci�cally, if we compare

87

88 Query Decomposition and Execution

the interaction between an AMOSII system and a wrapper (and through it
with a data source), and the interaction between two AMOSII servers, there
are two major di�erences:

� AMOSII can accept compilation and execution requests for subqueries
over data in more than one data source, as well as data stored in the
local AMOSII database. The wrapper interfaces accept queries that
are always over data in a single data source.

� AMOSII supports materialization of intermediate results to be used as
input to locally executed subqueries, generated by a query decomposi-
tion in another AMOSII server. A wrapper provides only execute func-
tionality for queries to the data source. The query execution interface
of AMOSII, on the other hand, provides ship-and-execute functionality
that can �rst accept and store locally an intermediate result, and then
execute a subquery using it as an input.

These two features inuence the design of both the query decomposer and
the run-time support for query execution. Techniques based on these fea-
tures are used in the work presented in this chapter to achieve improved
query performance. The remaining of the chapter describes �rst the query
decomposition process, and then the query execution and run-time support
in AMOSII.

6.1 Query decomposition

The query decomposition produces an executable algebra plan from a parsed,
and attened query calculus expression. The parsing and the attening of the
multidatabase queries are not di�erent from the parsing and the attening of
the other queries. The query decomposition process is performed in 5 phases:

1. Predicate grouping

2. Execution site assignment

3. Execution schedule generation

4. Tree rebalancing and distribution

5. Object algebra generation

6.1 Query decomposition 89

single site
algebraic
optimizer

{)
()

.
()

object calculus.

query graph

query graph

Algebra Generation

db2db1

db3

decomposition tree

T
O

 O
T

H
E

R
 M

E
D

IA
T

O
R

S

. . . .

. . . .

. . . .

1. (. . .)
2. (. . .)

n. (. . .)

algebra program

decomposition trees

(

}

Predicate Grouping

Cost-based Scheduling

Predicate Placement

Tree balancing and distr.

Figure 6.1: Query Decomposition Phases in AMOSII

Figure 6.1 illustrates the individual query decomposition phases and their
results.

To approximate the hardness of the problem of �nding the optimal query
execution plan for a calculus expression over multiple data sources, we could
represent the possible query execution plans as n-ary operator trees. How-
ever, this formalism is not used in AMOSII, its purpose is solely to demon-
strate the enormous size of the search space of this optimization problem.

90 Query Decomposition and Execution

Each tree node contains a simple predicate from the query calculus expres-
sion, and is assigned for execution at a data source. Some predicates can be
executed at more than one data source. A tree is executed by �rst executing
the root node children, then shipping the results to the site (data source)
where the root node is assigned, and �nally executing the root node predi-
cate. Since the number of possible n-ary trees with p nodes is exponential to
p, and the number of di�erent site assignments is exponential to the number
of predicates executable at more than one data source d, the total number
of trees is O(ap)O(sd), where a is a constant and s is the number of sites
involved. This estimate shows that an exhaustive search of the whole search
space is not feasible. Therefore the decomposition strategy in this work com-
bines cost-based search strategies with heuristic rules to lower the number
of the examined alternatives.

The description of the query decomposition in this section assumes con-
junctive predicate expressions as input. The query decomposer handles dis-
junctions in two ways, depending on the origin of the predicates in the dis-
juncts:

� single source disjunctions containing predicates that are executed
at a single data source are treated as a single predicate with a cost, a
selectivity and a binding pattern induced form the disjuncts.

� multiple source disjunctions are handled by normalization of the
queries into disjunctive normal form. The decomposer then processes
each of the disjuncts in the normalized query separately.

The rest of this section describes the decomposition phases in greater
detail. First, in order to provide a basis for this description, the support for
data sources with di�erent capabilities in AMOSII is presented.

6.1.1 Data source types and functions with multiple imple-

mentations

While some of the functions used in the AMOSQL queries are implemented,
and can be executed, in exactly one data source, there are also functions
that can be executed in more than one data source. According to the this
criteria, the functions in AMOSII are classi�ed into:

� single implementation functions (SIFs)

� multiple implementations functions (MIFs)

6.1 Query decomposition 91

The user-de�ned local functions as well as the proxy functions are single
implementation functions. For example, the function namePerson!string is a
SIF, de�ned over the instances of the type Person in EMPLOY EE DB.
The implementation of this function is known only in that mediator and
therefore it can be executed only there. The second category contains func-
tions that are executable in more than one data source, as for example,
the comparison operators (e.g. <, >, etc.) that are executable in AMOSII
servers, relational databases, certain storage managers, etc. The MIFs can
also be user-de�ned. However, since in our framework each user-de�ned type
is de�ned in only one data source, a MIF may take only literal typed argu-
ments. A framework that would support replicated user-de�ned types and
MIFs taking user-de�ned type arguments would require that the state (value)
of the instances of these types is shipped among the mediators, in order to
be used at the data source where the MIF is executed. In the framework
presented in this thesis, only OIDs and the needed portions of the instances'
state is shipped among the mediators and the data sources. Replicated user-
de�ned types can be simulated by stringifying the state of the instances and
handling them in the mediators as character strings. The wrappers trans-
late the stringi�ed instances from and to the representations required in
the data sources. Extending the integration framework to handle replicated
user-de�ned types is one of the topics of our current research.

Depending on the set of MIFs implemented at a data source, the data
sources are classi�ed into several data source types (DSTs). Inversely, the
set of MIFs associated with a DST is named generic capability of the DST.
Besides a generic capability de�ned by its type, each data source can have
speci�c capability de�ned by the types and functions exported to the AMOSII
mediators or translators. To simplify the presentation, in the rest of this
chapter the term capability is used to refer only to a generic capability of a
source or a DST.

In order to reuse the capability speci�cations, the DSTs are organized
in a hierarchy where the more speci�c DSTs inherit the capabilities of the
more general ones. This hierarchy is separate from the AMOSII type hier-
archy and is used only during the query decomposition as described below.
Figure 6.2 shows an example of an AMOSII DST hierarchy. All DST hier-
archies are rooted in a node representing data sources with only the basic
capability to execute one simple calculus predicate that invokes a single
function/operation in this source and returns the result to the translator.
This corresponds to a sequential scan capability in some other mediation

92 Query Decomposition and Execution

Scan

JoinAggregationCompar isonAr ithmetic

Relational

Matr ix

Amos

 +, -, *, /, ... >, <, =, ... sum, avg, max, ...

Single Col. Join
matrix_mult, matrix_add, ...

Figure 6.2: Data source capabilities hierarchy

frameworks [36]. Data sources of this type cannot execute MIFs. At the next
capability level, DSTs with capabilities to perform arithmetic, comparison
and join operations are de�ned. The arithmetic and comparison DST are
de�ned using the usual set of MIFs, shown in the �gure. A MIF in a capa-
bility of a certain DST can be de�ned as a generic function, when all of its
resolvents are executable at the sources of the speci�ed DST, or as a speci�c
resolvent when only a particular resolvent can be scheduled for execution at
the speci�ed type of sources.

The two join capabilities, the single collection join (SC join) and the
general join, are not speci�ed using MIFs as all the other DST capabilities.
In the calculus used in AMOSII, the equi-joins are represented implicitly by
a variable appearing in more than one query predicate. Accordingly, the join
capabilities represent that a data source (and its wrapper) can handle several
predicates connected by common variables as a single unit. The predicates
executed in such data sources can be grouped together before sending them
to the wrapper to achieve more e�cient translation to expressions in the
local language. For example, relational databases and AMOSII servers can
perform joins, and therefore it might be favorable to allow join operations

6.1 Query decomposition 93

to be pushed to data sources of these types.

Based on the properties of the commonly used data sources, there is a
need to distinguish between two types of join capabilities. First, there are
sources that are capable of combining and executing conditions over only
a single collection of data items in the source (e.g. a table in a storage
manager). These types of sources are de�ned by using a DST that inherits
only the SC join capability. An example of this kind of a DST is a storage
manager storing several data tables, each represented in the AMOSII trans-
lator as a proxy type. Each table can be scanned with associated conditions.
The conditions to a single table can be added together. However, operations
over di�erent tables need to be submitted separately. Therefore, for each ta-
ble, the MIF operations are grouped together with the proxy type typecheck
predicate, and submitted to the wrapper. One such grouped predicate is sub-
mitted for each di�erent collection. A system with these types of properties
�ts the capability description of the comparison DST in �gure 6.2.

The general join capability is inherited by DSTs capable of processing
joins over multiple collections (e.g. relational database sources). The decom-
poser sees each collection as a proxy type, and together with a join capability,
it combines the operations over several proxy types into a single subquery
sent to the data sources.

New DSTs are de�ned by inserting them into the DST hierarchy. For ex-
ample a DST representing a software capable of matrix operations is named
Matrix, and placed under the DST hierarchy root node in �gure 6.2. This im-
plies that it supports the execution of one operation at a time. A source that
allows a combination of several matrix operations would have been de�ned
as a child of the Join DST.

6.1.2 The predicate grouping phase

The predicate grouping phase attempts to reduce the optimization problem
by reducing the number of predicates. In this phase, if possible, the predicates
executed at a given data source are grouped into one or more composite
predicates, treated afterwards as a single predicate. Within each composite
predicate, the optimization is performed in the wrapper or the data source
where the predicate is forwarded for execution. For each composite predicate,
a temporary derived function is de�ned locally or at some other AMOSII
server if the predicate consists of proxy functions imported from another

94 Query Decomposition and Execution

AMOSII server 1. In the query, each predicate group is substituted by a
predicate calling the corresponding derived function. The arguments of these
functions are the calculus variables appearing in the predicate and in the
rest of the query. The types of the function arguments are deduced from the
function signatures used in the query predicate. Two major challenges arise
in the predicate grouping:

� Grouping heuristic: an exhaustive approach to the grouping would
not reduce the query optimization problem. A heuristic approach must
be used.

� Grouping of the MIF predicates: how to group the MIF predicates
given di�erent data source capabilities.

The following grouping heuristics are used in AMOSII:

� Joins are pushed into the data sources whenever possible.

� Cross-products are avoided.

The grouping process is performed using an undirected graph built from the
predicates in the query, called query graph, and similar to the query graphs
used in centralized database query processors. The initial query graph con-
tains one node for each equality predicate in the attened query calculus
representation. Nodes whose predicates contain common variable(s) are con-
nected by an edge. Each edge is labeled with the variable(s) it represents.
The variables labeling the edges connecting a node with the rest of the graph
are named node arguments.

Nodes representing SIF predicates are named SIF nodes. Similarly, the
rest of the nodes are named MIF nodes. All graph nodes are assigned to a
site2. The SIF nodes are assigned to the site of their predicates. MIF nodes
are assigned to a site in the later decomposition phases. The graph nodes
are also assigned a DST. The SIF nodes are assigned the DST of the site
where they are to be executed. The MIF nodes are assigned a DST on the
basis of the function in the predicate.

1A derived function contains, beside a predicate, a list of argument/result variables and
their types.

2The term site is used to refer data sources and AMOSII servers. The terms site as-

signment and node placement are used interchangeably.

6.1 Query decomposition 95

The grouping of the graph nodes is performed by a series of node fusion
operations that fuse two nodes into one. The new node represents the con-
junction of the predicates in the fused nodes and is connected to the rest of
the query graph by the union of the edges of the fused nodes. MIF nodes are
fused only with other MIF nodes belonging to the same DST capability set.
Furthermore, the DST of the MIF nodes must have at least an SC join ca-
pability for a fusion to be applicable. The SIF nodes are fused only with SIF
nodes to be executed at the same site, given that the following conditions
are satis�ed, on the basis of the site's join capability:

� Site without join capability: Nodes assigned this type of site are not
fused. Each predicate is sent separately to the wrapper for processing.
Typecheck predicates for the involved variables are added to aid the
translation process in the wrapper.

� Single collection joins site: Two nodes are fused if they represent op-
erations over the same collection in the source, represented by a proxy
type in the query.

� General join site: Two connected SIF nodes, assigned to this type of a
site, are always fused.

Assuming a query graph G =< N ; E >, where N = fn1 : : : nkg is a set
of nodes, and E = f(n1; n2) : n1; n2 2 Ng is a set of the edges between the
nodes, the predicate grouping algorithm can be speci�ed as follows:

while 9 (ni; nk) 2 E : ni and nk satisfy the fusion conditions do
nik := fuse(ni; nk);
E := E � f(ni; nk)g
E := E [f(nik; nm) : (9(nl; nm) 2 E : nl = ni _ nl = nk)_

(9(nm; nl) 2 E : nl = ni _ nl = nk)g;
E := E � f(ni; nm)g � f(nm; ni)g � f(nk; nm)g � f(nm; nk)g;
N := N � fni; nkg [fnikg;

end while
The algorithm terminates when all the possible node fusions are performed.
After each fusion, the fused nodes are replaced in the graph by a new node,
and all the edges to the fused nodes are replaced by edges to the new node.
The fuse function conjuncts the node predicates and adjusts the other run-
time information stored in each of the nodes (e.g. typing and variable infor-
mation).

96 Query Decomposition and Execution

After performing all the possible fusion operations the query graph con-
tains nodes representing predicates that are to be submitted to the data
sources as a whole. However, this is not the �nal grouping. The grouping
is performed again after the MIF nodes are assigned sites (to be discussed
below). Note that MIF nodes of di�erent DSTs are not grouped together at
this stage. Also, at this stage all the graph nodes contain either only MIF
predicates or only SIF predicates.

The following example, used as a running example through the rest of
the chapter, illustrates the grouping process. The query below contains a
join and a selection over the type A in the source DB1, and B in the source
DB2:

select res(A)

from A@DB1 a, B@DB2 b

where fa(a) + 1 < 60 and

fa(a) < fb(b);

Two functions are executed over the instances of these types: faA!int() in
DB1, and fbB!int() in DB2. The calculus generated for this query is:

f r j
a = Anil!A() ^
b = Bnil!B() ^
va = fa(a) ^
vb = fb(b) ^
va1 = plus(va; 1) ^
va1 < 60 ^
va < vb ^
r = res(va) g

The example query is issued in a AMOSII mediator and is over data stored
in the data sources DB1 and DB2. In the example, we will assume that
these two sources have Join capability (e.g. relational databases or AMOSII
servers). The initial query graph, shown in Figure 6.4a, has one node for
each of the query predicates. The nodes are numbered with the rank of the
predicates in the above calculus expression. In the �gure, the predicates are
shown beside each of the nodes. The nodes are labeled with the assigned site,
or with \MIF" if they represent MIF predicates. The edges among nodes are
labeled with the variables that connect the nodes.

6.1 Query decomposition 97

Figure 6.4b shows the result of the grouping phase. The nodes n8, n1
and n3 are all assigned to the site DB1 and make a connected subgraph,
therefore they are fused into a node with the composed predicate:

a = Anil!A() ^ va = fa(a) ^ r = res(va)

The same applies for n4 and n2 at DB2. Although, n5 and n6 are both MIF
nodes, they cannot be fused because they are of di�erent DSTs: arithmetic
and comparison, respectively.

6.1.3 MIF predicates execution site assignment

The nodes of the graph returned by the previous phase represent two types
of predicates: SIF predicates that already have an assigned execution site,
and MIF predicates that are still not assigned to a site. In order to generate
subqueries for the individual data sources, the next step is to assign execution
sites to the nodes containing MIF nodes. A MIF predicate can be executed at
any site known to the mediator that is capable of performing the operations
in the predicate. Furthermore, a predicate can be assigned more than one
execution site, in which case it is replicated and executed at more than one
data source. Because of the declarative nature of the predicates, this does
not change the outcome of the query execution, as long as each predicate is
executed at least once. Also, any assignment of an execution site to a MIF
predicate yields a correct and executable query schedule; the di�erence is
only in the costs of the generated plans.

Searching the space of possible site assignments using an exhaustive strat-
egy would require examining every combination of known sites as execution
sites for each of the MIF nodes. This would require performing full query op-
timization for each alternative using backtracking, resulting ultimately in an
algorithm with exponential complexity. To avoid this expensive process, we
tackle the MIF nodes site assignment problem by using a heuristic approach
aided, in certain cases, with partial cost calculations.

The heuristic used is based on an analysis of the execution costs a�ected
by a placement of a MIF node at a site. These costs are:

� the cost of the execution of the MIF predicate in the node.

� the execution cost of the predicates already assigned to the site where
the MIF node is assigned

98 Query Decomposition and Execution

� the intermediate results shipment cost.

The �rst cost varies due to di�erent speeds of the sites in the network. The
cost of the execution of other predicates can change when a MIF node is fused
with a SIF node placed at the same site, because the MIF node can represent
a selection condition that signi�cantly reduces the subquery execution time
in the data sources. Finally, this kind of a selection will also inuence the
size of the intermediate results.

In order to simplify the placement problem, we recognize several di�erent
subcases and in each examine only some of the costs given above. In each
case, the following goals are pursued in the order they are listed:

1. Avoid introducing additional cross-site dependencies among the nodes,
caused by argument variables of the placed node. These dependencies
often lead to increased transfer of intermediate results among the sites.

2. Place each MIF node so that it can be combined with one or more SIF
nodes, to reduce the cost of accessing the data sources and to reduce
the intermediate results sizes.

3. Reduce the execution time for the MIF nodes.

4. When it is not possible to assign a site to a MIF node on the basis of
the previous three criteria, if possible execute the predicate locally.

The placement algorithm does not attempt to satisfy these goals simultane-
ously, but rather tries to satisfy one at the time in the order they are listed
above.

Site assignment is performed one MIF node at a time. The nodes with
more speci�c DSTs (further from the root of the DST hierarchy) are pro-
cessed before the nodes with less speci�c DSTs (closer to the root of the
DST hierarchy). For example, a MIF node with a predicate containing re-
lational MIF operators will be placed before a node containing comparison
predicates. The more speci�c DST nodes are always assigned to sites that
can also process less speci�c DST nodes. Hence, a more speci�c node is al-
ways assigned to a node that also is considered when a less speci�c node is
assigned. This is not true in the opposite direction, because the less speci�c
node might be assigned to a site that does not have the capability to process
the more speci�c node. Therefore, to maximize the possible available infor-
mation at the node assignment time, the sources with more speci�c DST are
processed �rst.

6.1 Query decomposition 99

After each site assignment, the grouping algorithm is run over the new
graph in order to group the newly assigned node with the nodes already
assigned to the chosen site.

The site assignment process proceeds as follows. First, each calculus vari-
able that labels an edge in the graph is assigned a set of sites where it appears,
i.e. a set of the sites of the nodes that are connected by a graph edge labeled
with this variable. This set is referred to as variable site set. Next, each of
MIF nodes is processed. For each node, �rst an intersection of the site sets
of the node's arguments is computed. This intersection represents the sites
that operate over the same data items as the MIF node.

Figure 6.3 shows �ve subcases of the placement problem, distinguished by
the properties of the argument's site sets intersection and the node predicate.
The rest of this section examines each of the cases in greater detail.

intersection

singleton multiple all empty some non-empty

"cheap" "expensive"

54

32

1

non-empty empty

Figure 6.3: MIF predicate site assignment heuristics

Case 1: Singleton site sets intersection

If the intersection is not empty and contains only one site, then the node is
assigned to this site. This allows the optimizer to devise a strategy where no
intermediate result is shipped around when the node predicate is executed.
All the arguments values can be produced locally at the chosen site. Placing
the node predicate at a site where only a subset of the needed arguments can

100 Query Decomposition and Execution

be produced implies that the missing arguments must be shipped in before
these predicates are executed. An example of this case of node placement is
shown in Figure 6.4b where node 6 is connected only by the variable va to
node 831. This node is assigned to the same site as 831, i. e. DB1. After the
grouping of the graph the result is as presented in Figure 6.4c.

Cases 2 and 3: Several sites in the site sets intersection

The MIF nodes belonging to this case are placed on the basis of their cost
and selectivity. If such a node has a selectivity lower than 0.75, and a \low"
cost, then the node is considered to represent a cheap selection. The node
predicate is therefore replicated, placing one copy at each of the sites in the
intersection. The cost is considered low if it is lower than a predetermined
constant threshold. The selective properties of the predicate are applied in
multiple data sources. This strategy is unique to query processing in au-
tonomous environments. In a classical distributed database environment, it
would su�ce to execute the selection at only one site. The query proces-
sor could then ship the intermediate result to the other sites, and use this
already reduced set of instances as the inner set in the joins. When data
sources do not support materialization of intermediate results, this strategy
is not possible. Therefore, the selections should be pushed in all the appli-
cable data sources to reduce the processing times in the sources, as well as
proxy object generation in the translators associated with these sources.

Case 4: All site sets empty

A variable has an empty site set if it appears only in predicates of MIF nodes
that have not yet been placed. If all site sets of the node arguments are empty,
assuming a connected query graph, we can conclude that all the neighbors of
this node are also unplaced MIF nodes. In order to obtain more information
for the placement of such nodes, the decision on the placement of such nodes
is postponed and the node is skipped. The skipped nodes are processed after
processing the rest of the nodes. If all MIF nodes have all argument site sets
empty, the �rst node is placed locally if possible. Otherwise, it is placed at
the site where it will be executed fastest, i. e. at the most powerful site.

Assuming, that the site assignment proceeds in the same order as the
nodes are numbered, in the situation shown in Figure 6.4b the algorithm will
attempt to place n5. Since n5 is connected to only MIF nodes, its argument
site sets intersection is empty. Thus, n5 is skipped as described above, and

6.1 Query decomposition 101

considered again when the rest of the MIF nodes are placed. The graph at
this point is presented in Figure 6.4d. Now, the site set of variable va1 is
Asetva1 = fDB1g since n5 is connected to n8316, placed at DB1, by an edge
labeled va1. Node n5 is therefore placed at DB1. After the grouping, the
�nal query graph is shown in Figure 6.4e.

n3

n5

n6

n4

n2n7

n8 n1

n7

n831n6

n42

c)

e)

b)a)

n427 n83165

n5

n7

n8316n5

n42

d)

n8316n5

n427

mif

r=res(va)

va>vb

va1 = 1+va

va1 < 60 vb = fb(b)

va=fa(a)

b=B()

a=A()

mif

mif

db1 db1

db2

db1

db2

mif

mif

mif db2

db1

mif db1

db2

db2 db1

mif

mif

db2

db1

va

va

va

va

va

va

va1

va

va

va1

vb

va1

vb

a

va1 b

vb

Figure 6.4: Query graph grouping sequence for the example query

Case 5: Non-empty site sets with empty intersection

In the last case, we consider placing a node having an empty intersection of
its arguments' site sets, but not all of the site sets are empty. The placement
process in this case is based on a simpli�ed cost estimate. The estimate
calculation takes into account only the predicates in the neighboring nodes
of the currently processed node (this set coincides with the union of the
arguments' site sets). Moreover, the cost estimate is calculated by taking

102 Query Decomposition and Execution

into account only the graph edges of the currently processed node. Another
simpli�cation of the problem is that nodes of this type are placed at exactly
one site. Since no site contains all the data needed for the execution of the
node predicate, the missing data must be shipped to the execution site from
other sites. By placing the node at one site, we avoid plans having more than
one data shipment caused by a MIF predicate.

n1

n0

n2 n4

n3

A A

C
B

A

n012

n4

n3

A

B

n1

n2

n30

n4

A, C

A

B

n1

n2

n3

n40

A , B

A

C
3

db1 db2

db1

db1

db2

db3

db3

mif

db2

db1

db1

db3 db3db1 db1

db2

b) S = X c) S = Y d) S = Z

a)

N = { n , n , n , n }
S = { db1, db2, db3 }
A = { A, B, C }
aSet(A) = { db1, db2 }
aSet(B) = { db3 }
aSet(C) = { db1 }

1 2 3 4

Figure 6.5: Case 5 example and the possible outcomes

For each of the possible placements, the sum of the execution costs of
the predicates in the neighboring nodes and the necessary data shipment
is calculated. The predicate is placed at the site where this cost is the
lowest. Let the list of the neighboring nodes of a MIF node labeled with
the node site be N = fn

sn1
1

; : : : ; n
snl
l g; the sites the nodes are assigned

to S = fs1; : : : ; sm g; m � l; the node predicate argument variables
A = fa1; : : : ; akg; and �nally, the corresponding site set to each variable:
As = faSet1 : : : ; aSetkg.

The execution cost of the nodes at site s if each predicate is executed

6.1 Query decomposition 103

over BS (bulk size) tuples is de�ned as the sum of the costs of the individual
nodes:

exec cost(s;BS;A) =
X

j=1:::l;s=sj

cost(n
snj
j ; BS;A)

Where the cost function returns the cost of executing the predicate in a
given node with the arguments in A unbound. In calculating the estimate,
the number of input tuples is �xed to a predetermined constant, because
it cannot be precisely estimated before the scheduling phase, and varies for
di�erent nodes. Using a constant value for each estimate provides a good
basis for comparison of the estimates. However, it is important that this
constant is larger than 1 in order to correctly estimate the e�ect of the
use of subquery materialization techniques in queries containing nested sub-
queries. In such cases, the query processor might decide to materialize the
subquery and use the result in the processing of the whole input. The cost
of the materialization is amortized over the processing of the whole input
and therefore:

cost(n
snj
j ; BS;A) 6= BS � cost(n

snj
j ; 1; A)

Nested subqueries are common in the system-generated functions for support
of the integration union types presented in the previous chapter, making this
type of cost estimate necessary.

When a node is placed, the grouping algorithm is applied to the new
subgraph. The sum of the costs of the nodes in the grouped subgraph is
denoted with pa exec cost(s;BS; vl). Assuming that the node is assigned to
a site S where a subset of Al of the argument set A is produced locally while
the rest of the arguments At = A � Al are shipped from the neighboring
nodes, the execution cost estimate can be expressed as:

ece(s) = pa exec cost(s;BS;At) +
X

i=1:::l;si 6=s

exec cost(si; BS;Al)

To obtain a complete cost estimate, besides the execution cost estimate,
we need to compute an estimate for the intermediate results shipment cost.
To calculate this estimate we assume that each of the missing arguments in
At is shipped to the site S from the cheapest possible alternative. The cost
of shipping the argument ai 2 At from a site R where it is produced by the
predicate of node N to site S where it is consumed is:

tec(ai; N; S) = BS � selectivity(N;At) �WRS � sizeof(type(ai))

104 Query Decomposition and Execution

Where WRS is the weight of the cost of the net link between the sites R
and S; selectivity(N;At) returns the selectivity of the predicate of node N
with all arguments in At unbound; sizeof() returns a size of a given tuple
of types; and type() returns a tuple of types for a given tuple of variables.

tec(S) =
X

ai2At

min
ni2N

tec(ai; N; S)

The cost estimate is:
ce(s) = ece(s) + tec(s)

The node is assigned to the site so such that

8n 2 N ce(so) � ce(n)

Although all the possible site assignments produce a correct execution
plans, the cost estimate calculation can fail for some sites, because some of
the functions might not be executable with the incomplete binding patterns
used to calculate the estimate. Such sites are ignored in the assignment
process. In a rare case, it is possible that all the estimate computations
fail. In this case, an arbitrary site is chosen from the set of sites capable of
handling the node predicate.

In order to estimate the complexity of the cost estimate calculation we
can observe that the terms used in the equations above can all be obtained
either from the system catalogue (e. g. sizeof() function and WRS), or
from compilation of the predicates in the query graph nodes (the cost()
and selectivity() functions). The maximum number of compilations needed
to obtain this data is 2l, where l is the number of adjacent graph nodes of
the node being placed. This estimate is based on the observation that each
neighboring node predicate is compiled twice: once for the case when the
node is placed at the same site with the neighboring node, and once when it
is placed at another site. Normally, the queries posed to the mediator have
connected query graphs, implying that l � n, n being the number of sites
involved in the query. Hence, the cost of the site assignment will usually not
be larger than 2n single site function compilations, some of which might be
reused in the latter decomposition phases. We also note that n here does not
represent all sites involved in the query, but rather the sites that operate
over the arguments of the predicate in the placed node.

In Figure 6.4c the node n7 represents an example of case 5 placement
problem. The example illustrates the problem of the placement of the join

6.1 Query decomposition 105

condition va < vb. The cost estimation will ignore the node n5 and will
calculate the costs as described above. Figure 6.4d shows the graph after
placing n7 at DB2.

A more elaborate example of this case is illustrated by the query graph
shown in Figure 6.5a. On the right side of the Figure the sets used in the
calculations of the estimate are shown. There are three sites involved with a
total of 4 nodes. Assuming Join capabilities, the resulting grouped graphs
for each placement alternative are shown in the Figures 6.5b-d.

This concludes the description of the query decomposition phases that
assemble the subqueries sent to the individual data sources. The concepts
discussed in the previous sections are related to the important design issue of
the division of the query processing facilities between the query decomposer
and the wrappers. A simple query decomposer requires more complex wrap-
per implementations. A wrapper in such a case must be able to perform more
sophisticated transformations in order to produce subqueries executable by
the data sources. Furthermore, the same features might be needed and re-
implemented in several wrappers. A more elaborate query decomposer, on
the other hand, leads to a slower query decomposition and less maintain-
able code. The design of the heterogeneous data source integration facilities
described in the last two sections aims to provide a functionality su�cient
for easy integration of the majority of the data sources we have accounted
for, while keeping the design as simple as possible. Compared to other ap-
proaches to the integration of heterogeneous data sources based on grammars
and rules [36, 81], it allows for partitioning of the query into subqueries with-
out repeated probing if the generated subqueries are executable in the data
sources. Data sources that cannot be described by MIFs and join capabilities
might require wrappers capable of restructuring the subquery sent by the
decomposer so it can be successfully translated into code executable in the
data sources. Nevertheless, we believe such that cases are rare.

6.1.4 Cost-based scheduling

The result of the �rst two query decomposition phases is a query graph
where each node represents a subquery assigned to be executed at a site.
The graph nodes are connected by edges representing equi-joins over the
values of common variables in the subqueries. In order to translate this
query graph into an executable query plan, the query processor must decide
on the order of the execution of the subqueries represented by the nodes.

106 Query Decomposition and Execution

This order inuences the data ow between the sites. The query processor
builds an execution schedule to describe the execution order and the ow of
data between the sites.

As noted earlier, the data in each node is used to de�ne a derived function
representing the subquery speci�ed by the node predicate. These derived
functions, subquery functions (SFs), are de�ned at the site assigned to the
corresponding node when this site is an AMOSII server, or in the mediator
itself when the SF is executed in the mediator or in a data source wrapped by
the mediator. In the later case, the SF is generated by the wrapper, invoked
with the node predicate as an argument. The wrapper returns a function
that implements the request speci�ed by the input predicate. The generated
functions usually contain foreign function calls that access the data source
and perform the requested operations. For example, the relational wrapper
implemented within the AMOSII project creates an SQL statement from the
object calculus, and then invokes the foreign function sql [6] that passes the
generated SQL statement to a data source.

Examining all the possible execution schedules is not feasible for larger
queries. Considering only the left-deep trees (a subset of all possible trees)
is as hard as �nding an optimal total ordering of the predicates. Although
simpli�ed, this problem still requires computation time exponential over the
number of SFs. Therefore, only certain schedule families are examined that
contain plans generated by a few generic rules.

The scheduling problem is illustrated on the running example query. The
�nal query graph for this query contains two nodes, each specifying an SF at
one of the two participating sites. The de�nition of the SFs at these nodes
are as follows:

in DB1:
SFdb1type va!boolean(va)()
f
b = Bnil!B() ^
vb = fb(b) ^
va < vbg

in DB2:
SFdb2type r;type va!boolean(r; va)()
f
a = Anil!A() ^
va = fa(a) ^
va1 = plus(va; 1) ^
va1 < 60 ^
r = res(va)g

The function signatures used above imply that both SFs will be executed
with all their arguments bound. Such binding patterns are used in the SF
de�nitions, because the binding pattern of each SF is unknown at this time

6.1 Query decomposition 107

and is determined later in the scheduling process, by recompilation of the
SFs.

Let's consider now the possible execution strategies for the example
query. The query execution begins by executing one of the SFs at one of
the sites. Then, the other SF is executed and the result is shipped to a join
and materialization capable site, where an equi-join over the variable va is
performed. This site could be one of the sites where the SFs are de�ned.
In such a case, we could use the materialized result as an input to the SF
at this site, to lower the execution time and the selectivity of the individual
predicates in the body of the SF. For example, if SFdb1 is executed �rst and
the resulting va values are shipped to DB2, we could either �rst execute the
function SFdb2, and match the resulting tuples with the materialized values
of va, or invoke SFdb2 with the values of the argument va bound to the val-
ues in the shipped set. In order to determine the optimal schedule, the query
processor must calculate and compare the costs of the di�erent strategies.
The cost calculation depends on the execution cost and the selectivity of the
SFs and the cost of shipping data among the systems.

This analysis illustrates that the number of alternatives is large even in
a simple example with only two SFs as above. Because of this, the strategy
described in this section searches only a portion of the search space of pos-
sible execution plans. The plan chosen by this search is then improved using
additional heuristic described in the next section.

Mediator

Other AMOS

1

2

4

3

Figure 6.6: A query processing cycle described by a DcT node

108 Query Decomposition and Execution

The generated execution schedules are described in the form of decom-
position trees (DcTs). Each DcT node describes one data cycle through the
mediator. Figure 6.6 illustrates one such cycle. In a cycle, the following steps
are performed:

1. Materialize the intermediate results in an AMOSII server where they
are to be processed.

2. Execute an SF over the materialized data as input.

3. Ship the results back to the mediator.

4. Execute one or more SFs de�ned in the mediator.

The result of a cycle is always materialized in the mediator. A sequence of
cycles can represent an arbitrary execution plan. Not all steps are required
in every DcT node.

Each DcT node contains data structures describing the steps above. The
intermediate results used as an input in the cycle are represented recursively
by a list of child DcT nodes, the materialization list. In order to simplify the
query processing, currently the tree building algorithm considers at this stage
only materialization lists with one element (left-deep trees), and therefore
the intermediate result always has the form of a single attened function.

Steps 1 through 3, that involve communication with an another AMOSII
server, are performed by the ship and execute (SAE) operator. The SAE
operator is an algebraic operator that ships an intermediate result to a re-
mote AMOSII server, executes an SF, and returns the result. Each tree node
contains an SAE description structure (SAEDS) that provides the necessary
compile-time information about the ship and execute performed by the node.
The content of an SAEDS describe the remote SF and the way it is invoked.
More speci�cally this description consists of the following items:

� proxy OID for the remote SF

� argument and result lists

� argument bindings and typing information

� cost and selectivity of the SF for a given binding

Step 4 is described by a post-processing list (PPL) of locally de�ned SFs.
These SFs are executed in the mediator over the result of the SAE operator

6.1 Query decomposition 109

execution. Finally, beside a materialization list, a SAEDS and a PPL, each
DcT node also contains information concerning the whole query processing
cycle described by the node, as for example: cycle cost, selectivity, predicates,
typing information, etc.

DcT node 0
Sae: SFdb1

PPL : ni l

DcT node1
Sae: SFdb2

PPL : ni l

DcT node 0 Sae: SFdb2
PPL : ni l

DcT node1
Sae: SFdb1

PPL : ni l

Figure 6.7: Two decomposition trees for the example query

Figure 6.7 shows the two trees generated for the example query. These
trees illustrate the scheduling alternatives where the join of the results of the
execution of the two SFs is performed atDB1 andDB2 respectively. Because
we consider only left-deep trees, joins in the mediator are not considered.
The trees also determine the relative order of the execution of the SFs. The
order of the cycle operations given above implies that the trees are executed
bottom-up. This in turn determines the execution binding pattern for each
SF. The same SF can in di�erent trees have di�erent binding patterns and
thus di�erent execution costs. In the left DcT in Figure 6.7 SFdb2 is executed
with the variable va unbound, while in the tree on the right this variable
is bound. If the function fa(a) is expensive, or has high selectivity, then
the execution of SFdb2 with va unbound can have a much higher cost than
when va is bound. This cost variation combined with the cost variation of
SFdb1 inuences the cost of the whole tree.

The cost of an execution schedule represented by a DcT node is calculated
recursively by adding the costs of the steps in Figure 6.6 to the costs of
the subtrees in the materialization list. The cost calculation depends on
the algorithms used to implement the query processing cycle steps. These
algorithms are part of the query execution mechanism described in the next
section.

110 Query Decomposition and Execution

The left-deep DcTs are generated using a variation of the dynamic pro-
gramming approach. The algorithm attempts to avoid generation of all the
possible plans by keeping a sorted list of partial plans and adding to the list
all the possible extensions of the cheapest one. When the cheapest plan is
also a complete plan, then it is one of the plans with the lowest cost. This
algorithm, used also for the singe-site queries in AMOSII, can be described
as follows:
find optimal schedule(SF set)

/*sorted list of partial DcTs*/

list<DcT> DcT list = fg;
set<DcT> rest;

/* temporary variables for DcT manipulation*/

DcT best, nd;

for each func in SF set

nd = add to DcT(func, nil);

insert sorted(nd, DcT list);

end for each
forever do
best = remove top(DcT list);

rest = SF set - DcT SF(best);

if best == nil

throw exception(``Query unexecutable'');

end if
if rest == fg
return best;

end if
foreach func in rest

nd = add to DcT(func, best);

insert sorted(nd, DcT list);

end foreach
end forever

end

If the query is not executable an exceptions is thrown The function
insert sorted inserts a DcT in a list sorted by the cost estimate; remove top
removes the cheapest plan from the list; DcT SF returns all the SFs in a
DcT; the operator � is used for set di�erence; the function add to DcT adds
a new SF to a partial DcT. The following two rules are used for adding an
SF to a partial DcT (Figure 6.8):

6.1 Query decomposition 111

� SF de�ned in another AMOSII server: A new node is added with
a materialization list consisting of the partial DcT, and a SAEDS based
on the added SF.

� SF de�ned in the mediator or in a data source wrapped by
the mediator: The SF is added to the PPL of the root of the DcT,
if the DcT is not nil; otherwise a new node is created with this SF in
the PPL.

2

3

1

SFs in other AMOS II servers

Local and other types of data sources SFs

+ x =
2

3

1

x

2

3

1

x+ =

2

3

1

n

x

a)

b)

Figure 6.8: Two tree generation rules: a) adding a local SF to a partial tree,
b) adding a remote SF to a partial tree

When an SF is added to the PPL of a node, the system must determine
the optimal order of the execution of the SFs in the list. This cost inuences
the cost of the whole tree and therefore must be determined during the query
optimization. A dynamic programming algorithm similar to the on described
above is used to determine an optimal ordering.

112 Query Decomposition and Execution

We conclude the section with an observation that the described strategy
is more general given OO data sources than the strategies used in some other
multidatabase systems (e.g. [56, 20, 48]) where the joins are performed in the
mediator system. Such strategies do not allow for mediation of OO sources
that provide functions that are not stored, but rather performed by programs
executed in the data source (e.g. image analysis, matrix operations). In this
case, it is necessary to ship intermediate results to the source in order to
execute the programs using the result tuples as an input. From this aspect,
the strategy presented above generalizes and improves the bind-join strategy
in [36].

6.1.5 Decomposition tree distribution

The scheduling phase described in the previous subsection produces a left-
deep DcT representing a query execution schedule for the input query. As
described in the previous section, each node of the generated DcT describes
a query processing step that involves passing data through the mediator.
Some of the steps pass data from one data source to another, copying it
through the mediator. In an environment consisting of a several AMOSII
servers, it can be favorable to design schedules where the superuous data
transfers and the involvement of the coordinating mediator are eliminated. In
such a schedule, the participating data sources communicate directly during
the computation phase. The result of the computation is shipped to the
coordinating mediator. For example, the trees in Figure 6.7 describe plans
in which the values of va are shipped from DB2 to the mediator and then to
DB1, in the tree on the left, and vice versa in the tree on the right. It would
be less costly if the mediator instructs DB2 to ship the values directly to
DB1, or vice-versa.

In this subsection we present a technique to achieve query schedules
with such properties for queries operating over data represented by multiple
AMOSII servers. The technique can be extended to combine other materi-
alization capable DST.

In order to construct schedules that perform \sidewise" transfer of data,
the DcT generated by the previous phase is restructured using a series of node
merge operations. This operation is performed over two consecutive nodes,
lower and upper respectively. For the merge operation to be applicable,
the lower node must have an empty PPL, while the upper node must have a
non-empty SAEDS. The tree construction rules guarantee that a node having

6.1 Query decomposition 113

an empty PPL must have a non-empty SAEDS. Therefore, the lower node
describes an operation where data is shipped from the mediator to another
AMOSII server, some computation is performed there, and the result is
then shipped back to the mediator. In the next step, described by the upper
node, the result of the previous step, stored now in the mediator, is once
again shipped to the site described in SAEDS of the upper node, this time
as input to the SF in the upper node SAEDS. For example, the left tree in
Figure 6.7 describes a plan where SFdb2 is executed at DB2 and the result
is shipped to the mediator. The upper node then ships the same result from
the mediator further to DB1, where it is used in an equi-join.

In the case when the lower node has a non-empty PPL list, the result of
the lower node is processed locally before it is used in the processing step
described by the upper node. The transformations described in this section
are, therefore, in such a case not applicable.

The node merge operation is shown in �gure 6.9. Two consecutive nodes
with the required properties are identi�ed (Figure 6.9a) and substituted with
a single node. The new node has the PPL from the upper node and a SAEDS
assembled from the SAEDSs of the merged nodes. In order for the new tree
to represent a correct query schedule, the SF in the SAEDS of the new node
should perform the same operations as both SAEDSs of the original nodes.
Therefore, the SF in the new node's SAEDS is a combination of the SFs
of the original nodes. Nevertheless, to avoid the unnecessary bypass of the
data throughout the mediator, the combined SF is compiled and executed
in the participating servers instead of locally in the mediator. This is done
by de�ning an envelope SF that calls the two original SFs. The envelope SF
is compiled at both of the participating sites and the cheaper alternative is
accepted. This, in turn, is compared with the cost of the original tree and if
it has a lower cost, the modi�ed tree is accepted instead of the original.

Figure 6.10 illustrates the data ow between the three AMOSII servers
in the example from Figure 6.7a. This example is a general case of an ap-
plication of a node merge. An exception is the case where the merged nodes
have SAE SFs that are both at the same site. In such cases there would be
only two sites involved.

In Figure 6.10a the data ow of the execution of the original schedule
is presented. The query execution starts by the mediator contacting DB2
to execute SFdb2 in step 1, and shipping across the results in step 2. Next,
from the result of the previous step, the mediator sends the values of the
argument va to DB1 where SFdb1 is executed and the result is joined with

114 Query Decomposition and Execution

Upper node
Sae: SFupp

PPL: PPLupp

Lower node
Sae: SFlow

PPL: nil

Lower rest of the tree

Upper rest of the tree

Merged node
Sae: Wrap(SFupp+SFlow)

PPL: PPLupp

Upper rest of the tree

Lower rest of the tree

a)

b)

Figure 6.9: Node merge: a) the original tree b) the result of the merger
operation

the incoming set of va values. For each joined value of va a temporary
boolean value is returned indicating which of the incoming va values joined
with the result of the execution of SFdb2. Finally, after joining the result
shipped in step 4 with the result of step 2, the mediator emits the values of
r for which the temporary iteration variable tmp is TRUE.

This strategy would be very ine�cient in cases when the set of va values
is very large and the net links connecting the mediator with DB1 and DB2
are very slow (e.g. due to geographical dislocation). Also, note that with this
strategy the va values are shipped twice.

The strategy illustrated in Figure 6.10b is obtained by merging the nodes
of the DcT in Figure 6.7a and placing the envelope SF at DB2. Here, the
values of va are sent directly from DB2 to DB1, shipping them therefore
only once. Figure 6.10c represents the execution strategy of the transformed

6.1 Query decomposition 115

Mediator Mediator

DB1 DB2 DB1 DB2

1

4

1

2

1
4

3

2

Mediator

DB1 DB2

3
4

2

3

a)

b) c)

{}

{r}

{}
{va}

{va, r}

{}

{_tmp_}

{va}

{va}

{r}

{_tmp_}

{r}

Figure 6.10: Execution diagrams of the decomposition tree of the example
query before node merge and after

DcT in Figure 6.7a where the envelope SF function is placed at DB1. This
strategy is favorable when SFdb1 has large selectivity or the network link
between the mediator and DB2 is slow.

A series of node merge operations can produce longer data ow patterns
that do not necessarily pass through the query issuing mediator. One fea-
ture of the trees produced by node mergers is that the SFs in the SAEDSs
are themselves multidatabase functions over data in multiple data sources.
These SFs are also compiled and described by a DcT. Since by repeated
application of the merging process their SAEDSs can also have SFs over
multiple data sources, we can assume that a query is represented by a set
of DcTs distributed over more than one AMOSII server. Hence, the process
can be viewed as DcT distribution. Compared with the traditional query tree
balancing [17] the node merge exhibits the following di�erences:

116 Query Decomposition and Execution

� Distributed compilation: node merging is a distributed process where
the envelope SFs are compiled at nodes other than the mediator. This
distributed compilation process is decentralized and does not need a
centralized catalogue of optimization information that is a potential
bottleneck when the number of mediators increases.

� Distributed tree: The resulting tree is not stored in one AMOSII server,
but rather is spread over the participating servers that expose only an
already compiled function for the subquery sent by the coordinating
mediator.

In a tree produced by the cost-based scheduling there might be more than
one spot that quali�es for a merger operation. An important issue in apply-
ing node merging is where in the DcT to apply the the operator. Di�erent
sequences of merge operations can produce di�erent results. The simplest
solution to this problem is to perform an exhaustive application of all pos-
sible sequences of merger operations by backtracking. However, it is clear
that this will require a large number of SF compilations and is therefore not
suitable. An alternative is to use hill-climbing from a few randomly chosen
positions and perform the process until no transformation can be made such
that a cheaper tree is produced. The process can be guided by heuristics
that prioritize DcT nodes where the transformation can be especially useful,
and avoid merging nodes that are unlikely to produce a merged node with
lower cost. An example of such heuristic rules are:

� Merge only nodes where the SF in the SAEDS of the lower node has
at least one result variable used in the input of the SF in the SAEDS
of the upper node. This rule avoids producing merged nodes where the
result shipped to the mediator is a cross product of the results of the
two SFs.

� Merge nodes where the weight of the network connection between the
SAE SFs in the upper and the lower nodes is considerably lower than
the weights of their network connections with the mediator (e.g. the
data sources are close to each other, but geographically far away from
the mediator)

6.2 Object algebra generation and run-time support 117

6.2 Object algebra generation and run-time sup-

port

6.2.1 Object algebra generation

The purpose of the DcT formalism is to provide a means for representation
of query execution schedules that is easy to build and manipulate. It contains
much information not used after the tree is built. In addition, the components
needed for execution are not easily and uniformly accessible.

For these reasons and to avoid introducing a separate interpreter for the
DcTs in the system, the DcTs are translated into object algebra plans used
for the queries over local data. The algebra plan generated for each DcT
node describes the tasks speci�ed by a node:

1. Execute and materialize the subqueries described by the DcTs in the
materialization list.

2. Ship the results and execute the SF in the SAEDS.

3. Execute the SFs in the PPL.

The translation generates a temporary function whose body describes the
listed tasks, returning the query result. The algebra code for each of the DcT
nodes is generated using the following template:

1. makebagbbb:::f ([subq func]; [par1]; [par2]; : : : [parn]; bag1)
2. bulkenbf (bag1; bag2; [bulk size])
3. saebbf:::f ([run info]; bag2; [SAE result variables])
4. PPLSF1([pplsf1 arguments)]
. . .
k+3. PPLSFk([pplsfk arguments])

The arguments in square brackets are substituted by actual values during
the code generation. The algebra operators used in the �rst three steps are
implemented as an AMOSII foreign function. The superscripts of the opera-
tors show the binding pattern applied. Steps 4 through k+3 invoke the SFs
in the PPL of the node.

In order to perform the materialization of the subtrees, the translation
process is applied recursively on the DcTs in the materialization list. As
currently, due to the tree generation process used, there is only one subtree
in this list, the result of this step is a single temporary function storing the

118 Query Decomposition and Execution

result of the tree in the materialization list. This function is in the code
template above named subq func. It is the �rst argument of the operator
makebag that takes a function and a list of parameters to the function, and
returns a bag which can be iterated by the bag iteration primitives. The bag
mechanism provides a uniform interface to both a materialized bag, given as
a list of tuples, and a bag given with a function as in the case above. When
the bag is speci�ed by a function, the makebag operator does not actually
materialize the function. Instead, when the iteration operations are applied
to the bag, it uses the cursor facilities in AMOSII to invoke the supplied func-
tion passing the parameters par1 : : : parn, and returning the function results
in a streamed fashion. If the bag is constructed over (i) a stored AMOSII
function, (ii) a foreign function whose implementation supports streaming,
or (iii) data in a source whose wrapper supports streaming, then the execu-
tion of the makebag does not store intermediate results in the mediator. An
example of a DST capable of a fully streamed operation is the ODBC DST,
where, using the cursor facilities of the ODBC standard, it is possible to
implement a wrapper where the tuples from the data source(s) are streamed
through the AMOSII translators/mediators, to the target applications.

The bag produced by the makebag operator is assigned to the variable
bag1 in the code template above. In the next step, the bulken operator ma-
terializes the �rst bulk size tuples of bag1. This operator backtracks and
produces materialized bulks of this size until the whole bag1 is iterated.

Although the streamed mode of operation is advantageous because it does
not create intermediate results, operating over a single tuple in a network-
based environment can create large overheads. Therefore the multidatabase
query execution in AMOSII is performed over bulks (sets) of data of a size
determined by the parameter bulk size. The parameter bulk size is set by
the optimizer to a constant depending on the available memory size, so that
the intermediate results can �t into the available main memory image of
AMOSII. When networks with high latency are used, the bulk size parame-
ter should be chosen so that the shipped data �ts into the network's packet
size and hence minimizes the latency overhead per shipped tuple. The bag
containing the materialized tuples is assigned to the variable bag2, passed to
the SAE operator.

6.2 Object algebra generation and run-time support 119

6.2.2 Inter AMOSII communication and the SAE operator

The SAE operator performs the actual communication between the AMOSII
servers, the invocation of the remote subquery functions, and the assembly
of the results. The protocol executed within the SAE operator is the lowest
\database aware" protocol in the AMOSII system. It is based on a remote
evaluation protocol that supports shipment and evaluation of LISP expres-
sions between the servers. The LISP expressions are shipped using TCP/IP
sockets connections between ports acquired from the name server.

The �rst argument to the SAE operator is the run info structure that
contains the run-time information needed for the execution of the SAE op-
erator. Run info is a summary of the SAEDS used during the query com-
pilation time. Some of the more important entries in run info are:

� The site of the remote SF: the AMOSII server where the SAE SF is
de�ned

� The set of input function variables: description of the input bag struc-
ture by the query variable names of each bag column.

� The set of input variables to the remote SF: a projection of the input
bag variables used at the remote site as arguments in the execution of
the remote SF, KS.

� The set of result variables: variables that are to be emitted from the
SAE operator and that are used in the subsequent query processing
steps, RS.

� The bulk size, BS, and the estimated number of bulks in the input,
NB.

The second SAE operator argument is the bag bag2 materialized by the
bulken operator.

The SAE operator is performed over each of the materialized subsets
of the input function, represented by the bag bag2. The tuples in the bag
are used as input to the SF in the SAEDS, de�ned in some other AMOSII
servers. The operations performed by the SAE operator can be divided into
the following steps:

1. preprocess and prepare the input for shipping

2. ship the input to a remote site

120 Query Decomposition and Execution

3. execute the SF at the remote site

4. return the result of the SF execution to the coordinating mediator

5. assemble the result to be emitted from the operator

Steps 1, 4 and 5 are executed locally, while steps 2 and 3 are performed at
another AMOSII server. The SAE operator returns values by binding the
SAE result variables in the template above to the values in the tuples
from the result of the execution. The result of the SAE operator is emitted
a tuple at a time.

Figures 6.11 through 6.13 illustrate three algorithms for implementation
of the SAE operator. All three implementations have two parts: the SAE
operator in the coordinating mediator (the one initiating the query execu-
tion), and a request handler at the site where the SAE SF is executed. Before
discussing the speci�cs of each of the algorithms, we �rst turn the attention
to the problem of transferring OIDs and type information in a distributed
architecture encompassing a number of autonomous OO mediator systems.

OIDs and types in the Inter AMOSII communication

Within a mediator, the OIDs of the objects from other AMOSII servers are
represented as proxies. As described earlier, each proxy object is associated
with an instance of the type foreign oid that represents stringi�ed OIDs from
other servers. The stringi�cation is a process of translating the OIDs into a
sequence of bytes that can be transferred over the network. The stringi�ed
OIDs can be reversed to ordinary OIDs in the originating AMOSII server.

When a query over a proxy type or a type derived from a proxy type
is executed, the generated schedule might require that some OIDs imported
from another AMOSII server and stored locally are to be sent back to the
originating server where an SF is performed over them. An example of such
a query is the query in section 4.2.5 where the OIDs of type Person de�ned
in the sport database are shipped back to evaluate the hobby function.

When the system detects that proxy type instances are shipped out of
the mediator, it substitutes them with the associated stringi�ed OIDs of
type foreign oid. The oval named Deproxify OIDs in Figure 6.11 describes
this step.

Next, when a SAE request handler accepts data and an SF to be exe-
cuted, it �rst performs an analysis of the incoming data. In the case where

6.2 Object algebra generation and run-time support 121

there are stringi�ed OIDs of some local type objects, it transforms each of
them to a valid OID, if the object with that OID is still present in the
database, or to NIL otherwise. This process is described by the oval named
Destringify OIDs in the SAE request handler in the Figure 6.11.

The inter-server data shipment paths in a query execution schedule do
not necessarily follow the same paths as the type importation. Hence, the
data coming into a SAE request handler might contain columns with OIDs of
types that are not known (imported) at the executing server. In such cases,
the executed SF is a function over data in multiple data sources and the
incoming data is passed una�ected to some of the servers participating in
the SF execution. Stringi�ed OIDs are passed una�ected in all intermediate
AMOSII servers, until they arrive to the originating server. The originating
server is the only site where operations can be performed over these OIDs.
OIDs bear no semantics outside the server where they are created, but can be
stored in systems that have directly imported their type from the originating
server, and send back to the originating server for processing.

A query result of a query can also contain some imported type OIDs.
When a query retrieves instances of a type imported from another AMOSII
server (e.g. to be stored in local functions), the query decomposer might
generate execution schedules where these are passed through intermediate
servers that do not know this type. To be passed out of the originating
server, the OIDs are stringi�ed. They pass una�ected through the interme-
diate servers. On arrival at the target server, proxies are generated for the
incoming stringi�ed OIDs storing the incoming foreign oid data in a stored
function. In Figure 6.11 these two complementary steps are described with
the Stringify OIDs and Proxify OIDs ovals.

The described protocol allows for transportation of typed information
without following the conceptual connections between the mediators set by
the type importations. It also allows for exible data shipment paths in
a distributed mediation environment without global schema. The protocol
implementation is based on the types of the data shipped among the servers.
The type information is needed to perform operations over OIDs in the
shipped data. Because the subqueries that receive the shipped data are fully
edged AMOSII functions, they store the types of the input and the output
in their signatures. Using the function signatures as a source for the typing
and the tuple width information allows for a very lightweight data shipment
protocol containing only the shipped data items.

122 Query Decomposition and Execution

SAE operator algorithms

Besides the described OID transformations, the SAE operator performs op-
erations to combine the input data with the data obtained from the execution
of the remote SF into a set of resulting tuples bound to the output variables.
The input to a SAE operator can be viewed as a table consisting of columns
labeled by calculus variables. Some of the columns are used as an input to
the remote SF invoked by the SAE operator. Other columns are used in the
query processing steps described by nodes above the current one in the query
DcT.

A naive implementation of the SAE operator would ship the whole input
bulk to the remote site, execute the SF appending its result to the input, and
then ship this result back. Many redundancies can be noted in this approach.
The �rst improvement of the naive strategy we propose is the project-concat
algorithm (PCA). Its principal steps are shown in Figure 6.11. It avoids
some of the redundancies of the naive strategy by the following two data
transformations:

� The input bulk is projected over the data columns that are actually
used in the remote SF, before shipping them there.

� After the SF is executed the result shipped back to the mediator con-
tains only the relevant columns (i.e. columns used later in the process-
ing or part of the query result) from the SF execution result.

The result of the SAE operator is assembled by a simple concatenation
of the input and the result shipped back from the remote AMOSII mediator.
Since the operations are order preserving, concatenation can be used instead
of the more expensive join. In the case when the remote SF does not return
relevant data, the result is a bulk of boolean values, one for each input tuple.
The input tuples such that the result of the SF execution is NIL (no matching
tupes) or false in case of a boolean SF are deleted from the resulting set.
Before emitting the result of the SAE operator, the concatenation of the
input and SF result is projected over the set of columns relevant for the rest
of the query execution (RS).

Table 6.1 presents an example execution of the PCA. The example simu-
lates the PCA execution for a decomposition schedule of the running example
introduced on page 96 in this chapter. The decomposition for this query is
presented on page 106. The example is executed assuming the execution
schedule shown in Figure 6.10 with DB1 being another AMOSII server. The

6.2 Object algebra generation and run-time support 123

. . . .

. .
 .

.

Project
KS

Deproxify
 OIDs

Project
RS

Concat
Proxify

OIDs

Destringify
OIDs

Stringify
 OIDs

SAE Operator SAE request handler

Materialized bulk from the input

output

1 2 3

8 7 6 5

Execute
 SF

4

Figure 6.11: Project-concat SAE implementation

SAE operator execution that manages the interaction between the mediator
and DB1 is represented in Figure 6.10a by the data ows 3 and 4. The input
to this execution of the SAE operator is a table containing the values of the
variables va and r produced by the execution of the SF SFdb2 in the DB2
source. In the example, r ranges over strings, va ranges over integers, and
the stored function fbB!int at DB1 has the following values:

fbB!int

B fb(B)

ib1 4

ib2 5

ib1 6

where ibk denotes an OID of a B instance. During the execution, the SF
SFdb1 at DB1 is invoked with an integer as an input. It returns true if
there exists at least one value in the function fbB!int that is larger than

124 Query Decomposition and Execution

the input. The example shows the execution of the SAE operator over 2
bulks of size 4, named in the example as b1 and b2. The process is shown
in parallel for both of the bulks due to space considerations. In reality, the
SAE operator is executed sequentially over each of the bulks. Finally, the
OID operations have no e�ect in this type of a setting and are omitted in
the example.

r va

\T" 5
b1 \V" 4

\K" 5
\M" 3

\L" 5
b2 \M" 2

\G" 4
\Y" 4

�KS�!

va

5
b1 4

5
3

5
b2 2

4
4

to DB1
�! : : :

r

b1 \M"

b2 \M"

�RS �

r va

b1 \M" 3

b2 \M" 2

concat
 �

tmp

false
b1 false

false
true

false
b2 true

false
false

from DB1
 � : : :

Table 6.1: Example execution of the SAE operator using the project-concat
algorithm

In the example, �rst the projection over the KS variables strips the r
values from the input bulks. Next, the bulks are shipped to DB1 where the
SF SFdb1 is executed. The resulting set of boolean values is shipped back
to the mediator. The concatenation shown in the example is a special case,
when the executed function does not return any data used later in the query
processing. In this case, the concatenation of the returned boolean values
and the input tuples actually �lters the tuples for which the result is true.
The �nal projection removes the va values to form the requested result.

The PCA has advantage of improving the naive implementation, while

6.2 Object algebra generation and run-time support 125

preserving the simplicity of the processing. All operations are linear in com-
plexity and therefore cheap to perform. Nevertheless, it is ine�cient when
there is a large percentage of duplicates in the input bulk(s), expensive SF,
and/or expensive communication between the servers involved.

The semi-join algorithm (SJA) [3], shown in Figure 6.12, improves the
performance of the PCA when duplicates are involved. After projecting the
input bulk over the columns used as input to the remote SF, SJA performs
duplicate removal before shipping the data. When there is a large percentage
of duplicates within the bulks, this reduces both the size of the shipped data
and the number of executions of the remote SF. The result of the SF execu-
tion is shipped back to the calling server where, as in the previous algorithm,
the shipped tuples are concatenated to the result of the SF invocation. Next,
an equi-join on the KS columns is performed over the input bulk and the
result of the concatenation. Here, because of the duplicate removal it is not
possible to match the tuples by their rank in the bulk.

. . . .

. .
 .

.

Project
KS

Duplicate
Removal

Deproxify
 OIDs

Project
RS

Equi-join Concat
Proxify

OIDs

SAE Operator SAE request handler

Materialized bulk from the input

output

1 2 3

78910

Destringify
OIDs

Stringify
 OIDs

4

6

Execute
 SF

5

Figure 6.12: SAE by semi-join

The SJA algorithm performs an extra semi-join and a duplicate removal

126 Query Decomposition and Execution

compared to the PCA algorithm. Both operations can be implemented using
hashing in time linear to the size of the input bulks. In the equi-join, it is
always cheaper to use the result of the concatenation as an inner set, since
it is always smaller or equal to the whole bulk.

The semi-join algorithm bene�ts from avoiding shipping duplicate entries
over the network and executing the SF for them. Nevertheless, this applies
to the duplicates only within a single bulk. Duplicates appearing in two
di�erent bulks will be shipped and processed separately.

In Table 6.2 an example execution of the SJA is presented in the same
scenario as the execution of PCA in Table 6.1. We can note that, due to

r va

\T" 5
b1 \V" 4

\K" 5
\M" 3

\L" 5
b2 \M" 2

\G" 4
\Y" 4

�KS�!

va

5
b1 4

5
3

5
b2 2

4
4

dup.

rem.�!

va

5
b1 4

3

5
b2 2

4

to DB1
�! : : :

r

b1 \M"

b2 \M"

�RS �

r va

b1 \M" 3

b2 \M" 2

equi-

join
 �

va

b1 3

b1 2

concat
 �

tmp

false
b1 false

true

false
b1 true

false

from

DB1

Table 6.2: Example execution of the SAE operator using a semi-join algo-
rithm

the removal of the duplicates within each of the bulks, the size of the ta-
ble shipped to and from DB1 with the SJA example is smaller then with
the PCA. The number of the invocations of SFdb1 is reduced by the same
amount. The added cost is in the two additional phases of duplicate removal
and equi-join. Furthermore, these two phases require storage space propor-
tional to the bulk size to store the temporary hash indices built during these
phases.

6.2 Object algebra generation and run-time support 127

In order to avoid duplicates over di�erent bulks, the algorithm in Figure
6.13, extends the SJA by saving the index built up for the inner relation
of the equi-join, between the executions of the SAE operator for di�erent
bulks of the input. New entries for the tuples in the input bulk not already
in the index are added to the index every time the SAE operator is invoked.
The data shipped by the SAE operator is passed through an additional
�lter where an anti-semi-join is performed over the set already pruned from
duplicates. The tuples that are already present in the index are not shipped.
If a tuple is in the index, it has already been processed in some of the previous
bulks and the result is present in the index. The remaining tuples are shipped
to the remote site, where the SF is executed and the result is shipped back as
in the previous versions of the algorithm. Next, new entries are added to the
index from the returned result. Finally, an equi-join between the input bulk
and the index is performed as in the SJA. A comparative execution of this
algorithm in the same scenario as the examples of the previous algorithms is
presented in Table 6.3. Here, the second bulk is reduced to one tuple before
shipping to DB1, since the anti-semi-join eliminates the two tuples present
in the �rst bulk.

However, the modi�cation of the SJA requires additional operations that
access and update the hash index are introduced. The size of the index in
the modi�ed algorithm is proportional to the number of distinct KS tuples.
The algorithm can be used even in the case when the whole index is too big
to �t in the memory. In this case, when the memory limit is reached, new
entries are not added to the index and it serves as a bloom �lter [38].

The semi-join with materialized index algorithm (SJMA) in Figure 6.13
does not add substantially to the cost of the SJA, while it o�ers the possi-
bility for performance improvements. It reduces to the SJA in the case when
the whole input is contained in only one bulk. Therefore, we do not consider
the SJA algorithm for an SAE operator execution strategy. Only the PCA
in Figure 6.11 and the SJMA in Figure 6.13 are considered. An algorithm is
selected based on the costs of the \penalties" of each of the algorithms.

The penalty of the PCA lies in the extra shipments and executions of the
SF function. If we ignore the OID manipulation operations that are cheap
to perform, the extra cost imposed by each duplicate tuple is a sum of the
costs to: ship the tuple from the coordinating site (mc) to the handler site
mh; execute the SF over this tuple; and ship the result back. Assuming that
there are PD percentages of duplicates in the input of size IS, and that TS
is the tuple of the SF result types, then the penalty of PCA can be expressed

128 Query Decomposition and Execution

. . . .

. .
 .

.

Project
KS

Duplicate
Removal

Anti-semi-join
Deproxify

 OIDs

Project
RS

Equi-join
Update
Index

Proxify
OIDs

Temp.
Index

SAE Operator SAE request handler

Materialized bulk from the input

output

1 2 3 4

891011

Destringify
OIDs

Stringify
 OIDs

5

7

Execute
 SF

6

Figure 6.13: SAE by semi-join and a temporary index

as:

PD �IS �(Wmc;mh �sizeof(KS)+cost(SF)+Wmc;mh �sizeof(TS) �selectivity(SF))

The SJMA avoids processing of the duplicate tuples at a cost of 4 addi-
tional steps: duplicate removal, anti-semi-join, index update and equi-join.
Assuming an average index lookup cost of Il and index update of Iu, an
upper limit for the cost of these operations can be expressed as:

IS � Iu + IS � Il + (1� PD) � IS � Iu + IS � Il

The �rst term represents the cost of duplicate removal by hashing the in-
put. The second term is an upper limit for the anti-semi-join, if each element
is looked up in the materialized index. The actual numbers is lower than the
term due to the duplicate removal, but to simplify the calculations we use
the size of the whole input. The third term counts the index updates, one
for each unique tuple in the projection of the input over the KS column set.

6.2 Object algebra generation and run-time support 129

r va

\T" 5
b1 \V" 4

\K" 5
\M" 3

\L" 5
b2 \M" 2

\G" 4
\Y" 4

�KS�!

va

5
b1 4

5
3

5
b2 2

4
4

dup.

rem.�!

va

5
b1 4

3

5
b2 2

4

anti

semi

join
�!

va

5
b1 4

3

b2 2

to DB1
�! : : :

r

b1 \M"

b2 \M"

�RS �

r va

b1 \M" 3

b2 \M" 2

equi-

join
 � 4

index

update
 �

tmp

false
b1 false

true

b2 true

from DB1
 � : : :

Table 6.3: Example execution of the SAE operator using the semi-join with
materialized index algorithm

The cost of the equi-join equals to one index lookup for each input tuple. By
comparing the two costs above and simplifying the inequality, we can state
the criteria for the use of the SJMA over PCA if the following inequality is
satis�ed:

PD � (Wmc;mh � sizeof(KS)+ cost(SF)+Wmc;mh � sizeof(TS) � selectivity(SF)) >

(2� PD) � Iu + 2 � Il

or

PD > 2
(Iu + Il)

Wmc;mh � (sizeof(KS) + sizeof(TS) � selectivity(SF)) + cost(SF) + Iu

All terms in this equation are already available from the earlier query
compilation phases, with the exception of the term PD. This term can be
obtained from the estimates of the input local and imported functions. Since
some of these come from data sources where good estimates will be impossi-
ble to obtain and because of the e�ects of the query processing steps preced-
ing the one evaluated can increase the errors in the estimates, we propose
that the decision is made dynamically at run-time, during the processing of
the �rst bulk of data. For the purpose of determining the PD parameter, the

130 Query Decomposition and Execution

maximum of 5% or 50 tuples are scanned randomly in the �st input bulk,
while the compile-time cost estimates assume the PCA.

Chapter 7

A Survey of Related

Approaches

This chapter presents an overview of some research projects with similar aims
as the AMOSII project. AMOSII is related to research in the areas of OO
views, data integration, distributed databases and general query processing.
We have surveyed the literature on a number of multidatabase integration
and OO view projects and compared their approaches to AMOSII. To aid
the comparison, we �rst summarize the major features of AMOSII:

� A distributed mediator architecture where query plans are generated
using a distributed compilation in several communicating mediator and
wrapper servers.

� Data integration by reconciled OO views spanning over multiple me-
diators and speci�ed through declarative OO queries. These views are
capacity augmenting views, i.e. locally stored attributes can be associ-
ated with them.

� Processing and optimization of queries to the reconciled views using
OO concepts such as overloading, late binding, and type aware query
rewrites.

� Query optimization strategies for e�cient processing of queries over a
combination of locally stored and reconciled data from external data
sources.

131

132 A Survey of Related Approaches

7.1 Multidatabase systems

The main purpose of the AMOSII project is the development of a system
for integration of data in multiple data sources. This section compares the
architecture and implementation techniques used in AMOSII with other mul-
tidatabase integration projects [9, 35, 7, 30, 11, 78, 56, 43, 7, 48, 24].

7.1.1 Disco

The DISCO (Distributed Information SEarch Component) system is based
on a centralized mediator-wrapper architecture. Although its primary focus
is not on query performance, but on extensibility and partial query eval-
uation in presence of unavailable data sources, it has many principles in
common with the AMOSII system.

A special mediator called the Catalog keeps information about the avail-
able DISCO mediators and wrappers on the network. This service corre-
sponds closely to the name services in AMOSII. DISCO is based on the
ODMG [9] standard data model and uses OQL and ODL as the query and
data de�nition languages, respectively. One of the central concepts in the
ODL is the concept of type that has associated an interface (structural type
description) and an extent. In DISCO the concept of a type is extended with
these facilities:

� Associating an interface with one or more extents stored in the data
sources. The extents contain objects that have a structure as described
by the interface.

� Type mappings between types de�ned in the mediator and the types
with extents stored in the data sources, in order to overcome structural
di�erences.

The �rst extension allows for a type de�ned in the mediator to draw its
extent from a set of data sources. The resulting extent is a union of all the
instances in all the sources. The second extension is used to transform the
data in the data sources into a common interface.

Data sources are de�ned by instantiation of the type Repository. Reposi-
tories are classi�ed into repository types. To access a repository of a particular
type, a wrapper must be implemented for it. For example, the following ex-
pressions de�ne two repositories r1 and r2 of the same type to be wrapped

7.1 Multidatabase systems 133

with the wrapper w0. The data in both repositories has a format described
by the interface Person. The query retrieves the names of all the persons
with salary greater than 10.

extent person0 of Person wrapper w0 repository r0;

extent person1 of Person wrapper w0 repository r1;

select p.name

from p in union(person0, person1)

where p.salary > 10;

In this example, the extents are named explicitly. Alternatively, they can be
speci�ed by meta-data queries that dynamically determine the number of
extents to be scanned.

For conict resolution the user can use the OQL view de�nition capa-
bilities. Compared to the approach used in AMOSII this has the following
disadvantages:

1. The reconciliation is performed in the mediator, while AMOSII can
push the conict resolution code to the wrappers and the data sources
when favorable.

2. The view mechanism (named sets in OQL) does not provide OIDs for
the view instances and therefore the optimizations based on locally
stored data in AMOSII are not applicable.

3. The ODL/OQL language does not have conict resolution constructs
as the integration union types (IUTs). This requires the user to man-
ually specify the resolution in case of a data overlap.

The query processing in DISCO is performed over plans described in
a formalism called universal abstract machine (UAM) that contains the
relational algebra operators extended with primitives for executing parts of
the plans in the wrapper. The mediator communicates with the wrapper by
using a grammar describing the operator sequences accepted by the wrapper.
It can also (in some cases) ask for the cost of a particular operator sequence.
This method is more elaborate than the method for the description of data
source capabilities in AMOSII, but it is more complex and time-consuming,
due to the combinatorial nature of the problem of constructing the subplans
executed in the wrappers.

Finally, to our knowledge, an implementation of a prototype has been
planned, but no experimental results have been reported.

134 A Survey of Related Approaches

7.1.2 Garlic

The Garlic [35, 36, 64] system, developed at the IBM Almaden Research
Center, also has a centralized wrapper-mediator architecture. The system is
based on ODMG's OO data model. The data from the wrapped data sources
is represented as objects. The OIDs of these objects are constructed from the
data source name, the object type, and a set of keys speci�ed for each type
retrieved from a data source. Except for the system data and intermediate
results, Garlic does not provide facilities for storing local user-de�ned data,
even though it has a fully functional query processor. The primary goals of
the Garlic project are:

� To explore how the query optimization techniques based on exhaustive
dynamic programming, developed in earlier IBM research prototypes
and products, can be used in a data integration scenario.

� To expand these techniques, so that wrappers for di�erent data source
types can be easily speci�ed, modi�ed, and added to the system.

At the heart of the Garlic system is the query service facility. This facility
is divided into two units: (i) a query language processor, and (ii) a distributed
query execution engine. The query language processor performs tasks that
correspond to some of the the calculus-related phases in the query processor
of AMOSII (semantic checking, rewrite, etc.). The second unit performs
cost-based optimization and outputs an executable query execution plan.

The query optimizer in Garlic is based on dynamic programming. The
optimizer builds plans of gradually increasing sizes, by adding POPs (Plan
OPerators) to already built partial plans. The POPs can be relational algebra
operators, operators for storing and retrieving data in temporary tables,
and operators for accessing the wrappers. During the search, the optimizer
prunes the plans that are more expensive than other plans representing the
same subquery. In addition to the composition of the plans, Garlic takes
into account the location of the result of the plan execution. Two plans
computing the same subquery, but placing the result in two di�erent sites
are not pruned from the system.

POPs are added to already constructed partial plans using STARS -
(STrategy Alternative Rules). Each rule describes how a new plan is con-
structed from one or more partial plans. Each rule has a condition attached
that guards its triggering. The rules create POPs that are executed locally,

7.1 Multidatabase systems 135

or the PushDown POP that executes a subquery in a wrapper. For the select-
project-join queries there are three main STAR types (named STAR roots)
for: access (scan), join, and finish (plan completions as e.g. projections).
The two �rst STARs can produce plans that execute either in the mediator
or in the data sources, while the third one is always executed in Garlic. An
illustrative example of a STAR root is the join root that is translated into
three di�erent POPs: ReproJoin - executed in a wrapper, NestedLoopJoin

- executed in Garlic over materialized operands, and BindJoin - a semi-join-
like POP where the outer table is sent one tuple at a time to the site of the
inner table, retrieving the matching tuples.

The functionality of Garlic roughly corresponds to the multidatabase
query engine in AMOSII. An important di�erence is that Garlic does not
store local data. The generated OIDs are used only to access the data in the
data sources. This makes the techniques for optimization of queries over a
combination of locally stored and imported data in AMOSII inapplicable. It
seems that the Garlic OIDs are used only internally in the query processor,
and possibly as object handles for user requests over individual objects.
Furthermore, Garlic has no facilities equivalent to the IUTs in AMOSII.

Another di�erence between the two approaches is that Garlic is based on
a centralized query compilation and execution architecture, while AMOSII
is based on a query processor that performs distributed query compilation
in the network of wrappers and other mediators. Therefore, we cannot di-
rectly compare the POP formalism of Garlic with the decomposition tree
(DcT) formalism of AMOSII, designed to distribute queries over multiple
AMOSII servers. By contrast, a Garlic system treats another Garlic system
as a (relational) data source. Therefore strategies as achieved by the DcT
distribution are not explored. Although, it can be supposed that STAR rules
can be formed to take advantage of the intermediate result materialization
capabilities of the Garlic mediators in order to employ similar strategies as
in AMOSII in a network of Garlic mediators, this approach has not been
pursued in the reported work.

One limitation of the current implementation of AMOSII is that it always
pushes the joins to a data source where all its operands are available. Garlic,
on the other hand, also considers plans that perform the join in the mediator.
Our on-going work includes expansion of AMOSII to consider such query
execution plans.

136 A Survey of Related Approaches

7.1.3 Pegasus

The goal of the Pegasus project is to develop a heterogeneous information
and process ow management system (HP-MS). This project was started in
the early 1990s at the HP Labs in Palo Alto.

Pegasus is a fully edged database management system. The focus of the
project is on integration of relational databases, multimedia databases, and
legacy applications. The three main goals of the Pegasus project are:

� seamless integration of external schemas with the local database

� e�cient query processing

� workow management

Pegasus originates in the same data model as AMOSII: the Iris OO data
model [21], an OO extension of DAPLEX [71]. Earlier versions of Pegasus
used the HOSQL language that is an extension of the language OSQL [53]
used in the Iris system. OSQL has also served as a basis for the AMOSII
query language AMOSQL. More recently Pegasus has been shifted to an
SQL3 based language SQL3+. This language extends the SQL3 standard
with data integration facilities.

Although the terminology di�ers greatly, the architecture of the Pegasus
system is similar to the mediator-wrapper architecture used in AMOSII, but
it is not distributed. The core of Pegasus corresponds to the mediator ser-
vices. External data sources are named External Data Resource Management
Systems (EDRMSs). The interaction with the EDRMSs is performed using a
module Pegasus Agent (PA) that also has some processing capabilities. The
PA process is intended to run on the same machine as the EDRMS it serves.
The functionality of the PA is similar to a functionality of the wrappers in
the AMOSII architecture. Nevertheless, a PA is not a fully-edged Pegasus
server in the centralized architecture of Pegasus. This is one of the most
important di�erences with the AMOSII architecture.

The data integration facilities of Pegasus are named using the dis-
tributed database terminology. Foreign tables are imported from declared
data sources. In the following example, summarized from [7], �rst a DB2
relational data source named DB1 is de�ned and then a table is imported
and bound to the type Programmer in Pegasus.

REGISTER RELATIONAL DB2

7.1 Multidatabase systems 137

DATASOURCE db1 AT 'smith@host1' AS Pdb;

CREATE TYPE Programmer WITH OID VISIBLE

(Prog_id INTEGER,

Ssn INTEGER,

Name CHAR,

Salary INTEGER);

CREATE TABLE ProgrammerTable (Dcn: Programmer) AS IMPORTED

FROM RELATIONAL DATASOURCE Pdb RELATION Programmer

WITH OID PRODUCING BY (Prog_id)

(Prog_id AS MATCHING Prog_id,

Ssn AS MATCHING Ssn,

Salary AS MATCHING Salary,

Name AS MATCHING Name);

The resulting table has a one-to-one correspondence with the table in the
relational database. The OIDs of the new type are formed using the Prog id
column from the relational database.

Imported tables can be integrated with locally de�ned tables, as well as
tables imported from other data sources, by two mechanisms:

� integrated views

� adding columns of one table to another

The �rst mechanism allows for merging horizontally fragmented tables,
while the second is used for merging vertically fragmented tables. As opposed
to the classical distributed database work, here the fragments are maintained
by autonomous database systems. The following example from [7] de�nes
�rst a supertype over the types Programmer and Engineer, and then an
integrated view over the tables corresponding to this types:

CREATE TYPE Employee

OVER Programmer WITH Prog_id AS Emp_id,

Engineer WITH Eng_id AS Emp_id,

(Emp_id INTEGER,

Ssn INTEGER,

Name CHAR,

Salary INTEGER);

138 A Survey of Related Approaches

CREATE VIEW EmployeeTable (Dcn Employee)

AS SELECT * FROM ProgrammerTable UNION ALL

SELECT * FROM EngineerTable;

DEFINE ROW EQIVALENCE FOR EmployeeTable ON

(Tp ProgrammerTable, Te EngineerTable)

BY Tp.Dcn->Ssn = Te.Dcn->Ssn;

DEFINE RECONCILER ON EmployeeTable.Dcn->Ssn

(ProgrammerTable, EngineerTable)

RETURNS INTEGER USING DISAMB_SUM

The ROW EQUIVALENCE clause de�nes the equality condition for the rows
of the de�ned view. Rows that satisfy this condition will be treated as one in
the resulting tables. Possible conicts in the values of the other columns are
resolved by RECONCILER de�nitions. These can be system speci�ed as,
for example DISAMB SUM returning the sum of the input values, or user
de�ned derived functions. Although the view de�nition uses the UNION
operator, the ROW EQUIVALENCE clause enforces outer-join semantics
and processing.

The processing of the queries over the integrated view proceeds in three
phases. The �rst phase performs query rewrites to transform the query from
using the integrated view to the imported tables. Then, the query proces-
sor identi�es portions of the query tree that can be evaluated in a single
EDRMS and converts them into Virtual Tables (VT) that encapsulate the
operations performed in the EDRMS. The resulting query tree has VTs or
locally stored tables as leaves and internal nodes representing operators of
extended relational algebra. The extensions deal, among other things, with
object-oriented concepts, constraints and reconciliation. Some of the query
rewrite rules applied in this phase are: [7]:

� Push as many as possible of the operations into the EDRMS.

� Push up the reconcile operations in order to place the join operations
close to the outer-joins.

� Combine joins with the outer-joins in order to make the inputs to the
outer-join smaller.

7.1 Multidatabase systems 139

� Transform the outer-joins to left- or right-outer-joins, or to ordinary
joins when some of the other query predicates use some attributes not
present is the both of the joined tables. Since the language is null-
intolerant (a predicate evaluates to false when a part of it is null),
this eliminates the parts of the outer-join where this predicate is not
present.

The second query processing phase builds a left-deep query tree using a
cost-based method. The costs of the VTs are obtained using elaborate cost
model for the operations performed in the EDRMS and calibration of the
data sources [15].

The left-deep query tree generated in the �rst two phases is rebalanced in
the third phase. The rebalancing operations are performed at certain points
of the tree and are based on the associativity and commutativity properties
of the join and cross-product operators.

Each of the three query processing phases in Pegasus can be related to
a phase in the query processing in AMOSII. The �rst phase corresponds to
the calculus generation and rewrite, with a di�erence that the rewrites in
AMOSII reduce the number of predicates, while in Pegasus they perform
reordering of the operators that inuences their order of execution in the
�nal execution plan. Techniques, as in AMOSII, that take advantage of the
types of the query variables to reduce the query size are not described.

In processing of queries over the integrated views, Pegasus keeps the
outer-joins as a single operation, and later in the query it performs a cor-
rection of the result by reconciliation operators. This approach has the ad-
vantage of keeping the queries compact, but it does not take advantage of
the selections stated over reconciled functions. We believe that these kinds
of selections appear often in queries over the integration views.

In AMOSII, on the other hand, the outer-join and the reconciliation is
broken into up to three cases: one join and two anti-semi-joins, each processed
separately. This allows selections speci�ed over the reconciled functions to be
pushed all the way down to the data sources in the two anti-semi-joins cases.
In the join case, the optimizer might be able to push the selections down to
the data sources when the reconciliation is de�ned using function values from
only one of the data sources. Even when this is not the case, the join still
generates smaller intermediate results than the full outer-join, in particular
when the overlap is small. The size of the result and the data shipped to
perform the join has a maximum size proportional to the size of the smaller

140 A Survey of Related Approaches

of the integrated extents. The outer join produces an intermediate result
that is of size equal to the sum of the sizes of the integrated extents.

Another disadvantage of performing the reconciliation late in the query
execution is that the reconciliation operator requires its whole input, in
this case an outer join of the integrated tables, to be materialized before the
processing starts. This prevents streamed execution and might pose problems
in cases when the intermediate results are too big to �t into the integration
system memory.

In [16] the problem of parametrized queries to the data sources is ex-
plored in the context of a study of di�erent join strategies in multidatabase
systems. A hash join a strategy is proposed that is similar to the index
materialization used in AMOSII. However, this research concentrates on in-
dividual join operators and ignores the query context that might contain
useful predicates to reduce the hash index size. The authors note that this
is a hard problem, and instead use the maximum and the minimum values
of the local table join column (the input bulk in AMOSII) to perform range
selection of the joined values, in order to reduce the materialized hash in-
dex. The strategy proposed in AMOSII successfully solves the problem of
utilization of the useful query predicates in the index materialization. The
method for reducing the index size used in Pegasus can easily be added to
AMOSII.

Due to its centralized architecture the rebalanced trees in Pegasus are
constructed and stored in a single system. Distributed architecture is one of
the future topics of the Pegasus project [7]

7.1.4 TSIMMIS

The TSIMMIS system - The Stanford-IBM Manager of Multiple Information
Sources [30] is a continuation of the Lightweight Object Repository (LORE)
project, and is aimed for integration of a large number of structured and
unstructured data sources. The basis for the integration is a common data
model named object exchange model (OEM). The idea behind the OEM is
to provide as simple as possible, but complete facilities for data integration.
Although OEM is not a fully-edged OO model, the basic entity in OEM is
the \object". Each object is composed of four elements: label, type, value,
and object�id. As opposed to other OO models, the OEM is self-descriptive.
The type and the label of an object contains the information usually stored in
a database schema. Actually, the notion of schema is absent in the OEM. The

7.1 Multidatabase systems 141

authors claim that the labels can be used not only for naming the objects,
but also for inferring semantics that can be used in the data integration
process. The value �eld of an object can contain a collection of literals or
nested objects, thus creating a graph-like database structure.

To query a database described in OEM, a client can issue a query in
a query language named OEM-QL. This query language adopts the OQL
(and SQL) syntax style and is based on the select-from-where clause. The
semantics, however, is based on the OEM model. The path expressions in
OEM-QL allow queries over the labeled graph that contain wildcards and
other regular expressions that make the navigation easier. As a result, an
OEM-QL query returns an OEM graph.

The TSIMMIS project uses a centralized mediator/wrapper data inte-
gration architecture. Mediators can fetch and combine data from wrapped
data sources. However, unlike AMOSII, the TSIMMIS wrappers do not have
a complete query processor and data store. The emphasis in TSIMMIS has
been to enable easy wrapper and mediator generation, using a mediator spec-
i�cation language (MSL), rather than on query performance as in our work.
MSL is a rule based language where the input query is matched against a rule
speci�cation. In the wrapper de�nition, when a match is found, data source
speci�c code speci�ed within the rule is executed in order to retrieve the rel-
evant data from the data sources. The data source capabilities mechanism
in AMOSII are more elaborate and perform cost-based and heuristic opti-
mizations that are not applied in TSIMMIS. Also, the OO transformations
used in AMOSII are, due to the di�erences in the CDM, are inapplicable
in TSIMMIS. The mediator generation system in TSIMMIS allows for joins,
but does not consider integration operators for resolving conicts in over-
lapping data as in AMOSII. Furthermore, to our knowledge, the TSIMMIS
project has not reported performance evaluation of the execution of queries
over views de�ned over data combined from the mediator and di�erent data
sources.

7.1.5 Multibase

The Multibase project [11, 12, 13, 14] is a pioneering work on integration of
data in multiple databases. As in AMOSII, the Multibase system is based on
a derivative of the DAPLEX data model [71] extended with generalization.
Data integration is performed by de�ning generalized types as supertypes of
existing database types. For the generalized types, derived functions based

142 A Survey of Related Approaches

on the functions of the subtypes can be de�ned to reconcile the data in
the integrated databases. These features are closely related to the functions
clause in the IUT de�nitions in AMOSII.

Query transformations are used to transform a query over the generalized
types into a set of queries over the local schemas. These query transforma-
tions break down the outer-joins and the reconciliation functions into queries
the over disjoint parts of the integrated relations, using joins and anti-semi-
joins. The approach allows for similar optimization techniques as the ones
used in AMOSII for optimizing queries over IUTs having no locally stored
functions. Nevertheless, the method used in Multibase is not based on system
prede�ned types and the properties of type hierarchies, making the query
analysis and optimization more complicated. Furthermore, the project does
not explore combining optimization by generalization with constructs such
as the DTs in AMOSII.

Another important di�erence between the two systems is that the
AMOSII data model is OO, while the Multibase system lacks OIDs. The
lack of OIDs disallows both materialization of the instances of the inte-
grated types and seamless mixing of local data with data retrieved from
various data sources. Locally stored data in not considered in this project.

In [12] it is also identi�ed that for selections over the reconciled func-
tions, the two anti-semi-joins usually will be able to take advantage of these.
The authors describe three optimization techniques to push the selections
through the most common aggregations used in reconciliation of function
values of overlapping data. Nevertheless, they note that these techniques
apply to very limited number of cases. Therefore, we have chosen not to
pursue this approach in AMOSII.

Finally, to the extent of the reported work available to us, the bene�ts
of the proposed optimization techniques have not been quanti�ed by exper-
imental results.

7.1.6 Data Joiner

The IBM DataJoiner [82, 78] is a state-of-the-art commercial product tar-
geted for integration of relational databases of di�erent vendors. As opposed
to the previous generation integration tools that provide only a gateway
for retrieving data stored in multiple vendor databases, the DataJoiner has
a full-scale distributed query processor capable of pushing down whole sub-
queries in to the connected databases. DataJoiner also is a fully-edged DB2

7.1 Multidatabase systems 143

database.

DataJoiner's query optimizer has a detailed knowledge of the strategies
used in the database engines supported as data sources. This meta-data,
stored in a Server Attribute Tables (SATs) includes information such as the
vendors' join implementations, index usage, type of query trees used in the
optimization, speci�cs of the SQL dialect, etc.

As a complement to the SAT table information, the system uses sam-
pling techniques or catalog queries to build locally stored statistics about
the characteristics of the tables imported from the data sources. Using this
information, the DataJoiner optimizer is capable of precise estimates of the
costs of the subqueries pushed to the source databases.

The DataJoiner query optimizer is an extension of the DB2/CS Starburst
optimizer. It enumerates all the possible plans using a dynamic programming
approach, as in AMOSII. The suboptimal plans are pruned. The generated
plans explore both performing the operations in the integrator, or if possible,
in the data sources.

The portions of the plans pushed to the data sources are translated to
SQL that closely resembles the execution strategy used by the local query
processor. By this, the DataJoiner takes over the optimization decisions from
the relational database used as data sources. The authors of the system claim
that in many cases they generate queries that perform better than if the
original query was executed directly in the system. An industry report [65]
comparing the DataJoiner with two other products in the same area, sets
the performance and the functionality of this product high above the other
two products.

As opposed to AMOSII, DataJoiner is a purely relational product, it does
not provide reconciliation facilities, and it has a centralized architecture.

7.1.7 MIND

The MIND (Middle-East Turkish University Interoperable DBMS) proto-
type [56, 60, 19] is based on the OMG distributed object management ar-
chitecture. The system is implemented around DEC's ObjectBroker ORB.
Various relational databases from di�erent vendors are connected to the sys-
tem using an interface de�ned in IDL. Two interfaces play a major role
in the MIND integration architecture: the Global Database Agent (GDA)
and the Local Database Agent (LDA). For each session with a client, the
GDA is instantiated in a server CORBA object that handles the requests for

144 A Survey of Related Approaches

the client. The CORBA architecture provides location transparency for the
GDA objects (GDAO). A GDAO contains a Global Transaction Manager
Object and a Global Query Processor Object (GQPO). The latter performs
the query decomposition and sends an executable plan for execution to the
former. The LDA objects (LDAOs) manage the submissions of the opera-
tions to the relational data sources and transaction management. The tasks
of the GDAOs and LDAOs can be related to the tasks of the mediator and
wrapper in the mediator-wrapper architecture.

The schema integration process is based on a typical four schema trans-
formation layers: local, export, global and external schema in order from
the individual data sources to the applications. The focus of these trans-
formations is on resolution of the class structural conicts and class extent
conicts, while preserving the autonomy of the sources.

The conict resolution is speci�ed by a mapping de�nition. The follow-
ing example [56] illustrates an integration of departments tables from three
databases (dept@DB1, division@DB2 and department@DB3):

/* global schema: department(dept_no, dept_name, address) */

/* local schemas: DB1: dept(dno, dname)

DB2: division(dno, dname, location)

DB3: department(dno, deptname, address) */

mapping department {

origin

DB1: dept d1,

DB2: division d2,

DB3: department d3;

def_ext dept_ext as

select * from d1, d2, d3 where d1.dno *= d2.dno

and d2.dno*=d3.dno;

def_att dept_no as

select d1.dno, d2.dno, d3.dno from d1, d2, d3;

def_att dept_name as

select d1.dname, d2.dname, d3.deptname from d1, d2, d3;

def_att address as

select d2.location, d3.address from d2, d3; }

7.1 Multidatabase systems 145

The mapping clause speci�es the data sources, the extent of the new class,
and the correspondence of the local tables' attributes to the attributes of
the global table. Note that the *= operator denotes an outer-join.

The goal of the query decomposition is to produce:

� A set of single data source queries that retrieve the needed data from
each of the involved data sources

� A set of post-processing operations executed in the GDAO that pro-
duce the query result from the intermediate results sent by the data
sources.

The set of single data source subqueries is produced by instantiating the
global schema query for each of the data sources. One limitation of this pro-
cess as described in [56] is that for a join over two integrated tables, the
generated single site queries assume that the joins are performed only over
fragments (integrated tables) located at a same data source. For example, a
query where the dept type de�ned above is joined with an emp table integrat-
ing data from the same three sources will produce subqueries that explore
only entries where the local employee tables join with the local department
tables. Cross-source strategies (e.g. where an employee at DB1 works at a
department stored at DB2) are not considered. Although this conforms with
the probable intended semantics of the example above, in general these kinds
of simpli�cations are application-dependent and, in our opinion, should be
inferred on the basis of declared database constraints.

In the post-processing phase, the GDAO performs operations such as
outer-joins and joins to build the �nal result from the intermediate results
returned by the data sources. The execution plan for this phase is generated
by using a dynamic and heuristics-based query optimization approach that
takes into account the actual load of the systems during the query execution
time.

Like the other systems that perform the reconciliation in the �nal phases
of the query processing, the method used in MIND su�ers from not being
able to use the selections based on reconciled functions early in the query
processing. Also, although the requests to the data sources can be executed
in parallel, the reconciliation process in the mediator has to wait until all
the inputs are materialized, before emitting the �rst result tuple.

Another di�erence between MIND and AMOSII is that MIND's inte-
gration facilities do not provide means for materializing OIDs for the data

146 A Survey of Related Approaches

from the data sources and augmenting the views over this data with locally
de�ned attributes.

7.1.8 IRO-DB

The IRO-DB project (Interoperable Relational and Object-Oriented
Databases - ESPRIT - III P8629) [20, 73, 25] developed tools for uni�ed
access to a number of relational and OO databases. The system is based on
the ODMG standard data model and the query language OQL. The archi-
tecture of IRO-DB is divided into three layers:

� The Local layer represents the data sources wrapped by Local
Database Adapters (LDA) that provide ODMG/ODL mapping to the
schema and OQL access to the data in the sources. This layer also
generates OIDs for the instances in the OO CDM that correspond to
the instances in the data sources.

� The Communication Layer performs the transfer of objects and
OQL queries between the server and the client sites. The protocol used
is an OO extension of the remote database access (RDA) standard,
OORDA. The main purpose of the communication layer is to allow
the interoperable layer to communicate with the local layer, but it can
also be used by the applications to directly access the data sources via
an OO extension of SQL CLI.

� The Interoperable Layer provides the application with means of
integrated access to multiple remote databases. Its functionality can
be divided into two parts: an interoperable DBMS (IRO-DBMS) that
supports the use and maintenance of an interoperable (global) schema,
and tools for aiding the building of an interoperable schema (Integra-
tors Workbench).

Compared with the wrapper-mediator architecture, the interoperable layer
provides services that correspond to the mediator services, while the local
layer corresponds to the wrapper. In the following, a description of the IRO-
DBMS is presented. The IRO-DBMS also consists of several functional units:

� The API generator generates an ODMG compliant C++ API from the
integrated schema to be used by applications that access this schema.

7.1 Multidatabase systems 147

� The global transaction manager implements the nested transaction pro-
tocol of the ODMG standard.

� The global parser and processor takes a text representation of an OQL
query and returns the result of its execution over the interoperable
schema. The features of this unit in relation to the AMOSII system
will be explored in greater detail in the rest of this section.

� The global data repository stores and provides the rest of the system
with an export schema description, a description of the interopera-
ble schema, schema localization information, and a description of the
mappings between the export and the interoperable schemas.

The data integration schema in IRO-DB is speci�ed by three layers of
class mappings. Each class to be exported by a data source is named an
external class. In the interoperable system each external class of interest has
a corresponding imported class serving a similar purpose as the proxy types
in AMOSII. The actual integration is performed by de�ning derived classes.
The interoperable system can also host locally stored data organized into
standard classes. The following example illustrates the use of the mapping
construct used for de�ning derived classes. In the example, �rst two imported
classes, S1 PART representing the table part at the source S1, and S2 PART
representing the table prt at the source S2, are de�ned. The mapping clause
de�nes the extent of the derived class PART and its attributes using query
expressions [73]:

mapping imported S1_PART{

origin S1::PART orig;}

mapping imported S2_PART{

origin S2::PRT orig;}

mapping PART {

origin S1_PART sorig;

origin S2_PART iorig;

def_extent parts as select PART(sorig: s_i, iorig: i_i)

from s_i in s1_parts, i_i in s2_ptrs

where s_i.part_id = i_i.prt_id;

def_att part_id as this.sorig.part_id;

def_att upd_date as this.sorig.upd_date;

148 A Survey of Related Approaches

def_att description as this.iorig.ptr_tpflg;}

Since the derived classes can use a general query to draw their extents from
the origin classes, they can be used for functionality that corresponds to
the DTs in AMOSII. Extent de�nitions with outer-join conditions could be
used to de�ne constructs similar to the IUTs, but this are not elaborated in
the IRO-DB reports available, nor are special query processing techniques
to support this type of operators presented. Also, the derived classes are not
placed in the class/type hierarchy as are the DTs and IUTs in AMOSII.

As AMOSII, IRO-DB also uses proxy objects in the interoperable system
to represent objects in the data sources. The same mechanism is used for
the derived classes. This mechanism is similar to the coercion mechanism
used for the AMOSII DTs. However, the AMOSII IUTs are di�erent. When
IUTs are used in AMOSII, no new OIDs are created (and no coercion is
used) since the extent of the IUT is a union of disjunctive sets of object
instances of the auxiliary subtypes. Another di�erence in the proxy manip-
ulation is that in AMOSII the proxy OIDs are generated in the mediator
corresponding to the interoperable layer in IRO-DB, while in IRO-DB these
are generated by the LDAs. This leads di�erent internal representation of
the OIDs of the standard class objects and the OIDs of the imported class
objects. The objects of the later type have longer OIDs storing redundant
class and source information that in AMOSII is stored in the interoperable
schema as a property of the imported classes.

The handling of the requests for object attribute values also di�ers con-
siderably between the systems. In IRO-DB when a proxy object is used,
the systems accesses the data source and materializes in the interoperable
database (also known as home database) all the attributes of the object.
Possible references to other global objects are replaced by global OIDs, if
these objects are already in the home database. Otherwise, these objects are
retrieved �rst and then assigned global OIDs. The process proceeds until
no unresolved object references exist in the materialized object graph. After
this materialization, the queries using this object within a single transaction
access the local copy. The home database thus acts as an object cache of all
integrated data in IRO-DB.

IRO-DB queries can be processed using two modes of operation: (i) ad-
hoc queries can be processed by ignoring the current contents of the home-
database and rematerializing there a superset of the object instances needed
for the query evaluation before processing the query over the cache; (ii) long-

7.1 Multidatabase systems 149

transaction queries that are more likely to access the same objects more than
once, and therefore the query processor tries to materialize only the objects
missing in the home-database with the cost of more complicated processing.

Compared to this mechanism, AMOSII uses selective retrieval of the
proxy object function values that are used in the queries. This approach does
not pay the penalty of retrieving some (possibly large) unused attributes and
long chains of object referenced from the �rst object. In conjunctive AMOSII
queries, the calculus rewrites remove the common subexpressions that pro-
duce most of the repeated accesses to a single function. It is possible, in rare
cases, that the same function values are retrieved twice within same con-
junctive query that has two variables ranging over a single proxy type. This
is rare and the penalty is big only when the function values are very large or
the function invocation is very costly. Prefetching of proxy function values
can be more useful in AMOSII in the context of disjunctive queries as the
one used when processing of queries over the IUTs. However, the analysis of
these queries is much more complex than the analysis of conjunctive queries.
Such features are one of the future research topics in the AMOSII project.

Some issues that are addressed in AMOSII, but to our knowledge, are not
considered in IRO-DB are: (i) optimization of queries over combined local
and imported data, (ii) queries with outer-joins and complex reconciliation
functions, (iii) queries over hierarchies of derived classes and (iv) experimen-
tal study of the performance of the presented query processing strategies.
The IRO-DB project is succeeded by the MIRO-Web project [25].

7.1.9 DIOM

The Distributed Interoperable Model (DIOM) project [50, 63] has developed
a distributed mediation framework based on the ODMG-93 data model. The
goal of this project is to provide a scalable platform for uniform access to
autonomous and heterogeneous systems based on evolving and composable
mediators. A network of domain-speci�c mediators is deployed to support
application access to the data in the data sources. Each mediator is instan-
tiated from a meta-mediator by de�ning an integration schema. The meta-
mediator architecture, Diorama, consists of two layers: a mediator layer and
a wrapper layer. The mediator layer contains:

� Interface manager: provides a GUI interface and an API that expose
the mediator functionality to the users.

150 A Survey of Related Approaches

� Distributed query mediation services: provides source selection, query
decomposition, parallel access plan generation and result assembly.

� Runtime supervisor: executes subqueries in the wrappers.

� Information source catalog manager: manages the data source informa-
tion and interface repository meta-data. Communicates with the local
implementation repository in the wrapper layer in the management of
the local wrappers data.

The wrapper layer has the following components:

� Query wrapper service manager: receives the requests from the runtime
supervisor, translates the query in DIOM to a query in a local language
using the data in the implementation repository, executes the subquery
and returns results.

� Implementation repository manager: maintains the correspondence be-
tween the source data and its DIOM representation.

The uni�ed view of the data in the repositories is built using meta-
operations applied to base interfaces representing data in the data sources
and compound interfaces built recursively by meta-operations. There are four
meta operations in DIOM:

� Aggregation allows composition of a new interface based on a num-
ber of existing interfaces. The new interface can reference the existing
interfaces when de�ning attributes. For example, a new interface em-
ployment can be de�ned that links employees from one database with
departments from another.

� Generalization is used to merger several semantically similar inter-
faces into one. The new interface abstracts some common proper-
ties/attributes of the merged interfaces. An instance union semantics
is used that does not provide for overlap resolution.

� Specialization creates a new interface by adding new attributes or op-
erations to an existing interface.

� Import/Hide is used to import portions of schema from other DIOM
mediators. It preserves the closure of the imported subschema by im-
plicitly importing the types of the attributes and operations of the

7.1 Multidatabase systems 151

explicitly imported types. The hide clause can be used to exclude cer-
tain attributes from importing. The imported interfaces can also state
their relationship in the exporting interface hierarchy using the ISA
keyword. This meta-operation corresponds to the proxy type mecha-
nism in AMOSII.

Queries over integrated schemas are posed in a language named interface
query language (IQL). The syntax of IQL is similar to the one proposed by
the ODMG-93 OQL. One distinction is the target clause that is added to the
select-from-where block to describe the possible data sources where the query
is applied. The authors also propose a mechanism for automatic detection
of equi-joins among the object types used in the from clause, to relieve the
user of specifying obvious conditions in the where clause.

The IQL queries are processed in 5 phases:

� Query routing This phase selects the relevant information sources from
the set of all available sources, by mapping the domain model termi-
nology to the source model terminology.

� Query Decomposition Partitions a query expressed over a compound
interface into queries over the basic interfaces used in the de�nition
of the compound interface. Interfaces de�ned using aggregation and
generalization meta-operations are substituted by n-ary join and union
expressions respectively. Selections and projections are pushed down to
the sources while joins that are performed at the same site are grouped
together.

� Parallel access plan generation The query scheduling strategy de-
scribed in [63] �rst builds a join operator query tree (schedule) using
a heuristics approach, and then assigns execution sites to the join op-
erators using an exhaustive cost-based search. AMOSII, on the other
hand, performs a cost-based schedule composition and heuristic exe-
cution site assignment. Furthermore, the scheduling process in DIOM
is centrally performed, and no distinction is made between the data
sources and the mediators in the optimization framework, ignoring thus
the problem of having sources with di�erent capabilities. DIOM uses a
parallel execution cost model. This is one of the current research issues
in the AMOSII project.

� Subquery Translation and Execution performs tasks similar to that of
the wrapper layer in AMOSII.

152 A Survey of Related Approaches

� Query result packaging and assembly This phase uses the results of
the subqueries generated by the query decomposition to assemble the
result required by the user.

DIOM does not specify constructs for resolving conicts in an overlap
among the data in the data sources. Also, no strategies to optimize queries
over a combination of local and reconciled data are presented. Finally, no
quanti�cation of the bene�ts of the proposed strategies is presented in the
available DIOM project reports.

7.1.10 UNISQL

The UNISQL [43] system is one of the �rst commercial products that provide
views for database integration. The data integration views are built of virtual
classes that correspond to the AMOSII DTs, but are organized in a separate
hierarchy. The virtual class instances inherit the OIDs from the ordinary
class objects. This does not provide for de�nition of stored functions over
virtual classes de�ned by multiple inheritance, as in AMOSII. In UNISQL
there is no mechanism corresponding to the IUTs in AMOSII, but rather
a set of queries can be used to specify a virtual class as a union of other
classes. This relationship is not included in the type hierarchy, imposing two
di�erent kinds of dependencies among the virtual classes.

7.1.11 Remote-Exchange

The remote exchange project at University of Southern California [24] uses a
CDM similar to the one used AMOSII to establish a framework for instance
and behavior sharing. Three dimensions of freedom are explored for function
application in a federated database environment: the location of the function
(local or remote), the location of the arguments (local or remote), and the
type of the function (stored or computed). Each case is elaborated and an
abstract implementation description is given. Most of the cases correspond
to the ones found in AMOSII, although the terminology di�ers considerably.
One case not covered in AMOSII is the execution of remote derived functions
over local objects. In this case the execution is performed at a remote site,
where each function call in the de�nition of the derived function is trapped
and a callback is issued to the local system for the needed argument values.
This requires that the function calls used in the remote derived function
evaluated over a local object have exactly the same name and semantics in

7.1 Multidatabase systems 153

the remote database as they have in the local one, limiting the use of the
feature.

The disadvantages of the Remote-Exchange approach is that it forces late
binding on every function execution that might need to be done remotely.
Next, all remote operations are performed on an instance basis by performing
an RPC for each individual instance. Another performance degradation is
caused by the size of the surrogate identi�ers for remote instances that are
300 bytes long and contain all the information needed to perform the remote
function evaluation over the instance. Data integration features such as the
DTs and IUTs in AMOSII are not described.

7.1.12 Myriad

Myriad [48, 49] is a federated database project developed at the University of
Minnesota. The federation is de�ned as an integrated database with a global
schema consisting of a set of global relations. This relational schema can be
speci�ed over data tables stored locally, as well as in other relational database
systems accessed by gateways. An SQL-like language is used to query the
integrated database schema. The goal of this project is to provide global
query processing and transaction management over a set of autonomous and
heterogeneous relational DBMS storing pre-existing data.

The global schema is generated from the export schemas by a speci�-
cation based on outer-joins and the generalized attribute derivation GAD
operator. The GAD operator is a reconciliation speci�cation mechanism by
which the local database attributes are mapped to a corresponding global
schema attribute. The following example, based on an example in [48], de-
�nes a global res relation based on a three relations res A, res B and res C
stored in the relational databases A, B and C accordingly:

RES <-- GAD(

OUTERJOIN({res_A, res_B, res_C},

(res_A.rname = res_B.rname)

(res_B.rname = res_C.rname)

(res_C.rname = res_A.rname)),

(rname F_key(res_A.rname, res_B.rname, res_C.rname))

(rating F_avg(res_A.rating, res_B.rating))

(cost F_max(res_A.cost, res_B.cost)))

In the example, it is assumed that the three data sources have equal schemas.
The outer-join is performed over the attribute rname. The reconciliation is

154 A Survey of Related Approaches

performed by the system-de�ned functions F fn. They perform the usual
aggregation operations, except the F key function that picks the �rst of the
arguments with a non-null value.

Global queries are accepted by a Federated Query Manager (FQM), that
performs the translation into executable plans executed by Federated Trans-
action Management. On the data source side, the function of the wrapper
is performed by a Federated Transaction Agent accepting the requests and
invokes the Federated Query Agent that processes the requests and handles
the communication with the data source.

The FQM translates a query over the global schema into a set of queries
over individual export schemas and a set of result assembling operations
executed in the FQM. Although a fully-edged query optimization module
is not implemented [48], [49] present an extensive study of optimization of
queries including several outer-joins and GAD operators. This work ma-
nipulates the queries in a formalism named constrained query trees (CQT).
CQTs are relational operator query trees extended with n-ary union, join
and outer-join operators. The authors note that a rigid interpretation of the
de�nition of the outer-join does not yield the expected result when more
than two outer-joins are performed in sequence, and introduce operators to
correct this problem. A graph of dependencies among the input relations is
assigned to each n-ary operator node to allow transformations that, under
certain conditions:

1. transform outer-joins into joins

2. split n-ary outer-join nodes into an equivalent tree of two outer join
nodes

3. distribute GADs over outer-joins

4. commute selections and projections over with GAD and outer-joins

5. distribute joins over outer-joins

Some of these transformations are similar to or extend transformations de-
scribed in other approaches (e.g. 5 in [17], 1 and 4 in [14], and [54, 86], etc.).
The application of these transformations is subject to conditions de�ned over
the attributes involved in the transformed nodes. It is not clear how this
framework will perform in practice. No cost model is de�ned to evaluate the
bene�ts of the transformations and/or heuristics to determine which trans-
formation is bene�cial for a given tree, or how to choose a transformation

7.2 Object-oriented views 155

that will lead to the best tree. The framework has not been experimentally
evaluated.

For other research on optimization of sequences of outer-joins the reader
is referred to [28, 29] where outer joins are treated as disjunctions of joins
and anti-semi-joins (as in AMOSII); [2] uses hypergraphs for outer-join re-
ordering; and [32] describes how to push selections through outer-joins.

7.2 Object-oriented views

The integration facilities of AMOSII are based on work in the area of OO
views [1, 37, 66, 68, 76, 46, 4, 68, 55]. This section presents a brief overview
of two prototypes that have been most inuential for the design of the OO
views for data integration in AMOSII.

7.2.1 Multiview

The Multiview [46, 47, 66] OO view system adds dynamically updateable
materialized OO views on the top of the GemStone OO DBMS. The views
are de�ned by de�ning virtual classes, placed in the same class hierarchy as as
the ordinary GemStone classes. The virtual classes are capacity-augmenting,
i.e. attributes and methods can be added to them, as to the ordinary Gem-
Stone classes. Virtual classes are de�ned using six object-preserving algebra-
operators:

� select: Returns a subset of the input class based on a predicate ex-
pression.

� hide: Removes properties from a set of objects.

� re�ne: Casts a set of input objects downwards in the class hierarchy
(i.e. changes the class of the input objects to a subclass of their original
class).

� union: Makes a union of two input class extents. The equality condi-
tion is OID equality.

� intersection: Returns the intersection of the extents of two classes.

� di�erence: Returns the di�erence of the extents of two classes.

156 A Survey of Related Approaches

The classes in GemStone and Multiview are organized in a multiple in-
heritance hierarchy. As AMOSII, GemStone also requires that each object
instance belongs to a single most speci�c class. In presence of declaratively
speci�ed virtual classes, it is impossible to guarantee that two virtual classes
will not both contain the same instance of some of their common super-
classes, that at the same time is not an instance of any of their common sub-
classess. For example, if a class Person is subclassed by two virtual classes
Student and Teacher having no common subclasses, there might be a person
that satis�es both the conditions of being a student and a teacher. Such an
instance would violate the requirements of belonging to a single most spe-
ci�c class. In [47] it is suggested that, to solve this problem, in a multiple
inheritance OO views hierarchy the system must either generate automati-
cally the intersection classes to classify this instances, or assign unique OIDs
to the instances of the virtual classes. The second solution, applied in both
Multibase and AMOSII, furthermore requires a single point of inheritance
property of the class hierarchy. This property guarantees that two classes
having inherited the same property, inherit it from a single class in the class
hierarchy.

The Multibase system uses an elaborate solution where each object is
represented by a single conceptual object and a number of implementation
objects for each of its superclasses. The graph of each conceptual object with
its corresponding implementation objects mirrors the class hierarchy.

This idea has been simpli�ed and adapted in AMOSII where there is
no distinction between implementation and conceptual objects. In AMOSII,
these relationships are stored in coercion tables. The bene�t of this approach
is that, in a data integration scenario, new view classes can be de�ned over
already existing populated classes. The instances of the view classes can then
have their own OIDs without a�ecting the classes they are derived from.

Within the Multibase system, a class restructuring strategy is proposed
to avoid conicts in the class hierarchy by preserving the single point of
inheritance property when new view classes are added. Because of the com-
plexity of this process, in AMOSII we adopted some modeling constraints in
order to prevent situations in which these transformations are needed.

Multiview is an implemented system with experimental results reported.
However, it assumes active view materialization techniques and does not
elaborate the consequences of the use of the applied techniques for data
integration in a distributed heterogeneous environment.

7.2 Object-oriented views 157

7.2.2 O2 Views

The O2 system is one of the �rst commercial OO systems to provide OO view
functionality [57, 68]. Before the introduction of the OO view system, the O2

system relied on named sets to provide some of the OO view features. Named
sets however, do not provide some important features as: (i) description of
the structure of the objects in the set, (ii) inheritance of methods from
already de�ned classes (iii) attachment of new methods, etc.

The O2 views are implemented on the top of the O2 system. The views
are de�ned using virtual schemas derived from root schemas. A root schema
can either be another virtual schema or an O2 schema. This allows for com-
position of views to an arbitrary degree of nesting. Corresponding to the root
and virtual schemas there are a root and a virtual (data)base, representing
the instances involved in the view mapping.

The views �lter the data of the root base into the virtual base. Two
modeling constructs are added to the O2 data de�nition language to support
the de�nitions of the �lter mapping: virtual classes (VC) and imaginary
classes (IC). A virtual class is de�ned as a subclass of a virtual or an ordinary
O2 class, named root class. A VC inherits the attributes of its root class, and
can also have virtual attributes with functionality equivalent to the derived
functions in AMOSII. Some attributes of the root class can be declared
hidden and therefore not accessible to the user of the VC. Other properties
of the VCs are that they:

� have an extent selected by a declarative query form the root database.

� are connected to the class hierarchy.

� provide a named set representing the extent.

� provide OIDs for the class instances based on the one-to-one corre-
spondence with instances in the root database.

The ICs have the following properties:

� an extent is selected by a declarative query from the root database.

� they are not connected to the class hierarchy.

� assign OIDs to the instances based on a set of core attributes, corre-
sponding to keys.

158 A Survey of Related Approaches

The following example, in which a VC Adult is de�ned as a specialization of
the class Person, illustrates the language constructs used for the VC de�ni-
tion:

virtual class Adult from Person extension Adult

virtual attributes

age: integer has value self-> age;

hide attribute date_of_birth

includes

(select p from p in People where p->age >= 21)

where self references the corresponding object of class Person, and the
includes clause de�nes how is the extent of the VC selected from the extent
of the root class.

The separation of the view de�nition facilities between the VC and IC
constructs provide for a wide range of restructuring capabilities, while pre-
serving the consistency of the class hierarchy. In comparison with AMOSII,
the IC approach in AMOSII is used in the proxy types that retrieve their
data from data sources other than AMOSII mediators. The VCs are equiv-
alent to AMOSII DTs having a single supertype. In the query processing,
AMOSII relies as much as possible on OIDs rather than on key values as the
O2 view system. When subtyping among AMOSII mediators, OIDs are used
and manipulated because they are at least as small as the shortest possible
key of an object. We assume that there is a functional dependency between
the keys and the OID of an object, and therefore key manipulation is not
needed in intersection-based OO views, such as the DTs.

The O2 views mechanism does not provide multiple inheritance and in-
tegration facilities such as the DTs and IUTs in AMOSII. Therefore this
approach can be classi�ed as a class restructuring mechanism, or a selection-
based view mechanism. For more advanced view de�nitions, the user is still
limited to the named sets constructs.

Chapter 8

Summary and Conclusions

As a legacy of the mainframe computing trend in the previous decades,
large enterprises often have many isolated data repositories used only within
portions of the organization. While these systems contributed to the de-
velopment of the companies in the past, their inability to interoperate and
provide the user with a uni�ed informational picture of whole enterprise
is a \speed bump" in taking the corporate structures to the next level of
e�ciency. The recent development of the network technology bridged the
physical gap between these systems, but nevertheless did not eliminate the
burden of accessing the data in many diverse native formats.

Several technical obstacles arise in the design and implementation of
data integration systems that provide the user with a uni�ed view of data
in multiple repositories (data sources). First, due to the distribution of the
repositories, such a system has to operate in a distributed environment.
Second, the data sources might use di�erent data models and languages,
and might contain equivalent, conicting or complementary data, requiring
reconciliation before it is presented to the user. Finally, the repositories are
not under control of the data integration system, and their integration should
not a�ect their functionality or require modi�cations.

The wrapper-mediator approach introduced in [85], divides the function-
ality of a data integration system into two units. The wrappers provides
access to the data in the data sources using a common data model (CDM),
and a common query language. The mediator provides a coherent view of the

159

160 Summary and Conclusions

data in the repositories by performing semantic reconciliation of the CDM
data representations provided by the wrappers.

This thesis presents a design, implementation and evaluation of a medi-
ator system named AMOSII. The mediation facilities in AMOSII are based
on a passive approach where the requested data is retrieved from the data
sources when a query is issued in the mediator. The passive approach pre-
serves the autonomy of the data sources and is suitable for mediation in
environments where data sources are autonomous, non-active, have large
data volumes, or have high update frequencies. AMOSII is divided into two
functional units:

� a mediation OO view mechanism providing constructs for reconcilia-
tion of data and schema heterogeneities among the sources.

� a multidatabase query processing engine for processing and executing
queries over data in several AMOSII servers and other types of data
sources.

The OO views mechanism is integrated in the inheritance mechanism
by introducing derived types (DTs) and integration union types (IUT). The
DTs and the UITs are placed in the same type hierarchy as the ordinary
types.

The DT instances are derived from the instances of their supertypes
according to a declarative condition speci�ed in the DT de�nitions. DT in-
stances are assigned OIDs, allowing their use in locally stored attributes
de�ned over the DTs in the same way as over the ordinary types. Queries
over DTs are expanded by system-inserted predicates that perform the DT
system support tasks. The system support of the DT is divided into three
mechanisms: (i) providing consistency of queries over DTs; (ii) generation
of OIDs for the DT instances; and (iii) validation of the DT instances with
assigned OIDs. The system generates templates and functions to perform
these tasks. During the calculus generation phase, the query is analyzed,
and where needed, the appropriate functions/templates are inserted. The �-
nal calculus representation is generated by a series of transformations aimed
to produce a correct and e�cient query calculus expression. In these trans-
formations, query consistency is achieved by extent template expansions and
removals, and by optimized coercion of local DT OIDs; OID generation is
performed by including OID generation functions for selected query vari-
ables; DT instance validation is performed by inserting and expanding the

161

validation functions. The separation of the validation from extent generation
(instance composition) leads to smaller validation functions. The separation
of the OID generation from the extent generation allows selective generation
of OIDs for the DT instances. Only the required portions of the DT extents
are materialized locally.

The functions specifying the view support tasks describe relationships of
the DTs in the type hierarchy and often have overlapping parts. The thesis
demonstrates how calculus-based query optimization can be used to remove
redundant computations introduced from the overlap among the system-
inserted expressions, and between the system-inserted and user-speci�ed
parts of the query. The calculus-based transformations and optimizations
do not require cost calculations and search space transitions, thus making
them simple to implement and inexpensive to perform.

A novel framework for integration of data sources with overlapping data
based on OO type hierarchies and late binding is presented. The IUTs are
introduced to model a coherent view of heterogeneous data in multiple repos-
itories. IUTs allows for resolutions of conicts in the meta-data (e.g. naming,
scaling, etc.) and for dealing with overlaps in the extents of the integrated
types. Furthermore, instances of the IUTs can be assigned OIDs used in
locally stored and derived functions.

Each IUT is mapped by the system to a hierarchy of system generated
derived types, called auxiliary types (ATs). The ATs represent disjoint parts
(a join and two anti-semi-joins) of the outer-join needed for the data integra-
tion. The reconciliation of the attributes of the integrated types is modeled
by a system-generated set of overloaded derived functions, The implementa-
tion of each function is inferred from the CASE clause in the IUT de�nition.

Several novel query processing and optimization technique are devel-
oped for e�ciently processing queries containing overloaded functions over
the system-generated OO views. Queries over such an OO view hierarchy
contain late-bound calls. The late-bound calls are translated to disjunctive
calculus expressions that are suitable for application of techniques such as:
bulk-oriented processing, type-aware query rewriting, selective OID genera-
tion, and dynamic generation of indexes for nested subqueries. The reported
measurements compare the impacts of di�erent query processing strategies
showing that the combination of these techniques drastically lowers execu-
tion times, in some cases by several orders of magnitude.

The distributed mediation architecture of AMOSII is reected in the
design of the multidatabase query engine that processes queries over the

162 Summary and Conclusions

integrated OO views. It supports the cooperation of a number of AMOSII
servers on a query processor level. An AMOSII system does not treat another
AMOSII system as just another data source. More speci�cally, the inter-
AMOSII interaction di�ers from the interaction between an AMOSII system
and a wrapper in two main points:

� an AMOSII system can accept compilation and execution requests for
subqueries over data in more than one data source. The wrapper in-
terfaces accept subqueries that are always over data in a single data
source.

� AMOSII supports materialization of intermediate results to be used as
input to locally executed subqueries, generated by a query decomposi-
tion in another AMOSII server (ship-and-execute interface). A wrapper
has only execute interface.

These two features inuence the design of both the query decomposer and
the run-time support for query execution. Techniques based on these features
are used in AMOSII to achieve improved query performance.

The following conclusions can be drawn: First, although traditional ob-
ject orientation allows for mediation by some remote method invocation
protocol, its performance can be unacceptable. There is an apparent need
for set-oriented query processing as used in the relational databases. Second,
the multidatabase environment requires even greater optimization e�orts to
achieve acceptable performance for a wide range of queries. Third, describ-
ing type hierarchies and semantic heterogeneity using declarative functions
and a functional CDM provides many opportunities for the extensive query
optimization needed in an OO mediation framework.

The AMOSII system is implemented on a Windows NT/95 platform
using TCP/IP for the communication.

Appendix A

Abbreviations

AT auxiliary type

ATM Asynchronous Transfer Mode

BS bulk size

CDM common data model

CQL common query language

DBMS database management system

DcT decomposition tree

DST data source type

DT derived type

DTR dynamic type resolver

ET extent template

FMS federated multidatabase systems

IS input variables set

(the set of input variables to a SF)

ISDN Integrate Services Digital Network

IUT integration union types

KS a set of variables used at a remote SF

(in SAE operator execution)

LAN local area network

MDBMS multidatabase management system

MIF multiple implementation functions

NB number of bulks

163

164 Abbreviations

ODBC Open DataBase Connectivity (standard)

ODMG Object Database Management Group (consortium)

OID object identifier

OO object-oriented

PCA project-concatenation algorithm

PPL post processing list

QEP query execution plan

RPC remote procedure call

RS result set

(the set of variables returned by an SAE operator)

SAE ship and execute

SAEDS ship and execute operator description structure

SF subquery function

SJA semi-join algorithm

SJMA semi-join with materialized index algorithm

SQL Structured Query Language

SV substitute variable

WCDMA Wireless Collision Detection Media Access

References

[1] S. Abiteboul and A. Bonner: Objects and Views. ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD'91), pp. 238-247, ACM Press,
1991.

[2] G. Bhargva, P. Goel and B. Iyer: Hypergraph based reorderings of outer-
join queries with complex predicates ACM SIGMOD Intl. Conf. on Man-
agement of Data (SIGMOD'95), pp. 304-315, ACM Press, 1995.

[3] P. Bernstein and D. Chiu: Using Semi-joins to Solve Relational Queries.
Journal of ACM Vol. 28, No. 1, pp. 25-40, 1981

[4] E. Bertino: A View Mechanism for Object-Oriented Databases. 3rd Intl.
Conf. on Extending Database Technology (EDBT'92), Vienna, Austria,
1992.

[5] A. Bouguettaya, B. Benatallah and A. Elmagarmid: Interconnecting Het-
erogeneous Information Systems. Kluwer Academic Pulishers, The Nether-
lands, 1998.

[6] Silvio Brandani: Multi-database Access from Amos II using ODBC.
In Link�oping Electronic Press, Vol. 3, Nr. 19, Dec. 8th, 1998,
http://www.ep.liu.se/ea/cis/1998/019/.

[7] O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase Sys-
tems, Prentice Hall, Englewood Cli�s, NJ, 1996.

[8] M. Carey, L. Haas, J. Kleewein and B. Reinwald: Data Access Interoper-
ability in the IBM Database Family, IEEE Data Engineering 21(3), pp.
4-11, Sept. 1998.

[9] R. Cattell: The Object Database Standard: ODMG-93 2.0, Morgan Kauf-
man Publishers, San Mateo, CA, 1996

165

166 References

[10] E. Codd: A Relational Model for Large Shared Data Banks. Communi-
cations of the ACM Vol 13, No. 3, pp. 377-387, June 1970.

[11] U. Dayal, N. Goodman, T. Landers, K. Olson, J. M. Smith and L. Yed-
wab: Local Query Optimization in MULTIBASE: A System for Hetero-
geneous Distributed Databases, Technical Report CCA-81-11, Computer
Corporation of America, 1981.

[12] U. Dayal, T. Landers and L. Yedwab: Global Query Optimization in
Multibase: A System for Heterogeneous Distributed Databases, Technical
Report CCA-82-05, Computer Corporation of America, 1982.

[13] U. Dayal: Processing Queries Over Generalization Hierarchies in a
Mutltidatabase System, 9th Conf. on Very Large Databases (VLDB'83),
Florence, Italy, 1983.

[14] U. Dayal, H. Hwang: View De�nition and Generalization for Database
Integration in a Multidatabase System, IEEE Trans. on Software Eng.
10(6), Nov. 1984.

[15] W. Du, R. Krishnamurthy and M-C. Shan: Query Optimization in Het-
erogeneous DBMS. 18th Conf. on Very Large Databases (VLDB'92), Van-
couver, Canada, 1992.

[16] W. Du, M-C. Shan, J, Davis: Optimization and Execution Strategy for
Multidatabase Queries. Techincal Report, Software Technology Labora-
tory HPL-94-74, April 1995.

[17] W. Du and M. Shan: Query Processing in Pegasus, Object-Oriented
Multidatabase Systems, O. Bukhres, A. Elmagarmid (eds.), Prentice Hall,
Englewood Cli�s, NJ, 1996.

[18] R. Elmasri and S. Navathe: Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA,
1994.

[19] C. Evrendilek, A. Dogac, S. Nural, F. Ozcan: Query Optimization in
Multidatabase Systems. Journal of Distributed and Parallel Databases Vol.
5 No. 1, pp. 77-114. January 1997.

References 167

[20] B. Finance, V. Smahi J. Fessy: Query Processing in IRO-DB, Int. Conf.
on Deductive and Object-Oriented Databases (DOOD'95) pp. 299-319,
1995.

[21] D. Fishman, D. Beech, J. Annevelink, E. Chow, T. Connors, J. Davis,
W. Hasan, C. Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M-A.
Neimat, T. Risch, M-C Shan, W. Wilkinson: Overview of the Iris DBMS.
In W. Kim and F. Lochovsky (eds.): Research Foundations in OO and
Semantic DBS pp. 174-199, 1990.

[22] G. Fahl, T. Risch, M. Sk�old: AMOS - An Architecture for Active Medi-
ators. Workshop on Next Generation Information Technologies and Sys-
tems (NGITS'93), Haifa, Israel, June 1993.

[23] G. Fahl, T. Risch: Query Processing over Object Views of Relational
Data. The VLDB Journal, 6(4), pp. 261-281, November 1997.

[24] D. Fang, S. Ghandeharizadeh, D. McLeod and A. Si: The Design, Im-
plementation, and Evaluation of an Object-Based Sharing Mechanism
for Federated Database System. 9th Intl. Conf. on Data Engineering
(ICDE'93), (IEEE), Vienna, Austria, 1993.

[25] P. Fankhauser, G. Gardarin, M. Lopez, J. Munoz and A. Tomasic: Expe-
riences in Federated Databases: From IRO-DB to MIRO-Web. 24st Conf.
on Very Large Databases (VLDB'98), New York, NY, 1998.

[26] S. Flodin, T. Risch: Processing Object-Oriented Queries with Invertible
Late Bound Functions, 21st Conf. on Very Large Databases (VLDB'95),
Zurich, Switzerland, 1995.

[27] S. Flodin, V. Josifovski, T. Risch, M. Sk�old and M. Werner: AMOSII
User's Guide, available at http://www.ida.liu.se/�edslab.

[28] C. Galindo-Legaria: Outerjoins as Disjunctions, ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD'94), pp. 348-358, ACM Press,
1994.

[29] C. Galindo-Legaria and A. Rosenthal: Outerjoin Simpli�cation and Re-
ordering for Query Optimization, ACM Transactions on Database Sys-
tems, Vol. 22, No. 1, March 1997.

168 References

[30] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
Y.Sagiv, J. Ullman, V. Vassalos, J. Widom: The TSIMMIS Approach to
Mediation: Data Models and Languages. Journal of Intelligent Informa-
tion Systems (JIIS) Vol 8 No. 2 117-132, Kluwer Academic Pulishers, The
Netherlands, 1997.

[31] M. Garcia-Solaco, F. Saltor, M. Castellanos: Semantic Heterogeneity in
Multidatabase Systems, In O. Bukhres, A. Elmagarmid (eds.): Object-
Oriented Multidatabase Systems, Prentice Hall, Englewood Cli�s, NJ,
1996.

[32] P. Goel and B. Iyer: Query Optimization: Reordering for a general Class
of Queries. ACM SIGMOD Intl. Conf. on Management of Data (SIG-
MOD'96), pp. 47-55, ACM Press, 1996.

[33] S. Grufman, F. Samson, S.M. Embury, P.M.D. Gray, T. Risch: Dis-
tributing Semantic Constraints Between Heterogeneous Databases. 13th
International Conf. on Data Engineering (ICDE'97), (IEEE), Birming-
ham, England, 1997.

[34] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio and Y. Zhuge: The
Stanford Data Warehousing Project, IEEE Data Engineering, 18(2), pp.
40-48, June 1995.

[35] L. Haas, D. Kossmann, E. Wimmers, J. Yang: An Optimizer for Hetero-
geneous Systems with NonStandard Data and Search Capabilities. Data
Engineering Bulletin Vol. 19 No. 4 pp. 37-44, 1996.

[36] L. Haas, D. Kossmann, E. Wimmers, J. Yang: Optimizing Queries ac-
cross Diverse Data Sources. 23th Int. Conf. on Very Large Databases
(VLDB97), pp. 276-285, Athens Greece, 1997.

[37] S. Heiler and S. Zdonik: Object views: Extending the Vision. 6th Inter-
national Conf. on Data Engineering (ICDE'90), IEEE, pp. 86-93, 1990.

[38] E. Horowitz, S. Sahni and D. Mehta: Fundamentals of Data Structures
in C++. W H Freeman & Co., 1995.

[39] A. Hurson and M. Bright: Object-Oriented Multidatabase Systems.
Object-Oriented Multidatabase Systems, O. Bukhres, A. Elmagarmid
(eds.), Prentice Hall, Englewood Cli�s, NJ, 1996.

References 169

[40] IDC. Survey of 100 MIS Managers at Fortune 500 Companies. Interna-
tional Data Corporation, 1991.

[41] V. Josifovski and T. Risch: Calculus-based Transformations of Queries
over Object-Oriented Views in a Database Mediator System, 3rd IFCIS
International Conf. on Cooperative Information Systems, New York City,
August 1998.

[42] V. Josifovski and T. Risch: Functional Query Optimization over Object-
Oriented Views for Data Integration Journal of Intelligent Information
Systems (JIIS) Vol 12 No. 2/3, Kluwer Academic Pulishers, The Nether-
lands, 1999.

[43] W. Kelley, S. Gala, W. Kim, T. Reyes, B. Graham: Schema Architec-
ture of the UNISQL/M Multidatabase System, Modern Database Systems
- The Object Model, Interoperability, and Beyond, W. Kim (ed.), ACM
Press, New York, NY, 1995.

[44] W. Kim, Y. Choi, S. Gala and M. Scheevel: On Resolving Semantic Het-
erogeneity in Multidatabase Systems. Journal of Distributed and Parallel
Databases Vol 1. No. 3, pp. 251-279, July 1993.

[45] W. Kim and W. Kelley: On View Support in Object-Oriented Database
Systems, Modern Database Systems - The Object Model, Interoperability,
and Beyond, W. Kim (ed.), ACM Press/ Addison-Wesley Publishing Com-
pany, New York, NY, 1995.

[46] H. Kuno, Y. Ra and E. Rundensteiner: The Object-Slicing Technique:
A Flexible Object Representation and Its Evaluation, Univ. of Michigan
Tech. Report CSE-TR-241-95, 1995.

[47] H. Kuno and E. Rundensteiner: The MultiView OODB View System:
Design and ImplementationUniversity of Michigan Technical Report CSE-
TR-246-95, 1995.

[48] E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, M. Ganesh: Myriad:
Design and Implementation of a Federated Database System. Software -
Practice and Experience, Vol. 25(5), 553-562, John Wiley & Sons, May
1995.

170 References

[49] E-P. Lim, J. Srivastava and S-Y. Hwang: An Algebraic Transformation
Framework for Multidatabase Queries, Journal of Distributed and Paral-
lel Databases Vol 3. No.3, pp. 273-307, Kluwer Academic Pulishers, The
Netherlands, 1995.

[50] L. Liu and Calton Pu: An Adaptive Object-Oriented Approach to In-
tegration and Access of Heterogeneous Information Sources. Journal of
Distributed and Parallel Databases Vol 5. No. 2, pp. 167-205, Kluwer Aca-
demic Pulishers, The Netherlands, 1997.

[51] W. Litwin, L. Mark and N. Rossopoulos: Interoperability of Multiple
Autonomous Databases. ACM Computing Surveys, Vol 22. No. 3 pp. 267-
293, 1990.

[52] W. Litwin and T. Risch: Main Memory Oriented Optimization of OO
Queries using Typed Datalog with Foreign Predicates. IEEE Transactions
on Knowledge and Data Engineering 4(6), pp. 517-528, 1992.

[53] P. Lyngbaek et al: OSQL: A Language for Object Databases, Tech. Re-
port, HP Labs, HPL-DTD-91-4, 1991.

[54] W. Meng, K-L. Liu and C. Yu: Query Decomposition in Multidatabase
Systems. Technical Report CS-TR-93-9, Department of Computer Science,
State University of New York and Binghampton, 1993.

[55] A. Motro: Superviews: Virtual Integration of Multiple Databases. IEEE
Transactions on Software Engineering, Vol. SE-13, No. 7, July 1987.

[56] S. Nural, P. Koksal, F. Ozcan, A. Dogac: Query Decomposition and
Processing in Multidatabase Systems. OODBMS Symposium of the Eu-
ropean Joint Conference on Engineering Systems Design and Analysis,
Montpellier, July 1996.

[57] O2 Technology: O2 Views User Manual, version 1, Dec. 1993.

[58] Object Management Group: The Common Object Request Broker: Ar-
chitecture and Speci�cation, Object Request Broker Task Force, 1993.

[59] K. Orsborn and T. Risch: Next Generation of O-O Database Techniques
in Finite Element Analysis. The Third International Conf. on Computa-
tional Structures Technology, Budapest, Hungary, August 21-23, 1996.

References 171

[60] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, A. Dogac: Dynamic
Query Optimization on a Distributed Object Management Platform Fifth
International Conference on Information and Knowledge Management
(CIKM96), Maryland, USA, November 1996.

[61] M. T. Ozsu and P. Valdurez: Principles of Distributed Database Systems
(2nd edition), Prentice-Hall International Inc., London UK, 1999.

[62] Y. Papakonstantinou H. Garcia-Molina, J. Widom: Object Exchange
Across Heterogeneous Information Sources, The Eleventh Intl. Conf on
Data Engineering (ICDE95), Taipei, Taiwan, 1995.

[63] K. Richine: Distributed Query Scheduling in DIOM. Tech. Report
TR97-03, Computer Science Department, University of Alberta, 1997.

[64] M. Roth and P. Schwarz: Don't Scrap It, Wrap It. 23th Int. Conf. on
Very Large Databases (VLDB97), pp. 266-275, Athens Greece, 1997.

[65] F. Rendeze, K. Hergula: The Heterogeneity Problem and Middleware
Technology: Experience and performance of database gateways. 24th Conf.
on Very Large Databases (VLDB'98), New York, 1998.

[66] E. Rundensteiner, H. Kuno, Y. Ra, V. Crestana-Taube, M. Jones and
P. Marron The MultiView project: object-oriented view technology and
applications, ACM SIGMOD Intl. Conf. on Management of Data (SIG-
MOD'96), pp. 555-563, ACM Press, 1996.

[67] C. Santos: Design and Implementation of an Object-Oriented View
Mechanism, GOODSTEP ESPRIT-III Technical Report, ESPRIT-III
Project No. 6115, 1994.

[68] C. Souza dos Santos, S. Abiteboul and C. Delobel: Virtual Schemas
and Bases. 4th Intl. Conf. on Extending Database Technology (EDBT'92),
Viena, Austria, 1992.

[69] A. Sheth and J. Larson: Federated database systems and managing
distributed, heterogeneous and autonomous databases. ACM Transactions
on Database Systems Vol 6. No. 1, pp. 140-173, 1990.

[70] A. Sheth and V. Kashyap: So far (Schematically) yet So Near (Semanti-
cally) IFIP WG 2.6 Conference on Semantics of Interoperable Databases
(Data Semantics 5), North Holand, Amsterdam 1993. pp. 283-312

172 References

[71] D. Shipman: The Functional Data Model and the Data Language
DAPLEX. ACM Transactions on Database Systems, 6(1), ACM Press,
1981.

[72] A. Silberschatz, H. Korth and S. Sudarshan: Database System Concepts
3rd ed., McGraw Hill, New York, 1997.

[73] V. Smahi, J. Fessy and B. Finance: Query Processing in IRO-DB Techni-
cal Report PRiSM, Versailles University 1994/37, Versailles, France, 1994.

[74] ISO and ANSI SQL Working Draft, X3H2-93-359, August 1993.

[75] M. Sk�old, T. Risch: Using Partial Di�erencing for E�cient Monitoring
of Deferred Complex Rule Conditions. 12th International Conf. on Data
Engineering (ICDE'96), (IEEE), New Orleans, Louisiana, Feb. 1996.

[76] M. Scholl, C. Laasch and M. Tresch: Updatable Views in Object-
Oriented Databases. Second Deductive and Object-Oriented Databases
Conference (DOOD91), Dec, 1991.

[77] D. Straube, T. �Ozsu: Query Optimization and Execution Plan Genera-
tion in Object-Oriented Database Systems. IEEE Transactions on Knowl-
edge and Data Engineering 7(2), pp. 210-227, 1995.

[78] S. Subramananian and S. Venkataraman: Cost-Based Optimization of
Decision Support Queries using Transient Views. ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD'98), pp. 329 - 330, 1998.

[79] A. Tanenbaum: Computer Networks. Prentice Hall, Englewood Cli�s,
NJ, 1996.

[80] M. Templeto, D. Brill, A. Chen, S. Dao, E.Lund, R. McGregor and
P. Ward: Mermaid: a front end to distributed heterogeneous database.
Special Issue on Distributed Database, Proceedings of the IEEE 75, pp.
695-708, May 1987.

[81] A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous
Data Sources with DISCO. Transactions on Knowledge and Data Engi-
neering (TKDE) vol. 10 No. 5, pp. 808-823, 1998.

[82] S. Venkataraman and T. Zhang: Heterogeneous Database Query Op-
timization in DB2 Universal DataJoiner 24th Conf. on Very Large
Databases (VLDB'98), pp. 685 - 689, New York, 1998.

References 173

[83] J. Ullman and J. Widom: A First Course in Database Systems. Prentice
Hall, Englewood Cli�s, NJ, 1998.

[84] M. Werner: Mutidatabase Integration using Polymorphic Queries and
Views. Licenciate Thesis No. 546, Department of Computer and Informa-
tion Science, Link�opings Universitet, Link�oping, Sweden, 1996.

[85] G Wiederhold: Mediators in the Architecture of Future Information
Systems, IEEE Computer, 25(3), Mar. 1992.

[86] C. Yu and W. Meng: Principles of Database Query Processing for Ad-
vanced Applications, Morgan Kaufman Publishers, San Francisco CA,
1998.

[87] G. Zhou, R. Hull, R. King and J. Franchitti, Data Integration and
Warehousing Using H2O, IEEE Data Engineering, 18(2), pp. 29-40, June
1995.

[88] Q. Zhu and P. Larson: A Query Sampling Method for Estimating Local
Cost Parameters in a Multidatabase System. 10th Intl. Conf. on Data
Engineering (ICDE'94), (IEEE), pp. 144-153, Houston, Texas, 1994.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology
Linköping Studies in Information Science. Dissertations
No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977,
ISBN 91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP
Compiler and its Implications for Ideal Hard-
ware, 1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Que-
ries in a Meta-Database System 1978, ISBN 91-
7372-232-4.

No 51 Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Devel-
opment of Methods and Tools for Interactive
Design of Applications Software, 1980, ISBN
91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement
in a Well-Structured Pattern Matcher through
Partial Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Hu-
man-Computer Interface in Commercial Sys-
tems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981,
ISBN 91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiabili-
ty in large Software Systems, 1982, ISBN 91-
7372-527-7.

No 94 Hans Lunell: Code Generator Writing Sys-
tems, 1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum
Weight Triangulation, 1983, ISBN 91-7372-660-
5.

No 109 Peter Fritzson: Towards a Distributed Pro-
gramming Environment based on Incremental
Compilation,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Plan-
ning System for Turning, 1984, ISBN 91-7372-
805-5.

No 155 Christos Levcopoulos: Heuristics for Mini-
mum Decompositions of Polygons, 1987, ISBN
91-7870-133-3.
No 165 James W. Goodwin: A Theory and System for
Non-Monotonic Reasoning, 1987, ISBN 91-
7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Auto-
mated Synthesis of VLSI Systems, 1987, ISBN
91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued
Logic of Quantified Belief, 1988, ISBN 91-7870-
374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for
an Object Oriented Knowledge Base, 1989,
ISBN 91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description
and Verification Method, 1989, ISBN 91-7870-
517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN
91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Sup-
port and Discourse Management in User Inter-
face Management Systems, 1991, ISBN 91-7870-
720-X.

No 244 Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-7870-
746-3.

No 252 Peter Eklund: An Epistemic Approach to Inter-
active Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN
91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992,
ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Ab-
stract Machines: Contributions to a Methodolo-
gy for the Implementation of Logic Programs,
1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of
Tense-bound Object References, 1992, ISBN 91-
7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic Func-
tions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-
7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Model-
ling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Prob-
lematic Control Situations, 1995, ISBN 91-7871-
603-9.

No 413 Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement
by Testability Analysis and Transformations,
1996, ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Indus-
trial Training from an Organisational Learning
Perspective - Development and Evaluation of
the SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

No 437 Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.
No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-
9.

No 459 Olof Johansson: Development Environments
for Complex Product Models, 1996, ISBN 91-
7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions
in Unification-Based Formalisms,1997, ISBN
91-7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Pro-
gramming: A Multi-Level View of Query An-
swering, 1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrn-
ing - En studie av hur ekonomiska styrsystem
utformas och används efter företagsförvärv,
1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Re-
quirements-Driven Impact Analysis in Object-
Oriented Software Evolution, 1997, ISBN 91-
7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The
Cooperative Perspective on Knowledge-Based
Decision Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997,
ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri
Nets in a CLP framework, 1997, ISBN 91-7219-
011-6.

No 498 Thomas Drakengren: Algorithms and Com-
plexity for Temporal and Spatial Formalisms,
1997, ISBN 91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Het-
erogeneous Real-Time Systems, 1997, ISBN 91-
7219-035-3.

No 503 Johan Ringström: Compiler Generation for
Data-Parallel Programming Langugaes from
Two-Level Semantics Specifications, 1997,
ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och
flexibla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications,
1998, ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software
Engineering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN
91-7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for
Lazy Functional Languages, 1998, ISBN 91-
7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level
Synthesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On
geographical dispersion in organisations.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of A Distributed Mediator System
for Data Integration.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering

- att skapa samstämmighet mellan informationssy
temarkitektur och verksamhet, 1998. ISBN-9172
19-296-8.

No 2 Stefan Cronholm: Metodverktyg och använd-
barhet - en studie av datorstödd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.
s-
-

Design, Implementation and Evaluation of a Distributed

Mediator System for Data Integration:
the Story of AMOSII

Vanja Josifovski

An important factor of the strength of a modern enterprise is its capability to ef-
fectively store and process information. As a legacy of the mainframe computing
trend in recent decades, large enterprises often have many isolated data repos-
itories used only within portions of the organization. The methodology used
in the development of such systems, also known as legacy systems, is tailored
according to the application, without concern for the rest of the organization.
From organizational reasons, such isolated systems still emerge within di�erent
portions of the enterprises. While these systems improve the e�ciency of the
individual enterprise units, their inability to interoperate and provide the user
with a uni�ed information picture of the whole enterprise is a \speed bump" in
taking the corporate structures to the next level of e�ciency.
Several technical obstacles arise in the design and implementation of a system
for integration of such data repositories (sources), most notably distribution,
autonomy, and data heterogeneity. This thesis presents a data integration sys-
tem based on the wrapper-mediator approach. In particular, it describes the
facilities for passive data mediation in the AMOSII system. These facilities
consist of: (i) object-oriented (OO) database views for reconciliation of data
and schema heterogeneities among the sources, and (ii) a multidatabase query
processing engine for processing and executing of queries over data in several
data sources with di�erent processing capabilities. Some of the major data
integration features of AMOSII are:

� A distributed mediator architecture where query plans are generated using
a distributed compilation in several communicating mediator and wrapper
servers.

� Data integration by reconciled OO views spanning over multiple mediators
and speci�ed through declarative OO queries. These views are capacity

augmenting views, i.e. locally stored attributes can be associated with
them.

� Processing and optimization of queries to the reconciled views using OO
concepts such as overloading, late binding, and type-aware query rewrites.

� Query optimization strategies for e�cient processing of queries over a com-
bination of locally stored and reconciled data from external data sources.

The AMOSII system is implemented on a Windows NT/95 platform.

Vanja Josifovski is a researcher at the Department of Computer and Informa-

tion Science at the Link�opings universitet, Link�oping, Sweden. Previously he

was a member of the Database Systems Research and Development Center at

the University of Florida at Gainesville. His research interests include query

processing and optimization, data integration and distributed database systems.

	Linköping Studies in Information Science

