
 IT 14 019

Examensarbete 30 hp
Mars 2014

Integrating SciSPARQL and MATLAB

Xueming He

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Integrating SciSPARQL and MATLAB

Xueming He

Nowadays many scientific experiment results involve multi-dimensional arrays. It is
desirable to store these results in a persistent way and make queries against not only
well-structured data objects like arrays but also the metadata that describe the
experiments. SPARQL is a Semantic Web standard query language for data and
metadata stored in terms of RDF. SciSPARQL is an extended version of SPARQL
designed for scientific applications. It includes numeric multi-dimensional array
operations and user-defined functions. The SciSPARQL Database Manager (SSDM) is a
query processing engine for SciSPARQL. MATLAB is a popular and powerful scientific
computing application programming language. We implemented an interface between
MATLAB and SciSPARQL called MATLAB SciSPARQL Link (MSL). MSL provides
SciSPARQL queries in MATLAB through a client/server interface. It optionally also
provides an interface to enable calls to MATLAB in SciSPARQL queries. With MSL
MATLAB users can populate, update, and query SSDM databases it in terms of
SciSPARQL queries. For the implementation we use C interfaces of MATLAB and
SSDM, and the networking capabilities of SSDM. The DLL we made extends MATLAB
with MSL interface functions.

Key words: SPARQL; MATLAB; SciSPARQL; RDF; client/server interface

Tryckt av: Reprocentralen ITC
IT 14 019
Examinator: Ivan Christoff
Ämnesgranskare: Tore Risch
Handledare: Andrej Andrejev

1

Content
1. Introduction... 3

2. Background .. 5

2.1 RDF and SPARQL .. 5

2.3 MATLAB ... 7

2.2 Scientific SPARQL and SSDM ... 8

2.3 Amos II ... 10

3. The MATLAB-SSDM Link (MSL) .. 11

3.1 The MATLAB Client/Server Interface (MCSI) ... 11

3.2 MATLAB interface functions .. 13

3.2.1 Initializing and finalizing ... 13

3.2.2 Sending queries to SSDM ... 13

3.2.3 Constructors ... 14

3.3 MAL (MATLAB-Amos Link) .. 15

3.3.1 MAL MATLAB API examples ... 15

3.3.2 MAL MATLAB API functions ... 15

4. Data Type Mappings .. 17

5. Implementation ... 21

5.1 MATLAB – C interface .. 21

5.1.1 MATLAB shared library calls ... 21

5.1.2 MEX API .. 21

5.1.3 C/C++ Matrix Library .. 21

5.2 Data conversions ... 22

5.3 MATLAB - Amos Link (MAL) ... 24

5.3.1 Global variables and structures .. 24

5.4 The MATLAB Client/Server Interface (MCSI) ... 25

6. Conclusion and Future Work ... 27

References ... 29

2

3

1. Introduction

Scientific experiments often involve numeric multi-dimensional arrays. It is desirable to store these results in

a scalable way and make flexible queries against not only well-structured data objects like arrays but also the

metadata that describe the experiments.

SPARQL is a query language for finding combinations of data and metadata defined in terms of RDF as

‘triples of knowledge’ [8]. RDF aims at improving the maintainability and flexibility of Linked Data [6] by

allowing anyone to make statements about any resource on the web. However, RDF has weak support for

representing arrays. In RDF arrays have to be broken down into triples, which is both unnatural and

inefficient. SSDM (Scientific SPARQL Data Manager) [4] is a database management system (DBMS) for

storing and querying data used in scientific experiments. SSDM provides scalable storage representation of

arrays for RDF. SSDM supports the query language SciSPARQL, which is an extension of the W3C standard

Semantic Web query language SPARQL [1]. SciSPARQL extends SPARQL with primitives to search not

only metadata about scientific experiments, but also experimental data represented as arrays. SciSPARQL

supports scientific applications with a number of features, in particular:

 Numeric multidimensional array operations

 User-defined functions (e.g. Java or Python)

 User-defined aggregate functions

 Views of data defined as functions

The MATLAB language is a popular high-level language for scientific and engineering computing whose

basic elements are arrays. The goal of this project is to enable MATLAB application programs to generate

and store scientific data in a scalable storage, which can be queried using the query language SciSPARQL.

For this purpose, we implemented an interface between the MATLAB runtime system and SSDM called

MATLAB-SSDM Link (MSL).

Table.1 below compares the capabilities of SPARQL, SciSPARQL, and MATLAB for processing metadata

and scientific data including arrays.

 MATLAB SPARQL SciSPARQL

Metadata √ √

Scientific data including

Arrays
√ √

Table.1 Comparison of data processing capabilities of MATLAB, SPARQL, and SciSPARQL

MSL provides the an interface between MATLAB and SSDM called the MATLAB Client-Server Interface

(MCSI) that allows MATLAB application programs to send SciSPARQL statements to an SSDM database in

order to populate, query, and update the database. Fig.1 below shows the overall architecture of the system

with the place of MCSI in the software stack.

4

Fig.1 The MATLAB-SSDM Link

MCSI is implemented as a dynamic link library (DLL) that is loaded into MATLAB. The MCSI interface

functions enable connecting to an SSDM server, sending SciSPARQL queries, updates, and directives (e.g.

function definitions) to the server for execution, iteratively retrieving query results from the server, and bulk

loading RDF datasets into an SSDM database. MCSI provides MATLAB functions and classes for MATLAB

users/programmers so that they can conveniently use SciSPARQL for storing and querying large collections

of numerical arrays managed by SSDM.

In summary, MSL provides MATLAB and SSDM with the following features:

• A consistent storage for scientific data including arrays as objects of RDF triples.

• A MATLAB Client/Server Interface (MCSI) to query SSDM databases from MATLAB in terms of

SciSPARQL.

• Shipping commands to the SSDM server for execution, e.g. to define functions used in SciSPARQL

queries.

• Bulk-loading of MATLAB data into SSDM databases.

MSL is implemented using the MATLAB application program interfaces [10], which are a set of libraries that

allow programmers to write programs in other language like C or Fortran that interacts with MATLAB. MSL

is delivered as a C dynamic-link library (DLL). In particular MSL implements a mapping between MATLAB

arrays and the SSDM data type NMA [4] that represents multi-dimensional arrays in SSDM. It also provides

mappings between RDF data types through MATLAB’s object-oriented programming features. Other RDF

data types, like numbers are mapped to native MATLAB types.

5

2. Background

This chapter introduces the relevant technologies to this project, including the RDF data model, the SPARQL

query language, the SciSPARQL extensions, SSDM, the Amos II system [16] on top of which SSDM is

implemented, and the MATLAB language.

2.1 RDF and SPARQL

RDF is a data model developed by W3C to represent mainly web-based metadata. It has an abstract syntax

that reflects a simple labeled graph-based data model [2]. RDF uses an extensible URI-based representation

of entities [15] and XML Schema data typess [14]. RDF is used to represent metadata, e.g. to describe

properties of resources on the web [8].

RDF expression of simple facts

Generally, RDF represents simple assertions (facts) called statements [1]. A statement consists of three parts:

a subject, a predicate (also called property), and an object, denoted as a triple (subject, predicate, object). An

RDF triple represents a relationship, indicating that the predicate holds between the entities subject and

object. For example, the triple (bistab:Experiment1, bistab:Subtask, bistab:Task1) states that he experiment

represented by the URI bistab:Experiment has a property bistab:Subtask being the URI bistab:Task1. The

triple is lustrated by the graph in Fig. 2.

Fig.2: An RDF statement about a subtask of an experiment

As another example, the triple (bistab:Experiment1, bistab:Responsible, "Emily") illustrated by Fig.3

expresses that the experiment bistab:Experiment1 has a property bistab:Responsible being "Emily".

Fig.3: An RDF statement expressing the responsible person of an experiment

The triple (bistab:Experiment1, bistab:StartDate, "2013-09-10") in fig.4 states that an experiment,

bistab:Experiment, has a property, bistab:StartDate, whose value is 2013-09-10.

Fig.4 RDF statement expressing the start date of an experiment

In the examples above, a predicate denotes a relationship between a subject and an object. The direction of

the arc is significant since it always points from a subject toward the object. The colon notation abbreviates

6

URIs with common prefixes, e.g. bistab:Experiment1,stands for <http://udbl.it.uu.se/bistab#Experiment1>,

given a prefix

bistab : <http://udbl.it.uu.se/bistab#>

is defined both in the dataset and in the queries.

RDF Databases

A set of RDF triples can be seen as an RDF database. For example, by combining the above three RDF triples

we get the RDF database consisting of the triples:

(bistab:Experiment1, bistab:Subtask, bistab:Task1)

(bistab:Experiment1, bistab:StartDate, "2013-09-10")

(bistab:Experiment1, bistab:Responsible, "Emily")

The example database is illustrated by Fig.5.

Fig.5 RDF statements about an experiment

@prefix bistab: <http://udbl.it.uu.se/bistab#> .

bistab:Experiment1 bistab:Subtask bistab:Task1 .

bistab:Experiment1 bistab:StartDate "2013-09-10".

bistab:Experiment1 bistab:Responsible "Emily" .

Making simple queries against an RDF database

Once an RDF database has been populated, we can query it in SPARQL, which provides a general way to

search RDF databases where data and metadata are represented as triples. SPARQL queries search for the

relevant RDF data by matching triple patterns against the database. Triples patterns are similar to RDF triples

with the difference that any element in a triple pattern (subject, predicate, or object) may also be a variable.

An example of a triple pattern is, ?s :p ?o, in which ?s and ?o are variables, and :p is a URI representing a

predicate. The following example shows how to query the database above to get the value of the responsible

person for bistab:Experiment1 together with the starting date of the experiment:

SELECT ?responsible ?date

 WHERE {

 Bistab:Experiment1 bistab:Responsible ?responsible .

 Bistab:Experiment1 bistab:StartDate ?date }

SELECT returns sets of tuples based on matching triple patterns against the RDF database. A SPARQL query

consists of two parts, the SELECT clause and the WHERE clause. The SELECT clause defines the result

tuples of the query. In the example the result tuples have two elements defined by the variables ?responsible

and ?date. The WHERE clause defines the triple patterns. In the example there are two triple patterns. The

possible variable bindings in the result tuples are obtained by matching the triple patterns against the RDF

database. In the example the variable ?responsible matches "Emily" and ?date matches "2013-09-10".

7

The advantage of using RDF for scientific computing is that it provides a powerful data model for

representing properties (metadata) about scientific and engineering experiments, while SPARQL provides a

powerful high level query language to search the metadata. However, RDF does not support storing the

scientific results themselves as numerical arrays. To enable storing both data and metadata using RDF, the

data representation of RDF and the query capabilities of SPARQL were extended with ability to store and

query numerical arrays, for which purpose SSDM and SciSPARQL were developed. Since MATLAB is

commonly used for processing scientific data there is a need to interface MATLAB with SSDM through the

query language SciSPARQL, which is the purpose of this project.

2.3 MATLAB

MATLAB is a popular high-level programming language in scientific computing as it has support for

processing and visualizing large numeric matricies. The MATLAB system consists of five main parts: the

MATLAB language, the MATLAB working environment, a graphic system, the MATLAB mathematical

function library, and the MATLAB application program interfaces. External programming language

interfaces support the extensibility of MATLAB to call functions implemented in other languages e.g. C or

Java. Furthermore, functions in MATLAB can also be called from other languages. MATLAB has high-level

functions for high-dimensional data processing and calculation. The basic data type of MATLAB is a matrix,

which is one reason why MATLAB is widely used and popular in scientific computing experiments.

The core issue in MSL is providing a way to access SSDM servers from MATLAB programs so that SSDM

databases storing experimental data can be searched and updated from MATLAB programs. In addition,

MSL also allows MATLAB functions to be called in SciSPARQL queries to utilize the vast MATLAB

function library over matrices. The implementation of MSL includes the mapping between the multi-

dimensional numeric array representations of MATLAB and SSDM.

The rest of this section describes some basic MATLAB functionality for readers not familiar with it.

Accessing single element

A particular element in a matrix can be referenced by specifying the row and column of the matrix in the

following way, A(row, column), in which A is the matrix. The example below gets the element at the second

row and second column of a 3-by-3 magic square A.
A=magic(3)

A = 8 1 6

 3 5 7

 4 9 2

A(2,2) is used to get the element at row 2, column 2 and 5 is the returned element.
A(2, 2)

ans = 5

Accessing multiple elements

Multiple elements can also be referred to in a MATLAB matrix. Subscript expressions involving colons refer

to portions of a matrix. The expression A(1:m, n) refers to the elements in the rows 1 through m of column n.

The expression A(1:2:m, n) gets nonconsecutive elements where 2 is the step. This expression refers to every

second elements in rows 1 through m of column n. MATLAB supports an array indexing scheme that uses

one array as the index into another array. Example below uses the same array A created previously to

illustrate indexing multiple elements with another array. In this example, b is an array with three elements 1,

2, 3 and the expression A(b) refers to the 1
st
, 2

nd
 and 3

rd
 elements in the sequence format.

A =

8

 8 1 6

 3 5 7

 4 9 2

b= [1, 2, 3]

b = 1 2 3

A(b)

ans = 8 3 4

Accessing elements in multi-dimensional arrays

In MATLAB, a high-dimensional array is an array having more than two dimensions. They are the extension

of normal two-dimensional matrices. Subscripts are used to index element in a high-dimensional array as well.

A four-dimensional array, for example, will have four subscripts. To index the element in row 2, column 3

and page [12] 2 of a three-dimensional array below, the subscript used will be A(2, 3, 2).

Fig.6 Using subscript to index an element in a high-dimensional array [7]

MATLAB functions

MATLAB users can call built-in functions, define their own functions and call the user-defined functions.

The script below defines a MATLAB function new3Darray that calls a MATLAB built-in function cat [13]

to extend a 2D array to a 3D array.

function newArray = new3Darray(array)

newArray = cat(3, array, array+1, array+2);

end

MSL provides MATLAB functions to let MATLAB applications access SSDM through SciSPARQL.

2.2 Scientific SPARQL and SSDM

SciSPARQL is a query language that extends SPARQL in functionality of array representation and

operations over scientific data. It is processed by SSDM, a prototype system utilizing the extensible DBMS

Amos II.

Fig.7 shows the overall architecture. Application programs and users ship SciSPARQL queries and command

to the SSDM server for execution. SciSPARQL maintains its own main-memory local database for RDF

triples. It also provides extensibility by allowing different kinds of back-end storage managers for RDF, e.g. a

relational database (RDB). SSDM can read and write RDF triples from or to external files. SSDM has special

representations methods for numerical data such as matrices. The system also is extensible by enabling calls

to external computational engines, such as Python, in order to make use of the extensive libraries for

scientific and engineering computing provides by these.

9

Fig.7 Overview of SSDM architecture [4]

The purpose of SciSPARQL is to enable scientific applications to manage their data, not only metadata. An

important feature of SSDM is that it provides an efficient way to store scientific numerical arrays as its built-

in data type, called NMA.

Fig. 8 below shows how an array [1, 2, 3, 4] is represented in standard RDF. As a comparison, Fig. 9 shows

how the same array is represented much simpler in SSDM, where the entire array is a single object.

Fig.8 Naïve RDF representation of an array

Fig.9 Array-valued triple using the NMA data type

The RDF statement on Fig.9 states the fact that the experiment, bistab:Experiment1, has a result, bistab:result,

whose value is an array [1,2,3,4]. Once the data has been populated and stored in SSDM, queries can be made

against the an RDF database containing the single triple

bistab:Experiment1 bistab:Result (1,2,3,4) .

10

The following query searches the database to get the first element of the result array from the experiment,

bistab:Experiment.

SELECT (?a[1] AS ?res)

 WHERE { bistab:Experiment1 :bistab:Result ?a}

The AS clause assigns an expression (here the array reference ?a[1]) to a variable (?res). SciSPARQL and

SSDM provide functionality that includes multi-dimensional arrays, array references, and array slicing to

allow scientific applications to store and query both scientific data and metadata in a uniform way. This

project provides an interface between SSDM and MATLAB that lets MATLAB applications utilize the

functionality of SciSPARQL to store, search, and update both data and metadata.

2.3 Amos II

SSDM is built on top of Amos II [19], which is an extensible DBMS allowing different kinds of back-end

data sources to be queried. It is centered on a query processor for object-relational and functional queries. The

data model of Amos II is based on three concepts: objects, types, and functions: a database is a set of objects,

types classify the objects into different entity types, and functions define properties of objects and

relationships between objects. Amos II provides a query language called AmosQL in terms of its data model.

SSDM utilizes the query processor of Amos II to process SciSPARQL queries over data stored in the local

main-memory database or in different kinds of back-end databases. SSDM translates SciSPARQL into

AmosQL for query processing.

MATLAB and SSDM are interfaced by utilizing the C-based APIs provided by MATLAB [10] and Amos

II[5].Amos II provides a main-memory storage manager aStorage[15], where an entire local main-memory

database can be stored. In particular aStorage is extensible so that programmers can define their own data

typess using a C-based API. In SSDM a special data type NMA [4] for efficient representation of arrays and

array projections is registered with aStorage. MSL utilizes aStorage to represent in main-memory the data

structures to be exchanged between MATLAB and SSDM in a local aStorage database linked to MATLAB.

In MSL the NMA data type represents MATLAB arrays. The client-server communication primitives of

Amos II are used for transferring these local data structures to the SSDM server for evaluation.

All data in aStorage is referenced through handles (C type named oidtype), which are indirect identifiers for

physical data records in a memory area holding the database, called the database image. A type tag is

associated with each handle. In order to make the application code both fast and independent of the internal

representation of handles, the handles are always manipulated through a set of C macros and utility functions.

SSDM not only supports Amos II built-in data types but also defines its own data types using aStorage. MSL

utilizes aStorage to represent data in SSDM converted from/to MATLAB matrices.

A particularly important issue when interfacing MATLAB with a database manager such as SSDM is how to

efficiently convert data representations in MATLAB (arrays) into corresponding data representations in the

database. In MSL the module MAL (MATLAB – Amos Link) interfaces MATLAB with the Amos II kernel.

The interoperability requires conversions (mappings) between Amos II data of different types with the

corresponding MATLAB data representations. Both systems are linked together and share main memory. The

different kinds of data mapping functions copy data between the database image of Amos II and MATLAB’s

workspace.

MAL provides a full AmosQL interface between MATLAB and Amos II based on the query language

AmosQL. This is a prerequisite for MSL since AmosQL queries, function calls, result management (scans),

error handling, and other facilities are internally used by MSL.

11

3. The MATLAB-SSDM Link (MSL)

MSL provides two interfaces between MATLAB applications and the SSDM system, namely the MATLAB

Client/Server Interface (MCSI) and the MATLAB Amos Interface (MAL). MSCI allows MATLAB client

applications to ship SciSPARQL queries to an SDM server, while MAL allows the same thing for Amos II

queries.

3.1 The MATLAB Client/Server Interface (MCSI)

The client-server interface MCSI is first illustrated through example. Then the available MATLAB functions

in MSCI are then described in details.

This section explains how to:

1. Initialize the SSDM system.

2. Create a connection to an SSDM server named udbl.it.uu.se.

3. Populate the SSDM database.

4. Send a query to the database server for evaluation.

5. Iteratively retrieve data from the database.

6. Unload MSL from MATLAB.

First the MATLAB function sparqlInit() is called to load the MSL DLL into MATLAB and initialize the

system. After MSL has been initialized, MATLAB users can connect to an SSDM sever on host h by calling

newConnection(h). The function newConnection() returns a connection identifier Cid which is used in MCSI

interface functions when communicating with the server.

3.1.1 Queries

The function sparqlQuery(Cid, q) -> Sid evaluates the query string q in the SSDM server connected to by Cid.

The result of a sparqlQuery() call is a scan identifier Sid that identifies the set of result tuples from the query.

Since the result set can be very large it is not returned as a single object but as a scan, which is a data

structure over which the application program can iterate to retrieve from the result set one tuple at the time.

For example, the following program opens a connection to the SSDM server running on udbl.it.uu.se and

retrieves all the triples in the default graph:

sparqlInit();

Cid=newConnection('udbl.it.uu.se')

Sid = sparqlQuery(Cid,'SELECT ?s ?p ?o WHERE {?s ?p ?o}');

while endOfScan(Sid)~=1

 getElement(Sid,1)

 getElement(Sid,2)

 getElement(Sid,3)

 nextRow(Sid);

end

closeConnection(Cid);

The function endOfScan(s) returns 1 when there is no more tuples in the scan, and 0 otherwise. The function

getElement(Sid, p) retrieves the object at position p in the current tuple of the scan. The function nextRow(Sid)

advances to the next tuple in the scan. The function closeConnection(Cid) closes a connection and frees all

associated scans.

The data objects created by MSL, e.g. connections, scans, and tuples, are stored in a local main-memory

aStorage database. The function getElement() converts the data representation used in SSDM to

12

corresponding MATLAB data typess. The supported data typess are scalar values, numeric arrays, character

strings, and classes defined by MSL to represent RDF-specific data types. For example, the function

makeURI(s) creates a new URI named s, which is an instance of a MATLAB class URITYPE defined by

MSL.

3.1.2 Function calls

SciSPARQL functions can called from MATLAB using the MCSI MATLAB function sparqlCall(Cid, fn,

argl) -> Sid, where fn is the name of the SciSPARQL function to call and argl is an argument list represented

as a MATLAB cell array[9], which can contain data of varying sizes and types. For example, the following

snippet calls the SciSPARQL function plus to add two 2D arrays A and B together:

 A = [1,2,3;4,5,6];

 B = [7,8,9;10,11,12];

 Sid = sparqlCall(Cid,’plus’,{A,B});

 if endOfScan(Sid)~=1

 getElement(Sid,1)

 end

The user can define SciSPARQL functions and install them on the SSDM server by, e.g., using a MATLAB

workspace as an SSDM console where commands as shipped to the SSDM server using the function

sparqlQuery(). For example, the SciSPARQL function square(x) can be defined on the server by:

 sparqlQuery(Cid,'DEFINE FUNCTION square(?x) AS SELECT (?x*?x AS ?res)');

Notice that you normally define the function on the server once.

3.1.3 Updates

The function rdfInsert(Cid, s, p, o) inserts a triple (s, p, o) into the SSDM database connected to by Cid. For

example, the following snippet adds values of the property http://example.org/ns#p to four different subjects:

 p=makeUri('http://example.org/ns#p'); % make a URI object

 A=[1,2,3;4,5,6]; % make a 2D array

 B=cat(3,A,A+1,A+2,A+3); % make a 3D array

 rdfInsert(c1,makeUri('http://example.org/ns#x4'),p,'simple string');

 rdfInsert(c1,makeUri('http://example.org/ns#x5'),p,3);

 rdfInsert(c1,makeUri('http://example.org/ns#x6'),p,B);

 rdfInsert(c1,makeUri('http://example.org/ns#x7'),p,true);

The variable p holds the URI of the added property. The variable A is a 2D array used to construct the 3D

array B. B illustrates the functionality of SciSPARQL and SSDM to be able to represent multi-dimensional

numeric arrays in queries and the database.

To delete triples there is a function rdfDelete(Cid, s, p, p). Often deletion involves deleting many triples

based on a query. For example,
 sparqlQuery(Cid,'DELETE {?s, <http://example.org/ns#p>, ?o}');

removes all triples having the property http://example.org/ns#p.

Passing parameters into updates can be done either by placing them into the query string (not recommended)

or by defining update in a named procedure shipped to the SSDM server. For example,
 sparqlQuery(Cid,'DEFINE PROCEDURE delProp(?x) AS DELETE (?s ?x ?o)');

defines a procedure stored on the server that delete all triples having the property ?x. Procedures are called

the same way as functions. For example,
 sparqlCall(Cid,’delProp’,{makeURI(’http://example.org/ns#p’)});

13

, which also removes all triples in the database having the property http://example.org/ns#p.

3.2 MATLAB interface functions

The following MATLAB functions constitute the API to SSDM.

3.2.1 Initializing and finalizing

sparqlInit ()

This function initializes the SSDM system by loading the DLL into MATLAB.

Cid = newConnection(hostid)

The function creates a connection to a server running on a given host, hostid. This function returns a

connection id, Cid, which is the unique identifier of every connection. Most functions provided in MSI

require a connection argument. If hostid is an empty string, an embedded SSDM process is initialized.

setRemotePort(portNumber)

Set the port number a name server is expected to listen to. The default is 35021.

freeConnection(Cid)

This function closes the connection and frees memory allocated for the connection. After calling this function,

the connection cannot be used any more. To start a new connection call newConnection(hostid). The purpose

is to keep the memory clean when we want to re-initialize the unit while continuing running the same

MATLAB application.

freeAllConnections()

This function closes all connections and frees all memory allocated for all connections. The main purpose of

this function is to free memory.

finalizeSystem()

This function frees all memory associated with SSDM and unloads the interface MSL DLL from the

MATLAB application.

3.2.2 Sending queries to SSDM

Sid = sparqlQuery(Cid, q)

The function takes two arguments, a connection identifier Cid and a query string q. It sends the query string

to the SSDM server for execution. It returns a scan identifier, sid, representing the result of the query so that

the MATLAB program can iterate over the result.

Sid = sparqlFunction(Cid, funName, argList)

This function calls a SPARQL function on the server. It takes three arguments, Cid, funName, argList, where

Cid is the connection id, funName is the SPARQL function name, and argList is a MATLAB cell array

holding the arguments that are passed to the SPARQL function. The result Sid is a scan of the result.

rdfInsert(Cid, S, P, O)

14

The function loads an RDF triple (S, P, O) into the database by providing S as subject, P as predicate, and O

as object. The subject and the predicate must be of type of URITYPE, which is defined as a MATLAB data

type and can be constructed by calling the makeUri(uri) function where the object can be of any type. The

data type definitions in MATLAB’s workspace and mappings between MATLAB and SSDM data types will

be discussed in chapter 4.

end = endOfScan(Sid)

This function checks if the end of a scan Sid has been reached, i.e. if the last tuple has been retrieved. The

result is a boolean value, where 1 (true) indicates that the end of the scan is reached and 0 otherwise.

width = scanWidth(Sid)

This function returns the number of elements in the current tuple of a scan. When applied to an empty scan, 0

is returned.

element = getElement(Sid, pos)

This function takes two inputs, Sid and pos. Sid specifies scan and pos specifies what element in the current

tuple of scan Sid to access The SSDM data type in that position is mapped to the corresponding MATLAB

data type.

nextRow(Sid)

This function advances to the next tuple in a scan Sid. Before calling getElement(Sid, pos) function,

endOfScan(Sid) should be called to check if the end of a scan is reached or not.

printRow(Sid)

The function prints all elements in the current tuple of scan Sid.

freeScan(Sid)

If a scan is no longer used, this function is called to free the memory allocated for the scan. The scan is also

automatically freed when the end-of-scan is reached, so freeScan() is used only when prematurely ending a

scan.

freeAllScans()

This function frees the memory allocated for all scans.

3.2.3 Constructors

makeTimeVal(timeVector)

This data constructor creates a TIMEVALTYPE object representing time stamps. It takes one argument,

timeVector, which is a vector representing time, e.g., [2013 12 25 12 55 33], and constructs a TIMEVALTYPE

object which holds the value of timeVector as a property.

makeTimeVal(timeVector, timeZone)

This function creates TIMEVALUETYPE object representing containing time zone information passed in

timeZone parameter. That parameter is an integer number denoting "seconds west of greenwich", e.g. -3600

for Uppsala.

makeUri(uriString)

This function creates a URITYPE object with URI string uriString.

makeUniStr(string, langTag)

This function creates a UNISTRINGTYPE object. It takes two arguments, and stores them in String and

LangTag properties, respectively.

15

makeTypedRDF(literal, datatype)

This function creates a TYPEDRDFTYPE object representing typed RDF literals of the specified datatype,

given as a string. A typed literal is string combined with a datatype URI. Typed strings enables the RDF type

system to be extensible with literals in new datatypes.

3.3 MAL (MATLAB-Amos Link)

The MATLAB-Amos interface (MAL) makes is possible to connect to Amos II from MATLAB. MAL is

similar to MSL: first Amos II is initialized calling amosInit(). Then MATLAB users can connect to any

Amos II database by calling newConnection(hostid, peer). After a connection AmosQL queries can be

executed for the particular connection by calling amosQuery(Cid, query) function. This function returns a

scan id, Sid to MATLAB’s workspace. As for MSL, the elements can be retrieved by calling getElement(Sid,

pos), end of scan can be checked by calling endOfScan(Sid), and the next row in a scan can be advanced to by

calling nextRow(Sid).

3.3.1 MAL MATLAB API examples

The snippet below shows how to use the API functions provided by MAL. Similar as MCSI, it first initializes

MAL and then it connects to the server running on a certain host specified by the hostid. Through this

connection, an AmosQL query is executed, and each row in the scan is iteratively printed out.

amosInit();

c1=newConnection('myserver.it.uu.se') % connect to server on a given host

s1=amosQuery(c1,'select i, "a"+i, i/3, {i,i+2}, {"b",i} from Integer i where i in iota(1,5);');

while ~endOfScan(s1)

 printRow(s1);

 nextRow(s1);

end

finalizeSystem();

The result of this query contains elements of type, integer, string, real number, vector of numbers, vector of

mixed numbers and strings. This interface maps different data types between MATLAB and Amos. All

elements of the query result are shown below, those shown as [1x2 double] represent MATLAB vectors

mapped from values of Amos’ vector type holding only numbers; and elements shown as {1x2 cell}

represent MATLAB cell array mapped from values Amos vector type, containing elements of different types.

[1] 'a1' [0.3333] [1x2 double] {1x2 cell}

[2] 'a2' [0.6667] [1x2 double] {1x2 cell}

[3] 'a3' [1] [1x2 double] {1x2 cell}

[4] 'a4' [1.3333] [1x2 double] {1x2 cell}

[5] 'a5' [1.6667] [1x2 double] {1x2 cell}

As soon as all the elements in a scan are retrieved, the scan is freed automatically inside endOfScan(Sid)

function.

3.3.2 MAL MATLAB API functions

As SSDM is built on the top of Amos, basically most the functions provided by MAL are the same as the

functions provided by the MSL except the functions listed below.

amosInit()

16

This function simply does the same things as sparqlInit(), but with different function name to indicate

MATLAB-Amos Interface.

Sid = amosQuery(Cid, query)

This function allows MATLAB users to execute AmosQL queries. The function takes two arguments, Cid

and query string, in which Cid is the connection id and query is the AmosQL query string. Sid is the scan

identifier returned to MATLAB.

Other functions such as getElement(), newConnection(), closeAllConnections(),

closeConnection(), printRow(), endOfScan(), scanWidth(), getElement(), nextRow(), freeScan(),

freeAllScans(), finalizeSystem() are common with MSCI.

17

4. Data Type Mappings

Both SSDM and MATLAB have C interfaces, and these are used for interfacing MATLAB and SSDM. This

requires mapping the corresponding data types between MATLAB and SSDM, not least arrays represented

by the NMA data type in SSDM since matrix is a central data type in MATLAB. This chapter mainly explains

the data type mapping between MATLAB and SSDM, and the implementation of using C interfaces will be

explained in Chapter 5.

MATLAB internally supports various kinds of arrays. All MATLAB variables are arrays, no matter what

type of data. Numbers are represented as single element arrays. Even strings are arrays of characters. A

matrix is a two dimensional numerical array. A cell array is an array containing any kinds of elements called

cells. To enable data type interoperability between MATLAB and SSDM through MSL, most regular Amos

II data types are mapped to corresponding MATLAB data types. The mapped regular data types defined in

Amos II are respectively real, integer, string, Boolean, time value, vector, and nil. MSL provides MATLAB

with ability to work with SSDM data types, some of which are not supported by MATLAB. For example,

MSL defines RDF-specific types such as URITYPE, UNISTRINGTYPE and TYPEDRDFTYPE. These types

are implemented by user defined MATLAB classes defined by MSL.

Inside Amos II, every data instance is assigned a handle (C type oidtype), regardless what type it is. A type

tag associated with an Amos II handle identifies the data type of the data object in the database image that the

handle represents. To enable data type interoperability between MATLAB and SSDM through MSL, most

regular Amos II data types are mapped to corresponding MATLAB data types. mxArray is the data type

representing all kinds of MATLAB data in C/C++ programs. The programs use MATLAB’s Matrix Library

[11] to work with the mxArray data structure.

Vector

A data type in SSDM (and Amos II), called Vector, has the ability to hold sequences of elements of different

types. It is mapped to MATLAB’s data type cell array represented as special kind of mxArray in C. When all

elements in are numbers only, the vector is instead mapped to MATLAB’s data type matrix.

Fig.10 Vector data type mapping between SSDM and MATLAB

Time values

The TIMEVALTYPE in SSDM (and Amos II) is constructed as a structure with seven integer elements

representing year, month, day, hour, minute, second, and millisecond. MATLAB represents time as a vector

holding six numeric elements. For instance, an SSDM time vector is represented as [2012 12 12 0 0 0 99],

while the corresponding MATLAB time vector is represented as [2012 12 12 0 00.099]. As we can see,

milliseconds and seconds are stored as two integers in the SSDM time vector, while MATLAB represents

18

milliseconds and seconds in a single floating point number. To make a time vector distinct from the regular

vectors in MATLAB, a MATLAB class called TIMEVALTYPE is created in MATLAB. As the graph shows

below, the TIMEVALTYPE class contains one property called TimeVector which holds a time vector as

value.

Fig.11 TIMEVALTYPE data type mapping between SSDM and MATLAB.

In MATLAB, this class is defined as:
classdef TIMEVALTYPE

 properties

 TimeVector = '';

 TimeZone = '';

 end

 end

A MATLAB function, makeTimeVal(timeVector) is provided to construct TIMEVALTYPE objects. It takes

one argument which is the time vector; a new TIMEVALTYPE object is created.

Numerical arrays

SSDM’s data type NMA (numerical arrays) is mapped to MATLAB’s native array data type represented by

the mxArray in MSL. Data of Amos II type vector is mapped to an mxArray matrix if all elements in the list

are single numbers; otherwise, an mxArray cell is created to hold instances of arbitrary data types. To map an

mxArray to an Amos ARRAYTYPE, arguments from MATLAB workspace are required to be cell arrays.

When using MCSI, MATLAB regular double matrices are mapped to SSDM NMD data type. The graph

below shows the mapping between NMA data and different kinds of MATLAB arrays.

Fig12.Array datatype mapping between SSDM and MATLAB

Strings

RDF strings may have language and locale information. String values that represent literals in RDF are

therefore represented in SSDM as the Unistring type, which has all necessary string properties.

 Unistring objects containing language and/or locale information are represented by a new MATLAB class

UNISTRINGTYPE, where an additional attribute called LangTag, is defined, as shown on Fig.13.

19

Fig.13 UNISTRINGTYPE data type mapping

Definition of class UNISTRINGTYPE in MATLAB:
classdef UNISTRINGTYPE

 properties

 String = '';

 LangTag = '';

 end

end

Fig.14 Mapping different string types

As shown on Fig. 14, instances of MATLAB UNISTRINGTYPE class are always mapped to SSDM

Unistrings objects, either with or without the language tag. Simple SSDM string objects and

UNISTRINGTYPE objects without LangTag are mapped to MATLAB’s simple string type when no

information will be lost; MATLAB UNISTRINGTYPE objects are anyway mapped to SSDM Unistring no

matter whether the LangTag field holds information or not. For creating UNISTRINGTYPE values in

MATLAB, the constructor function makeUniStr(str, lang) is defined. This function takes two arguments, str

and lang, which are stored in String and LangTag properties respectively:

function [unistr] = makeUniStr(str,lang)

unistr = UNISTRINGTYPE;

unistr.String = str;

unistr.LangTag = lang;

end

URIs

A URI data instance is nothing else than a string with a special semantics and format, for example

"http://www.uu.se". In order to distinguish URIs from strings, a class called URITYPE is defined in

MATLAB. An object of this class is created to map URITYPE data from SSDM.

20

Fig.15 URI mapping

Definition of URITYPE class in MATLAB:
classdef URITYPE

 properties

 UriID = '';

 end

end

The URITYPE constructor is makeUri(uriStr). It stores its string argument in the UriID property.

Typed RDF literals

A typed RDF literal is represented with two properties, literal, e.g. ‘cat’ and type URI, e.g.

<http://example.org/ns#x00>. The corresponding data type in MATLAB is a new class TYPEDRDFTYPE

with two properties Literal and DataType.

Fig.16 Typed RDF literal mapping

Definition of TYPEDRDFTYPE:
classdef TYPEDRDFTYPE

 properties

 Literal = '';

 DataType = '';

 end

 end

makeTypedRDF(literal, type) is the TYPEDRDFTYPE data constructor which takes two arguments that are

stored in Literal and DataType properties.

21

5. Implementation

This chapter first introduces techniques used to implement MSL and the terminology used. The details of the

implementation follow.

5.1 MATLAB – C interface

The MATLAB – C interface [10] and the Amos – C interface [5] provide us with the facility to implement

interfaces like MSL and MAL, which allow MATLAB and Amos II engines to interact. This section explains

the underlying MATLAB facilities used to implement MSL.

5.1.1 MATLAB shared library calls

The MATLAB external programming interface can call functions declared in a shared library, referred to as

a dynamic link library (DLL) in Windows and shared objects in Unix, by calling loadlibrary() and calllib()

MATLAB functions. Examples of how to call functions in a shared library are shown below. For this

example let’s assume there is a C interface file mylib.h file defining a C function, int add(int a, int b), which

is implemented by the DLL mylib.dll.

The DLL file is loaded by this MATLAB function call:

loadlibrary(‘mylib’, ’mylib.h’)

Once loaded the C function add() in the loaded library can be called by the MATLAB function callib():

calllib (‘mylib’, ’add’, 1, 2)

5.1.2 MEX API

MATLAB functions can be invoked from C using MATLAB’s MEX API[18], e.g., mexCallMATLAB() that

executes a MATLAB command and mexPrintf() that prints to the MATLAB console.

5.1.3 C/C++ Matrix Library

The interface between SSDM and MATLAB needs to passing data from one workspace to the other. In

C/C++, a MATLAB array is declared to be of C structure mxArray, which in aStorage the corresponding data

structures are represented by handles. The Matrix Library is used to access the mxArray structure. This API

allows developers to create, read, and query information about the MATLAB data.

Arrays of specific types are defined inside the mxArray structure, which include numeric arrays, char arrays,

logical arrays, sparse arrays, structure arrays, and cell arrays. Single numbers are stored as arrays of one

element.

The following examples illustrate how to create mxArray data in a C program and free the memory after

using them. The statements below declare two mxArray pointers and a double pointer which are assigned to

variables C, D, and D_elem, respectively. Then the program allocates the memory for these two mxArray data

22

elements instances by allocating an mxArray data type. Finally the pointer to a floating point number D_elem

is set to point to the first element of mxArray D.

 mxArray *C,*D;

double *D_elem;

C = mxCreateCellMatrix(1, 1);

 D = mxCreateDoubleMatrix(1, 1, mxREAL);

 D_elem = mxGetPr(D);

The following statements set the value of the first field of the mxArray cell array C to the matrix D by calling

mxSetCell() with index, 0, and the value D. After that, all mxArray data instances are destroyed by calling

mxDestroyArray() function.

 mxSetCell(C, 0, D);

mxDestoryArray(D);

mxDestroyArray(C);

mxArray data instances can be created by calling functions with prefix, mxCreate followed by a MATLAB

data type , e.g., mxCreateString. These functions dynamically allocate memory for the created mxArray data

instances. As we can see from the code above, two mxArray data instances were represented by the types cell

array and double array. mxCreateCell allocates memory for the cell array C, which holds one field, in this

case. mxCreateDoubleMatrix allocates memory for double matrix, D, which contains only one double

element. To free memory after using these two mxArray data instances, mxDestoryArray is called to

deallocate the memory occupied by the specified mxArray data instances.

5.2 Data conversions

In MAL, two functions, amos_make_mx(oidtype) and amos_make_oid(mxArray*), enable data exchange

between Amos II database images and the MATLAB workspace; in MCSI, two functions, make_mx(oidtype)

and make_oid(mxArray*), handle the data conversion between MATLAB and SSDM. The graph below

shows the data mapping done by MCSI and the responsible function along the arcs:

Fig.17 Mappings between mxArray and oidtype data types

Converting from Amos II to MATLAB

The graph below shows functions for data conversion from C data structure oidtype to mxArray. The function

amos_make_mx(oidtype) is responsible for converting the Amos II database object identified by a handle into

the corresponding mxArray instance. make_mx(oidtype) is the function handling data conversion in MSL and

it calls amos_make_mx when the data need to be mapped are of Amos II data type. Based on the handle type

tag more specific functions convert different kinds of Amos II objects or SSDM objects to mxArray.

http://nf.nci.org.au/facilities/software/Matlab/techdoc/apiref/mxcreatestring.html#567727

23

Fig.18 The call graph of make_mx C function

Converting from MATLAB to Amos II

amos_make_oid(mxArray*) function handles data conversion from MATLAB to Amos II and

make_oid(mxArray*) function handles data conversion from MATAB to SSDM. They call specific functions

for data mapping according to the MATLAB data type represented by the mxArray structure.

Fig.19 The call graph of make_oid C function

24

5.3 MATLAB - Amos Link (MAL)

MSL is built on top of MAL. There are six MAL C interface functions illustrated by Fig.17:

Fig.20 MAL C function and MATLAB function mappings

5.3.1 Global variables and structures

Two C structures, ConnectEntry(CE) and ScanEntry(SE) are defined to hold connections and scans,

respectively.

ConnectionEntry (CE)

A CE is a structure extending Amos structure a_connection by adding an ID for each connection. The field

Cid is holds the CE identifier. A CE includes a_connection_rec structure, which is a pointer to the next CE, a

Cid identifying a connection, and a host name identifying which SSDM database server the connection

connecting to. The attribute sparqlFn holds a handle to an Amos II function on the server that executes each

SciSPARQL query received through the connection. Analogously, the attribute rdfInsertFn references an

Amos II function to insert new RDF data triples in the SSDM server.

typedef struct ConnectEntry{

 a_connection Connection;

 int cid;

 char *host;

 struct ConnectEntry *next;

 oidtype sparqlFn, rdfInsertFn;

} CE, *cep;

ScanEntry (SE)

Amos II query results are always returned as scans. In order to interact with Amos II and access elements of

tuples in a scan, MSL defines a structure ScanEntry (SE), where an integer Sid identifies of the scan. This

enables MATLAB to access scans by supplying a specific Sid. As the definition of SE shows below, every SE

25

has a field called tpl pointing to the current tuple in a scan. The first row of a scan is assigned to tpl when an

SE is allocated after a query has been executed. The field vectorized is a tag to specify how the result was

generated: by an AmosQL query, by a SciPARQL query, or by a SciSPARQL function call. A vectorized

value 0 indicates that the scan holds result from either an AmosQL query or a SciSPARQL function, so that

scan width is equal to the result width of query or a function. When this flag set to 1, it indicates that the scan

holds the result from a SciSPARQL query, that is, internally, obtained by the call to sparql() function in

Amos, and each result comes encapsulation in a vector.

typedef struct ScanEntry

{

 a_scan scan;

 int sid;

 int vectorized;

 a_tuple tpl;

 struct ScanEntry *next;

} SE, *sep;

Global Variables

In the client-server interface multiple connections to different SSDM databases are possible. The connections

are maintained through some global C variables. The variables CE_COUNTER and SE_COUNTER hold the

identity integer of the latest connection and scan identifier, respectively. They are initialized to 1.

int CE_COUNTER = 1;

int SE_COUNTER = 1;

CEs are stored as a list and there are three pointers that refer to the CE list. CE_LIST_HEAD points to the

head of this list; LAST_FOUND_CE points to the latest CE, and PRE_LAST_FOUND_CE points to the

previous CE, to make deleting a CE more efficient.

cep CE_LIST_HEAD=NULL;

cep LAST_FOUND_CE =NULL;

cep PRE_LAST_FOUND_CE=NULL;

Similar to the CE list, SEs are also stored in a list. Three pointers are reference the head of the SE list, the

latest SE, and the previous SE: SE_LIST_HEAD, LAST_FOUND_SE, and PRE_LAST_FOUND_SE.

sep SE_LIST_HEAD=NULL;

sep LAST_FOUND_SE=NULL;

sep PRE_LAST_FOUND_SE=NULL;

5.4 The MATLAB Client/Server Interface (MCSI)

MCSI (MATLAB Client/Server Interface) is implemented on top of MAL, which uses the client-server

interface of Amos II [c-interface] to communicate with the server. MATLAB data to be transmitted to the

server is first converted into aStorage objects in a local main-memory area using make_oid(mxArray*). The

client/server communication facilities of Amos II are then used to send the local data objects to the server.

When data arrives from the server they are first materialized in the local memory area before they are

converted to MATLAB object by make_mx(oidtype).

Fig.21 summarizes the C functions implementing MCSI calls from MATLAB. They are implemented in

terms of make_oid() and make_mx().

26

Fig.21 C functions called from MATLAB workspace

27

6. Conclusion and Future Work

MSL provides MATLAB users ability to access and query SSDM servers to manage RDF data. It supports a

client/server architecture where connections can be established to SSDM database servers and data and

directives exchanged between MATLAB and SSDM using the query language SciSPARQL. In order to pass

data between MATLAB’s workspace and the SSDM database server, the data has to be converted, due to the

differences in storage representation. This requires data mappings between the main-memory representation

of SSDM objects and corresponding MATLAB objects. In particular the SSDM data type NMA is converted

to numerical MATLAB arrays.

The conversion of different kinds of data between the storage representations is currently copying all data

objects. This can be slow for large objects. Future work includes avoiding such copying when possible. A

complication is that the internal representation of arrays may differ between the different systems and

programming languages, such as Python and MATLAB, which makes copying necessary when interfacing a

programming language. How to avoid such copying is an area for future work.

28

29

References

[1] K.G.Clark and L.Feigenbaum, E.Torres: SPARQL Protocol for RDF, W3C Recommendation 15 January

2008. [Online], available: http://www.w3.org/TR/rdf-sparql-protocol/ , [accessed 10 March 2014]

[2] P.Hayes and B.McBride: RDF Semantics, W3C Recommendation, 10 February 2004,

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/, [accessed 10 March 2014]
[3] F Manola and E Miller: RDF Primer, W3C Recommendation 10 February 2004,

http://www.w3.org/TR/rdf-primer/, [accessed 10 March 2014]
[4] A.Andrejev and T.Risch: Scientific SPARQL: Semantic Web Queries over Scientific Data,

Data Engineering Workshops, 28th IEEE International Conference, Arlington, VA, 1-5 April 2012. [Online],

available: http://www.it.uu.se/research/group/udbl/publ/desweb2012.pdf, [accessed 12 December 2013]

[5]T.Risch:AmosII External Interfaces , Uppsala, Sweden, 2001-01-24. [Online], available:

http://user.it.uu.se/~torer/publ/external.pdf, [accessed 12 January 2014]

[6] T.Heath and C.Bizer(2011): Linked Data: Evolving the Web into a Global Data Space(1st edition).

Synthesis Lectures on the Semantic Web: Theory and Technology, 1:1, 1-136. Morgan & Claypool.

[Online], available: http://linkeddatabook.com/editions/1.0/, [accessed 10 May 2014]
[7] [Online], available: http://www.mathworks.se/help/matlab/math/multidimensional-arrays.html, [accessed

10 March 2014].

[8] G.Klyne and J.Carroll: Resource Description Framework (RDF): Concepts and Abstract Data Model,
W3C Working Draft, 29 August 2002. [Online], available: http://www.w3.org/TR/2002/WD-rdf-concepts-

20020829/, [accessed 10 March 2014]

[9] [Online], available: http://www.mathworks.se/help/matlab/cell-arrays.htm, [accessed 10 March 2014]

[10] [Online], available: http://www.mathworks.se/help/matlab/external-interfaces.html, [accessed 10 March

2014].
[11] [Online], available: http://www.mathworks.se/help/matlab/cc-mx-matrix-library.html, [accessed 10

March 2014].

[12] [Online], available: http://www.mathworks.se/help/matlab/math/multidimensional-arrays.html#f1-86795,
[accessed 10 March 2014].

[13] [Online], available: http://www.mathworks.se/help/matlab/ref/cat.html, [accessed 10 March 2014].
[14] Jeremy J. Carroll and Jeff Z. Pan: XML Schema Datatypes in RDF and OWL, W3C Working Group

Note , 14 March 2006. [Online], available: http://www.w3.org/TR/swbp-xsch-datatypes/ , [accessed 10

December 2013]

[15] T.Risch: aStorage – a main memory storage manager, UDBL, Dept. of Information Technology, Uppsala

University, Sweden, September 2009. [Online], available: http://user.it.uu.se/~torer/publ/aStorage.pdf,
[accessed 12 Dec 2013]

[16] G.Fahl and T.Risch: Amos II Tutorial , Uppsala Database Laboratory, Department of Information

Technology, Sweden, August 2008. [Online], available:

http://www.it.uu.se/research/group/udbl/amos/doc/tut.pdf, [accessed 10 February 2014]

[17] [Online], available: http://www.mathworks.se/help/matlab/learn_matlab/matrices-and-arrays.html,
[accessed 10 March 2014]

[18] [Online], available: http://www.mathworks.se/help/matlab/create-mex-files.html, [accessed, 10 March

2014]

[19] S.Flodin, M.Hansson, V.Josifovski, T.Katchaounov, T.Risch, M.Sköld, and E.Zeitler :Amos II Release

16 User's Manual, Uppsala DataBase Laboratory, February, 2014. [Online], available:
http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html, [accessed 10 January 2014].

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-protocol/
file:///C:/Users/emily/Dropbox/thesis-drop/tehsis-report/140219/B.McBride
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.it.uu.se/research/group/udbl/publ/desweb2012.pdf
http://www.it.uu.se/research/group/udbl/publ/desweb2012.pdf
http://user.it.uu.se/~torer/publ/external.pdf
http://user.it.uu.se/~torer/publ/external.pdf
http://linkeddatabook.com/editions/1.0/
http://linkeddatabook.com/editions/1.0/
http://www.mathworks.se/help/matlab/math/multidimensional-arrays.html
http://www.w3.org/TR/2002/WD-rdf-concepts-20020829/
http://www.w3.org/TR/2002/WD-rdf-concepts-20020829/
http://www.w3.org/TR/2002/WD-rdf-concepts-20020829/
http://www.mathworks.se/help/matlab/cell-arrays.htm
http://www.mathworks.se/help/matlab/external-interfaces.html
http://www.mathworks.se/help/matlab/cc-mx-matrix-library.html
http://www.mathworks.se/help/matlab/math/multidimensional-arrays.html
http://www.mathworks.se/help/matlab/ref/cat.html
http://www.w3.org/TR/swbp-xsch-datatypes/
http://www.w3.org/TR/swbp-xsch-datatypes/
http://www.w3.org/TR/swbp-xsch-datatypes/
http://user.it.uu.se/~torer/publ/aStorage.pdf
http://user.it.uu.se/~torer/publ/aStorage.pdf
http://www.it.uu.se/research/group/udbl/amos/doc/tut.pdf
http://www.it.uu.se/research/group/udbl/amos/doc/tut.pdf
http://www.mathworks.se/help/matlab/learn_matlab/matrices-and-arrays.html
http://www.mathworks.se/help/matlab/create-mex-files.html
http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html
http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html
http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html

