

1-47

Uppsala Master’s Theses in
Computer Science 306

2007-01-07
ISSN 1100-1836

Processing SparQL Queries in
an Object-Oriented Mediator

Yu Cao∗

Information Technology
Computing Science Department

Uppsala University
Box 337

S-751 05 Uppsala
Sweden

Abstract

RDF is a semantic Web standard that enables Web resources to be
described with structure and content. SPARQL is a standard query
language for RDF data that provides an easy way to consume the result of
queries over a wide range of semantic Web resources. A SPARQL query
language parser has been implemented for Amos II, a mediator system that
provides view definition capabilities over different kinds of data sources.
The SPARQL parser gives the user the ability to query RDF sources using
the SPARQL query language. The parser translates SPARQL queries to
query statements in the query language of Amos II, AmosQL. The queries
contain calls to a wrapper for RDF sources based on a toolkit for
manipulating RDF files, Raptor.

Examiner : Tore Risch

∗ Contact information: wilson_caoyu@yahoo.com

2-47

Contents
1. Introduction.. 4
2. Background.. 5

2.1. Resource Description Framework .. 5
2.1.1. RDF Triple and RDF Graph.. 5
2.1.2. URI and URI Reference.. 6
2.1.3. IRI, Prefixed Names, Relative IRI .. 6
2.1.4. Blank Nodes.. 7
2.1.5. RDF Literals.. 9
2.1.6. XML Syntax for RDF ... 9

2.2. Amos II..11
2.2.1. Built-in Data Types ..11
2.2.2. Simple Select Statements .. 12
2.2.3. Types and Functions.. 13

2.3. Query Languages for RDF ... 14
3. The SPARAMOS System .. 16

3.1. Architecture .. 16
3.2. The CRDF Wrapper.. 17
3.3. The SparQL Parser ... 18

4. Implementation of CRDF .. 19
4.1. Data Types of Subject, Predicate, and Object... 19

4.1.1. URI Reference and Blank Nodes .. 19
4.1.2. Literals in CRDF... 20

4.2. Triple Cache ... 21
4.3. Summary .. 22

5. Implementation of the SparQL Parser.. 24
5.1. Prefix Collector .. 25
5.2. Variable Collector... 26
5.3. Triple Collector and Triple Pattern ... 26
5.4. Basic Graph Patterns .. 28
5.5. Literals in a SPARQL query ... 30
5.6. Filter Collector and Value Constraints.. 33

5.6.1. Effective Boolean Value.. 33
5.6.2. Logical Connectives.. 35
5.6.3. Comparison Tests .. 35
5.6.4. Arithmetic Operators... 36
5.6.5. Other SPARQL tests.. 38

5.7. Optional Graph Patterns ... 39
5.8. Solution Modifier ... 41
5.9. Memory Manager ... 43
5.10. Usage of the SparQL Parser and Result Format ... 43

6. Evaluation .. 44
6.1. CRDF.. 44

3-47

6.2. SparQL Parser .. 45
7. Summary.. 46

4-47

1. Introduction
Web resources are growing fast day by day, far beyond mainframes’ ability to dig out high
quality information hidden by the internet. This is largely because each Web resource is
created and maintained individually by different users, organizations, companies etc. and is
saved in various kinds of formats. Admittedly, search engines like YAHOO and GOOGLE
make it possible for us to find interesting information on the internet, but they can only search
Web documents as free text. Structured contents, e.g. the name of a book, the name of its
author, its publisher and ISBN, are treated as irrelevant information, which largely reduces the
merit of Web resource. For instance, by entering the keyword ‘Wuthering Heights’ to
GOOGLE a set of hyperlinks are returned to Web resources whose textual contents include
this keyword, while a query like ‘Who is the author of ‘Wuthering Heights’ but when it is first
published can not be answered directly. User must manually go through the search result
looking for the answers. Moreover, robots that crawl over Web pages to collect useful
information for search engines waste their time mostly on parsing Web resources, skipping
layout info etc... How to describe properties (meta-data) about Web resources in a uniform
format is the problem that RDF [1] solves.

RDF, Resource Description Framework, defines a meta-data representation of information
about Web resources, such as title, author, modification date of a Web page, copyright and
licensing information about a Web document, or the availability schedule for some shared
resource[1]. RDF can also be used to represent information that is not directly retrieved on
the Web, e.g., information about items available from an online shop. RDF provides a data
model that defines how to describe properties of web resources. RDF makes it possible to
manipulate Web resources with the help of some RDF oriented query languages, among
which SPARQL [2] query language is proposed as standard.

In the implementation of an RDF parser and a SPARQL query processor, we utilize the idea
of mediator and wrapper. A mediator is a functional module in-between data sources and
applications, which provides functionalities to hide the data heterogeneity and therefore to
enable the application querying over different data sources without knowing their data
internal structures. A wrapper is a module that extracts data from different data sources and
converts these data to the mediator’s internal representation. A mediator also has its own
query language to query over the wrapped data sources. Briefly, our idea is to translate
SPARQL query statement to the mediator’s internal query language to enable queries over
RDF sources by an RDF wrapper.

In sum, this work is to provide a SPARQL query processor based on the Amos II database
engine [4], a mediator. The work includes to i) develop an RDF wrapper [4] that maps
existing RDF statements [3] to data objects in Amos II and ii) develop a SPARQL parser that
translates queries to the AmosQL [4] query language of Amos II to retrieve information from
the RDF wrapper. The AmosQL queries thus contain calls to the RDF-wrapper.

A previous RDF wrapper [4] was implemented in JAVA language utilizing Jena [5]. The main

5-47

purpose to write a new RDF wrapper, referred to as CRDF (C-language RDF parser), is to
enhance performance by using the C language. CRDF is based on the Raptor RDF Parser
Toolkit [12], which supports RDF statements saved in files of several formats: RDF/XML [6],
N-Triples [12], Turtle [12], just to mention a few, and retrieved over a network connection.

2. Background
Before we go deep into the design and implementation of the RDF and SPARQL parsers, we
introduce briefly the resource description framework (RDF), mediator technology, and the
query language for RDF source as a set of background knowledge to understand the design
and implementation issues. For a thorough understanding of RDF, mediators, and query
languages over RDF source see [1], [2], [4] and [7].

2.1. Resource Description Framework

This section is designed to provide the basic knowledge required to understand resource
description framework. It introduces the basic concepts of RDF and describes how it is
presented as graphs as well as in XML syntax.

2.1.1. RDF Triple and RDF Graph

The Resource Description Framework (RDF) is a language for representing information about
meta-data in the World Wide Web. RDF is intended for situations in which the meta-data
needs to be processed by applications, rather than being only displayed to people [1]. RDF
provides a common framework for expressing meta-data, so it can be exchanged between
applications without loss of meaning. Not only contents, but also structures or relationships
between contents, are represented by RDF. Since it is a common framework, application
designers can leverage the availability of common RDF parsers and processing tools. The
ability to exchange information between different applications means that the information can
be made available to applications other than those for which it was originally created.

Figure 1 RDF triple

Any expression in RDF is a collection of triples, consisting of a subject, a predicate and an
object [7], as it is shown in Figure 1. The subject is the part that identifies the thing the
statement is about. The predicate identifies a property of the subject that the statement
specifies. The value of a property is called object. This can be illustrated by a node and
directed-arc diagram, in which each triple is represented as a node-arc-node link. For all RDF
triples the subject must be an RDF URI reference (see section 2.1.2) or a blank node (see
section 2.1.4); the predicate must be a URI reference; the object can be either a URI reference,
a literal (see section 2.1.5) or a blank node. A set of such triples is called an RDF graph.

http://www.w3.org/TR/rdf-concepts/#dfn-object
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference#dfn-URI-reference
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node#dfn-blank-node
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference#dfn-URI-reference
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference#dfn-URI-reference
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-literal#dfn-literal
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node#dfn-blank-node

6-47

2.1.2. URI and URI Reference

To provide machine-processable statements, RDF requires unique identifiers for identifying a
subject, predicate, or object in a statement without any confusion with identifiers used by
other users on the internet. Fortunately, the Web provides a general form of identifier for this
purpose. That is the Uniform Resource Identifier (URI) [1], which is created to refer to
anything that needs to be referenced in the statement. RDF uses URIs as the basis of its
mechanism for identifying the subjects, predicates, and objects in statements. To be more
precise, RDF uses URI references. A URI reference is a URI, together with an optional
fragment identifier at the end. For example, the URI reference
‘http://www.example.org/index.html#section2’ consists of the URI
‘http://www.example.org/index.html’ and the fragment identifier ‘section2’. RDF defines a
resource as anything that is identifiable by a URI reference, so using URI references allow
RDF to describe practically anything, and to state relationships between anything as well.

To make this idea more concrete, Figure 2 shows an RDF graph that presents the statement
‘there is a Person identified by http://example.org/EM#prof (a subject), whose name (a
predicate) is Eric Miller (an object), whose mail address (a predicate) is ‘Box 337’ (an object),
and whose title (a predicate) is ‘Dr.’ (an object)’.

Figure 2 RDF Graph Describing Eric Miller

2.1.3. IRI, Prefixed Names, Relative IRI

An IRI is a generalized form of a URI that can contain non-ASCII characters. IRI is delimited
by ‘<’ and ‘>’, while the delimiters are not part of the IRI reference. For example:

 <http://example.org/staff/staffid/11101022>

There are two abbreviations for IRIs, namely prefixed names and relative IRIs.

 Prefixed names: A prefixed name has a prefix label and a local part, separated by a colon
‘:’. It is mapped to an IRI by concatenating the local part to the IRI corresponding to the
prefix. The prefix label may be an empty string.

 Relative IRIs: Relative IRIs are generated by combining an IRI with a base IRI.

http://www.w3.org/TR/rdf-concepts/#dfn-URI-reference

7-47

For example, the following fragments are some of the different ways to express the same IRI:

 <http://example.org/book/book1>

 BASE <http://example.org/book/>

<book1>

 PREFIX book: <http://example.org/book/>

book:book1

When several resource identifiers share, say the domain name, for instance <http://a.com/ID>
and <http://a.com/Salary>, it is possible to replace the shared part by a predefined label, the
prefix label, which denotes part of the resource identifier. For example, there are five URI
references denoting five properties of an employee in SPARQL statements as follows:

<http://companyA.com/database/employee#ID>

<http://companyA.com/database/employee#Name>

<http://companyA.com/database/employee#Position>

<http://companyA.com/database/employee#Email>

<http://companyA.com/database/employee#Salary>

All of the five URI references start with ‘http://companyA.com/database/employee#’, so
SPARQL query language provides a method to associate a prefix label, say ‘em:’ with this
part of the URI reference. The five URI references are converted to an abbreviated version as:

em:ID

em:Name

em:Position

em:Email

em:Salary

In the abbreviated version of the URI references, ‘em:’ is the prefix label, ‘ID’, ‘Name’,
‘Position’, ‘Email’, ‘Salary’ are the local parts.

2.1.4. Blank Nodes

In the real world, for example the mail addresses are usually structured objects. In addition to
‘Box 337’, there can be other information like country, postal code, company name, or
department name. For instance the mail address can be ‘Uppsala University, Box 337, SE-751
05 Uppsala, Sweden’. It is not structured if the address is written out as a string to be the
object in a triple.

8-47

Figure 3 Unstructured Mail Address of Eric Miller

To enable RDF statements to represent structured information, RDF considers aggregated
things (like Eric Miller's address) to be described as a resource, and then making statements
about that new resource. In the RDF graph, in order to break up the mail address into its
component parts, a new node is created to represent the concept of the mail address, with a
new URI reference to identify it. However, this way to represent structured information can
involve generating numerous ‘internal’ URI references, which is meaningless from outside the
RDF graph and therefore will never be referred to, as shown in Figure 4. The solution to these
unwanted ‘internal’ URI references in RDF is the blank node. A blank node represents internal
information that is not accessible from outside the RDF graph. The name of a blank node, the
blank node identifier, should be unique to one resource in one RDF graph. Given two blank
node identifiers, it is possible to determine whether they are representing the same resource in
one RDF graph. Therefore, when several RDF graphs are merged, it is necessary to re-allocate
the blank node identifiers if two identifiers with the same name refer to two different
resources.

http://example.com/EM#prof

Eric Miller

Dr.

http://example.com/2005/contact#fullName

http://example.com/2005/contact#mail

http://example.com/2005/contact#Title

 Uppsala University

Box 337
SE-751 05

Uppsala

Sweden

http://example.com/2005/contact#Unvsty

http://example.com/2005/contact#Box

http://example.com/2005/contact#City

http://example.com/2005/contact#Countryhttp://example.com/2005/contact#PostalCode

Figure 4 Using a Blank Node

9-47

2.1.5. RDF Literals

Literals are used to identify values such as numbers and dates by means of a lexical
representation. For instance, integer 23, string ‘23’, double ‘1.618’ are literals in RDF. A
literal may be the object of an RDF statement, but cannot be the subject or the predicate.

Literals may be plain or typed :

 A plain literal is a string combined with an optional language tag. This may be used for
plain text in a natural language.

 A typed literal is a value string combined with a data type URI. It denotes the member of
the identified data type's value space obtained by applying the lexical-to-value mapping
to the literal string.

Examples of literals are:

 A plain literal: ‘I know you don’t know!’
 A plain literal with language tag: ‘You don’t I know you know!’@en
 A typed literal with a user type: ‘xyz’^^<http://example.org/datatype>, in which

‘xyz’ is the value string and <http://example.org/datatype> is the datatype URI.
 A typed literal integer: 1 It is the same as ‘1’^^xsd:integer, in which ‘1’ is the value

string and xsd:integer is the built-in data type URI representing integers.
 A typed literal decimal: 1.3. It is the same as ‘1.3’^^xsd:decimal, in which ‘1.3’ is

the value string and xsd:decimal is the data type URI.
 A typed literal double: 1.0e6. It is the same as ‘1.0e6’^^xsd:double, in which

‘1.0e6’ is the value string and xsd:double is the data type URI.

For abbreviation, 47 denotes syntax for ‘47’^^xsd:integer; 4.7 is the syntax for
‘4.7’xsd:decimal; 4.7e10 is the syntax for ‘4.7e10’^^xsd:double.

We define that two plain literals are matched, if and only if their lexical values are equal and
their data type URIs are equal. For example:

 ‘char’ matches ‘char’
 ‘char’@en does NOT match ‘char’
 10 matches “10”^^ xsd:integer
 10 does NOT match ‘10’^^xsd:double
 5 does NOT match 5.0
 ‘1.0e1’^^xsd:double matches ‘10.00’^^xsd:double

2.1.6. XML Syntax for RDF

RDF statements are usually stored in an XML-based syntax. The following example is a small
piece of RDF in XML-based syntax, RDF/XML, corresponding to the graph in Figure 2:

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-plain-literal#dfn-plain-literal
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-typed-literal#dfn-typed-literal

10-47

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">

 <contact:fullName>Eric Miller</contact:fullName>

 <contact:mail>Box 337</contact:mail>

 <contact:personalTitle>Dr.</contact:personalTitle>

 </contact:Person>

</rdf:RDF>

Sometimes it is not convenient to draw RDF graphs when discussing them, so an alternative
way of writing down the statements as a set of RDF triples is also used. In the triples notation,
each statement in the graph is written as a simple triple of subject, predicate, and object, in
that order. For example, the three statements shown in Figure 5 would be written in the triples
notation as

<http://www.example.org/index.html>

<http://purl.org/dc/elements/1.1/creator>

<http://www.example.org/staffid/85740> .

<http://www.example.org/index.html>

<http://www.example.org/terms/creation-date>

"August 16, 1999" .

<http://www.example.org/index.html>

<http://purl.org/dc/elements/1.1/language>

"en" .

Figure 5 A RDF graph to explain triple notation

11-47

2.2. Amos II

Amos II (Active Mediators Object System) [8] is a distributed mediator system that
introduces an intermediate level of software between data sources and applications. Below
Encapsulated under Amos II, there might be different kinds of data sources that include, for
instance, a DB2 server, Web services, media file repositories, engineering design systems, just
to mention some. Information from these external data sources is retrieved by wrappers.
Above Amos II, there are applications manipulating data sources through the mediator and
being unaware of the existing of wrapped sources. Each Amos II server contains all the
traditional database facilities, such as a storage manager, a recovery manager, a transaction
manager, and a functional query language named AmosQL [9].

A wrapper is a program module in Amos II that translates data from a particular class of
external data sources into the common functional data model used in Amos II [9]. One Amos
II mediator may contain one or several wrappers corresponding to various external data
sources. It contains both interfaces to external data sources and knowledge of how to
efficiently translate and process queries involving accesses to a class of external data sources
[9]. In this project, CRDF is a wrapper that translates RDF statements into a stream of Amos
II data objects to enable queries over semantic Web resources.

2.2.1. Built-in Data Types

There are a set of Amos II built-in data types to represent a database. Figure 6 shows part of
the Amos II built-in types’ hierarchy.

 ‘Object’ is the root type in the hierarchy diagram. It is the supertype of all other
types in Amos II, either built-in or user-defined types.

 ‘UserObject’ is the supertype of the user-defined types (see section 2.2.3 for how to
define type).

 ‘Resource’ is a data type designed to represent Web resources like URIs. A
‘Resource’ is created in Amos II by calling the built-in function ‘r’ with its first
parameter being set to zero, for instance r(0, ‘http://xxx’) constructs a ‘Resource’ for
the URI ‘http://xxx’ in the database inside Amos II. An alternative way to create the
same URI in Amos II is to use the function uri, e.g. uri(‘http://xxx’).

 ‘Rlit’ is designed to represent literals. A ‘Rlit’ is created in Amos II by calling the
built-in function ‘r’ with its first parameter being set to lager than zero, for instance
r(1, ‘Hello World’) constructs a ‘Rlit’ for the literal ‘Hellow World’ in Amos II.

 ‘Charstring’ represents character strings, such as ‘abcdef’.
 ‘Integer’ handles signed numbers, like 47 or 1110
 ‘Real’ specifies values that may have fractional parts, such as 1.9 or 6.66e2

12-47

Object

LiteralResourceUserObject Function … ...

NumberCharstring Date … ...

Integer Real

Rlit

y

Figure 6 Part of the Amos II Built-in Types Hierarchy Chart

Here, we would like to introduce more information regarding the Amos II type ‘Resource’ and
‘Rlit’, because it is these two types that are used to represent URI references and RDF literals
in Amos II. The type ‘Resource’ is a built-in data type that has two fields, namely ‘data type
ID’ and ‘value string’. ‘Data type ID’ indicates the RDF data type identification for a
‘Resource’. The ‘Value string’ stores the content of a ‘Resource’. ‘Rlit’ is a subtype of
‘Resource’ with its data type ID larger than zero. We can create a ‘Resource’ by invoking
Amos II type function r(integer datatypeID, charstring valuestring), for example:

r(0, ‘http://a.com/database’);

r(1, ‘http://a.com/database’);

r(3, ‘‘10’^^xsd:integer’);

These three AmosQL statements all create instance of Amos II type ‘Resource’s. Moreover,
the latter two expression creates Amos II type ‘Rlit’, because they are created with their data
type ID larger than zero. Section 4.1 explains how types ‘Resource’ and ‘Rlit’ represent URI
references and RDF literals. For creating a URI reference, we can also use the AmosQL
function ‘uri’, which invokes AmosQL function ‘r’ with an input of zero as its data type ID.
For example,

r(0, ‘http://a.com/database’); is equal to

uri(‘http://a.com/database’);

2.2.2. Simple Select Statements

A simple query expressed as a select statement in Amos II has syntax as following:

‘select’ variablecomma_list
from_clause
where_clause;

variablecomma_list := variable-name [,variable-name]*
from_clause := ‘from’ type variable-name [,type variable-name]*

13-47

where_clause := ‘where’ predicate-expression①

For example, a simple select statement can be like:

AmosQL query 1

select name, population

from Charstring name, Integer population, Charstring City

where CityName(City) = <name, population>;

After keyword ‘from’ in the statement, there are declarations of local variables used in the
query. Any variable used in the select statement must be declared in this part; otherwise, the
system will report an error. The system binds values to all variables in the query and generates
the results by returning the values bound to the variables in variablecomma_list. There can be
none, one, or several results to one query. The predicate-expression provides a set of criteria
for searching the results.

2.2.3. Types and Functions

The data model of Amos II contains objects, types, and functions. It supports object-oriented
representations like instantiation, inheritance, dynamic-binding etc. To manipulate
information from stored data, Amos II uses types, functions, and procedures [10].

User can define their own types in Amos II for particular purposes. These user-defined types
may have properties. For example, the following statements create a type named ‘Person’ with
a property ‘Name’ and an inherited type ‘Student’ with additional properties ‘class’ and ‘su’.

create type Person properties (name Charstring);

create type Supervisor under Person;

create type Student under Person properties (class Charstring, su

Supervisor);

Once a type is created, it is possible to create an instance of the type as:

create student(name) instances :adam ('Adam');

which generates an instance of type ‘student’ whose name is ‘Adam’? Later, ‘:adam’ is the
identifier used to access the properties of student ‘Adam’.

There are four types of functions and one type of procedures in Amos II, namely

 Stored function, explicitly storing information in the local Amos II. For example,

create function employee(Charstring)->Employee as stored.

 Derived function, defined by a single query statement. Amos II optimizes derived
function before it is executed. For example,

① For more information of predicate-expression, please read section 2.4.3 of [4]

14-47

create function count_employee(Charstring company)->Integer as
select count(employee(company));

 Foreign functions provide low level JAVA, C/C++, or Lisp language interfaces to
wrapped external systems. For example,

create function sqrt(Real x) -> Real as foreign ‘sqrtbf’;

 Overloaded functions have different implementations depending on the argument types
in a function call.[4]

 Stored procedures, defined by AmosQL statements. For example,

create function hello_world (Charstring r)->Boolean as

begin

print(‘Hello world’); print(r); result true;

end;

Function names may be overloaded, i.e., functions having the same name may be defined
differently for different argument types or result types. This allows overloaded functions to
apply to several different object types [4]. The query compiler resolves the correct resolvent
to apply based on the types of the arguments; the type of the result is not considered.[4] For
example:

create type Vehicle;

create type Car under Vehicle properties (maxSpd Integer);

create type Truck under Vehicle properties (capacity Integer);

create function feature(Car o)->Integer as select maxSpd(o);

create function feature(Truck o)->Integer as select capacity(o);

create Truck(capacity) instances :BigBigGo(80);

To ask for the feature of the truck :BigBigGo, we input ‘feature(:BigBigGo)’ and Amos II will
find the correct function ‘feature’ to invoke and return the answer ‘80’.

2.3. Query Languages for RDF

The increasing number of implementations of RDF after it was firstly recommended in 1998
lead to a requirement for an RDF query language. Up to now, there are several different RDF
query languages for instance SQL-like RDQL [11] and XPath-like Versa[14], OQL-like RQL
[12], and Datalog-like QEL [13]. RDQL became popular and easy to understand because of
its SQL-like syntax. Nevertheless, without a standard, the implementations of RDQL are
similar but have some divergence and extensions [11]. Therefore, in Feb 2004, the W3C
formed the RDF Data Access Working Group (DAWG), who published a working draft of
design: SPARQL Query Language for RDF on 12, Oct, 2004. The latest candidate
recommendation specification of SPARQL was released on 6, Apr, 2006.

SPARQL is designed to satisfy the following demands for an RDF query language [11]:

http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/TR/rdf-sparql-query/

15-47

 Supports all of the RDF model
 Knows about RDF graphs and RDF triples
 Can handle RDF's semi-structured data
 Supports operations on RDF graphs
 Enables higher-level application development
 Enables cross-language, cross-platform development

The SPARQL query language is based on matching graph patterns, which is like an RDF
triple pattern, but with the possibility of a variable instead of an RDF term in the subject,
predicate or object positions. Desired information is retrieved by binding values to variables
in the query graph pattern against one or several RDF graph. SPARQL provides facilities to
extract information in the form of URIs, blank nodes, plain and typed literals, and to extract
RDF sub graphs and construct new RDF graphs based on information in the queried graphs
[2]. For instance, the following query in Figure 7, in which ‘?name’ and ‘?email’ are variables,
would have one solution in the graph in Figure 2. This query graph could be expressed in
SPARQL syntax as

SPARQL query 1

PREFIX w3Contact: < http://www.w3.org/People/EM/contact#>

SELECT ?name, ?mail

WHERE

{

w3Contact:me w3Contact:fullname ?name.

w3Contact:me w3Contact:mail ?mail.

}

ORDER BY ?name ?mail

LIMIT 5

OFFSET 10

Figure 7 RDF query graph

In the query statement, keyword ‘ORDER BY’ specifies a sorted result list. The results should
be increasingly sorted first on the value of variable ‘name’ and second, on the values of
variable ‘mail’, in case the values of variable ‘name’ of two results are same. Keyword
‘LIMIT’ specifies a limitation on the number of results, say in this example, the number of
results should be less than or equal to 5. The keyword ‘OFFSET’ causes the results generated
to start after the specified number of results. As shown in the example, the first 10 results

16-47

should be ignored and the 11th become the first result returned when there are more than 10
results to the query, otherwise no result is returned.

The query example above illustrates a typical structure of a SPARQL query statement that
includes four parts:

 Prolog. The PREFIX keyword associates a prefix label with an IRI.
 Variable List. It follows the ‘SELECT’ keyword, to select variables appearing later

in the Where Clause. These variable bindings are the result tuples from the query.
 Where Clause. Starting with the ‘WHERE’ keyword, the Where Clause is the most

complex part of a SPARQL query. It contains a set of RDF triples specifying a
restriction on the results to return from the query. In addition to that, there are Value
Constraints and Optional Graph Pattern①.

 Solution Modifier. This part provides clauses that modify the result to a query.
Operations on result include sorting, limiting, and offsetting.

Generally, SPARQL queries retrieve information in three phases: i) the pattern matching
binds values to variables based on matching RDF graph patterns to generate a solutions set, ii)
the value constraints eliminate solutions violating allowable bindings of variables to RDF
term from a solutions set, and iii) the solution modification can contain specifications of how
to sort the results, limit the number of the results, or offset the first N results.

Our task of converting a SPARQL query statements to AmosQL query statements covers how
to translate clauses in the prolog, the where clause, and the solution modifier. In addition,
other issues, for example typed-literals [14], built-in calls, effective Boolean value (EBV)[2],
operator mapping etc. are also important for our fully-functional SPARQL parser design.
Optional graph patterns, which imports unbound variable in the result, are described in the
specification of the SPARQL query language, but are excluded in this implementation.

3. The SPARAMOS System

3.1.

Architecture

SPARAMOS is an implementation of the SPARQL query language that has two parts: CRDF,
a wrapper that imports RDF document into Amos II, and the SparQL Parser that translates
SPARQL queries to AmosQL. This allows SPARQL queries over semantic Web data sources.
The SparQL Parser works with the help of CRDF, while CRDF is a general wrapper of RDF
sources and is independent of SparQL. Amos II is the kernel of SPARAMOS that manages
storage, optimizes queries, generates execution plans, binds values to variables etc. Figure 8
shows the architecture of the SPARAMOS system.

① Value Constraint and Optional Graph Pattern will be explained in latter section.

17-47

Figure 8 Architecture of SPARAMOS

The SparQL Parser accepts a SPARQL query statement and translates it to a string containing
an AmosQL ‘SELECT’ query statement. The string is then sent to Amos II for execution as an
argument for the Amos II built-in function ‘eval’ that evaluates a query string. The result from
‘eval’ is a stream of result tuples represented as vectors. The translated AmosQL statements
contain calls to the CRDF wrapper to access RDF triples from the queried sources. The
matched RDF graph pattern is found in these triples. The retrieved result triples may need to
be post-processed by solution modifications in the SPARQL query. If the SPARQL query call
for a sorted result, for instance, the built-in AmosQL function ‘sortbagby’ is invoked to sort
the result.

3.2. The CRDF Wrapper

Raptor

RDF Source
Name

RDF Source
Name

File or Internet
Connection

CRDF

 Callback Function

Triple Cache

<Subject, Predicate, Object>
Caching

No
Caching

Result

Figure 9 Architecture of CRDF

CRDF uses the Raptor RDF Parser Toolkit [12] to parse RDF terms including data-typed
literals and XML literals. Raptor is a free software/Open Source C library that provides a set

18-47

of parsers that generate RDF triples by parsing various RDF formats. The supported parsing
syntaxes are RDF/XML, N-Triples, Turtle, RSS tag soup including Atom 1.0 and 0.3,
GRDDL for XHTML and XML. The supported RDF syntaxes are RDF/XML (regular, and
abbreviated), N-Triples, RSS 1.0, Atom 1.0 and Adobe XMP. Whenever generating an RDF
triple, Raptor invokes the registered callback function to retrieve information of subject,
predicate and object, which are converted to 3-tuple <subject, predicate, object> that Amos II
recognizes. The 3-tuple is emitted as a stream element to Amos II. In case there are needs to
materialize (cache) the 3-tuple in the database, the callback function associates the 3-tuple
with its RDF source name and stores this information by invoking a stored function. This is
called is the cache mechanism of CRDF. Sections 4.2 and 4.3 explain the cache mechanism
and its advantages and disadvantages.

By repeated invocations of the callback function, CRDF retrieves all of the RDF triples in an
RDF document; the RDF triples are converted to AmosQL format and emitted or cached. As a
result, for a given an RDF document we can ask Amos II for all of its RDF triples.

3.3. The SparQL Parser

Flex/BisonInput
Buffer

Memory Manager

SparQLHelp
SPARQL

query syntactical
units

AmosQL

Result

Cached Web Resource
AMOS II

Prefix Collector

Filter Collector

Triple Collector

Variable Collector

Query Generator

Figure 10 Architecture of SparQL Parser

The architecture of the SparQL Parser is shown in Figure 10. The SparQL Parser accepts
SPARQL query statements from a file or from standard input. It is first saved it in an input
buffer. Secondly, Flex/Bison uses the SPARQL grammar to recognize lexical patterns and
parse the SPARQL query statement. The SparQL Parser stores data representations of
variables and prefixes. Then it associates local parts with prefix labels, generates AmosQL
statements, etc.. The data representations are provided by the module SparQLHelp that uses
them to produce an AmosQL query over RDF resources.

SparQLHelp contains several modules for different purposes:

 The Prefix Collector saves information of the prefix label associated with an IRI.
 The Variable Collector stores names of the variables appearing in a parsed SPARQL

statement.
 The Triple Collector collects triple patterns <subject, predicate, object> in the SPARQL

statement.

19-47

 The Filter Collector stores information to restrict solutions that constrain the bindings of
variables to RDF terms.

 The Query Generator generates an AmosQL statement from collected information.
 The Memory Manager, handles memory allocation.

4. Implementation of CRDF

4.1. Data Types of Subject, Predicate, and Object

An important issue that must be decided before starting to implement CRDF is which Amos II
data types are used to represent an RDF triple. When triples are return by the invoked callback
function as discussed in section 3.2, CRDF must decide to which Amos II data types the
subject, predicate, and object is going to be converted to so that the triples can be represented
in Amos II. There are only three types of data involved in presenting an RDF triple: URI
references, blank nodes, and literals (see section 2.1). They are discussed in the following two
sections.

4.1.1. URI Reference and Blank Nodes

Section 2.1.2 and Section 2.1.4 introduced what is a URI references and blank nodes of RDF.
A URI reference identifies resources accessible from outside the RDF document. A blank
node identifies ‘internal’ resources that are meaningless outside the RDF document. Blank
nodes may share same names in several RDF documents, but they identify not necessary the
same resource, say ‘_:node1000’ represents mail address in one RDF document and represents
a 3D model in another RDF document. Inasmuch URI references and blank nodes share a
common property ⎯ identifying resources, the Amos II type ‘Resource’ is the proper data
type to represent both of them.

To convert URI references and blank nodes to Amos II type ‘Resource’, we use the internal
Amos II C function ‘new_R’ in CRDF. Its areguments are i) a data type ID that indicates
creating a Amos II type ‘Resource’; here zero identies the ‘Resource’ as a URI reference. It is
also possible to indicate creating a Amos II object of type ‘Rlit’ by setting the data type ID
argument lager than zero.; ii) a ‘Charstring’C string to indentify the value of the resource.
When Raptor invokes the callback function, a URI reference or blank node in the triple is
saved in a C/C++ ‘char string’ format terminated with ‘\0’. For example,
URI reference

<http://a.com/vehicletype> is created by calling in C

new_R(0, ‘http://a.com/vehicletype’);

or by AmosQL

uri(‘http://a.com/vehicletype’); or

r(0, ‘http://a.com/vehicletype’);

20-47

Blank node

‘_:node1110’ is created by calling in C

new_R(0, ‘_:node1110’);

Calling ‘new_R’ with its first parameter not being zero creates RDF literals, which is
going to be introduced in the next section.

4.1.2. Literals in CRDF

Section 2.1.5 introduced that there are two types of literals in RDF documents: plain literals
with optionally language tag, and typed literals. At first glance, the proper mapping of literals
to Amos II types should be as follows:

 Plain literals are converted to Charstring, like ‘Hello’ ==> ‘Hello’
 Typed literal strings are converted to Charstring, like ‘Hello’^^xsd:string ==> ‘Hello’
 Typed literal integers are converted to Integer, like ‘1’^^xsd:integer ==> 1
 Typed literal integers are converted to Integer, like ‘01’^^xsd:integer ==> 1
 Typed literal doubles are converted to Real, like ‘2.9’^^xsd:double ==> 2.9
 Typed literal decimals are converted to Real, like ‘2.9’^^xsd:decimal ==> 2.9

This mapping method has a serious problem: the value string and the RDF type information
of typed literals are lost permanently once they are converted to an Amos II literal. As it is
shown in the previous example, both ‘‘2.9’^^xsd:double’ and ‘‘2.9’^^xsd:decimal’ are
interpreted as 2.9 of Amos II type ‘Real’; plain literal ‘Hello’ and typed literal
‘‘Hello’^^xsd:string’ share the same mapping result ‘Hello’ of Amos II type ‘Charstring’.
Neither of their type information is preserved. In addition, once the typed literal
‘‘01’^^xsd:integer’ is converted to 1 of Amos II type ‘Integer’, its value string ‘01’ is lost
permanently. In sum, mapping typed literal to Amos II literal types makes the reversed
mapping operation underterministic.

To avoid the problem, literals in CRDF are stored as Amos II type ‘Rlit’ by invoking the C
function ‘new_R’ or AmosQL fucntion ‘r’ with its data type ID argument larger than zero. The
data type ID indicates the data type URI of a plain or typed literal as following:

Data type URI Data type ID
N/A (Plain literal) 1
http://www.w3.org/2001/XMLSchema#integer 2
http://www.w3.org/2001/XMLSchema#decimal 3
http://www.w3.org/2001/XMLSchema#double 4
http://www.w3.org/2001/XMLSchema#boolean 5
http://www.w3.org/2001/XMLSchema#string 6
User-defined data type literal from 7

Data type IDs 1 to 6 are preserved for known typed literals, and from 7 the data type IDs are

21-47

for user-defined data type literals. There is a stored function, who is defined as:

 create function RDFLiteralID(Charstring)->Integer key as stored;

It keeps tracking how data type URIs are mapped to corresponding data type IDs, for example
an AmosQL asking the data type ID for data type URI
‘http://www.w3.org/2001/XMLSchema#string’

 RDFLiteralID(‘http://www.w3.org/2001/XMLSchema#string’)

returns 6.

Following are some examples showing how known typed literals are converted to Amos II
type ‘Resource’:

 ‘Hello’ is converted as new_R(1, ‘Hello’)
 ‘Hello’^^xsd:string is converted as new_R(6, ‘Hello’)
 ‘1’^^xsd:integer is converted as new_R (2, ‘1’)
 ‘01’^^xsd:integer is converted as new_R (2, ‘01’)
 ‘2.9’^^xsd:double is converted as new_R(4, ‘2. 9’)
 ‘2.9’^^xsd:decimal is converted as new_R (3, ‘2. 9’)

In addition, to create a user-defined typed literals for a given data type URI, CRDF firtly tries
to find an exiting mapping from this URI to its corresponding data type ID; if not CRDF
inserts a new mapping to generate a corresponding data type ID and creates the ‘Rlit’ with the
newly created data type ID. For example,

 ‘ABC’^^<http://www.abc.com> can be converted as new_R(7, ‘ABC’)
 ‘CNN’^^<http://www.cnn.com> can be converted as new_R(8, ‘CNN’)

Last issue left open is how plain literal with a language tag is represented in Amos II.
Inasmuch plain literal with language tag is form of a plain literal, CRDF represents it with an
Amos II type ‘Rlit’ with data type ID equal to one. The language tag becomes part of the
content of the ‘Rlit’, for instance:

 ‘ABC’@en is represented as new_R(1, ‘‘ABC’@en’)
 ‘CNN’@en-gb is represented as new_R(1, ‘‘CNN’@en-gb’)

4.2. Triple Cache

CRDF works as a wrapper that parses RDF source files by building an RDF triple graph over
to be queried in SPARQL. It is predefined how many times CRDF goes through the RDF
source to finds the result to a SPARQL query. If the RDF source is either a big file or a
narrowband internet connection, parsing the source becomes a critical bottleneck for the
performance of the SparQL Parser. Therefore, we introduce a triple cache mechanism to
CRDF. When an RDF source is parsed for the first time, CRDF retrieves and stores the RDF
triples in Amos II. The next time the same RDF source is used, the cached information is
retrieved instead of reparsing the RDF source again. In the implementation of the SparQL

22-47

Parser, there is an argument in the function that specifies whether the queried RDF source
should be cached or not. (Details are given in section 5)

The triple cache makes it possible to index the subject, the predicate, or the object of the
triples in one cached RDF graph, which speeds up the execution of SPARQL query statement.
However, the triple cache brings an update mechanism issue to consideration. This is
discussed in section 4.3.

4.3. Summary

In CRDF, URI references and blank nodes are stored as Amos II objects of type ‘Resource’, a
built-in type to represent Web resources. RDF literals, both plain literals and typed literals, are
stored as Amos II type ‘Rlit’. For example, the RDF triple

<http://a.org/index.html>

<http://a.org/terms/creation-date>

‘August 16, 1999’ .

is stored in Amos II as a 3-tuple <Resource, Resource, Rlit>

<uri(‘http://a.org/index.html’),

uri(‘http://a.org/terms/creation-date’),

r(1, ‘August 16, 1999’)>

Table 1 gives a summary of how RDF triples are mapped to Amos II built-in data types. The
data type of subject and predicate in an RDF triple is always an object of Amos II type
‘Resource’, while the object of a triple can be either ‘Resource’ or ‘Rlit’ depending on
whether it is a URI, blank node, or a literal. As a result, the Amos II data type of components
in RDF triples are ‘Resource’, for subject and predicate, and for object it is ‘Resource’ or
‘Rlit’.

Table 1 Component Types and Corresponding Data Types

Component Component Type Amos II Data Type

URI reference ‘Resource’ Subject

blank node ‘Resource’

Predicate URI reference ‘Resource’

URI reference ‘Resource’

blank node ‘Resource’

object

Literal ‘Rlit’

The implementation of CRDF becomes easy with the help of Raptor. CRDF first registers a
callback function ‘_rdf_triple_’ in Raptor, which is invoked when Raptor has found an RDF
triple while parsing the RDF source. In the callback function, an RDF triple <subject,

23-47

predicate, object> is converted to a 3-tuple in format <Resource, Resource, Resource>. The
triples collected from a certain RDF source are associated with the source name. The function
that reads RDF triples into Amos II has the following form:

parseRDF(Charstring src)-><Resource, Resource, Resource>

parseRDF_cache(Charstring src)->Boolean as foreign "parseRDF_cache"

For example:

parseRDF(‘c:/test.rdf’); //for not caching RDF source

parseRDF_cache(‘c:/test.rdf’); //for caching RDF source

The function ‘parseRDF’ emits a bag all of the triples in the file ‘c:/test.rdf’ in a format of
3-tuple as <Resource, Resource, Resource>. By contrst, when caching RDF source is required,
the function ‘parseRDF_cache’ caches the triples in the RDF source file ‘c:/test.rdf’ in a
system function 'rdf_triple_cache', defined as:

create function rdf_triple_cache(Charstring)->Bag of

<Resource, Resource, Resource> as stored;

For example, say file ‘c:/test.rdf’ contains four triples:

<http://example.org/employee>

<http://a.com/ID>

<http://example.org/ID1110>.

<http://example.org/ID1110>

<http://a.com/name>

‘Yu Cao’.

<http://example.org/ID1110>

<http://a.com/sex>

<http://a.com/sex#male>.

<http://example.org/ID1110>

<http://a.com/salary>

0.

We read this file by command:

 parseRDF(‘c:/test.rdf’);

or

 parseRDF_cache(‘c:/test.rdf’);

Function ‘parseRDF’ emits all of the four 3-tuples immediately as:

<uri(http://example.org/employee),

uri(http://a.com/ID),

uri(http://example.org/ID1110)>

<uri(http://example.org/ID1110),

uri(http://a.com/name),

r(1, ‘Yu Cao’)>

24-47

<uri(http://example.org/ID1110),

uri(http://a.com/sex),

uri(http://a.com/sex#male)>

<uri(http://example.org/ID1110>),

uri(<http://a.com/salary>),

r(2, ‘0’)>

Function ‘parseRDF_cache’ calls foreign function ‘parseRDF_cache’ to caches the RDF
triple associated with file name ‘c:/test.rdf’, emits true if RDF source is successfully parsed
and cached. We can retrieve cached RDF triples by calling

 rdf_triple_cache(‘c:/test.rdf’);

Now, we can query whether there is an employee named ‘Yu Cao’,

AmosQL query 2

select parseRDF(‘c:/test.rdf’)=<id,

uri(http://a.com/name), r(1,‘Yu Cao’)>

 from Resource id

 where parseRDF(‘c:/test.rdf’)=< uri(http://example.org/employee),

 uri(http://a.com/ID), id>;

The caching mechanism raises an updating problem that CRDF does not solve. When CRDF
caches an RDF source, it generates a restructured copy of the original RDF source. The
SparQL Parser executes AmosQL translated from SPARQL query over the copy, not the
original RDF source. Nobody notifies CRDF when the original RDF source is changed and
where the changes is. The SparQL Parser takes a risk on querying over out of date RDF data.
Currently, to update the cached RDF source, we have to firstly remove the cached copy by
calling AmosQL command ‘remove’ as:

remove rdf_triple_cache("c:/test.rdf")=<s,p,o>

from Resource s, Resource p, Object o

where rdf_triple_cache("c:/test.rdf")=<s,p,o>;

The next time we ask for the triples in RDF source ‘c:/test.rdf’, CRDF will reparse the RDF
source and therefore update the RDF source. If the RDF source is seldomly used, or
frequently updated, the function ‘parseRDF’ is an alternative that does not cache the RDF
source and therefore does not introduce the updating problem.

5. Implementation of the SparQL Parser
This section includes explanations of how the SparQL Parser translates SPARQL query
statements to AmosQL; how the SparQL Parser finds the solutions to SPARQL queries, and in
which format they are emitted. The SparQL Parser achieves these purposes with the help of
the CRDF wrapper and the statically linked RDF source parser library. The CRDF wrapper
provides two interfaces to access RDF sources: ‘parseRDF’ and ‘parseRDF_cache’, whose
functions have been introduced in section 4.3. To retrieve the triples in an RDF source, the
SparQL Parser defines two functions, namely ‘rdf_tr’ and ‘rdf_tr_c’, corresponding to no

25-47

cached and cached parsing of an RDF source. They are defined as follows:

create function rdf_tr(Charstring src)-><Resource,Resource,Resource> as

 select parseRDF(src);

create function rdf_tr_c(Charstring src)-><Resource,Resource,Resource>

as begin

 if notany(rdf_triple_cache(src)) then

 parseRDF_cache(src);

 result rdf_triple_cache(src);

 end;

In cases when there are no needs to cache the RDF source, the SparQL Parser invokes
function ‘rdf_tr’ to parse the source. Otherwise, when caching RDF source is required,
function ‘rdf_tr_c’ is used instead. Function ‘rdf_tr_c’ checks whether an RDF source has
been parsed and cached before it starts to parse the source. If the RDF source is parsed for the
first time, fucntion ‘rdf_tr_c’ invokes CRDF function ‘parseRDF_cache’ to retrieve and cache
the RDF triples in Amos II. For example, statements to retrieve triples in RDF source
‘c:/test.rdf’ with caching and without caching are like:

rdf_tr_c(‘c:/test.rdf’); // caching

rdf_tr(‘c:/test.rdf’); // no caching

In the examples in the rest of section 5, function ‘rdf_tr’ is used, but the examples also work
correctly if function ‘rdf_tr’ is replaced by function with ‘rdf_tr_c’. The only difference is that,
in the later situation, RDF sources are cached. There is an argument in the function that
accepts SPARQL query statement to select whether the queried RDF source should be cached
or not, which will be explain in section 5.10.

5.1. Prefix Collector

The prefix collector is designed to collect prefixed names and relative IRIs.

In SPARQL statements, prefixed names are declared as:

 PREFIX dc: <http://purl.org/dc/elements/1.1/>

Base IRI for relative IRI is declared as:

 BASE <http://example.org/>

‘PREFIX’ is the keyword indicating a definition of prefix label, ‘dc:’ is the prefix label, and
‘<http://purl.org/dc/elements/1.1/>’ is an IRI reference. ‘BASE’ is the keyword for defining a
base IRI. Once the SparQL Parser detects a definition of a prefix label, it creates a data
structure to save the mapping relationship between the pair of the prefix label and the IRI
reference. This created data structure is attached to a list that keeps all of the pairs of prefix
labels to IRI references in one SPARQL statement. After that, when the SparQL Parser finds

26-47

any prefixed names in the statement, it replaces the prefix label by its corresponding IRI
reference. Since there is at most one definition of a base IRI in one SPARQL statement, the
SparQL Parser saves the base IRI the first time it is encountered and reports an error if base
IRI is found more than once in a SPARQL statement. For example,

BASE <http://example.org/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

<department>

dc:people

‘dc:people’ is interpreted as <http://purl.org/dc/elements/1.1/people> and the relative IRI
<department> is interpreted as <http://example.org/department>. In the SparQL Parser, both
prefixed names and relative IRIs are translated to IRIs.

5.2.

5.3.

Variable Collector

Variables in SPARQL queries have global scope. Variables are indicated by "?"; the "?" does
not form part of the variable. "$" is an alternative to "?". In a query, $abc and ?abc are both
variable named ‘abc’.

There is no particular syntax in a SPARQL statement to define the data type of variables,
which means it is impossible to know which data type a variable is going to have. By contrast,
all variables used in an AmosQL statement must be declared in variable declaration commalist
[4]. In the SparQL Parser, every variable name that appeared in a SPARQL query is registered
in the variable collector. The SPARQL variable data type is unknown until it is bound to a
value; it can be URI reference saved in Amos II type ‘Resource’, blank node saved in Amos II
type ‘Resource’, or literal saved in Amos II type ‘Rlit’. Therefore all variables are declared as
Amos II type ‘Resource’, the super class of both ‘Resource’ and ‘Rlit’ in the Amos II. For
example, SPARQL variables

?name, ?email, ?address

are declared in the from clause in the geneated AmosQL statement as:

…

from Resource name, Resource email, Resource address

…

Triple Collector and Triple Pattern

The building blocks of SPARQL queries are triple patterns. The following is a basic triple
pattern having a subject variable, a predicate URI reference and an object variable:

?book <http://example.com/title> ?title.

A period '.' denotes the end of the expression of one or several triple patterns.

27-47

This is translated to the AmosQL 3-tuple expression:

<book, uri(‘http://example.com/title’), title>

Furthermore, there are two syntactic forms that abbreviate sequences of query triples, namely
predicate-object list and object list. Predicate-object lists denote situations when triple
patterns share a common subject so that a subject is written once and used for more than one
triple pattern by employing the ‘;’ notation. For example,

?book <http://example.com/title> ?title;

 <http://example.com/price> ?price.

This is the same as writing the triple patterns:

?book <http://example.com/title> ?title.

 ?book <http://example.com/price> ?price.

Therefore, they should be translated to two AmosQL 3-tuples:

<book, uri(‘http://example.com/title’), title>

<book, uri(‘http://example.com/price’), price>

If triple patterns share both subject and predicate these can be expressed in the object list
format using the ‘,’ notation.

?book <http://example.com/title> ‘Records of Three Kingdoms’,

‘Journey to the West’.

is the same as

?book <http://example.com/title> ‘Records of Three Kingdoms’.

 ?book <http://example.com/title> ‘Journey to the West’.

A more complex situation is that an object list is combined with predicate-object lists:

 ?book <http://example.com/price> ?price;

<http://example.com/title> ‘Records of Three Kingdoms’,

‘Journey to the West’.

This forms three triple patterns:

?book <http://example.com/price> ?price.

 ?book <http://example.com/title> ‘Records of Three Kingdoms’.

?book <http://example.com/title> ‘Journey to the West’.

Their corresponding AmosQL 3-tuples are:

<book, uri(‘http://example.com/price’), price>

<book, uri(‘http://example.com/title’),

r(1,‘Records of Three Kingdoms’)>

<book, uri(‘http://example.com/title’), r(1,‘Journey to the West’)>

28-47

During parsing a SPARQL statement, the SparQL Parser cannot predicate the format of the
triple pattern until the end of statement marker period is found. The triple patterns can be
expressed in the basic triple pattern, in the predicate-object list, or in the object list. To collect
the information of the triple patterns accurately, SparQL Parser utilizes the idea of triple
pattern tree.

A triple pattern tree is a tree data structure whose height is two. Its root node is a subject,
nodes in level one of the tree are the predicates, and the nodes in level two are the objects.
When the SparQL Parser finds triple patterns, it maps the subject, predicates, and objects to a
triple pattern tree structure. The object, the predicates, and the objects of the triple patterns in
the previous example are therefore saved in the triple pattern tree structure in Figure 12.

Figure 11 Example of Triple Pattern Tree

Once the SparQL Parser reaches the end of statement marker, it progresses a post-order walk
on the triple pattern tree. One triple pattern is generated when the tree reaches a leaf node, the
RDF triple object. Its parent node is the predicate. The root node is the subject. Figure 13
shows three traverse routes ‘1’, ‘2’, and ‘3’, which generates three tuples.

Figure 12 Example of Triple Pattern Tree

5.4. Basic Graph Patterns

A basic graph pattern is a set of triple patterns. It forms the basis of SPARQL query matching,
which is to find a mapping from blank nodes and variables in the basic graph pattern to terms
in the RDF source, the graph being matched. A simple SPARQL query statement contains a
basic graph pattern and a query-variable list of names of variables to be queried. Values

29-47

bound to the variables in the query-variable list forms a set of results to the SPARQL query.
The basic steps that the SparQL Parser takes to convert a SPARQL query statement to
AmosQL statement include:

 Collecting all of the variables that appeared in the SPARQL query and declare them as
Amos II type ‘Resource’ in the ‘from_clause’ of AmosQL

 Converting the query-variable list to 'variablecomma_list' in AmosQL
 Converting triple patterns to predicates in the AmosQL 'where_clause'

For example, suppose there is a SPARQL query over RDF document ‘c:/test.rdf’:

SPARQL query 2

SELECT ?title

WHERE

{<http://example.org/book/book1>

<http://purl.org/dc/elements/1.1/title>

?title. }

Its corresponding AmosQL statement is:

AmosQL query 3

select{title}①

from Resource title

where rdf_tr②("c:/test.rdf")=

<uri("http://example.org/book/book1"),

uri("http://purl.org/dc/elements/1.1/title"),

title>;

IRIs have two abbreviated formats (explained in section 2.1.3 and section 5.1) that shorts
SPARQL query statement. The following example shows how SPARQL query 2 is structured
if prefixed names or relative names are used, respectively.

SPARQL query 3

PREFIX ebook: <http://example.org/book/>

PREFIX purl: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE

{ ebook:book1 purl:title ?title. }

SPARQL query 4

BASE <http://example.org/book/>

PREFIX purl: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE{ <book1> purl:title ?title. }

① Why query results are returned in a AMOS II type ‘vector’ will be explain in section 5.8.
② Function ‘rdf_tr’, using function ‘parseRDF’ in CRDF, converts the tiples in one RDF source to 3-tuples and
emits these 3-tuples. For more details, please read section 5.10.

30-47

That the SPARQL statement is expressed in either abbreviated formats does not change their
corresponding AmosQL. Therefore, their corresponding AmosQL statement is exactly like
AmosQL query 3.

The next example is a more complex SPARQL query statement, which contain two triple
patterns.

SPARQL query 5

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

 { ?x foaf:name ?name;

 foaf:mbox ?mbox .

}

This is translated to

AmosQL query 4

select{name,mbox}

from Resource name, Resource mbox, Resource x

where

rdf_tr("c:/test.rdf")=

<x,uri("http://xmlns.com/foaf/0.1/name"),name> and

rdf_tr("c:/test.rdf")=

<x,uri("http://xmlns.com/foaf/0.1/mbox"),mbox>;

5.5. Literals in a SPARQL query

In SPARQL statements, literals are presented in the same way as they are in RDF source as
follows:

 plain literal: ‘abc’
 plain literal with language tag: ‘abc’@en-gb
 xsd:integer: ‘10’^^xsd:integer
 xsd:decimal: ‘1.1’^^xsd:decimal
 xsd:double: ‘1.1e0’^^xsd:double
 xsd:boolean: ‘true’^^xsd:boolean
 xsd:string: ‘happy’^^xsd:string

The SparQL Parser defines an AmosQL function, ‘newLit(Charstring)->Rlit’ to create Amos
II type ‘Resource’ from Amos II type ‘Charstring’, which includes both the value string and
the data type URI. For example,

 newLit(‘‘10’^^xsd:integer’) creates r(2, ‘10’)
 newLit(‘‘1.1’^^xsd:decimal’) creates r(3, ‘1.1’)
 newLit(‘‘1.1e0’^^xsd:double’) creates r(4, ‘1.1e0’)

31-47

Literals of data type xsd:integer, xsd:decimal, or xsd:double expressed in the abbreviated
format will be revert to their normal expression, before ‘newLit’ is called. For example,

 10 is reverted to ‘10’^^xsd:integer then newLit(‘‘10’^^xsd:integer’) is called
1.1 is reverted to ‘1.1’^^xsd:decimal then newLit(‘‘1.1’^^xsd:decimal’) is called
1.1e0 is reverted to ‘1.1e0’^^xsd:double then newLit(‘‘1.1e0’^^xsd:double’) is called

For xsd:boolean, ‘true’^^xsd:boolean and ‘1’^^xsd:boolean are considered equal, so are
‘false’^^xsd:boolean and ‘0’^^xsd:boolean in a SPARQL query statement.

A SPARQL query may ask for the value string of data type URI of a literal. Therefore, the
SparQL parser provides two functions that accept a ‘Resource’ to retrieve its value string or
data type URI. They are defined as:

 str(Resource x)->Charstring

 dt(Resource res)->Integer

For example, to retrieve the value string and data type URI of r(2, ‘10’), we have:

str(r(2, ‘10’)) returns ‘10’

dt(r(2, ‘10’)) returns 2

Now SparQL Parser knows how to convert an RDF literal in a SPARQL query to AmosQL.
However, representing typed literal as Amos II type ‘Rlit’ brings a difficulty to the
implementation of the SparQL Parser. Suppose there is an RDF resource ‘c:/test.rdf’, which
has two triples, stored in the database:

 <uri(‘aaa’), uri(‘bbb’), r(4,‘‘10.0’^^xsd:double’)>

<uri(‘ccc’), uri(‘bbb’), r(4,‘‘0.10e2’^^xsd:double’)>

Then, there is a SPARQL query over the RDF resource:

SPARQL query 6

SELECT ?x

WHERE {?x <bbb> 1.0e1.}

whose corresponding AmosQL query is:

AmosQL query 5

select{x}

from Resource x

where

rdf_tr("c:/test.rdf")=<x,uri(“bbb”),r(4,‘‘1.0e1’^^xsd:double’)>;

Should AmosQL query 5 find the correct variable bindings (x = uri(‘aaa’) and x = uri(‘bbb’)),
according to the literal matching mentioned in section 2.4? The answer is NO, because typed
literals are stored as Amos II type ‘Rlit’ for which it holds that,

 r(4,‘‘1.0e1’^^xsd:double’) =/= r(4,‘‘10.0’^^xsd:double’)

 r(4,‘‘1.0e1’^^xsd:double’) =/= r(4,‘‘0.10e2’^^xsd:double’)

Whereas, if the object is unknown therefore is a variable in the SPARQL statement as,

32-47

SPARQL query 7

SELECT ?x,?num

WHERE {?x <bbb> ?num.}

which is translated to AmosQL query:

AmosQL query 6

select{x,num}

from Resource x, Resource num

where rdf_tr("c:/test.rdf")=<x,uri(“bbb”), num>;

This time, AmosQL finds the correct variable bindings.

 { uri(‘aaa’), r(4,‘‘10.0’^^xsd:double’)}
 { uri(‘bbb’), r(4,‘‘0.10e2’^^xsd:double’)}

To solve this problem, in addition to the functions ‘rdf_tr’ and ‘rdf_tr_c’, the SparQL Parser
introduces two more derived functions to deal with triple patterns when objects are literals.
Literal objects become input parameters that restrict the value binding of subject or predicate.
These functions are shown in Table 2.

Table 2 Amos II Functions in Pattern Matching

Function prototype Subject Predicate Object

rdf_tr(Charstring src, Resource o)-><Resource s, Resource p> ━ ━ literal

rdf_tr(Charstring src)-><Resource s, Resource p, Resource o > ━ ━ others

rdf_tr_c(Charstring src, Resource o)-><Resource s, Resource p> ━ ━ literal

rdf_tr_c(Charstring src)-><Resource s, Resource p, Resource o > ━ ━ others

The first ‘rdf_tr’ function in Table 2 is defined as:

create function rdf_tr(Charstring src, Resource o)

-> <Resource,Resource> as

 select sub, pre from Resource sub, Resource pre, Resource obj

where parseRDF(src)=<sub,pre,obj> and

fltr(EQ(obj,o))① and _dt_(obj)=_dt_(o);

The function fltr determines the logical value of an expression, the function EQ compares two
RDF resources and the function _dt_ returns the RDF type tag of a resource.

① AmosQL function ‘fltr’ and ‘EQ’ will be introduced in section 5.6

33-47

The SPARQL query 6 will be converted to AmosQL as,

select{x}

from Resource x

where

rdf_tr("c:/test.rdf",newLit(‘‘1.0e1’^^xsd:double’))=<x,uri(“bbb”

)>;

The function ‘rdf_tr’ makes sure that two typed literals are of the same data type and are
equal.

5.6. Filter Collector and Value Constraints

Basic graph pattern matching creates bindings of variables. It is possible to restrict solutions
by constraining the allowable bindings of variables to RDF terms. Value constraints, which
are enclosed by ‘(’ and ‘)’ after keyword ‘FILTER’, take the form of Boolean-valued
expressions; The SparQL Parser also allows user-defined functions that return typed literal
xsd:boolen to form the value constraint. For example, here is a SPARQL query over
‘c:/test.rdf’ that asks for the title and price of books whose price is less than 30,

SPARQL query 8

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE

 { ?x ns:price ?price .

 FILTER (?price < 14+16) .

 ?x dc:title ?title .

 }

There is a set of functions and operations in the SparQL Parser for value constraints, however
currently the SparQL Parser does not support all kinds of constraints. All supported contraints
are introduced respectively in section 5.6.2, 5.6.3, 5.6.4 and 5.6.5. In the SparQL Parser, it is
the filter collector module that stores expressions of value constraints in a data structure called
Filter. Each filter corresponds to one ‘FILTER’ keyword. Then the SparQL Parser translates
SPARQL operators and functions to their corresponding AmosQL functions if there is a
mapping, otherwise, the SparQL Parser reports an error.

The translation of filters will be explained next.

5.6.1. Effective Boolean Value

SPARQL functions requiring an argument of type xsd:boolean, such as ‘!’ or logical a
operator, coerce the input argument to xsd:Boolean, i.e. any value can be regarded as a
Boolean value in SparQL An effective boolean value (EBV) of an expression determines its
truth value. The EBV rules are described in section 11.2.2 in [2]. The SparQL Parser has an

34-47

AmosQL function named ‘EBV’ that accepts ‘Rlit’ as its input argument and returns an ‘Rlit’
indicating the result. The function ‘ebv’ follows the rules:

 If the argument is a typed literal with a data type of xsd:boolean, the EBV is the
argument.

 If the argument is a plain literal or a typed literal with a data type of xsd:string, the EBV
is false if the operand value has zero length; otherwise, the EBV is true.

 If the argument is a numeric type or a typed literal with a data type derived from a
numeric type, the EBV is false if the operand value is numerically equal to zero;
otherwise, the EBV is true.

 All other arguments produce a false.

For example, the following function calls return ‘Rlit’ r(5, ‘true’),

EBV(r(1,"abc"));

EBV(r(5,"true"));

EBV(r(6,"abc"));

EBV(r(4,"1.23"));

EBV(r(2,"123"));

By contrast, the following calls return ‘Rlit’ r(5, ‘false’)

EBV(r(1,""));

EBV(r(5,"false"));

EBV(r(6,""));

EBV(r(4,"0.0"));

EBV(r(2,"0"));

The EBV is used to calculate the arguments to SPARQL logical expressions. The SparQL
Parser has a special function to evaluate the result of filters in a query. This function is named
as ‘fltr’, which works just as function ‘EBV’, but, instead of returning Amos II type ‘Rlit’ in
‘EBV’, ‘fltr’ returns Amos II type ‘boolean’.

Thus, SparQL Parser translates the SPARQL query 8 to AmosQL query 7 as:

AmosQL query 7

select{title,price}

from Object title,Object price,Object x

where

rdf_tr("c:/test.rdf")=

<x,uri("http://example.org/ns#price"),price> and

rdf_tr("c:/test.rdf")=

<x,uri("http://purl.org/dc/elements/1.1/title"),title> and

FLTR(LT(price,

newLit(‘‘14’^^xsd:integer’)+newLit(‘‘16’^xsd:integer’)

));

35-47

5.6.2. Logical Connectives

There are two logical connectives in SPARQL queries, && and ||, as shown in Table 3. The
AmosQL function ‘l_o’ performs an ‘or’ operation on two xsd:boolean literals, while the
function ‘l_a’ performs an ‘and’ operation. Inasmuch ‘l_o’ and ‘l_a’ accepts xsd:boolean
literal, any other typed literal as input will be coerced to xsd:boolean following the EBV rules.

Table 3 Supported Logical Connectives

SPARQL
Function

SPARQL
Type of A

SPARQL
Type of B

Amos II Function
AmosQL

Result type
Logical Connectives

A || B xsd:Boolean xsd:Boolean l_o(A, B) Rlit
A && B xsd:Boolean xsd:Boolean l_a(A, B) Rlit

For example, we ask for the result of operation ‘or’ and operation ‘and’ on plain literal ‘0’ and
xsd:integer 0:

l_o(r(1,‘0’),r(2,‘0’)); returns r(5, ‘true’)

l_a(r(1,‘0’),r(2,‘0’)); returns r(5, ‘false’)

5.6.3. Comparison Tests

The SPARQL query language supports comparison tests on two literals with the same data
type URI. The SparQL Parser defines its logical operators corresponding to those defined in
the SPARQL query language as shown in Table 4. All of these functions accept two Amos II
objects of type ‘Rlit’ as the input arguments and return ‘true’^^xsd:boolean or
‘false’^^xsd:boolean as Amos II type ‘Rlit’. URI references are compared by their resource
identification; plain literals and xsd:strings are compared by their value string;
numeric①values are compared by their values.

Table 4 Supported Comparison Tests

SPARQL
Function

SPARQL
Type of A

SPARQL
Type of B

Amos II
Function

AmosQL
Result type

Comparison Tests

A = B
URI reference

Literal
URI reference

Literal
 EQ(A, B) Rlit

A != B
URI reference

Literal
URI reference

Literal
 NEQ(A, B) Rlit

A < B
Plain Literal

Numeric
xsd:string

Plain Literal
Numeric
xsd:string

 LT(A, B) Rlit

① Numeric denotes typed literal with data types xsd:integer, xsd:decimal, and xsd:double

36-47

SPARQL
Function

SPARQL
Type of A

SPARQL
Type of B

Amos II
Function

AmosQL
Result type

A > B
Plain Literal

Numeric
xsd:string

Plain Literal
Numeric
xsd:string

 GT(A, B) Rlit

A <= B
Plain Literal

Numeric
xsd:string

Plain Literal
Numeric
xsd:string

 LTE(A, B) Rlit

A >= B
Plain Literal

Numeric
xsd:string

Plain Literal
Numeric
xsd:string

 GTE(A, B) Rlit

Here are some example of comparison tests:

EQ(r(5, ‘false’),r(5, ‘false’)); returns r(5, ‘true’)

LT(newLit(‘ba’),newLit(‘b’)); returns r(5, ‘false’)

GTE(r(2,‘10’),r(4,‘10.0e0’)); returns r(5, ‘true’)

SPARQL query 9

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE

 { ?x dc:title ?title;

 ns:discount ?discount;

 ns:price ?price.

 FILTER (?price < 300 && ?discount < 0.9) .

 }

Is interpreted as AmosQL

AmosQL query 8

select{title,price}

from Resource title,Resource price,Resource x,Resource discount

where rdf_tr("c:/test")=

<x,uri("http://purl.org/dc/elements/1.1/title"),title>and

rdf_tr("c:/test")=

<x,uri("http://example.org/ns#discount"),discount>and

rdf_tr("c:/test")=

<x,uri("http://example.org/ns#price"),price>and

FLTR((l_a(LT(price,r(2,"300")),LT(discount,r(3,"0.9")))));

5.6.4. Arithmetic Operators

The SPARQL query language supports arithmetic operators on numeric typed literals, namely,
xsd:integer, xsd:decimal, xsd:double, as shown in Table 5.

37-47

Table 5 Supported Arithmetic Operators

SPARQL
Function

SPARQL
Type of A

SPARQL
Type of B

Amos II Function
AmosQL

Result type
Arithmetic Operators

A * B Numeric Numeric times(A , B) Rlit
A / B Numeric Numeric div(A , B) Rlit
A + B Numeric Numeric plus(A , B) Rlit
A - B Numeric Numeric minus(A , B) Rlit

SparQL Parser overloads Amos II built-in functions ‘times’, ‘div’, ‘plus’, and ‘minus’ so that
they accept Amos II type ‘Rlit’ as their input arguments and return Amos II type ‘Rlit’ of
proper typed literal. A proper typed literal result is defined as:

 Times operation: when both of the two input arguments are of type xsd:integer, the return
type is xsd:integer; Otherwise, the return type is xsd:double.

 Div operation: when both of the two input arguments are of type xsd:integer the return
type is xsd:decimal; Otherwise, the return type is xsd:double.

 Plus operation: when one of the two input arguments is of type xsd:double, the return
type is xsd:double; when one of the two input arguments is of type xsd:decimal, the
return type is xsd:decimal; Otherwise, the return type is xsd:integer.

 Minus operation: the same as the rule for plus.

For example,
r(3,‘100’)+r(2,‘100’); returns r(3,‘200’)

r(4,‘10’)*r(2,‘10’); returns r(4,‘100.0’)

r(2,‘10’)/r(2,‘10’); returns r(3,‘1.000’)

SPARQL query 10

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE

 { ?x dc:title ?title;

 ns:discount ?discount;

 ns:price ?price.

 FILTER (?price * ?discount < 300) .

Is interpreted as

AmosQL query 9

select{title,price}

from Resource title,Resource price,Resource x,Resource discount

where

rdf_tr("c:/test")=

<x,uri("http://purl.org/dc/elements/1.1/title"),title>and

rdf_tr("c:/test")=

38-47

<x,uri("http://example.org/ns#discount"),discount>and

rdf_tr("c:/test")=

<x,uri("http://example.org/ns#price"),price>and

FLTR((LT(price*discount,r(2,"300"))));

5.6.5. Other SPARQL tests

Table 6 shows other supported SPARQL functions and their corresponding AmosQL functions.
The functions follow the rules defined in [2]. There can the readers find more details on the
functionalities and constrains on all functions.

Table 6 Other Supported Functions

SPARQL
Function

SPARQL
Type of A

Amos II Function Result type

! A xsd:boolean fn_not(A) Rlit
isIRI(A)
isURI(A)

RDF term isIRI(A) Rlit

isBLANK(A) RDF term isBlnk(A) Rlit
isLITERAL(A) RDF term isLtrl(A) Rlit

literal
STR(A)

IRI
STR(A) Rlit

LANG(A) literal LANG(A) Rlit
DATATYPE(A) typed literal DT(A) Rlit
langMATCHES(A, B) simple literal simple literal Rlit

For example,

 fn_not(r(3,'1.0')); returns r(5, ‘true’)

 isIRI(uri('http://a.com')); returns r(5, ‘true’)

 isBLNK(uri('http://a.com')); returns r(5, ‘false’)

 str(r(2,‘01’)); returns r(1,‘01’)

 lang(r(1,‘‘abc’@en-gb’)) returns r(1,‘en-gb’)

Here we give an example of a SPARQL statement querying for the title and price of a book
written in English:

SPARQL query 11

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE

 { ?x dc:title ?title;

 ns:price ?price.

 FILTER (?price * 0.8 < 300 && langMATCHES(Lang(?title), 'en')) .

}

39-47

Is interpreted as

AmosQL query 10

select{title,price}

from Resource title,Resource price,Resource x

where

rdf_tr("c:/test")=

<x,uri("http://purl.org/dc/elements/1.1/title"),title>and

rdf_tr("c:/test")=

<x,uri("http://example.org/ns#price"),price>and

FLTR((langMatches(LANG(title),r(1,'en'))));

5.7. Optional Graph Patterns

In the SPARQL syntax, basic graph patterns allow making queries where entire pattern must
match. When the SparQL Parser finds the reult to a query, every variable must be bound to an
RDF term, and later the value constraints, if any, must be satisfied. Whereas, for Web
resources, complete structures cannot be assumed in all cases. It is reasonable to allow adding
information to the solutions where information is available, but not to fail to find any solution
because of some part of the graph pattern is not matched. Optional graph patterns provides
this facility. If the optional part of a SPARQL query does not lead to any solutions, variables
can be left unbound [2], which does not have the solution rejected unless variables in basic
graph pattern is unbound or value constraints test fails.

Optional parts of the graph pattern may be specified with the keyword ‘OPTIONAL’ applied
to a graph pattern:

SPARQL query 12

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

 { ?x foaf:name ?name.

 OPTIONAL { ?x foaf:mbox ?mbox. }

}

SPARQL query 12 can find results, in which the variable ‘mbox’ is unbound.
Furthermore, there can be more than one optional graph pattern in a SPARQL query statement
and an optional graph pattern can include a value constraint. For example,

SPARQL query 13

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?age ?mbox

WHERE

{ ?x foaf:name ?name.

 FILTER (langMATCHES(LANG(?name), 'en'))

 OPTIONAL { ?x foaf:mbox ?mbox }

40-47

 OPTIONAL { ?x foaf:age ?age. FILTER (?age >= 18) }

}

For SPARQL query 13, a solution result can be generated even if variable ‘?age’ or ‘?mbox’
are not bound.

For SPARQL queries that have optional graph patterns, the SparQL Parser introduces the idea
of a Grouped Graph Pattern and a Grouped Value Constraint. In section 5.3 and section 5.4,
we mentioned that a basic graph pattern is a set of triple patterns and how triple patterns are
described in the triple pattern tree structure. Section 5.6 describes how the SparQL Parser
translates value constraints. Now, we tag the triple patterns and the filters (see section 5.6)
with a group number to separate the basic graph pattern from the optional graph patterns. The
SparQL Parser tags the triple patterns in basic graph pattern and the filters outside the optional
graph pattern with group number ‘1’; tags triple patterns and filters in optional graph patterns
consecutively from number ‘2’. For SPARQL query 13, there are three triple patterns, and two
filters. Table 7 shows how they are tagged.

Table 7 Grouped Triple Patterns and Filter Sets

Triple Patterns
1 ?x foaf:name ?name

2 ?x foaf:mbox ?mbox

3 ?x foaf:age ?age

Filter Sets
1 langMATCHES(LANG(?name), 'en')

3 ?age >= 18

Figure 13 demonstrates an SPARQL query that has six triple patterns tagged number ‘1’ in
basic group pattern, one triple pattern tagged number ‘2’ in optional graph pattern and two
triple patterns in another optional graph pattern.

Figure 13 Example of Tagged Triple Pattern Tree

Currently, triple patterns and value constraints in optional group patterns are collected and are
translated to where clause in the AmosQL query statements. However, all variables, including

41-47

those in optional graph patterns, must be bound in the solution. For example,

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?mbox ?name

 {

 ?x foaf:mbox ?mbox .

 OPTIONAL { ?x foaf:name ?name } .

 }

is interpreted as

select{mbox,name}

from Resource mbox,Resource name,Resource x

where

rdf_tr_c("c:/test.rdf")=

<x,uri("http://xmlns.com/foaf/0.1/mbox"),mbox> and

rdf_tr_c("c:/test.rdf")=

<x,uri("http://xmlns.com/foaf/0.1/name"),name>;

5.8. Solution Modifier

Up till now, the SparQL Parser can translate a SPARQL query that contains basic graph
patterns and value constrains to a corresponding AmosQL query properly. It also correctly
interprets plain literals and typed literals. We can have a set of results by executing the
AmosQL query that the SPARQL query is translated to. There are sometimes needs to sort the
query results on the values of one or several variables. For instance, a SPARQL query can ask
for the names of the students, whose math exam results are from 10th to 20th in a class. The
keywords ‘ORDER BY’, ‘LIMIT’, and ‘OFFSET’(see section 2.3) in SPARQL helps to
achieve this requirement. The query statement can be like:

SPARQL query 14

BASE <http://example.edu/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?rslt

WHERE { ?x foaf:name ?name;

 <math> ?rslt.

 }

ORDER BY ?rslt

LIMIT 10

OFFSET 10

The keywords ‘LIMIT’ and ‘OFFSET’ are not supported yet. However, the SparQL Parser
utilizes Amos II built-in function ‘sortbagby’ to implement the sorting ability that SPARQL
‘ORDER BY’ offers.

42-47

Function prototype of ‘sortbagby’ is:

sortbagby(Bag b, Integer pos, Charstring order) -> Vector

sortbagby(Bag b, Vector of Integer pos, Vector of Charstring order)

-> Vector

Argument ‘b’ is a bag of results to be sorted; argument ‘pos’ indicates the position number in
a result tuple of the bag ‘b’; argument ‘order’ indicates the ordering direction. For example,

sortbagby(

(select i,j

from Number i, Number j

where (i=1 or i=2 or i=3) and (j=1 or j=2)),

1,'dec');

returns {{3,2},{3,1},{2,2},{2,1},{1,2},{1,1}}

sortbagby(

(select i,j

from Number i, Number j

where (i=1 or i=2 or i=3) and (j=1 or j=2)),

{2,1},{'inc','dec'});

returns {{3,1},{2,1},{1,1},{3,2},{2,2},{1,2}}.

With the help of Amos II function ‘sortbagby’, it is very easy to interpret SPARQL keyword
‘ORDER BY’. For example,

SPARQL query 15

BASE <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?title ?price ?discount

WHERE { ?x foaf:title ?title;

 <price> ?price;

 <discount> ?discount.

 }

ORDER BY DESC(?discount) ASC(?price)

is translated to AmosQL:

AmosQL query 11

sortbagby(

(select{title,price,discount}

from Resource title,Resource price,Resource discount,Resource x

where

rdf_tr("")=<x,uri("http://xmlns.com/foaf/0.1/title"),title>and

rdf_tr("")=<x,uri("http://example.org/price"),price>and

rdf_tr("")=<x,uri("http://example.org/discount"),discount>),

{3,2},{"dec","inc"});

43-47

For the reason that function ‘sortbagby’ accepts vectors only, the SparQL Parser translates
SPARQL query statement to AmosQL query statement that returns the result tuples As vectors,
which is done by delimit the variablecomma_list by ‘{‘ and ’}’.

5.9.

5.10.

Memory Manager

The memory manager allocates memory while parsing one SPARQL statement to an AmosQL
statement. Instead of using ‘malloc’, any allocated memory block operation in the SparQL
Parser invokes ‘sparql_new’, an interface of the memory manager. The benefit of using
‘sparql_new’ is that no explicit free memory operation is needed. Allocated memory blocks
are freed every time when the memory manager is initialized before parsing a new SPARQL
query and at the end of the execution of the SparQL Parser. As a result, no memory leak will
occur. Maximum size of allocated memory is decided by macro ‘MEMORY_SIZE’, which is
4K.

Usage of the SparQL Parser and Result Format

The SparQL Parser provides two functions to execute SPARQL query statements. The one
that accepts SPARQL query statement as input argument is

sparql(Charstring rdf,Integer bCache,Charstring query)->Vector of Object

A SPARQL query statement is entered as a Amos II type ‘Charstring’ stored in argument
‘query’; the argument ‘rdf’ refers to the RDF source file name; the ‘bCache’ indicates whether
RDF source is cached. For example,

sparql("c:/test.rdf", 1,

"

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE

{

 ?x foaf:name ?name.

 FILTER (langMATCHES(LANG(?name), \"en\"))

}

");

Similarly, there is another SparQL Parser function that takes SPARQL query statement stored
in a file as input argument:

sparql_from_file(Charstring rdf,Integer bCache,Charstring fn)->

Vector of Object

Argument ‘fn’ refers to the file name; argument ‘rdf’ refers to the RDF source file name;
argument ‘bCache’ indicates whether the RDF source is cached. For example,

sparql_from_file(‘c:/test.rdf’, 0, ‘c:/sparql_query.rq’);

44-47

Inside these two Amos II functions, the external functions ‘__sparql__’ and
‘__sparql_from_file__’ are invoked to translate the SPARQL query statement to an AmosQL
query statement. The AmosQL query statement is returned as an Amos II type ‘Charstring’
and is evaluated by calling Amos II built-in function ‘eval’ so as to find the query result of the
SPARQL query.

The result format is a vector of objects and the query returns a bag of vectors of objects. For
example, suppose RDF source file ‘c:/test.rdf’ has the following triples

_:P1110 <http://xmlns.com/foaf/0.1/name> "yuca"

_:P1110 <http://xmlns.com/foaf/0.1/mbox> "yuca@uu.se"

_:P1022 <http://xmlns.com/foaf/0.1/name> "yawa"

_:P1022 <http://xmlns.com/foaf/0.1/name> "yawa@uu.se"

A SPARQL query over RDF source file ‘c:/test.rdf’

sparql("c:/test.rdf",
"

SELECT ?name ?mbox

WHERE { ?x <http://xmlns.com/foaf/0.1/name> ?name ;

 <http://xmlns.com/foaf/0.1/mbox> ?mbox .

 }

");

finds two results,

 {r(1,“yuca”), r(1,“yuca@uu.se”)}
 {r(1,“yawa”), r(1,“yawa@uu.se”)}

6. Evaluation

6.1. CRDF

The performance of CRDF completely written in C/C++ and based on Raptor is evaluated and
compared with an RDF wrapper completely written in Java and based on Jena [5]. We query
for the number of triples are there in the file ‘gcl2.1.rdf’ that has 5416 lines and contains 4986
RDF triples.

The result is shown in Table 8. Testing environment is CPU: Intel® Celeron® M 1.7G, Main
Memory: 512M, OS: Windows2000 Professional SP4. The query

Table 8 Execution Time of C RDF wrapper and JAVA RDF wrapper

Program Result Duration
JAVARDF 4986 0.331s

CRDF Release 4986 0.081s

45-47

Execution time of the command is cut by almost 75%.

6.2. SparQL Parser

The test suite used in testing the SparQL Parser is the existing official package of SPARQL
query language test cases that were downloaded from link
http://www.w3.org/2001/sw/DataAccess/tests/. Except for test cases for old syntax, the test
suite includes 7 test cases that have already been approved as well as 74 test cases that have
not been decided yet. Each test case in the package consists of three files: an RDF source file,
a SPARQL query statement file, and a standard result file. The RDF source file and the
standard result file can be in format RDF/XML, N-Triples, or Turtle. Each SPARQL query
statement file is a plain text file that includes one and only one SPARQL query statement. All
this information is stored in a manifest file.

The file ‘test.amosql’ under directory ‘regress’ contains AmosQL statements to parse the
manifest file of the test suite, load the RDF source file, load the SPARQL query statement file,
load the result file, compare the query result with the result file, and to generate a brief test
report. A test with cached RDF source can be started by running batch file ‘test.bat’. Test with
not cacheing RDF source can be started by running batch file ‘test_no_cache.bat’.

Test result is shown in Table 9.

Table 9 Test Result of SparQL Parser

APPROVAL TOTAL PASSED PERCENTAGE
Approved 7 7 100%
Unknown 75 45 60.0%

All 82 52 63.4%

The SparQL Parser fails in 28 test cases out of a total number of 81 cases. The failure reason
is shown in Figure 14. ‘UNION’, ‘REGEX’ and ‘Optional’ in legend denotes SparQL Parser
not supporting keyword ‘UNION’, ‘REGEX’ and ‘OPTIONAL’ in SPARQL statement.
‘IRIrefFunc’ denotes SparQL Parser not supporting access to user-defined functions.

3, 13%

6, 25%

11, 45%

4, 17%
UNION

REGEX

Optional

IRIrefFunc

Figure 14 Failure Reason Analysis

46-47

7. Summary
We have implemented an RDF wrapper CRDF and the SparQL Parser in SPARAMOS for the
Amos II mediator system. The SPARQL statements are translated into corresponding
AmosQL statements calling the CRDF wrapper. The aim of CRDF is to substantially improve
performance compared with JAVA version RDF parser is achieved by using the all C Raptor
toolkit instead of Java based Jena. The SparQL Parser was verified by passed a majority of the
standard SPARQL test suite. In particular all approved SPARQL statements in the test suite
passed.

The implementation of CRDF and SPARAMOS enables access to semantic web resources
from the Amos II mediator system and makes it possible to create views over web resource
expressed in AmosQL. Mediator views can also be defined to combine data from different
peers by using the mediation facilities of AmosQL. The SPARAMOS enables SPARQL query
language to be used as an interface language to Amos II.

Future work could be to investigate how to fully support XML typed literals. Outer-join could
also be an issue deserving consideration.

47-47

References

1 F.Manola, E.Miller, B.McBride. RDF Primer W3C Recommendation 10 February 2004.
2004. (http://www.w3.org/TR/2004/REC-rdf-primer-20040210/)

2 E.Prud’hommeaux, A.Seaborne. SPARQL Query Language for RDF W3C Candidate
Recommendation 6 April 2006. 2006
 (http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/)

3 D.Brickley, R.V. Guha, B,McBride. RDF Vocabulary Description Language 1.0: RDF
Schema W3C Recommendation 10 February 2004. 2004
 (http://www.w3.org/TR/rdf-schema/)

4 S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov, T. Risch, and M. Sköld. Amos II
user's manual. Uppsala University 2005

(http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html)

5 Jena – A Semantic Web Framework for Java (http://jena.sourceforge.net/index.html)

6 D.Beckett, B.McBride. RDF/XML Syntax Specification (Revised) W3C Recommendation 10
February 2004. 2004
 (http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/)

7 G.Klyne, J. J.Carroll. Resource Description Framework (RDF) Concepts and Abstract
Syntax W3C Recommendation 10 February 2004. 2004.
(http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/)

8 G.Wiederhold. Mediators in the Architecture of Future Information System, IEEE Computer.
March 1992

9 T.Risch, V.Josifovski. Functional Approach to Data Management – Modeling, Analyzing
and Integrating Heterogeneous Data. Springer. ISBN 3-540-00375-4, 2003

10 R.Elmasri, S.B. Navathe. Fundamentals of Database Systems, Fourth Edition.

ISBN 0321122267. Addison Wesley, 4 edition (July 23, 2003).

11 A.Seaborne. RDQL - A Query Language for RDF W3C Member Submission 9 January
2004. 2004
 (http://www.w3.org/Submission/RDQL/)

12 D.Beckett. Raptor RDF Parser Toolkit Overview. 2006. (http://librdf.org/raptor/)

13 A.M. Kuchling. Quotation Exchange Language (QEL) (http://www.amk.ca/qel/)

14 A.Berglund, S.Boag, D.Chamberlin, M.F.Fernández, M.Kay, J.Robie, J.Siméon. XML Path
Language (XPath) 2.0 W3C Candidate Recommendation 8 June 2006. 2006
(http://www.w3.org/TR/2006/CR-xpath20-20060608/)

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://jena.sourceforge.net/index.html
http://www.ninebynine.org/
http://www-uk.hpl.hp.com/people/jjc/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

	1. Introduction
	2. Background
	2.1. Resource Description Framework
	2.1.1. RDF Triple and RDF Graph
	2.1.2. URI and URI Reference
	2.1.3. IRI, Prefixed Names, Relative IRI
	2.1.4. Blank Nodes
	2.1.5. RDF Literals
	2.1.6. XML Syntax for RDF

	2.2. Amos II
	2.2.1. Built-in Data Types
	2.2.2. Simple Select Statements
	2.2.3. Types and Functions

	2.3. Query Languages for RDF
	3. The SPARAMOS System
	3.1. Architecture
	3.2. The CRDF Wrapper
	3.3. The SparQL Parser

	4. Implementation of CRDF
	4.1. Data Types of Subject, Predicate, and Object
	4.1.1. URI Reference and Blank Nodes
	4.1.2. Literals in CRDF

	4.2. Triple Cache
	4.3. Summary

	5. Implementation of the SparQL Parser
	5.1. Prefix Collector
	5.2. Variable Collector
	5.3. Triple Collector and Triple Pattern
	5.4. Basic Graph Patterns
	5.5. Literals in a SPARQL query
	5.6. Filter Collector and Value Constraints
	5.6.1. Effective Boolean Value
	5.6.2. Logical Connectives
	5.6.3. Comparison Tests
	5.6.4. Arithmetic Operators
	5.6.5. Other SPARQL tests

	5.7. Optional Graph Patterns
	5.8. Solution Modifier
	5.9. Memory Manager
	5.10. Usage of the SparQL Parser and Result Format

	6. Evaluation
	6.1. CRDF
	6.2. SparQL Parser

	7. Summary

