
1

AMOS II Tutorial

Gustav Fahl and Tore Risch

Uppsala Database Laboratory

Department of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se
August 20, 2008 (revised 2011-01-30)

This is an introduction and tutorial to the AMOS II object-relational database system.
AMOS II is a descendant of AMOS, which has its roots in a main memory version
of Hewlett Packard’s DBMS IRIS [1]. The entire database is stored in main memory
and is saved on disk only through explicit commands. AMOS II can be used a single
user database, a multi-user server, or as a collection of interacting AMOS II multi-
database peers. In this tutorial only the single user version is described. AMOS II is
an example of an object-relational peer DBMS having a declarative query language,
AMOSQL. For a complete description of AMOS II’s functionality, see [3][2].

1. Introduction

To be able to run the examples in the tutorial you need download Amos II zip-file to a directory (called
the Amos directory). The unzip will create a subfolders bin, demo, doc, etc. The file
bin/amos2.exe is the executable program and bin/amos2.dmp is a database that contains only the data
needed by the AMOS II system itself. All the commands that are used in the tutorial are in the files
demo/tutorial.amosql. In order to try out the queries at the end of the tutorial you also need to load the
file demo/wcdata.amosql.

AMOS II is started from the OS command window by making the Amos bin directory the current
directory and then issuing the OS command:

amos2

You will then enter the AMOS II top loop where you have the prompt:

Amos 1>

The number ‘1’ in the prompt, the generation number, is used for the rollback command explained
later. In the AMOS II top loop you can issue any AmosQL command to be described below.

To exit the system issue the command ‘quit’:

Amos 2> quit;

You are assumed to have general knowledge about databases and Entity Relationship modeling.

2

1.1 Styles used in the examples

This tutorial uses the following style for the AMOSQL commands you should enter to the AMOS II
top loop during the tutorial:

Amos 4> create function name(Country)->Charstring as stored;

AMOSQL commands that are not to be entered but only to serve as examples look like this:

create type Tournament properties (year Integer, host Country);

Thus the AMOSQL commands that are supposed to be executed during the tutorial have the AMOS II
prompt with generation number first.

2. An example

As a running example throughout the overview we use a database to manage information about World
Cup tournaments in soccer. We start with an extended Entity Relationship schema (EER schema) that
describes the information to be represented in the database. The steps how to implement the database
in AMOS II are then gradually introduced as the database is built. The ER schema is shown in Figure
1. In Section 2.1 the corresponding database description is made in natural language.

The building blocks of the EER schema are represented by the following corresponding building
blocks in the Amos II data model:

1. Entity types are represented as types in Amos II.

2. Relationships are represented as functions. The arrows in the EER diagram indicate the logical
direction of the Amos II functions representing the relationships (from argument to result).

3. Attributes are represented as functions too.

4. Cardinality constraints are specified on functions by a special syntactic construct (Bag of, key).

2.1 Database description

World Cup tournaments in soccer are arranged every fourth year. Each tournament is arranged by some
country. In each tournament a number of teams participate and they represent various countries. Each
tournament contains a number of games (matches) each played between two teams. The team that
made most goals wins. Each game is refereed by a referee and a certain number of spectators come to
look at it. Each team contains a set of players. For each game played by a team of players a subset of
these players are chosen to play in this particular match. A player can make a number of goals and a
number of own goals in a certain game.

3

Figure 1 Extended ER schema describing the information in the World Cup database.

3. Practical advises

3.1 Rollback

The database can be restored to an earlier state by the command:

rollback generation number;

For example, after the following command all changes from command 4 and forward are undone:

rollback 4;

Person

Referee Player

Match Team

Tournament

Country

name

refereed_by
participating_players

players
goals

own goals

spectators

participating_teams

played in

participating_teams

year

host
name

representsgoals

1

N

N

1

M

N

M

N
N 2

N

1

1

N

1

N

is-a is-a

Entity (type in Amos II)

Relationship (function in Amos II)

Direction of function

N Cardinality constraints1

Attribute (function in Amos II) Inheritance

4

3.2 Reading commands from a file

AMOSQL commands can be read from a file and executed by the AmosQL command

< ‘file name’;

For example, the AMOSQL commands for creating the tutorial database are stored in the file
tutorial.amosql. To read an execute all commands in the file demo/tutorial.amosql when the current
folder is the AmosII bin directory, execute the command:

Amos 1> < ’../demo/tutorial.amosql’;

Notice that in order to learn AMOSQL you are recommended not load the entire script, but to copy one
command at the time from the file demo/tutorial.amosql. Use cut and paste for this.

3.3 Saving a database

A database can be saved in the file named file name by the command:

save ‘file name ‘;

To create the tutorial database and save it in the file wc.dmp do the following:

amos2
Amos 1> < ‘../demo/tutorial.amosql’;
Amos 2> save ‘wc.dmp’;
Amos 1> quit;

To start AMOS II with the saved database, give the following command to the Windows command
window:

amos2 file name

For example:

amos2 wc.dmp

4. Types, functions, and objects

The three basic concepts in AMOS II are types, functions, and objects. For those who are used to the
terminology used with object oriented programming languages these concepts approximately corre-
spond to classes, methods, and instances.

Types are used for classifying objects. Each object is an instance of a type. All properties of an object
as well as relationships between objects are represented by functions.

4.1 Types

Entity types in an ER schema corresponds to types in AMOS II. We create types for the entity types
Country and Tournament (see Figure 1) with the following AMOSQL commands:

AMOS 1>create type Tournament;
AMOS 2>create type Country;

Notice that names of types are case insensitive. Internally the system always stores the names of types
in upper-case. However, by convention we always capitalize types in this tutorial.

5

4.2 Functions

The properties of objects and the relationships between objects are modeled as functions. In our exam-
ple the entity type Tournament has one attribute year. We model this as a function year that has a Tour-
nament as its argument and returns an integer:

AMOS 3>create function year(Tournament)->Integer as stored;

As for type names, function names are case insensitive in Amos II and they are internally upper-cased.
In this tutorial we always write function names in lower-case.

In the same way the attribute name of the entity type Country becomes a function from countries to
strings:

AMOS 4>create function name(Country)->Charstring as stored;

Between the entity types Tournament and Country there is the relationship host. This is modeled by a
function from tournaments to countries:

AMOS 5>create function host(Tournament)->Country as stored;

The above functions are defined as stored functions (‘... as stored’). This means that the relationship
between the argument and the result will be explicitly stored in the database, analogous to a table in a
relational database. There are four kinds of functions in AMOS II. In addition to stored functions there
are derived functions, foreign functions, and stored procedures. Derived functions are introduced in
Section 7.1. Foreign functions are defined in a conventional programming language, usually Java. For-
eign functions are not discussed in this tutorial. Stored procedures are functions having side effects,
such as updating the database. Stored procedures are not covered by this tutorial.

Types in AMOS II can be built in or user defined. Examples of built in types are Integer, Charstring,
and Real.

User defined functions are defined with the create type statement, e.g.:

create type Person;

Stored functions for a user defined type can be created together with the type definition. The com-
mands 1-5 are equivalent to these commands:

create type Country properties (name Charstring);
create type Tournament properties (year Integer, host Country);

4.3 Objects

We are now ready to start populating the database by creating our first objects. The following com-
mand creates three countries, i.e. three instances of the type country:

AMOS 6>create Country instances :ita, :bra, :esp;

:ita, :bra and :esp are environment variables that are bound to the objects created. It is possible to refer
to the objects through these variables only during the current transaction. They are not stored in the
database! In the examples below environment variables are used to identify cross referenced objects in
the example database.

For the type Country there is a function name defined. The following commands assign names to the
three countries, i.e. defines the results of applying the function name on the three just created instances

6

of type country:

AMOS 7>set name(:ita)=’Italy’;
AMOS 8>set name(:bra)=’Brazil’;
AMOS 9>set name(:esp)=’Spain’;

In the same way we create three instances of type Tournament and define what values the functions
year and host return when applied on the objects of type Tournament:

AMOS 10>create Tournament instances :t2, :t12, :t14;
AMOS 11>set year(:t2)=1934;
AMOS 12>set host(:t2)=:ita;
AMOS 13>set year(:t12)=1982;
AMOS 14>set host(:t12)=:esp;
AMOS 15>set year(:t14)=1990;
AMOS 16>set host(:t14)=:ita;

The results of the functions can also be defined directly when the objects are created. The commands
6-16 are equivalent with:

create Country(name) instances :ita (‘Italy’),
:bra (‘Brazil’),
:spa (‘Spain’);

create Tournament(year, host) instances :t2 (1934, :ita),
:t12 (1982, :esp),
:t14 (1990, :ita);

5. Query Language

Similarly to SQL, AMOSQL is a combination of a DDL (Data Definition Language) and a DML (Data
Manipulation Language). The query part of the language is similar to SQL. The following command
answers the query ‘What country arranged the World Cup 1982?’:

AMOS 17>select x
from Charstring x, Country c, Tournament t
where x=name(c)

and c=host(t)
and year(t)=1982;

An AMOSQL expression can be entered in one or several lines. The commands in AMOSQL are
always terminated with semicolon (;).

Notice that one difference to SQL is that the FROM clause contains type declarations, not table names
as in SQL.

The above query does not utilize the possibilities in AMOSQL to compose functions. The following
command is equivalent to the previous one:

AMOS 18>select name(host(t))
from Tournament t
where year(t)=1982;

The commands 17 and 18 actually answer the query ‘What name did the country have that arranged
the World Cup 1982?’. If you really want to retrieve the country object, not its name, the command
would be:

7

AMOS 19>select host(t)
from Tournament t
where year(t)=1982;

Notice here how the system returns object identifiers (OIDs) for the country objects rather than their
names.

The following command answers the query ‘What years did Italy arrange the World Cup?’:

AMOS 20>select year(t)
from Tournament t
where name(host(t))=’Italy’;

As the final query example the following command answers the query ‘What years were the World
Cup arranged and who were its hosts?’:

AMOS 21>select year(t), name(host(t))
from Tournament t;

6. More about types

6.1 Type Hierarchy

The types in AMOS II are arranged in a type hierarchy. If a type A is defined as a subtype of a type B
then the type A inherits all the functions defined on type B.

In our example the entity types Referee and Player are subtypes of the entity type Person that has an
attribute name.

AMOS 22>create type Person;
AMOS 23>create type Referee under Person;
AMOS 24>create type Player under Person;

The attribute name is represented as a function name from persons to strings:

AMOS 25>create function name(Person)->Charstring as stored;

The function name is now defined on the types Person, Referee, and Player since Referee and Player
are subtypes of Person.

If a type A is defined as a subtype of a type B it means that all instances of type A automatically
become instances type B as well. To illustrate this, create the following instances of type Person, Ref-
eree, and Player:

AMOS 26>create Person (name) instances (’Pavel Smerdjakov’);
AMOS 27>create Referee (name) instances :r1 (’Abraham Klein’);
AMOS 28>create Player (name) instances :p1 (’Falcao’),

:p2 (’Socrates’),
:p3 (’Paolo Rossi’);

Then ask the following query and contemplate the answer:

AMOS 29>select name(p)
from Person p;

We now create the remaining types from Figure 1:

8

AMOS 30>create type Team;
AMOS 31>create type Match;

7. More about functions

7.1 Derived functions

A function can be defined in term of other functions as a query. Such a function is called a derived
function. For example, if we often need to find out the name of the host country for a given year, we
can define a derived function host_name for this:

AMOS 32>create function host_name(Integer y)->Charstring hn as
select name(host(t))
from Tournament t
where year(t)=y;

AMOS 33>select host_name(1982);
AMOS 34>select host_name(1990);

When a query consists of a single function call, as the queries 33 and 34, the select can be omitted. The
queries 33 and 34 can thus also be written as:

host_name(1982);
host_name(1990);

7.2 Inverse function definitions

Consider the information that ‘countries have names’ in the EER schema of Figure 1 represented as an
attribute name of the entity type Country. We represent this as in command 4, i.e. as a function from
countries to names:

create function name(Country)->Charstring as stored;

The database is then populated with the commands:

set name(:ita)=’Italy’;
set name(:bra)=’Brazil’;
set name(:esp)=’Spain’;

To get the name of a certain country (here the country object :ita) one makes the query:

name(:ita);

Sometimes one might also be interested in the inverse function, i.e a function from names to countries:

create function country_named(Charstring cn)->Country c

as select c from Country c where name(c)=cn;

Alternatively, since the variable c is declared also in the function result, the function country_named
can be formulated without from as

create function country_named(Charstring cn)->Country c

as select c where name(c)=cn

The database can then alternatively be populated by these commands:

set country_named(“Italy’)=:ita;
set country_named(“Brazil’)=:bra;

9

set country_named(“Spain’)=:esp;

One may get the name of the country object :ita by the query:

select cn
from Charstring cn
where country_named(cn)=:ita;

In general, if one thinks that several functions are useful, there is always the possibility to define one of
them as a (stored) base function and then define the others as derived from the base function as in our
example.

7.3 More function definitions

We define some more functions from Figure 1:

AMOS 35>create function represents(Team)->Country as stored;
AMOS 36>create function refereed_by(Match)->Referee as stored;
AMOS 37>create function played_in(Match)->Tournament as stored;
AMOS 38>create function spectators(Match)->Integer as stored;

7.4 Bag valued functions and cardinality constraints

When a stored function is defined, AMOS II by default assumes that the function returns one value,
while the same result can be returned for different values of the argument, i.e. many-one relationships.
For example, for the function spectators(Match)->Integer (command 68) it holds that one match can
have one number as the number of spectators while several games can have the same number of spec-
tators. Such constraints on the cardinality of function results or arguments are called cardinality con-
straints.

We model the relationship participating_teams between the entity types Team and Tournament as a
function from tournaments to teams:

create function participating_teams(Tournament to)-> Team tm as stored;

In a tournament usually more than one team is participating. Therefore participating_teams is an
example of a function that should return a set of more than one value. However, the stored function
definition above does not allow this. To allow participating_teams to return a set of values you can
specify ‘Bag of Team’ as result type1:

create function participating_teams(Tournament to)->Bag of Team tm as stored;

When you define the value of a stored function as ‘Bag of’ the function will represent a many-many
relationship.

However, the function participating_teams actually represents a one-many relationship. For a certain
value of the input parameter several values are returned (there are several teams participating in a tour-
nament) while a certain result cannot be returned for more than one value of the input parameter (a
team can only participate in one tournament). Therefore the ‘Bag of’ declaration is not fully correct.
The recommended way to represent such a one-many relationship is to instead define the inverse func-
tion to represent the relationship. In our case we can define a function tournament instead of

1. A bag is a set where duplicates are allowed. Queries in AmosQL (and SQL) return bags rather than
sets.

10

participating_teams:

AMOS 39>create function tournament(Team) -> Tournament as stored;

The function participating_teams can then be defined as the inverse of tournament:

AMOS 40>create function participating_teams(Tournament t)->Team tm
as select tm where tournament(tm) = t;

Cardinality constraints can also constrain the uniqueness of the result of a function. The keyword ‘key’
indicates that a parameter of a stored function is unique thus defining a one-one relationship.

For example, the functions year(Tournament)->Integer and name(Country)->Charstring (defined
with the commands 3 and 4) have the constraint that the result must be unique. This uniqueness can be
specified by adding the keyword ‘key’ after the result parameter. To include these cardinality con-
straints (one-one relationships), the functions should actually have been defined as:

create function year(Tournament)->Integer key as stored;

create function name(Country)->Charstring key as stored;

This makes it impossible to have two tournaments the same year or to have two countries with the
same name. The system will raise an error when the constraint is violated.

For bag valued functions the command add is used for adding values to the results of function. The
syntax is the same as for the set command:

AMOS 41>create Team (represents) instances :ita82 (:ita), :bra82 (:bra);
AMOS 42>add participating_teams(:t12)=:ita82;
AMOS 43>add participating_teams(:t12)=:bra82;
AMOS 44>name(represents(participating_teams(:t12)));

Notice that a function such as participating_teams which is the inverse of a stored function (tourna-
ment) is updatable. Normally derived function are not updatable. An equivalent way to create the two
above teams using the inverse function tournament instead would be:

create Team(represents,tournament) instances :ita82 (:ita,:t12), :bra82 (:bra,:t12);

In Amos II, when a function returns a bag of values, as the inner call to participating_teams in com-
mand 44, the applied function (represents) is applied on each element of the result from the set valued
function (participating_teams). This is called ‘Daplex semantics’ because it was first invented in the
functional query language Daplex, an ancestor of AmosQL.

To model the relationship players between Team and Player (see Figure 1) we define a function with
that name from Team to Player. The relationship is many-to-many, i.e. a player can play in several
teams and a team has several players. The function definition therefore becomes:

AMOS 45>create function players(Team)->Bag of Player as stored;

AMOS 46>add players(:bra82)=:p1;
AMOS 47>add players(:bra82)=:p2;
AMOS 48>add players(:ita82)=:p3;
AMOS 49>name(players(:bra82));

7.5 Functions returning tuples

11

All functions so far have had a single result type. It is also possible to have functions that return tuples
of values.

In command 25 the names of persons were defined by the function:

create function name(Person)->Charstring as stored;

Another possibility could have been to separate the first and family names by defining a function that
returns a tuple of two strings:

create function name2(Person)-> (Charstring, Charstring) as stored;

A person can then be assigned a name with the command:

set name2(:p1)=(‘Pavel’, ‘Smerdjakov’);

Functions for retrieving the first and family names, respectively, can then be defined as derived func-
tions calling name2:

create function first_name(Person p)->Charstring f as
select f
from Charstring l
where name2(p)=(f, l);

create function last_name(Person p)->Charstring l as
select l
from Charstring f
where name2(p)=(f, l);

7.6 ... and so the final function definitions

Now only two relationships from Figure 1 remain to be represented as functions: participating_players
between Player and Match and participating_teams between Team and Match.

Let’s start with the first relationship: ‘Players are participants in games and makes a number goals and
a number of own goals in them’.

The most interesting functions are ‘What players participate in a certain match?’, ‘How many goals did
a certain player make in a certain match?’, and ‘How many own goals did a certain player make in a
certain match?’:

create function participating_players(Match m)->Player p as ...
create function goals(Player p, Match m)->Integer g as ...
create function own_goals(Player p, Match m)->Integer og as ...

It is not recommended to define these functions as stored ones as it would create redundant data1. We
rather store the information about the participation of players in games in a function
player_participation and define the three functions above as derived:

AMOS 50>create function player_participations(Match)->
Bag of (Player, Integer goals, Integer own_goals) as stored;2

AMOS 51>create function participating_players(Match m)->Player p as

1. For example the fact that a player participated in a certain match would have been stored in three dif-
ferent places.
2. No variable names need to be specified after the types in the definitions of stored functions. However,
for clarity we still specify the variable names goals and own_goals.

12

select p
from Integer g, Integer og
where player_participations(m)=(p, g, og);

AMOS 52>create function goals(Player p, Match m)->Integer g as
select g
from Integer og
where player_participations(m)=(p, g, og);

AMOS 53>create function own_goals(Player p, Match m)->Integer og as
select og
from Integer g
where player_participations(m)=(p, g, og);

Notice here that the derived functions participating_players, goals, and own_goals return sets (bags) of

result values and therefore should have the result type ‘Bag of’. However, derived functions always return bags

and the ‘Bag of’ declaration is therefore implicit for derived functions.

We store new data in the database and make some queries:

AMOS 54>create Match (refereed_by, played_in, spectators)
instances :m1 (:r1, :t12, 44000);

AMOS 55>add player_participations(:m1)=(:p1, 1, 0);
AMOS 56>add player_participations(:m1)=(:p2, 1, 0);
AMOS 57>add player_participations(:m1)=(:p3, 3, 0);

AMOS 58>name(participating_players(:m1));

AMOS 59>select goals(p, :m1)
from Player p
where name(p)=’Falcao’;

The relationship ‘Teams participate in games and make a number of goals in them’ is implemented
accordingly. The participation of teams in games is stored in the function team_participation. The two
most interesting functions are ‘What teams participate in a certain match?’ and ‘How many goals did a
certain team make in a certain match?’. They are defined as derived functions:

AMOS 60>create function team_participations(Match)->Bag of (Team t, Integer goals) as stored;
AMOS 61>create function participating_teams(Match m)->Team t as

select t
from Integer g
where team_participations(m)=(t, g);

AMOS 62>create function goals(Team t, Match m)->Integer g as
select g
where team_participations(m)=(t, g);

7.7 Aggregate functions

Aggregate functions compute aggregate values over bags:

sum(...) - returns the sum of a number of values.

count(...) - counts the number of values.

maxagg(...) - returns the highest value.

minagg(...) - returns the lowest value.

13

some(...) - equivalent with count(...)>0 but much faster.

notany(...) - equivalent with count(...)=0 but much faster.

Aggregate functions have somewhat different semantics compared to ‘ordinary’ AMOS II functions in
that they are not applied on each element of a bag as regular functions, but on entire bags.

Consider the query ‘What players participated in the tournament :t12?’;

AMOS 63>players(participating_teams(:t12));

The function participating_teams is applied on the object :t12. With the data stored in the database at
this point participating_teams returns two objects, :bra82 and :ita82.

Then the function players is applied on each one of the two objects returned from the call
participating_teams, :bra82 and :ita82. players(:bra82) returns two objects, :p1 and :p2. play-
ers(:ita82) returns a single object, :p3.

Thus the result of the complete AMOSQL query above is three objects bound to the environame vari-
ables :p1, :p2, and :p3.

Compare this with the query ‘How many teams participated in tournament :t12?’:

AMOS 64>count(participating_teams(:t12));

In this case the function count is applied once on the entire bag of objects from participating_teams,
not once per result from participating_teams. The reason is that count is defined to take a bag of
objects as argument:

create function count(Bag of Object x)->Integer r as ...

Nested queries can be used as arguments to aggregate functions. The following command answers the
query ‘How many own goals have been made?’:

AMOS 65>sum(select own_goals(p, m) from Player p, Match m);

8. Miscellaneous

8.1 System functions

Several useful functions are predefined in AMOS II. See [3] for a complete list of these. Here we only
give some examples of how they can be used:

AMOS 66>plus(7,4);
AMOS 67>7+4;

Most arithmetic functions can be written either in prefix or infix notation. Other examples of arith-
metic functions are minus (-), times (*), div (/), and mod.

AMOS 68>max(7, 4);

max and min returns the largest and the smallest of two objects, respectively. This is different from
maxagg and minagg that return the largest and smallest object from a bag of objects. Notice that com-
parison is defined not only for numbers, but actually for any kind of object. For example:

max(‘a’,’b’);

14

returns the string ‘b’.

AMOS 69>select year(t)
from Tournament t
where year(t)>1945;

The comparison functions <, >, =, !=, >=, and <= are written in infix notation.

The comparison functions can be applied on numbers, strings, and any kind of objects. The result of
comparing two arbitrary OIDs is, however, undefined (actually the internal OID numbers are then
compared).

AMOS 70>typenamed(’Player’);

returns the type having the name ‘Player’.

AMOS 71>cardinality(typenamed(’Player’));

returns the number of objects of the type named Player.

AMOS 72>allfunctions(typenamed(‘Player’));

returns all currently defined functions where some argument or result is of type Player.

9. More about the query language

9.1 Environment variables

It is possible to assign the value of a query to an environment variable.

AMOS 73>select c into :c
from Country c, Tournament t
where c=host(t)

and year(t)=1982;

AMOS 74>name(:c);

One of the tuples retrieved that fulfill the selection criteria will be assigned. If the select statemnt
returns many tuples it is undefined which one is assigned.

9.2 Examples of queries

In the file ‘wcdata.amosql’ there are AMOSQL commands that populate the database. Read and exe-
cute these commands with these commands:

AMOS 75>< ’../demo/wcdata.amosql’;

Next follows some examples of somewhat more complicated queries:

1. ’In what tournaments did Sweden participate?’

AMOS 76>select year(t)
from Tournament t
where name(represents(participating_teams(t)))=’Sweden’;

2. ’How many games have been played by Sweden?’

AMOS 77>count(select m
from Match m
where name(represents(participating_teams(m)))=’Sweden’);

15

3. ’What is the total number of goals made by Sweden?’

AMOS 78>sum(select goals(t, m)
from Team t, Match m
where name(represents(t))=’Sweden’);

4. ’In what games were most goals made?’

A good start is to define a derived function goals that returns the total number of goals in a match. We
make a first attempt:

AMOS 79>create function goals1(Match m)->Integer as
select goals(t1, m) + goals(t2, m)
from Team t1, Team t2;

AMOS 80>goals1(:m1);

In the match :m1 Italy made three goals and Brazil two. The answer to the query thus ought to be ‘5’.
As the function is currently define t1 and t2 can also be bound to the same team and therefore the erro-
neous answers ‘4’ and ‘6’ are returned. Thus we have to specify that t1 and t2 are different teams:

AMOS 81>create function goals2(Match m)->Integer as
select goals(t1, m) + goals(t2, m)
from Team t1, Team t2
where t1 != t2;

AMOS 82>goals2(:m1);

The function is no longer returning illegal answers but instead it returns the correct answer twice. In
one case t1 is bound to Italy and t2 to Brazil. In the other case t2 is bound to Italy and t1 to Brazil. To
only use one of these cases we can use ‘<‘ rather than ‘!=’. The comparison function ‘<‘ can be used
for comparing any kind of object and it thus can order any objects.

AMOS 83>create function goals(Match m)->Integer as
select goals(t1, m) + goals(t2, m)
from Team t1, Team t2
where t1 < t2;

AMOS 84>goals(:m1);

We can now specify the original query:

AMOS 85>select m
from Match m
where goals(m)=maxagg(select goals(m1) from Match m1);

The answer is not very informative. We therefore define the function matchinfo that, given a certain
match, returns a tuple of each participating team, how many goals the team made, and what year the
match was played. Then we ask the query once more:

AMOS 86>create function matchinfo(Match m)->(Charstring n1,
Integer g1, Charstring n2, Integer g2, Integer y) as

select name(represents(t1)), goals(t1, m),
name(represents(t2)), goals(t2, m), year(played_in(m))

from Team t1, Team t2
where participating_teams(m)=t1

and participating_teams(m)=t2
and t1 < t2;

AMOS 87>select matchinfo(m)
from Match m

16

where goals(m)=maxagg(select goals(m1) from Match m1);

5. ’In what matches were more than ten goals made?’

AMOS 88>select matchinfo(m)
from Match m
where goals(m)>=10;

10. Exercises

If you typed something illegal or if there is some error you can recreate the saved correct database with
the OS command:

amos2 wc.dmp

In Table 1 there is an overview of the types and functions that are defined.

1. Make a derived function ref_name(Match)->Charstring that, given a certain match, returns the
name of the referee that refereed the match.

2. Create a derived function referees(Charstring)->Charstring that, given the name of a certain
player, returns the names of the referees that refereed games where that player participated.

3. Who were the referees in the games where Tomas Brolin played? Use the derived function from
the question above.

4. Which years were World Cup tournaments played?

5. A team is trained by a trainer. A trainer has a name and a salary. Create the types and functions
needed to model this. Create a trainer object too. Store name and salary for the created trainer.
Specify thereafter an AMOSQL command showing the name and salary for all trainers.

6. How many times did Mexico arrange the World Cup?

7. What match had the most spectators? Assign the environment variable :m to the answer. Then use
:m to retrieve the number of spectators and what teams that played in that match (use the function
matchinfo).

8. What games did Sweden win?

9. How many goals did Kurt Hamrin make?

10. Create a function that returns the matches in which a given team was playing. Create another func-
tion computing the total number of goals for a given team. Use the function to compute the name
of the country in the database making most goals.

11. How many players are members of several teams? (There are no such players in the database, so
you need to add some to test your query.)

Types Functions

Tournament year(Tournament) -> Integer

host(Tournament) -> Country

participating_teams(Tournament) -> Team

Country name(Country) -> Charstring

Person name(Person) -> Charstring

Referee (subtype of Person)

Player (subtype of Person) goals(Player, Match) -> Integer

17

Table 1: Type and function definitions

11. Referenses

1 D.H.Fishman. et al.: ‘Overview of the Iris DBMS’, Object-Oriented Concepts, Databases and

Applications, W. Kim, F.H. Lochovsky (eds.), ACM Press, Addison-Wesley, 1989.

2 Tore Risch, Vanja Josifovski, Timour Katchaounov : AMOS II Concepts,

http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf

3 Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov, Tore Risch, and Martin

Sköld: Amos II Release 10 User's Manual,

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html

own_goals(Player, Match) -> Integer

Team represents(Team) -> Country

players(Team) -> Player

goals(Team, Match) -> Integer

Match refereed_by(Match) -> Referee

played_in(Match) -> Tournament

spectators(Match) -> Integer

player_participations(Match) ->
XX(Player, Integer goals, Integer own_goals)

participating_players(Match) -> Player

team_participations(Match) -> (Team, Integer goals)

participating_teams(Match m) -> Team

goals(Match) -> Integer

matchinfo(Match) ->
XX(Charstring c1, Integer g1, Charstring c2, Integer g2,Integer y)

Types Functions

