DATABASDESIGN FÖR INGENJÖRER - 1056F

Sommar 2005

En introduktionskurs i databassystem

http://user.it.uu.se/~udbl/dbt-sommar05/
alt. http://www.it.uu.se/edu/course/homepage/dbdesign/st05/

Kjell Orsborn (Ruslan Fomkin)
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden
Introduction to Relational Algebra

Elmasri/Navathe ch 6

Kjell Orsborn &
Ruslan Fomkin

Department of Information Technology
Uppsala University, Uppsala, Sweden
Query languages

• Languages where users can express what information to retrieve from the database.

• Categories of query languages:
 – Procedural
 – Non-procedural (declarative)

• Formal ("pure") languages:
 – Relational algebra
 – Relational calculus
 • Tuple-relational calculus
 • Domain-relational calculus
 – Formal languages form underlying basis of query languages that people use.
Relational algebra

- **Relational algebra** is a procedural language
- Operations in relational algebra takes one or two relations as arguments and return a new relation.
- Relational algebraic operations:
 - Operations from set theory:
 - Union, Intersection, Difference, Cartesian product
 - Operations specifically introduced for the relational data model:
 - Select, Project, Join
- It have been shown that the *select, project, union, difference*, and *cartesian product* operations form a complete set. That is any other relational algebra operation can be expressed in these.
Operations from set theory

• Relations are required to be **union compatible** to be able to take part in the union, intersection and difference operations.

• Two relations R_1 and R_2 is said to be union-compatible if:

$$R_1 \subseteq D_1 \times D_2 \times \ldots \times D_n \text{ and } R_2 \subseteq D_1 \times D_2 \times \ldots \times D_n$$

i.e. if they have the same degree and the same domains.
Union operation

- The **union** of two union-compatible relations \(R \) and \(S \) is the set of all tuples that either occur in \(R \), \(S \), or in both.
- Notation: \(R \cup S \)
- Defined as: \(R \cup S = \{ t \mid t \in R \text{ or } t \in S \} \)
- For example:

\[
\begin{array}{c|c}
A & B \\
\hline
a & 1 \\
a & 2 \\
b & 1 \\
\end{array}
\cup
\begin{array}{c|c}
A & B \\
\hline
a & 2 \\
b & 3 \\
\end{array}
= \begin{array}{c|c}
A & B \\
\hline
a & 1 \\
a & 2 \\
b & 1 \\
b & 3 \\
\end{array}
\]
Difference operation

- The **difference** between two union-compatible sets R and S is the set of all tuples that occur in R but not in S.
- Notation: $R - S$
- Defined as: $R - S = \{t \mid t \in R \text{ and } t \notin S\}$
- For example:
Intersection

• The **intersection** of two union-compatible sets R and S, is the set of all tuples that occur in both R and S.
• Notation: $R \cap S$
• Defined as: $R \cap S = \{t \mid t \in R \text{ and } t \in S\}$
• For example:
Cartesian product

- Let R and S be relations with k1 and k2 arities resp. The **cartesian product** of R and S is the set of all possible \(k_1 + k_2 \) tuples where the first \(k_1 \) components constitute a tuple in R and the last \(k_2 \) components a tuple in S.
- Notation: \(R \times S \)
- Defined as: \(R \times S = \{ t \, q \mid t \in R \text{ and } q \in S \} \)
- Assume that attributes of \(r(R) \) and \(s(S) \) are disjoint (i.e. \(R \cap S = \perp \)). If attributes of \(r(R) \) and \(s(S) \) are not disjoint, then renaming must be used.
Cartesian product example

\[
\begin{array}{ccc}
A & B & C & D \\
\hline
a & 1 & a & 5 \\
b & 2 & b & 5 \\
\end{array}
\]

\[
\begin{array}{ccc}
A & B & C & D \\
\hline
a & 1 & a & 5 \\
b & 1 & b & 5 \\
a & 1 & b & 6 \\
a & 1 & c & 5 \\
b & 2 & a & 5 \\
b & 2 & b & 5 \\
b & 2 & b & 5 \\
b & 2 & c & 5 \\
\end{array}
\]

\[A \times B = C \times D\]
Selection operation

- The selection operator, σ, selects a specific set of tuples from a relation according to a selection condition (or selection predicate) P.
- Notation: $\sigma_p(R)$
- Defined as: $\sigma_p(R) = \{ t \mid t \in R \text{ AND } P(t) \}$ (i.e. the set of tuples t in R that fulfills the condition P)
- Where P is a logical expression (*) consisting of terms connected by:
 \land (and), \lor (or), \lnot (not)
 and each term is one of:
 $<$attribute$>$ op $<$attribute$>$ or $<$constant$>$
 where op is one from the set $\{=, \leq, \geq, >, \neq\}$

Example: $\sigma_{\text{SALARY}>3000}(\text{EMPLOYEE})$

(*) a formula in propositional calculus
Selection example

\[R = \begin{array}{cccc}
A & B & C & D \\
\text{a} & \text{a} & 1 & 7 \\
\text{a} & \text{b} & 5 & 7 \\
\text{b} & \text{b} & 2 & 3 \\
\text{b} & \text{b} & 4 & 9 \\
\end{array} \]

\[\sigma_{A=B \land D>5}(R) = \begin{array}{cccc}
A & B & C & D \\
\text{a} & \text{a} & 1 & 7 \\
\text{b} & \text{b} & 4 & 9 \\
\end{array} \]
Projection operation

• The projection operator, π, picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.

• Notation: $\pi_{A_1,A_2,...,A_k}(R)$
 where A_1, A_2 are attribute names and R is a relation name.

• The result is a new relation of k columns.

• Duplicate rows removed from result, since relations are sets.

Example: $\pi_{\text{LNAME, FNAME, SALARY}}(\text{EMPLOYEE})$
Projection example

\[R = \begin{array}{ccc}
A & B & C \\
a & 1 & 1 \\
a & 2 & 1 \\
b & 3 & 1 \\
b & 4 & 2 \\
\end{array} \]

\[\pi_{A,C}(R) = \begin{array}{cc}
A & C \\
a & 1 \\
b & 1 \\
b & 2 \\
\end{array} \]
Join operator

• The **join** operator creates a new relation by joining related tuples from two relations.

• Notation: \(R \bowtie_C S \)

 \(C \) is the join condition which has the form \(A_r \Theta A_s \), where \(\Theta \) is one of \(\{=, <, >, \leq, \geq, \neq\} \). Several terms can be connected as \(C_1 \wedge C_2 \wedge \ldots C_k \).

• A join operation with this kind of general join condition is called “Theta join”.
Example Theta join

\[
R \bowtie_{A \leq D} S
\]

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

\[
R \bowtie_{A \leq D} S
\]

<table>
<thead>
<tr>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Equijoin

- The same as join but it is required that attribute A_r and attribute A_s should have the same value.
- Notation: $R \bowtie_C S$

C is the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \land C_2 \land \ldots C_k$.
Example Equijoin

\[
\begin{array}{c|c}
A & B \\
\hline
a & 2 \\
a & 4 \\
\end{array}
\quad \bowtie_{B=C}
\quad \begin{array}{c|c|c}
C & D & E \\
\hline
2 & d & e \\
4 & d & e \\
9 & d & e \\
\end{array}
\quad =
\quad \begin{array}{c|c|c|c|c}
A & B & C & D & E \\
\hline
a & 2 & 2 & d & e \\
a & 4 & 4 & d & e \\
\end{array}
\]
Natural join

- **Natural join** is equivalent with the application of join to R and S with the equality condition $A_r = A_s$ (i.e. an equijoin) and then removing the redundant column A_s in the result.

- Notation: $R \star_{A_r,A_s} S$

A_r, A_s are attribute pairs that should fulfil the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \land C_2 \land \ldots C_k$.

Example Natural join

R

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
</tr>
</tbody>
</table>

*S*__{B,C}

S

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>9</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

R*_{_B,C}S

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\sigma_{A=C} (R \times S)$

$$R \times S = \begin{array}{cc} A & B \\ a & 1 \\ b & 2 \end{array} \times \begin{array}{cc} C & D \\ a & 5 \\ b & 5 \\ c & 6 \end{array} = \begin{array}{cc} A & B \\ a & 1 \\ b & 2 \\ c & 5 \end{array}$$

$$\sigma_{A=C} (R \times S) = \begin{array}{cccc} A & B & C & D \\ a & 1 & a & 5 \\ b & 2 & b & 5 \\ b & 2 & b & 6 \end{array}$$
Assignment operation

• The assignment operation (P) makes it possible to assign the result of an expression to a temporary relation variable.

• Example:

\[
\text{temp } P \quad \sigma_{dno = 5}(\text{EMPLOYEE})
\]

\[
\text{result } P \quad \pi_{\text{fname, lname, salary}}(\text{temp})
\]

• The result to the right of the P is assigned to the relation variable on the left of the P.

• The variable may use variable in subsequent expressions.
Renaming relations and attribute

• The assignment operation can also be used to rename relations and attributes.

• Example:
 \[\text{NEWEMP \ P \ \sigma_{\text{dno} = 5}(\text{EMPLOYEE})} \]
 \[\rho_{\text{FIRSTNAME, LASTNAME, SALARY}} \ \pi_{\text{fname, lname, salary}} \ (\text{NEWEMP}) \]
Division operation

• Suited to queries that include the phrase “for all”.
• Let R and S be relations on schemas R and S respectively, where
 $R = (A_1,\ldots,A_m,B_1,\ldots,B_n)$
 $S = (B_1,\ldots,B_n)$
• The result of $R \div S$ is a relation on schema
 $R - S = (A_1,\ldots,A_m)$
 $R \div S = \{t | t \in \pi_{R-S}(R) \ \forall u \in S \land tu \in R\}$
Example Division operation

\[R \div S = R \div S \]

\[
\begin{array}{c|c}
A & B \\
\hline
a & 1 \\
1 & 2 \\
abc & 3 \\
11 & 1 \\
abcd & 3 \\
111 & 1 \\
dddd & 4 \\
1111 & 1 \\
ede & 6 \\
1 & 2 \\
\end{array}
\quad \div \quad
\begin{array}{c|c}
B & \\
\hline
1 & 1 \\
2 & 2 \\
\end{array}
\quad = \quad
\begin{array}{c|c}
A & \\
\hline
a & \\
e & \\
\end{array}
\]
Relation algebra as a query language

• Relational schema: \textit{supplies}(sname, iname, price)

• “What is the names of the suppliers that supply cheese?”
 \[\pi_{sname}(\sigma_{iname='CHEESE'}(SUPPLIES)) \]

• “What is the name and price of the items that cost less than 5 \$\textit{ and that are supplied by WALMART}”
 \[\pi_{iname,price}(\sigma_{sname='WALMART' \land price < 5} (SUPPLIES)) \]