Uu - IT - UDBL 1

DATABASE TECHNOLOGY - 1DL124

Summer 2007

An 1ntroductury course on database systems

http://user.it.uu.se/~udbl/dbt-sommar2007/
alt. http://www.it.uu.se/edu/course/homepage/dbdesign/st07/

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 2

Introduction to SQL

Elmasri/Navathe ch 8
Padron-McCarthy/Risch ch 7,8,9

Kjell Orsborn

Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 3

The SQL database language

e SQL - (Structured Query Language)

e Was first developed by IBM in the early 70’s at their San Jose
Research Lab. It was called Sequel and was implemented as part
of their System R project.

e Current version of the ISO/ANSI SQL standard 1s SQL-99 (the
earlier SQL-92 1s a subset the standard).

 SQL has become the main language in commercial RDBMS.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL

Parts of the SQL language

 SQL include several subparts

DDL

Interactive DML
e Queries: SELECT

e Updates: INSERT, DELETE,
UPDATE

Embedded DML
View definition
Authorizaton
Integrity

Transaction control

SQL (E/N chapter 8)

Basic Structure

Set Operations
Aggregate Functions
Null Values

Nested Subqueries
Derived Relations

Views

Modification of the Database
Joined Relations

Data Definition

Schema Evolution
Additional SQL Features

Kjell Orsborn

6/27/07

UNIVERSITET

Uu - IT - UDBL 5

Basic structure

 SQL is based on set and relational operations with certain
modifications and enhancements.

e A typical SQL query has the form:

select A ,A,,...,A,
fromr,,r,,...,r,
where P

— A/ 's represent attributes
— r/'s represent relations

— P s a predicate.
e This 1s equivalent to the relational algebra expression:
HA1, Ao, ..., An (OP (r1 sz Xoow X rm))

e The result of an SQL query is a relation.

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL

Banking example revisited

e Again we use the bank schema in subsequent examples
- branch (branch_name,branch_city,assets)

- customer (customer_name,customer_street,customer_city)
- account (branch_name,account_number,balance)

« Joan (branch_name,loan_number,amount)

- depositor (customer_name,account_number)

- borrower (customer_name,loan_number)

Kjell Orsborn 6/27/07

UNIVERSITET

UU - IT - UDBL 7

The select clause

The select clause corresponds to the projection operation of the relational algebra. It is
used to list the attributes desired in the result of a query.

— E.g. find the names of all branches in the loan relation:
select branch_name from loan

In “pure” relational algebra syntax, this query would be: IT,,...n pame (l0an)
An asterisk (*) in the select clause denotes “all attributes”:
select * from /oan

SQL allows duplicates in relations as well as in query results. To force the elimination
of duplicates, insert the keyword distinct after select.
— E.g. find the names of all branches in the loan relation, and remove duplicates:
select distinct branch_name from loan
The keyword all specifies that duplicates will not be removed:
select all branch_name from loan
The select clause can also contain arithmetic expressions involving the operators, +, -,
* and /, operating on constants or attributes of tuples.

— E.g. the following query returns the loan relation with the amount attribute multiplied by 100:
select branch_name, loan_number, amount * 100 from Joan

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 8

The where clause

The where clause corresponds to the selection predicate of the relational
algebra. It consists of a predicate involving attributes of the relations that
appear in the from clause.

— Find all loan numbers for loans made at the Perryridge branch with loan amounts
greater than $1200:

select /oan_number

from /oan

where branch_name = “Perryridge” and amount> 1200
SQL uses the logical connectives and, or, (and not). It allows the use of
arithmetic expressions as operands to the comparison operators.

SQL includes a between comparison operator in order to simplify where
clauses that specify that a value be less than or equal to some value and
greater than or equal to some other value.
— Find the loan number of those loans with loan amounts between $90,000 and
$100,000 (that is, = $90,000 and <$100,000)

select /oan _number from loan
where amount between 90000 and 100000

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 9

The from clause

e The from clause corresponds to the Cartesian product operation
of the relational algebra. It lists the relations to be scanned when
evaluating the whole select expression.

e Find the Cartesian product borrower x loan:
select * from borrower, loan

e Find the name and loan number of all customers having a loan
at the Perryridge branch:

select distinct customer_name, borrower.loan_number
from borrower, loan
where borrower.loan _number = loan.loan _number and

branch_name = “Perryridge”

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 10

The rename operation

e The SQL mechanism for renaming relations and attributes 1s
accomplished through the as clause:

old-name as new-name

e Find the name and loan number of all customers having a loan
at the Perryridge branch; replace the column name loan_number
with the name lid.

select distinct customer_name, borrower.loan_number as lid

from borrower, loan

where borrower.loan_number = loan.loan_number and
branch_name = “Perryridge”

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 11

Tuple variables

e Tuple variables are defined in the from clause via the use of the
as clause.

e Find the customer names and their loan numbers for all
customers having a loan at some branch.

select distinct customer_name, T.loan_number
from borroweras T, loanas S
where T./oan _number = S.loan _number

e Find the names of all branches that have greater assets than
some branch located in Brooklyn.

select distinct 7.branch _name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = “Brooklyn”

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 12

String operations

e SQL includes a string-matching operator for comparisons on
character strings. Patterns are described using two special
characters:

— percent (%). The % character matches any substring.

— underscore (_). The _ character matches any character.
e Find the names of all customers whose street includes the
substring “Main’:

select customer name
from customer
where customer street like “Y%oMain%”

e Match the name “Main%"’’:
like “Main\%” escape “\’

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 13

Ordering the display of tuples

e List in alphabetic order the names of all customers having a loan
at Perryridge branch:

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = “Perryridge”
order by customer_name asc (desc)
* We may specity desc for descending order or asc for ascending

order, for each attribute; ascending order 1s the default.

e SQL must perform a sort to fulfill an order by request. Since
sorting a large number of tuples may be costly, it is desirable to
sort only when necessary.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 14

Set operations

e The set operations union, intersect, and except operate on
relations and correspond to the relational algebra operations U,
M, and —.

e Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding
multiset (sets with duplicates) versions union all, intersect all
and except all.

e Suppose a tuple occurs m times in r and n times in s, then, it
OCCurs:

— m + n times in 7 union all s

— min(m, n) times in r intersect all s

— max(0, m - n) times in r except all s

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

uu -

IT - UDBL 15

Set operations cont.

Find all customers who have a loan, an account, or both:

(select customer_name from depositor)
union
(select customer_name from borrower)

Find all customers who have both a loan and an account;:

(select customer_name from depositor)
intersect
(select customer_name from borrower)

Find all customers who have an account but no loan:

(select customer_name from depositor)
except
(select customer_name from borrower)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 16

Aggregate functions

* These functions operate on the multiset of values of a column of a relation, and return

a value

avg : average value
min : minimum value
max : maximum value
sum : sum of values
count : number of values

e Find the average account balance at the Perryridge branch.

select avg (balance)
from account
where branch_name = “Perryridge”

e Find the number of tuples in the customer relation.

select count (*)
from customer

e Find the number of depositors in the bank

select count (distinct customer_name)
from depositor

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 17

Aggregate functions - group by

e Find the number of depositors for each branch:

select branch_name, count (distinct customer_name)

from depositor, account

where depositor.account_number = account.account_number
group by branch_name

e Note: Attributes in select clause outside of aggregate functions
must appear in group by list.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 18

Aggregate functions - having

e Find the names of all branches where the average account
balance is more than $1,200

select branch_name , avg (balance)
from account

group by branch_name

having avg (balance) > 1200

e Note: predicates in the having clause are applied after the
formation of groups

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 19

Null values

— It is possible for tuples to have a null value, denoted by null, for some of their attributes;
null signifies an unknown value or that a value does not exist.

— The result of any arithmetic expression involving null is null and comparisons involving
null return unknown:

(true or unknown) = true,

(false or unknown) = unknown,

(unknown or unknown) = unknown,

(frue and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown
— Result of the where clause predicate is treated as false if it evaluates to unknown and “P
is unknown” evaluates to true if predicate P evaluates to unknown.

— Find all loan numbers which appear in the loan relation with null values for amount:
select /oan_number from loan where amount is null

— Find the total all loan amounts:

select sum (amount) from loan

— The statement above ignores null amounts; result is null if there is no non-null amount.
All aggregate operations except count(*) ignore tuples with null values on the aggregated

attributes.

UPPSALA
Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 20

Nested subqueries

 SQL provides a mechanism for the nesting of subqueries.

* A subquery is a select-from-where expression that is nested
within another query.

e A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 21

Set membership

e Finre dr €ra (t=F)

0
(51In 4) = true
5
0
(51in 4) = false
6
0
(5 not in 4 |)=true
6

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 22

Example query

e Find all customers who have both an account and a loan at bank.
select distinct customer_name
from borrower
where customer_name in (select customer_name
from depositor)

 Find all customers who have a loan at the bank but do not have
an account at the bank.

select distinct customer name
from borrower

where customer_name not in (select customer_name
from depositor)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 23

Example query

e Find all customers who have both an account and a loan at the
Perryridge branch.

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = “Perryridge” and
(branch_name, customer_name) in
(select branch_name, customer_name
from depositor, account
where depositor.account_number =
account.account_number)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 24

Set comparison

* Find all branches that have greater assets than some branch
located in Brooklyn:

select distinct 7. branch _name
from branch as T, branchas S
where T.assets > S.assets and S.branch_city = “Brooklyn”

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 25

The some clause

e F<comp>somer < dr (tEr A [F=<comp>t])
where <comp> can be: <, <, >, =, <>, =

0
(5<some | 5 [=true (read: 5 < some tuple in the relation)
6
(5 < some g = false
0

(5 =some 5 |=true

(5 <> some g true (since 0 # 5)

e Also (= some) = in, but (<> some) # not in

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 26

Example query

* Find all branches that have greater assets than some branch
located in Brooklyn.

select branch_name

from branch

where assets > some (select assets from branch
where branch_city = “Brooklyn”)

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL

27

The all clause

e F<comp>allr & Vit (t&€r A [F=<comp>t])

0
(5<all | 5 |) =false
6

(5 < all) = true

6
9

4

(5 = all 5

(5 <> all

) = false

4
6

) = true (since 5 4, 6)

e Note that (<> all) = not in, but (= all) 2 in

UPPSALA

Kjell Orsborn

6/27/07

UNIVERSITET

UU - IT - UDBL 28

Example query

* Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch_name

from branch

where assets > all (select assets from branch
where branch_city = “Brooklyn”)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 29

Test for empty relations

e The exists construct returns the value frue if the argument
subquery 1s nonempty.

e existsrer+ 0
 notexistsrer =g

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 30

Example query

e Find all customers who have an account at all branches located in
Brooklyn.

select distinct S.customer_name

from depositoras S

where not exists

((select branch_name from branch
where branch_city = “Brooklyn”)
except
(select R.branch_name
from depositoras T, accountas R
where T.account_number= R.account_number and
S.customer_name = T.customer_name))

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 31

Test for absence of duplicate tuples

* The unique construct tests whether a subquery has any duplicate
tuples 1n 1its result.

e Find all customers who have only one account at the Perryridge
branch.

select 7.customer_name
from depositoras T
where unique (select R.customer_name
from account,depositor as R
where T.customer_name = R.customer_name and
R.account_number = account.account_number and
account.branch_name = “Perryridge”)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 32

Another example query

 Find all customers who have at least two accounts at the
Perryridge branch.

select distinct 7.customer_name
from depositor T
where not unique (
select R.customer_name
from account,depositor as R
where T.customer_name = R.customer_name and
R.account_number = account.account_number and
account.branch_name = “Perryridge”)

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 33

Derived relations

e Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch_name, avg_balance
from (select branch_name, avg (balance)
from account
group by branch_name)
as result (branch_name,avg_balance)
where avg_balance > 1200

* Note that we do not need to use the having clause, since we
compute in the from clause the temporary relation result, and the
attributes of result can be used directly in the where clause.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 34

Views

e Provides a mechanism to hide certain data from the view of certain users. To
create a view we use the command:

create view viewname as <query expression>
where: <query expression> is any legal expression.

e Create a view consisting of branches and their customers:

create view all_customer as

(select branch_name, customer_name

from depositor, account

where depositor.account_number =
account.account_number)

union

(select branch_name, customer_name

from borrower, loan

where borrower.loan_number = loan.loan_number)

e Find all customers of the Perryridge branch:

select customer_name
from all_customer
where branch_name = “Perryridge”

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 35

Modification of the database

e INSERT - insert new tuples into a table
e UPDATE - update qualified column values in tables

e DELETE - removes qualified tuples from table

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 36

Modifying the database — insertion

e Syntax: insert into fable [(column_list)] values (value_list)
insert into table [(column_lisf)] select ... from ... where ...

e Add a new tuple to account:
insert into account values (“Perryridge”, A-9732, 1200)
e or equivalently:

insert into account (branch_name, balance, account_number)
values (“Perryridge”, 1200, A-9732)

e Add a new tuple to account with balance set to null:
insert into account values (“Perryridge”, A-777,null)

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 37

Modifying the database — insertion

e Provide as a gift for all loan customers of the Perryridge branch, a $200
savings account. Let the loan number serve as the account number for the
new savings account.

insert into account

select branch_name, loan_number, 200
from /oan

where branch_name = “Perryridge”

insert into depositor

select customer_name,loan_number

from /oan, borrower

where branch_name = “Perryridge”

and /oan.account_number = borrower.account_number

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 38

Modifying the database — updates

* Syntax: update table set column_name = value, ... [where ...];

e Increase all accounts with balances over $10,000 by 6%, all other accounts receive
5%.

e Write two update statements:
update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance = 10000

— The order is important.
— Can be done better using the case statement.

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 39

Update of a view

e C(Create a view of all loan data in the loan relation, hiding the
amount attribute:

create view branch loan as
select branch_name, loan_number
from /oan

e Add a new tuple to branch_loan:
insert into branch_loan
values (“Perryridge”, “L-307”)

e This insertion must be represented by inserting into the loan
relation the tuple:
(“Perryridge”, “L-307”, null)

e Updates on more complex views are difficult or impossible to
translate, and hence are disallowed.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 40

Modifying the database — deletion

* Syntax: delete from table [where ...];

e Delete all account records at the Perryridge branch.
delete from account where branch_name = “Perryridge

7

e Delete all accounts at every branch located in Needham.

delete from account
where branch_name in (select branch_name
from branch
where branch_city = “Needham”)
delete from depositor
where account_numberin
(select account_number
from branch, account
where branch_city = “Needham” and
branch.branch_name = account.branch_name)

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 41

Example query

e Delete the records of all accounts with balances below the
average at the bank.

delete from account
where balance < (select avg (balance) from account)

— Problem: as we delete tuples from deposit, the average balance changes
— Solution used in SQL.:
1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 42

Update of a view

e C(Create a view of all loan data in the loan relation, hiding the
amount attribute:

create view branch loan as
select branch_name, loan_number
from /oan

e Add a new tuple to branch_loan:
insert into branch_loan
values (“Perryridge”, “L-307”)

e This insertion must be represented by inserting into the loan
relation the tuple:
(“Perryridge”, “L-307”, null)

e Updates on more complex views are difficult or impossible to
translate, and hence are disallowed.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 43

Joined relations

e Join operations take two relations and return as a result another
relation.

e These additional operations are typically used as subquery
expressions in the from clause.

e Join condition — defines which tuples in the two relations match, and
what attributes are present in the result of the join.

e Join type — defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated.

e Join types Join conditions
— inner join natural
— left outer join on <predicate>
— right outer join using (A, A,, ..., A,)

— full outer join

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL

44

e Relation loan

Joined relations
datasets for examples

branch _name

loan _number amount

Downtown
Redwood
Perryridge

L-170 3000
L-230 4000
L-260 1700

e Relation borrower

customer_name

loan _number

Jones
Smith
Hayes

L-170
L-230
L-155

Kjell Orsborn

6/27/07

UPPSALA
UNIVERSITET

Uu - IT - UDBL

45

Joined relations — examples

loan inner join borrower on

loan.loan _number = borrower.loan _number

branch _name loan _number amount customer _name | loan_number
Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230

loan left outer join borrower on
loan.loan _number = borrower.loan _number

branch _name loan _number amount customer _name | loan_number
Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230
Perryridge L-260 1700 null null

s
g
S
31

Kjell Orsborn

6/27/07

UPPSALA
UNIVERSITET

Uu - IT - UDBL

Joined relations — examples

loan natural inner join borrower

branch _name loan _number amount customer _name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith

loan natural right outer join borrower

branch _name loan _number amount customer _name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
null L-155 null Hayes

UPPSALA

Kjell Orsborn

6/27/07

UNIVERSITET

Uu - IT - UDBL

Joined relations — examples

loan natural full outer join borrower using (loan_number)

branch _name loan _number amount customer_name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
Perryridge L-260 1700 null
null L-155 null Hayes

e Find all customers who have either an account or a loan (but not

both) at the bank.

select customer name
from (depositor natural full outer join borrower)
where account number is null or loan number is null

Kjell Orsborn

6/27/07

UNIVERSITET

UuU - IT - UDBL 48

Data Definition and Schema Evolution

e Data definition include the specification of a database schema as
well as descriptors for each element in the schema including,
tables, constraints, views, domains, indexes, and other contructs
such as authorization and physical storage structures.

 Example:

create schema company authorization kjell;

e SQL also uses the catalog concept to refer to a named collection
of schemas

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 49

Creating relations in SQL

e Relations or tables are created using the CREATE TABLE
command that specifies a relation by name, attributes and
constraints.

e Attributes have a name, a data type (its value domain) and
possible constraints.

* Key, entity integrity, and referential integrity constraints can
also be specified.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 50

Data types and domains

— Data types in SQL:
+ char(n). Fixed length character string, with user-specified length n.
« varchar(n). Variable length character strings, with user-specified maximum length n.
+ int. Integer (a finite subset of the integers that is machine-dependent).
« smallint. Small integer (a machine-dependent subset of the integer domain type).

* numeric(p,d). Fixed point number, with user-specified precision of p digits, with n digits to the right of
decimal point.

+ real, double precision. Floating point and double-precision floating point numbers, with machine-
dependent precision.

+ float(n). Floating point number, with user-specified precision of at least n digits.
-+ date. Dates, containing a (4 digit) year, month and date.
+ time. Time of day, in hours, minutes and seconds.
— Null values are allowed in all the domain types. Declaring an attribute to be not null prohibits
null values for that attribute.
— User-defined domain types can be explicitely defined in SQL-92 using a create domain
statement that can be reused in defining relations:
create domain person_name char(20) not null

Kjell Orsborn 6/27/07 UNIVERSITET

Uu - IT - UDBL 51

Create table construct

 An SQL relation is defined using the create table command:

create table r (A, D,,A, D,,...,A, D,,
integrity-constraint, i,

integrity-constraint, i)
— ris the name of the relation
— each A, is an attribute name in the schema of relation r

— D is the data type of values in the domain of attribute A,

 Example:

create table branch
(branch_name char(15) not null,
branch_city char(30),
assets integer)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 52

Integrity constraints create table

not null
primary key (A1,...,A n)
check (P), where P is a predicate

e E.g. declare branch_name as the primary key for branch and
ensure that the values of assets are non-negative.

create table branch
(branch_name char(15) not null,
branch_city char(30),
assets integer,
primary key (branch_name),
check (assets >= 0))

e primary key declaration on an attribute automatically ensures
not null in SQL-92

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 53

Schema evolution

e The drop schema command deletes all information about the
database schema from the database.

drop schema company cascade (restrict);

e The drop table command deletes all information about the
dropped relation from the database.

drop table dependent cascade (restrict);

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UU - IT - UDBL 54

Schema evolution cont...

 The alter table command is used to add attributes to an
existing relation. All tuples in the relation are assigned null
as the value for the new attribute. The form of the alter
table command i1s

alter table radd A D

where A 1s the name of the attribute be added to relation r
and and D i1s the domain of A.

e The alter table command can also be used to drop
attributes of a relation

alter table rdrop A

where A is the name of an attribute of relation r.

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

UuU - IT - UDBL 55

Additional SQL features

— Granting and revoking priviligies for database security and authorization
(ch 22)

— Embedded SQL and language bindings (C, C++, COBOL, Pascal)

— SQL transaction control commands to provide concurrency control and
recovery (ch 19, 20, 21)

— A series of commands for physical database design (storage definition
language - SDL)

UPPSALA

Kjell Orsborn 6/27/07 UNIVERSITET

