DATABASE TECHNOLOGY - 1DL116

Spring 2007

An introductory course on database systems

http://user.it.uu.se/~udbl/dbt-vt2007/
alt. http://www.it.uu.se/edu/course/homepage/dbastekn/vt07/

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden
Introduction to Relational Algebra

Elmasri/Navathe ch 6
Padron-McCarthy/Risch ch 10

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden
Query languages

- Languages where users can express what information to retrieve from the database.

- Categories of query languages:
 - Procedural
 - Non-procedural (declarative)

- Formal (“pure”) languages:
 - Relational algebra
 - Relational calculus
 - Tuple-relational calculus
 - Domain-relational calculus
 - Formal languages form underlying basis of query languages that people use.
Relational algebra

- **Relational algebra** is a procedural language
- Operations in relational algebra takes two or more relations as arguments and return a new relation.
- Relational algebraic operations:
 - Operations from set theory:
 - Union, Intersection, Difference, Cartesian product
 - Operations specifically introduced for the relational data model:
 - Select, Project, Join
- It have been shown that the *select, project, union, difference*, and *cartesian product* operations form a complete set. That is any other relational algebra operation can be expressed in these.
Operations from set theory

• Relations are required to be **union compatible** to be able to take part in the union, intersection and difference operations.

• Two relations R_1 and R_2 is said to be union-compatible if:

$$R_1 \subseteq D_1 \times D_2 \times ... \times D_n$$
$$R_2 \subseteq D_1 \times D_2 \times ... \times D_n$$

i.e. if they have the same degree and the same domains.
Union operation

- The **union** of two union-compatible relations R and S is the set of all tuples that either occur in R, S, or in both.
- Notation: $R \cup S$
- Defined as: $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$
- For example:

\[
\begin{array}{cc}
A & B \\
\hline
a & 1 \\
a & 2 \\
b & 1 \\
\end{array}
\quad \cup \quad
\begin{array}{cc}
A & B \\
\hline
a & 2 \\
b & 3 \\
\end{array}
= \begin{array}{cc}
A & B \\
\hline
a & 1 \\
a & 2 \\
b & 1 \\
b & 3 \\
\end{array}
\]
Difference operation

• The **difference** between two union-compatible sets R and S is the set of all tuples that occur in R but not in S.

• Notation: $R - S$

• Defined as: $R - S = \{t \mid t \in R \text{ and } t \notin S\}$

• For example:

\[
\begin{array}{c|c}
A & B \\
\hline
a & 1 \\
a & 2 \\
b & 1 \\
\end{array}
\quad - \quad
\begin{array}{c|c}
A & B \\
\hline
a & 2 \\
b & 3 \\
\end{array}
= \begin{array}{c|c}
A & B \\
\hline
a & 1 \\
b & 1 \\
\end{array}
\]
Intersection

- The **intersection** of two union-compatible sets \(R \) and \(S \), is the set of all tuples that occur in both \(R \) and \(S \).
- Notation: \(R \cap S \)
- Defined as: \(R \cap S = \{ t \mid t \in R \text{ and } t \in S \} \)
- For example:

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
a & 1 \\
a & 2 \\
b & 1 \\
\hline
\end{array}
\quad \cap
\quad
\begin{array}{|c|c|}
\hline
A & B \\
\hline
a & 2 \\
b & 3 \\
\hline
\end{array}
=
\begin{array}{|c|c|}
\hline
A & B \\
\hline
a & 2 \\
\hline
\end{array}
\]
Cartesian product

- Let R and S be relations with k_1 and k_2 arities resp. The **cartesian product** of R and S is the set of all possible k_1+k_2 tuples where the first k_1 components constitute a tuple in R and the last k_2 components a tuple in S.
- Notation: $R \times S$
- Defined as: $R \times S = \{ t \times q \mid t \in R \text{ and } q \in S \}$
- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (i.e. $R \cap S = \emptyset$). If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.
Cartesian product example

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
a & 1 \\
b & 2 \\
\hline
\end{array}
\times
\begin{array}{|c|c|}
\hline
C & D \\
\hline
a & 5 \\
b & 5 \\
b & 6 \\
c & 5 \\
\hline
\end{array}
= \begin{array}{|c|c|c|c|}
\hline
A & B & C & D \\
\hline
a & 1 & a & 5 \\
a & 1 & b & 5 \\
a & 1 & b & 5 \\
a & 1 & c & 5 \\
b & 2 & a & 5 \\
b & 2 & b & 6 \\
b & 2 & b & 5 \\
b & 2 & c & 5 \\
\hline
\end{array}
\]
Selection operation

- The selection operator, σ, selects a specific set of tuples from a relation according to a selection condition (or selection predicate) P.

- Notation: $\sigma_P(R)$

- Defined as: $\sigma_P(R) = \{ t \mid t \in R \text{ and } P(t) \}$ (i.e. the set of tuples t in R that fulfills the condition P)

- Where P is a logical expression(*) consisting of terms connected by:
 - \wedge (and), \vee (or), \neg (not)
 and each term is one of:
 - <attribute> op <attribute> or <constant>
 where op is one of: $=$, \neq, $>$, \geq, $<$, \leq

 Example: $\sigma_{\text{SALARY}>30000}(\text{EMPLOYEE})$

(*) a formula in propositional calculus
Selection example

\[R = \begin{array}{c|c|c|c}
A & B & C & D \\
\hline
a & a & 1 & 7 \\
a & b & 5 & 7 \\
b & b & 2 & 3 \\
b & b & 4 & 9 \\
\end{array} \]

\[\sigma_{A=B \land D > 5}(R) = \begin{array}{c|c|c|c}
A & B & C & D \\
\hline
a & a & 1 & 7 \\
b & b & 4 & 9 \\
\end{array} \]
Projection operation

- The projection operator, \(\Pi \), picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: \(\Pi_{A_1,A_2,...,A_k}(R) \) where \(A_1, A_2 \) are attribute names and \(R \) is a relation name.
- The result is a new relation of \(k \) columns.
- Duplicate rows removed from result, since relations are sets.

Example: \(\Pi_{LNAME,FNAME,SALARY}(EMPLOYEE) \)
Projection example

\[R = \begin{array}{ccc}
A & B & C \\
 a & 1 & 1 \\
a & 2 & 1 \\
b & 3 & 1 \\
b & 4 & 2 \\
\end{array} \]

\[\Pi_{A,C}(R) = \begin{array}{cc}
A & C \\
 a & 1 \\
a & 1 \\
b & 1 \\
b & 2 \\
\end{array} = \begin{array}{cc}
A & C \\
a & 1 \\
b & 1 \\
b & 2 \\
\end{array} \]
Join operator

- The **join** operator, \(\otimes \) (almost, correct \(\Join \)), creates a new relation by joining related tuples from two relations.
- Notation: \(R \otimes C \ S \)

 \(C \) is the join condition which has the form \(A_r \theta A_s \), where \(\theta \) is one of \(\{=, <, >, \leq, \geq, \neq\} \). Several terms can be connected as \(C_1 \land C_2 \land \ldots C_k \).
- A join operation with this kind of general join condition is called “Theta join”.
Example Theta join

\[
R \times_{A \leq D} S = R \otimes_{A \leq D} S
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Equijoin

• The same as join but it is required that attribute A_r and attribute A_s should have the same value.

• Notation: $R \bowtie C \ S$

 C is the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \land C_2 \land ... C_k$.
Example Equijoin

\[\text{R} \bowtie_{B=C} \text{S} = \text{R} \bowtie_{B=C} \text{S}\]
Natural join

- **Natural join** is equivalent with the application of join to R and S with the equality condition $A_r = A_s$ (i.e. an equijoin) and then removing the redundant column A_s in the result.

- Notation: $R \times_{A_r, A_s} S$

 A_r, A_s are attribute pairs that should fulfil the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \land C_2 \land \ldots C_k$.
Example Natural join

$$R \times_{B=C} S = R \ast_{B=C} S$$
Composition of operations

• Expressions can be built by composing multiple operations
• Example: $\sigma_{A=C}(R \times S)$

$$\begin{align*}
R \times S &= \begin{array}{c}
A \times B \\
a & 1 \\
b & 2 \\
\end{array} \times \begin{array}{c}
C \times D \\
a & 5 \\
b & 5 \\
\end{array} = \begin{array}{c}
A \times B \\
a & 1 \\
b & 1 \\
b & 1 \\
\end{array} \times \begin{array}{c}
C \times D \\
a & 5 \\
b & 5 \\
\end{array} \\
\sigma_{A=C}(R \times S) &= \begin{array}{c}
A \times B \\
a & 1 \\
b & 2 \\
b & 2 \\
\end{array} \times \begin{array}{c}
C \times D \\
a & 5 \\
b & 5 \\
\end{array} \\
\end{align*}$$
Assignment operation

- The assignment operation (←) makes it possible to assign the result of an expression to a temporary relation variable.
- Example:
 \[\text{temp} \leftarrow \sigma_{dno = 5} (\text{EMPLOYEE})\]
 \[\text{result} \leftarrow \Pi_{\text{fname,lname,salary}} (\text{temp})\]

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- The variable may be used in subsequent expressions.
Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example:

\[
\text{NEWEMP} \leftarrow \sigma_{\text{dno} = 5}(\text{EMPLOYEE})
\]

\[
R(\text{FIRSTNAME, LASTNAME, SALARY}) \leftarrow \Pi_{\text{fname, lname, salary}}(\text{NEWEMP})
\]
Division operation

- Suited to queries that include the phrase “for all”.
- Let R and S be relations on schemas R and S respectively, where

$$R = (A_1, ..., A_m, B_1, ..., B_n)$$
$$S = (B_1, ..., B_n)$$

- The result of $R \div S$ is a relation on the schema $R - S = (A_1, ..., A_m)$

$$R \div S = \{ t \mid t \in \Pi_{R-S} (R) \ \forall u \in S \land tu \in R \}$$
Example Division operation

\[
\begin{array}{c|c}
A & B \\
\hline
a & 1 \\
a & 2 \\
a & 3 \\
b & 1 \\
c & 1 \\
d & 1 \\
d & 3 \\
d & 4 \\
d & 6 \\
e & 1 \\
e & 2 \\
\end{array}
\]

\[
\begin{array}{c|c}
B & \\
\hline
1 & 1 \\
2 & 2 \\
\end{array}
\]

\[
R \div S
\]

\[
\begin{array}{c|c}
A & \\
\hline
a & \\
e & \\
\end{array}
\]
Relation algebra as a query language

• Relational schema: \textit{supplies}(\textit{sname}, \textit{iname}, \textit{price})

• “What is the names of the suppliers that supply cheese?”
 $$\pi_{\textit{sname}}(\sigma_{\textit{iname}='\text{CHEESE'}}(\text{SUPPLIES}))$$

• “What is the name and price of the items that cost less than 5 $ and that are supplied by WALMART”
 $$\pi_{\textit{iname}, \textit{price}}(\sigma_{\textit{sname}='\text{WALMART'} \land \textit{price} < 5}(\text{SUPPLIES}))$$