
Kjell Orsborn 4/28/08

1UU - IT - UDBL

DATABASE TECHNOLOGY - 1MB025
(also 1DL029, 1DL300+1DL400)

 Spring 2008

An introductury course on database systems

 http://user.it.uu.se/~udbl/dbt-vt2008/
alt. http://www.it.uu.se/edu/course/homepage/dbastekn/vt08/

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 4/28/08

2UU - IT - UDBL

Introduction to SQL

 Elmasri/Navathe ch 8
 Padron-McCarthy/Risch ch 7,8,9

Kjell Orsborn

Uppsala Database Laboratory
Department of Information Technology, Uppsala University,

Uppsala, Sweden

Kjell Orsborn 4/28/08

3UU - IT - UDBL

The SQL database language

• SQL - (Structured Query Language)
• Was first developed by IBM in the early 70’s at their San Jose

Research Lab. It was called Sequel and was implemented as part
of their System R project.

• Current version of the ISO/ANSI SQL standard is SQL-99 (the
earlier SQL-92 is a subset the standard).

• SQL has become the main language in commercial RDBMS.

Kjell Orsborn 4/28/08

4UU - IT - UDBL

Parts of the SQL language

• SQL include several subparts
– DDL
– Interactive DML

• Queries: SELECT
• Updates: INSERT, DELETE,

UPDATE
– Embedded DML
– View definition
– Authorizaton
– Integrity
– Transaction control

• SQL (E/N chapter 8)
– Basic Structure
– Set Operations
– Aggregate Functions
– Null Values
– Nested Subqueries
– Derived Relations
– Views
– Modification of the Database
– Joined Relations
– Data Definition
– Schema Evolution
– Additional SQL Features

Kjell Orsborn 4/28/08

5UU - IT - UDBL

Basic structure
• SQL is based on set and relational operations with certain

modifications and enhancements.
• A typical SQL query has the form:

select A1,A2,...,An
from r1,r2,...,rm
where P

– Ai’s represent attributes
– ri’s represent relations
– P is a predicate.

• This is equivalent to the relational algebra expression:
ΠA1, A2, ..., An (σP (r1 ×r2 ×... × rm))

• The result of an SQL query is a relation.

Kjell Orsborn 4/28/08

6UU - IT - UDBL

Banking example revisited

• Again we use the bank schema in subsequent examples
• branch (branch_name,branch_city,assets)
• customer (customer_name,customer_street,customer_city)
• account (branch_name,account_number,balance)
• loan (branch_name,loan_number,amount)
• depositor (customer_name,account_number)
• borrower (customer_name,loan_number)

Kjell Orsborn 4/28/08

7UU - IT - UDBL

The select clause
• The select clause corresponds to the projection operation of the relational algebra. It is

used to list the attributes desired in the result of a query.
– E.g. find the names of all branches in the loan relation:

select branch_name from loan
• In “pure” relational algebra syntax, this query would be: Πbranch_name (loan)
• An asterisk (*) in the select clause denotes “all attributes”:

select * from loan
• SQL allows duplicates in relations as well as in query results. To force the elimination

of duplicates, insert the keyword distinct after select.
– E.g. find the names of all branches in the loan relation, and remove duplicates:

select distinct branch_name from loan
• The keyword all specifies that duplicates will not be removed:

select all branch_name from loan
• The select clause can also contain arithmetic expressions involving the operators, +, -,

*, and /, operating on constants or attributes of tuples.
– E.g. the following query returns the loan relation with the amount attribute multiplied by 100:

select branch_name, loan_number, amount * 100 from loan

Kjell Orsborn 4/28/08

8UU - IT - UDBL

The where clause
• The where clause corresponds to the selection predicate of the relational

algebra. It consists of a predicate involving attributes of the relations that
appear in the from clause.
– Find all loan numbers for loans made at the Perryridge branch with loan amounts

greater than $1200:
select loan_number
from loan
where branch_name = “Perryridge” and amount > 1200

• SQL uses the logical connectives and, or, (and not). It allows the use of
arithmetic expressions as operands to the comparison operators.

• SQL includes a between comparison operator in order to simplify where
clauses that specify that a value be less than or equal to some value and
greater than or equal to some other value.
– Find the loan number of those loans with loan amounts between $90,000 and

$100,000 (that is, ≥ $90,000 and ≤$100,000)
select loan_number from loan
where amount between 90000 and 100000

Kjell Orsborn 4/28/08

9UU - IT - UDBL

The from clause
• The from clause corresponds to the Cartesian product operation

of the relational algebra. It lists the relations to be scanned when
evaluating the whole select expression.

• Find the Cartesian product borrower × loan:
select * from borrower, loan

• Find the name and loan number of all customers having a loan
at the Perryridge branch:

select distinct customer_name, borrower.loan_number
from borrower, loan
where borrower.loan_number = loan.loan_number and
 branch_name = “Perryridge”

Kjell Orsborn 4/28/08

10UU - IT - UDBL

The rename operation
• The SQL mechanism for renaming relations and attributes is

accomplished through the as clause:
old-name as new-name

• Find the name and loan number of all customers having a loan
at the Perryridge branch; replace the column name loan_number
with the name lid.
select distinct customer_name, borrower.loan_number as lid
from borrower, loan
where borrower.loan_number = loan.loan_number and

 branch_name = “Perryridge”

Kjell Orsborn 4/28/08

11UU - IT - UDBL

Tuple variables
• Tuple variables are defined in the from clause via the use of the

as clause.
• Find the customer names and their loan numbers for all

customers having a loan at some branch.
select distinct customer_name,T.loan_number
from borrower as T, loan as S
where T.loan_number = S.loan_number

• Find the names of all branches that have greater assets than
some branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = “Brooklyn”

Kjell Orsborn 4/28/08

12UU - IT - UDBL

String operations
• SQL includes a string-matching operator for comparisons on

character strings. Patterns are described using two special
characters:
– percent (%). The % character matches any substring.
– underscore (_). The _ character matches any character.

• Find the names of all customers whose street includes the
substring “Main”:

select customer_name
from customer
where customer_street like “%Main%”

• Match the name “Main%”:
like “Main\%” escape “\”

Kjell Orsborn 4/28/08

13UU - IT - UDBL

Ordering the display of tuples
• List in alphabetic order the names of all customers having a loan

at Perryridge branch:
select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name = “Perryridge”
order by customer_name asc (desc)

• We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

• SQL must perform a sort to fulfill an order by request. Since
sorting a large number of tuples may be costly, it is desirable to
sort only when necessary.

Kjell Orsborn 4/28/08

14UU - IT - UDBL

Set operations
• The set operations union, intersect, and except operate on

relations and correspond to the relational algebra operations ∪,
∩, and −.

• Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding
multiset (sets with duplicates) versions union all, intersect all
and except all.

• Suppose a tuple occurs m times in r and n times in s, then, it
occurs:
– m + n times in r union all s
– min(m, n) times in r intersect all s
– max(0, m - n) times in r except all s

Kjell Orsborn 4/28/08

15UU - IT - UDBL

Set operations cont.

• Find all customers who have a loan, an account, or both:
(select customer_name from depositor)
union
(select customer_name from borrower)

• Find all customers who have both a loan and an account:
(select customer_name from depositor)
intersect
(select customer_name from borrower)

• Find all customers who have an account but no loan:
(select customer_name from depositor)
except
(select customer_name from borrower)

Kjell Orsborn 4/28/08

16UU - IT - UDBL

Aggregate functions
• These functions operate on the multiset of values of a column of a relation, and return

a value
avg : average value
min : minimum value
max : maximum value
sum : sum of values
count : number of values

• Find the average account balance at the Perryridge branch.
select avg (balance)
from account
where branch_name = “Perryridge”

• Find the number of tuples in the customer relation.
select count (*)
from customer

• Find the number of depositors in the bank
select count (distinct customer_name)
from depositor

Kjell Orsborn 4/28/08

17UU - IT - UDBL

Aggregate functions - group by

• Find the number of depositors for each branch:

select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

• Note: Attributes in select clause outside of aggregate functions
must appear in group by list.

Kjell Orsborn 4/28/08

18UU - IT - UDBL

Aggregate functions - having

• Find the names of all branches where the average account
balance is more than $1,200

select branch_name , avg (balance)
from account
group by branch_name
having avg (balance) > 1200

• Note: predicates in the having clause are applied after the
formation of groups

Kjell Orsborn 4/28/08

19UU - IT - UDBL

Null values
– It is possible for tuples to have a null value, denoted by null, for some of their attributes;

null signifies an unknown value or that a value does not exist.
– The result of any arithmetic expression involving null is null and comparisons involving

null return unknown:
(true or unknown) = true,
(false or unknown) = unknown,
(unknown or unknown) = unknown,
(true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

– Result of the where clause predicate is treated as false if it evaluates to unknown and “P
is unknown” evaluates to true if predicate P evaluates to unknown.

– Find all loan numbers which appear in the loan relation with null values for amount:
select loan_number from loan where amount is null

– Find the total all loan amounts:
select sum (amount) from loan

– The statement above ignores null amounts; result is null if there is no non-null amount.
All aggregate operations except count(*) ignore tuples with null values on the aggregated
attributes.

Kjell Orsborn 4/28/08

20UU - IT - UDBL

Nested subqueries

• SQL provides a mechanism for the nesting of subqueries.
• A subquery is a select-from-where expression that is nested

within another query.
• A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

Kjell Orsborn 4/28/08

21UU - IT - UDBL

Set membership
• F in r ⇔ ∃t ∈ r ∧ (t = F)

(5 in) = true

(5 in) = false

(5 not in) = true

0
4
5

0
4
6

0
4
6

Kjell Orsborn 4/28/08

22UU - IT - UDBL

Example query
• Find all customers who have both an account and a loan at bank.

select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)
• Find all customers who have a loan at the bank but do not have

an account at the bank.
select distinct customer_name
from borrower
where customer_name not in (select customer_name

from depositor)

Kjell Orsborn 4/28/08

23UU - IT - UDBL

Example query

• Find all customers who have both an account and a loan at the
Perryridge branch.

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and

 branch_name = “Perryridge” and
 (branch_name, customer_name) in

(select branch_name, customer_name
 from depositor, account
 where depositor.account_number =

 account.account_number)

Kjell Orsborn 4/28/08

24UU - IT - UDBL

Set comparison

• Find all branches that have greater assets than some branch
located in Brooklyn:

select distinct T. branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = “Brooklyn”

Kjell Orsborn 4/28/08

25UU - IT - UDBL

The some clause
• F <comp> some r ⇔ ∃t (t ∈ r ∧ [F = <comp> t])

where <comp> can be: <, ≤, >, ≥, <>, =

(5 < some) = true (read: 5 < some tuple in the relation)

(5 < some) = false

(5 = some) = true

(5 <> some) = true (since 0 ≠ 5)

• Also (= some) ≡ in, but (<> some) ≠ not in

0
5
6

0
5

0
5

0
5

Kjell Orsborn 4/28/08

26UU - IT - UDBL

Example query

• Find all branches that have greater assets than some branch
located in Brooklyn.

select branch_name
from branch
where assets > some (select assets from branch

where branch_city = “Brooklyn”)

Kjell Orsborn 4/28/08

27UU - IT - UDBL

The all clause
• F <comp> all r ⇔ ∀t (t ∈ r ∧ [F = <comp> t])

(5 < all) = false

(5 < all) = true

(5 = all) = false

(5 <> all) = true (since 5 ≠ 4, 6)

• Note that (<> all) ≡ not in, but (= all) ≠ in

0
5
6

6
9

4
5

4
6

Kjell Orsborn 4/28/08

28UU - IT - UDBL

Example query

• Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch_name
from branch
where assets > all (select assets from branch

where branch_city = “Brooklyn”)

Kjell Orsborn 4/28/08

29UU - IT - UDBL

Test for empty relations

• The exists construct returns the value true if the argument
subquery is nonempty.

• exists r ⇔ r ≠ ø
• not exists r ⇔ r = ø

Kjell Orsborn 4/28/08

30UU - IT - UDBL

Example query
• Find all customers who have an account at all branches located in

Brooklyn.

select distinct S.customer_name
from depositor as S
where not exists

((select branch_name from branch
where branch_city = “Brooklyn”)
except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

Kjell Orsborn 4/28/08

31UU - IT - UDBL

Test for absence of duplicate tuples

• The unique construct tests whether a subquery has any duplicate
tuples in its result.

• Find all customers who have only one account at the Perryridge
branch.
select T.customer_name
from depositor as T
where unique (select R.customer_name

 from account,depositor as R
 where T.customer_name = R.customer_name and
 R.account_number = account.account_number and
 account.branch_name = “Perryridge”)

Kjell Orsborn 4/28/08

32UU - IT - UDBL

Another example query

• Find all customers who have at least two accounts at the
Perryridge branch.

select distinct T.customer_name
from depositor T
where not unique (

select R.customer_name
from account,depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number and
account.branch_name = “Perryridge”)

Kjell Orsborn 4/28/08

33UU - IT - UDBL

Derived relations
• Find the average account balance of those branches where the

average account balance is greater than $1200.
select branch_name, avg_balance
from (select branch_name, avg (balance)

 from account
 group by branch_name)

 as result (branch_name,avg_balance)
where avg_balance > 1200

• Note that we do not need to use the having clause, since we
compute in the from clause the temporary relation result, and the
attributes of result can be used directly in the where clause.

Kjell Orsborn 4/28/08

34UU - IT - UDBL

Views
• Provides a mechanism to hide certain data from the view of certain users. To

create a view we use the command:
create view viewname as <query expression>

where: <query expression> is any legal expression.
• Create a view consisting of branches and their customers:

create view all_customer as
(select branch_name, customer_name
from depositor, account
where depositor.account_number =

account.account_number)
union
(select branch_name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

• Find all customers of the Perryridge branch:
select customer_name
from all_customer
where branch_name = “Perryridge”

Kjell Orsborn 4/28/08

35UU - IT - UDBL

Modification of the database

• INSERT - insert new tuples into a table

• UPDATE - update qualified column values in tables

• DELETE - removes qualified tuples from table

Kjell Orsborn 4/28/08

36UU - IT - UDBL

Modifying the database – insertion

• Syntax: insert into table [(column_list)] values (value_list)
 insert into table [(column_list)] select … from … where …

• Add a new tuple to account:
insert into account values (“Perryridge”, A-9732, 1200)

• or equivalently:
insert into account (branch_name, balance, account_number)
values (“Perryridge”, 1200, A-9732)

• Add a new tuple to account with balance set to null:
insert into account values (“Perryridge”, A-777,null)

Kjell Orsborn 4/28/08

37UU - IT - UDBL

Modifying the database – insertion
• Provide as a gift for all loan customers of the Perryridge branch, a $200

savings account. Let the loan number serve as the account number for the
new savings account.

insert into account
select branch_name, loan_number, 200
from loan
where branch_name = “Perryridge”

insert into depositor
select customer_name,loan_number
from loan, borrower
where branch_name = “Perryridge”
and loan.account_number = borrower.account_number

Kjell Orsborn 4/28/08

38UU - IT - UDBL

Modifying the database – updates

• Syntax: update table set column_name = value, … [where …];

• Increase all accounts with balances over $10,000 by 6%, all other accounts receive
5%.

• Write two update statements:
update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance ≤ 10000

– The order is important.
– Can be done better using the case statement.

Kjell Orsborn 4/28/08

39UU - IT - UDBL

Update of a view
• Create a view of all loan data in the loan relation, hiding the

amount attribute:
create view branch_loan as
select branch_name, loan_number
from loan

• Add a new tuple to branch_loan:
insert into branch_loan
values (“Perryridge”, “L-307”)

• This insertion must be represented by inserting into the loan
relation the tuple:
(“Perryridge”, “L-307”, null)

• Updates on more complex views are difficult or impossible to
translate, and hence are disallowed.

Kjell Orsborn 4/28/08

40UU - IT - UDBL

Modifying the database – deletion
• Syntax: delete from table [where …];

• Delete all account records at the Perryridge branch.
delete from account where branch_name = “Perryridge”

• Delete all accounts at every branch located in Needham.
delete from account
where branch_name in (select branch_name

from branch
where branch_city = “Needham”)

delete from depositor
where account_number in

(select account_number
from branch, account
where branch_city = “Needham” and

branch.branch_name = account.branch_name)

Kjell Orsborn 4/28/08

41UU - IT - UDBL

Example query
• Delete the records of all accounts with balances below the

average at the bank.

delete from account
where balance < (select avg (balance) from account)

– Problem: as we delete tuples from deposit, the average balance changes
– Solution used in SQL:

1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

Kjell Orsborn 4/28/08

42UU - IT - UDBL

Joined relations
• Join operations take two relations and return as a result another

relation.
• These additional operations are typically used as subquery

expressions in the from clause.
• Join condition – defines which tuples in the two relations match, and

what attributes are present in the result of the join.
• Join type – defines how tuples in each relation that do not match any

tuple in the other relation (based on the join condition) are treated.
• Join types Join conditions

– inner join natural
– left outer join on <predicate>
– right outer join using (A1, A2, ..., An)
– full outer join

Kjell Orsborn 4/28/08

43UU - IT - UDBL

Joined relations
datasets for examples

• Relation loan

• Relation borrower

branch_name
Downtown
Redwood
Perryridge

loan_number
L-170
L-230
L-260

amount
3000
4000
1700

customer_name
Jones
Smith
Hayes

loan_number
L-170
L-230
L-155

Kjell Orsborn 4/28/08

44UU - IT - UDBL

Joined relations – examples
loan inner join borrower on
loan.loan_number = borrower.loan_number

loan left outer join borrower on
loan.loan_number = borrower.loan_number

customer_name
Jones
Smith

loan_number
L-170
L-230

branch_name
Downtown
Redwood

loan_number
L-170
L-230

amount
3000
4000

customer_name
Jones
Smith
null

loan_number
L-170
L-230
null

branch_name
Downtown
Redwood
Perryridge

loan_number
L-170
L-230
L-260

amount
3000
4000
1700

Kjell Orsborn 4/28/08

45UU - IT - UDBL

Joined relations – examples
loan natural inner join borrower

loan natural right outer join borrower

branch_name
Downtown
Redwood

loan_number
L-170
L-230

amount
3000
4000

customer_name
Jones
Smith

customer_name
Jones
Smith
Hayes

branch_name
Downtown
Redwood

null

loan_number
L-170
L-230
L-155

amount
3000
4000
null

Kjell Orsborn 4/28/08

46UU - IT - UDBL

Joined relations – examples
loan natural full outer join borrower using (loan_number)

• Find all customers who have either an account or a loan (but not
both) at the bank.
select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_number is null

customer_name
Jones
Smith
null

Hayes

branch_name
Downtown
Redwood
Perryridge

null

loan_number
L-170
L-230
L-260
L-155

amount
3000
4000
1700
null

Kjell Orsborn 4/28/08

47UU - IT - UDBL

Data Definition and Schema Evolution

• Data definition include the specification of a database schema as
well as descriptors for each element in the schema including,
tables, constraints, views, domains, indexes, and other contructs
such as authorization and physical storage structures.

• Example:

create schema company authorization kjell;

• SQL also uses the catalog concept to refer to a named collection
of schemas

Kjell Orsborn 4/28/08

48UU - IT - UDBL

Creating relations in SQL

• Relations or tables are created using the CREATE TABLE
command that specifies a relation by name, attributes and
constraints.

• Attributes have a name, a data type (its value domain) and
possible constraints.

• Key, entity integrity, and referential integrity constraints can
also be specified.

Kjell Orsborn 4/28/08

49UU - IT - UDBL

Data types and domains
– Data types in SQL:

• char(n). Fixed length character string, with user-specified length n.
• varchar(n). Variable length character strings, with user-specified maximum length n.
• int. Integer (a finite subset of the integers that is machine-dependent).
• smallint. Small integer (a machine-dependent subset of the integer domain type).
• numeric(p,d). Fixed point number, with user-specified precision of p digits, with n digits to the right of

decimal point.
• real, double precision. Floating point and double-precision floating point numbers, with machine-

dependent precision.
• float(n). Floating point number, with user-specified precision of at least n digits.
• date. Dates, containing a (4 digit) year, month and date.
• time. Time of day, in hours, minutes and seconds.

– Null values are allowed in all the domain types. Declaring an attribute to be not null prohibits
null values for that attribute.

– User-defined domain types can be explicitely defined in SQL-92 using a create domain
statement that can be reused in defining relations:

• create domain person_name char(20) not null

Kjell Orsborn 4/28/08

50UU - IT - UDBL

Create table construct
• An SQL relation is defined using the create table command:

create table r (A1 D1,A2 D2 ,...,An Dn,
integrity-constraint1 i ,
...,
integrity-constraintk i)

– r is the name of the relation
– each Ai is an attribute name in the schema of relation r
– Di is the data type of values in the domain of attribute Ai

• Example:
 create table branch

(branch_name char(15) not null,
branch_city char(30),
assets integer)

Kjell Orsborn 4/28/08

51UU - IT - UDBL

Integrity constraints create table
• not null
• primary key (A1,...,A n)
• check (P), where P is a predicate
• E.g. declare branch_name as the primary key for branch and

ensure that the values of assets are non-negative.
create table branch

(branch_name char(15) not null,
branch_city char(30),
assets integer,
primary key (branch_name),
check (assets >= 0))

• primary key declaration on an attribute automatically ensures
not null in SQL-92

Kjell Orsborn 4/28/08

52UU - IT - UDBL

Schema evolution

• The drop schema command deletes all information about the
database schema from the database.

drop schema company cascade (restrict);

• The drop table command deletes all information about the
dropped relation from the database.

drop table dependent cascade (restrict);

Kjell Orsborn 4/28/08

53UU - IT - UDBL

Schema evolution cont…

• The alter table command is used to add attributes to an
existing relation. All tuples in the relation are assigned null
as the value for the new attribute. The form of the alter
table command is

alter table r add A D
where A is the name of the attribute be added to relation r
and and D is the domain of A.

• The alter table command can also be used to drop
attributes of a relation

alter table r drop A
where A is the name of an attribute of relation r.

Kjell Orsborn 4/28/08

54UU - IT - UDBL

Additional SQL features

– Granting and revoking priviligies for database security and authorization
(ch 22)

– Embedded SQL and language bindings (C, C++, COBOL, Pascal)
– SQL transaction control commands to provide concurrency control and

recovery (ch 19, 20, 21)
– A series of commands for physical database design (storage definition

language - SDL)

