UPPSALA
UNIVERSITET

DATABASE DESIGN Il - 1DL400

Spring 2014

A course on modern database systems

http://www.it.uu.se/research/group/udbl/kurser/DBIl_VT14/indexes.pdf

Tore Risch
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

UPPSALA
UNIVERSITET

Introduction to Indexing

Elmasri/Navathe ch 16 and 17
Padron-McCarthy/Risch ch 21 and 22

Tore Risch
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

Tore Risch
S Uppsala University, Sweden

Database Design

*Physical Database Design:
E.g by indexes:
- Permit fast matching of records in table satisfying certain
search conditions (predicates).
- Critical for scalable access

PROBLEM:
New applications may require data and index
structures that are not supported by the DBMS.
E.g. calendars, numerical arrays, geographical data,
text, etc.

= Extensible DBMSs needed where user can plug-in own
indexing and search algorithms

. Tore Risch
uuuuuuuu " Uppsala University, Sweden

Scalability

*DBMS is designed to handle very large amounts of data.

=> 10000 elements is considered small.
DBMS should scale:

=> Performance should not degrade when the database grows.
*How to get scalability:

=> Need Index structures that are maintained when

database Is updated.
=> Run on many parallel nodes.

Faster response but more resources often required!

UPPSALA
UNIVERSITET

Content

* Files of records
— Operations on files
e Scans
— Operations on scans
e Ordered and unordered files
— Index sequential and hash files
e Index concepts
— Types of indexes
— Clustering indexes
— Ordered indexes, B-trees, B+ trees
— Unordered indexes, hash indexes
— Index properties and evaluation metrics

Files of records

» A file managed by a DBMS is a sequence of records, where each record is a
collection of data values representing a tuple.
o A file descriptor (or file header) includes

— Meta-information that describes the file and the records it stores, such as the attribute
names and data types of the fields in the records.

— The records in a file are usually uniform, i.e. they are of the same size and contain the
same kind of data values in each position.

— File records are grouped into blocks of records. The file descriptor contains
disk the addresses of the file blocks.

» The blocking factor bfr (or block size) for a file is the (average) number of file
records stored in a disk block.

ST

Operations on disk files

 Typical file operations include:

OPEN: Readies the file for access, and associates a pointer called a cursor that
will refer to a current file record representing a current tuple.

FIND: Searches for the first record in a file that satisfies a certain condition,
and makes it the cursor position.

FINDNEXT: Searches for the next record from the current cursor position that
satisfies a certain condition, and makes it the current cursor position.

READ: Reads the record in the current cursor position into program variables.

DELETE: Removes the record at the current cursor position from the file,
usually by marking the record to indicate that it is no longer valid.

MODIFY: Changes the values of some fields in the record of the current
cursor position, i.e. copies values from program variables to the current record.

INSERT: Inserts a new record into the file and makes it the current cursor
position., i.e. copies values from program variables into a new record and
Inserts it at the current cursor position.

CLOSE: Terminates access to the file.
REORGANIZE: Reorganizes the file records.

» For example, the records marked deleted are physically removed from the
file or batches of new records are merged into the file.

Tore Risch - UDBL - IT - UU 2014-02-06 7

Streamed access to database operators

The result of internal database operators (e.g. a join) is usually represented as
scans (~streams) of tuples

— The cursors represent positions in scans.
— Cursors can be moved iteratively forward over the scans until end-of-scan is reached

SQL queries are translated by the query optimizer into programs called execution
plans.

Execution plans call physical relational algebra operators that are programs that
Iterate over scans of tuples and iteratively produce new scans of tuples as results.
Scans can be defined over

— file records

— index records

— Reverse scans over files and indexes are also possible where scans move backwards

— records produced (emitted) by some physical relational algebra operator.

Streamed access to database operators

e SCAN operators
The following the three basic operators are defined over scans:

* OPEN: Opens the scan for reading tuples and sets the cursor to the first
tuple.

o NEXT: reads the next tuple in the scan a into some program variables and
makes it the current cursors position of the scan

o EOS: true is there are no more tuples in the scan
e CLOSE: Closes the scan and releases all its resources.

» Scans over physical files is represented by file pointers where a new read
record is read for each NEXT call.

e Scans over the result of a physical operator is usually represented as
Iterator objects with next, eos, and close methods.

* Intermediate results may either be materialized as a list of blocks of tuples
or generated by some code (e.g. performing a join) when next is called

Scan-based database operators

« Examples of physical algebra operators (code) using and producing scans:

FINDALL: emit all tuples in the result of a query. Such a scan operator call is
e.g. produced by the query processor to iteratively emit the result of a query.
Execution plans usually contain many FINDALL operators.

STOPAFTER n.: iteratively emit the first n tuples in another scan

DISTINCT: iteratively emit the tuples of another scan where duplicate tuples
are removed

SORT: emit the tuples of another in sorted orders
INDEXSCAN: Iterative emitting the tuples matching the key of an index

REVESEINDEXSCAN: Iteratively emitting matching index tuples in reverse
order

MATERIALIZE: Store each tuple in a scan in a file.

Unordered files

» Also called a heap file.
* New records are inserted at the end of the file.
* A linear search through the file records is necessary to search for a record.

— This requires reading and searching half the file blocks on the average, and is
hence does not scale as the file grows.

» Record insertion is quite efficient.

» Reading the records in order of a particular field requires sorting the file records,
which does not scale.

Ordered files

« Also called a index sequential (ISAM) file.
* File records are kept sorted by the values of an ordering field.
 Insertion is rather expensive: records must be inserted in the correct order.

— It is common to keep a separate unordered overflow (or transaction) file for
batching new records to improve insertion efficiency; this is periodically
merged with the main ordered file.

* A binary search can be used to search for a record on its ordering field value.

— This requires reading and searching log, of the file blocks on the average, an
Improvement over linear search.

» Reading the records in order of the ordering field is quite efficient.
» Efficiency is measured in # of read disk blocks.

=

e
<3 o
i] ;sg—“gﬁ‘-
a2 R
S5 Sl
m

Hash files

Hashing for disk files is called External Hashing

The file blocks are divided into M equal-sized buckets, numbered bucket,,
bucket,, ..., bucket,, ;.

— Typically, a bucket corresponds to one disk block in a file.
— Each bucket represents one or several records (i.e. tuples)
One of the fields of the records is designated to be the hash key of the file.

The record with hash key value K is stored in bucket i, where i = h(K), and h is the
hashing function.

Search and update is very efficient on equality of the hash key.
Collisions occur when a new record hashes to a bucket that is already full.
— An overflow file is kept for storing such records.
— Overflow records that hash to each bucket can be linked together.
Main disadvantages of static external hashing:

— Fixed number of buckets M is a problem if the number of records in the file
grows or shrinks.

— Ordered access on the hash key Is quite inefficient (requires sorting the
records).

Tore Risch - UDBL - IT - UU 2014-02-06 13

UPPSALA
UNIVERSITET

Hash files (contd.)

Figure 13.9
Matching bucket numbers to disk block addresses. / \
Number Block address on disk
0 - -
:
2 - - & ®
. |l
M- 2 —
M-=1 o
1L iy

UPPSALA
UNIVERSITET

Hash files - overflow handling

» Methods for collision resolution include chaining:

— Overflow locations are kept, usually by extending the bucket with overflow positions.
— In addition, a pointer to a chain of overflow records is added to each bucket.
— A collision is resolved by placing the new record and its key in an unused overflow

location
Bucket 0

Bucket 1

Bucket 2

Bucket 9

Main buckets

340

460

Record pointer

321

761

91

Record pointer

22

72

522

Record pointer

399

89

| Record pointer

1

— NULL

Overflow buckets

—=| 981

Record pointer

Record pointer

= NULL

—»=|182 Record pointer | —
| 652 Record pointer
Record pointer
Record pointer

1

= NULL

(Pointers are to records within the overflow blocks)

1

= NULL

Figure 13.10

Handling overflow for
buckets by chaining.

Basic index concepts

Indexes are data structures used to speed up access to sets of records stored in
a database (on disk or in main memory).

— E.g., author catalog in library
An index consists of records, called index entries, of the form

key value

The key of an index is the attribute(s) of the indexed set of tuples used to look
up records, e.g. SSN, ISBN.

— The key is a record of one or several key values, which are usually stored directly
in the index entry (e.g. SSN + ACCOUNT#).

The value is a tuple that stores the corresponding data values

— The value field is usually a pointer to a data record storing the values
Two basic kinds of indices:

— Ordered indexes: search keys are stored in sorted order

— Hash indexes: search keys are distributed randomly across “buckets”
using a “hash function”.

Types of indexes

 Primary Index
— Defined on an ordered data file
— The data file is ordered on one ore several key field(s)

— Includes one index entry for each block in the data file; the index entry has the
key field value for the first record in the block, which is called the block
anchor

* This makes primary indexes very compact
o Clustering Index
— Defined on an ordered data file

— The data file is ordered on one or several non-key field(s) unlike the primary
Index, which requires that the ordering field of the data file has a distinct value
for each distinct value of the index.

— The index value for each distinct value of the search key points to the first data
block that contains records with that field value.

» For example, think on an index of four character string used to index a files
ordered on long strings.

Types of indexes (cont.)

e Secondary Index

— A secondary index provides a secondary means of accessing a file for which
some primary access already exists.

— It is a non-clustering index since the indexed records are not ordered by the
Index keys

— Retrieving all records pointed to from a secondary index can be very slow if
the table is large.

e Unique index

— A unique index contains key thus having a single unique value for each key

— A multiple index indexes a non-key position and has a set of values for each
key value.

Clustered indexes

e clustered index Non-clustered index

/||\ hﬂ&l/lll\

ST o=

Presentatör
Presentationsanteckningar
Non-clustered index: The data is present in random order, but the logical ordering is specified by the index.

Clustered index: Clustering alters the data block into a certain distinct order to match the index, resulting in the row data being stored in order.

More index concepts

The index is often specified on one attribute of the indexed tuples, but can also be
specified on several attributes.

The index Is sometimes called an access path to the indexed attribute.
A search over an index yields a scan whose cursor points to file records

Scans over ordered indexes are usually represented data structures representing
upper and lower limits of key values in a search along with the cursor

Indexes can also be characterized as dense or sparse:

— A dense index has an index entry for every search key value (and hence every
record) in the data file. A secondary index is usually dense.

— A sparse (or nondense) index, on the other hand, has index entries for only
some of the search values. A primary index is usually sparse.

Ordered indexes

Most ordered indexes use the highly scalable B-tree data structure (Bayer, Acta
Informatica 1(2), 1972)

B-trees are automatically rebalanced trees with many children for each node (large
fan-out)

Each B-tree node occupies one disk block.
— One disk block at the time is read into main memory by the DBMS
— The DBMS maintains a pool of disk blocks in main memory
— When pool is full disk blocks are flushed to disk

In main memory each B-tree node should have a size close to the cache line size
used, to avoid memory cache misses.

B-tree indexes

Each node is kept between half-full and completely full
An insertion into a node that is not full is quite efficient
— Just fill an empty key/value slot in the node
If a node is full the insertion causes a split into two nodes
Splitting may propagate to neighboring tree levels
A deletion is quite efficient if a node does not become less than half full

If a deletion causes a node to become less than half full, it must be merged with
neighboring nodes

On the average the nodes are 63% full

B-trees also shown excellent in modern main memories with big differences in
speed between data in caches and in the rest of the memory (G. Graefe & P-A.
Larsson, B-tree Indexes and CPU Caches, ICDE 2001).

UPPSALA

UNIVERSITET

B-tree Structures

Figure 14.10
B-Tree structures. (a) A node in a B-tree with ¢ — 1 search values. (b) A B-tree
of order p = 3.The values were inserted in the order 8,5, 1,7, 3, 12, 9, 6.

(@) ? Ky | Pri »1‘;"’2 coo | Ky |oPria ' P; Ki|Pri| - |Ket1l|Pro-1| Py .
Tree Tree
Y pointer \ J J pointer

Tree Data Data Data Data
pointer pointer pointer pointer pointer

Tree

pointer

X< K, Kia<X<K, Kg1<X

(b) e| |5 [0 T 8 |of |e Tree node pointer

Data pointer

Lo Lo |

Null tree pointer

B-trees

e Nodes in a B-tree are uniform:
((key, value, subtree) ...)

e Each node in a B-tree contains an array of key/value pairs and pointers to subtrees.
» There is no difference between leaf nodes and intermediate nodes.
e Assume there are 108 tuples in the index
* Assume a block size of 8192 and that each B-tree node is on the average 63% full.
« Assume each (key,value,subtree) triple uses 12 bytes.

=> 8192*0.63/12 = 430 = triples per node

=> The average depth of the B-tree will be 10g,3,(108)=3.0

=> A key/value pair can be accessed with 3 block reads (disk accesses) on the
average

Root node kept in main memory => 2 blocks to read

UPPSALA
UNIVERSITET

The Nodes of a B+-tree

FIGURE 14.11 The nodes of a B+-tree
- (a) Internal node of a B+-tree with q —1 search values.
- (b) Leaf node of a B+-tree with q — 1 search values and q — 1 data pointers.

(@)

P, K, Ki—y | P Kj Ko-1 | Py
» ’ A
tree tree
pointer pointer pohiﬁ%r
X X X

X<K Ki_y<X<K Kg-1 <X
b pointer to next
() Ky I:r Ky I:r K P.r | Kg-t F;rq_1 P et ®1— » leaf node

in tree

\ Y Y \

data data data data
pointer pointer pointer pointer

B*-trees

« InaB"-tree, intermediate nodes contain keys + pointers to subtrees (no values)
Intermediate nodes: ((key, subtree) ...)
« InaB"-tree, only the leaf-level nodes contain pointers to data records:
Leaf nodes: ((key, value)).
The leaf nodes are linked to enable fast scans.

» Because there are fewer data pointers in B+-trees, the fan-out (average number of
children) becomes larger with B*-trees than with B-trees.

« Assume a block size of 8193 and that each B-tree node is on the average 63% full.
« Assume each (key,value) or (key,suptree) pairs uses 8 bytes.

=> 8192*0.63/8 = 645 = pairs per node

=> The average depth of the B-tree will be logg,;(108)=2.8

=> A key/value pair can be accessed with 2.8-1=1.8 block reads on the average

Hash indexes

« Hash indexes organizes the keys with their associated value pointers, into a hash
table structure.

« Hash indexes are very fast for accessing a value (or a set of values) for a given key.
e Hash indexes do not support range searches.

« Hash indexes require dynamic hash tables that gracefully grow or schrink
without significant delays as the database is updated

» Regular hashing problematic when files grow and shrink dynamically
— Dynamic and graceful scale-up and scale-down of tables needed in DBMSs

— Special hashing techniques have been developed to allow in incremental and
dynamic growth and shrinking of the number of file records in hash files.

— The most used one is called LH, Linear Hashing (Litwin, VLDB 1980)

— Linear Hashing is also shown to be preferable when storing dynamic hash
tables in main memory (P-A Larson, Dynamic Hash Tables, CACM 31(4),
1988).

UPPSALA
UNIVERSITET

Example of a hash index

bucket 0
bucket 1 ;
A215 A-217 | Brighton 750
A305 A-101 | Downtown | 500
A-110 | Downtown | 600
bucket 2 A-215 | Mianus 700
L A-102 | Perryridge | 400
oLl A-201 | Perryridge | 900
bucket 3 A-218 | Perryridge | 700
A-217 A-222 | Redwood 700
A-102 A-305 | Round Hill | 350
bucket 4
A-218
bucket 5
bucket 6
A-222

Overview of LH

e Dynamic hash algorithm
A hash file has buckets with some capacity b >> 1

« Not one hash functions but a series of hash functions h; (k) of
keys k as the hash file evolves.

 Typically hash by division h; (k) = k mod 2', i=1,2,3,4,....
» Buckets split through the replacement of h, with h,,,;1=0,1,..

as the file grows

» As the file grows and the load (number of keys) of the hash table
thereby increases beyond some threshold, buckets are
successively split. For split buckets b/2 keys move towards new

buckets.

« Shrinking the files is similarly possible by joining buckets when
the table load decreases below some threshold.

35

12

15
24

LH File Evolution

ho(K)=k mod 2°

LH File Evolution

35 b=4

12 1=0

7 p=0

15 h,(K)=k mod 2°
24

0

LH File Evolution

b=4
i=1
p=0
35 h, (k)=k mod 22
12 | 7
24 | 15
0 1

LH File Evolution

b=4
21 i=1
32 2 p=0
, A h,(k)=k mod 2t
1
24 | 15
0 1

LH File Evolution

g -1
11
35 p=1
32 a h,(K)=k mod 22
12 15
24 58
0 1 2

LH File Evolution

21 b=4
Tt =1
35 p=1
32 7 h,(k)=k mod 22
121 15
24 58
0 1 2

LH File Evolution

b=4
i=1
11 =1
32 35 h,(k)=k mod 22
12 7
24 | 21 | 58 | IS

LH File Evolution

b=4
i= 2
11 p=0
32 35 h,(k)=k mod 22
12 7
24 | 21 | 58 | IS

c
e
<3 Sk
il ;sg—“gﬁ‘-
a2 R
5L
m

Main-memory LH

LH shown excellent also for main memory hash tables
(P-A Larson 1988).

No need for specifying size when hash table allocated
Dynamic grow and shrink

No buckets but just overflow chains possible in main

memory (i.e. b=1).

— As for B-tree a bucket size close to cache line size Is
preferred.

When say 200% full (twice as many keys as size of
table) after insert move p forward and add bucket

When say 50% full after delete move p backwards and
delete bucket

Problem: Need dynamically extensible array to hold
hash table

Tore Risch - UDBL - IT - UU 2014-02-06

38

Index evaluation metrics

» Access operations supported efficiently. e.g.,
— Records with an explicitly specified value in the attribute (efficient get/put)

— Records with an attribute value falling in a specified range of values (range
search).

» Access time as the number of records grow

* Insertion time as the number of records grow
* Deletion time as the number of records grow
» Space overhead of representing the index

» Scalable dynamic behavior: The index should not make the DBMS behave
unpredicably, such as stopping for reorganization as the number of records grows
or shrinks.

	DATABASE DESIGN II - 1DL400�� Spring 2014
	Introduction to Indexing��Elmasri/Navathe ch 16 and 17� Padron-McCarthy/Risch ch 21 and 22
	Bildnummer 3
	Bildnummer 4
	Content
	Files of records
	Operations on disk files
	Streamed access to database operators
	Streamed access to database operators
	Scan-based database operators
	Unordered files
	Ordered files
	Hash files
	Hash files (contd.)
	Hash files - overflow handling
	Basic index concepts
	Types of indexes
	Types of indexes (cont.)
	Clustered indexes
	More index concepts
	Ordered indexes
	B-tree indexes
	B-tree Structures
	B-trees
	The Nodes of a B+-tree
	B+-trees
	Hash indexes
	Example of a hash index
	Overview of LH
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	Main-memory LH
	Index evaluation metrics

