
2014-02-06 1Tore Risch - UDBL - IT - UU

DATABASE DESIGN II - 1DL400

Spring 2014

A course on modern database systems

http://www.it.uu.se/research/group/udbl/kurser/DBII_VT14/indexes.pdf

Tore Risch
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

2014-02-06 2Tore Risch - UDBL - IT - UU

Introduction to Indexing
Elmasri/Navathe ch 16 and 17

Padron-McCarthy/Risch ch 21 and 22

Tore Risch
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

2014-02-06 3Tore Risch - UDBL - IT - UU

Tore Risch
Uppsala University, Sweden

•Physical Database Design:
E.g by indexes:
- Permit fast matching of records in table satisfying certain

search conditions (predicates).
- Critical for scalable access

PROBLEM:
• New applications may require data and index
structures that are not supported by the DBMS.

E.g. calendars, numerical arrays, geographical data,
text, etc.

⇒ Extensible DBMSs needed where user can plug-in own
indexing and search algorithms

Database Design

2014-02-06 4Tore Risch - UDBL - IT - UU

Tore Risch
Uppsala University, Sweden

•DBMS is designed to handle very large amounts of data.

=> 10000 elements is considered small.

•DBMS should scale:

=> Performance should not degrade when the database grows.

•How to get scalability:

=> Need index structures that are maintained when

database is updated.

=> Run on many parallel nodes.

Faster response but more resources often required!

Scalability

2014-02-06 5Tore Risch - UDBL - IT - UU

Content

• Files of records
– Operations on files

• Scans
– Operations on scans

• Ordered and unordered files
– Index sequential and hash files

• Index concepts
– Types of indexes
– Clustering indexes
– Ordered indexes, B-trees, B+ trees
– Unordered indexes, hash indexes
– Index properties and evaluation metrics

2014-02-06 6Tore Risch - UDBL - IT - UU

Files of records

• A file managed by a DBMS is a sequence of records, where each record is a
collection of data values representing a tuple.

• A file descriptor (or file header) includes
– Meta-information that describes the file and the records it stores, such as the attribute

names and data types of the fields in the records.
– The records in a file are usually uniform, i.e. they are of the same size and contain the

same kind of data values in each position.
– File records are grouped into blocks of records. The file descriptor contains

disk the addresses of the file blocks.
• The blocking factor bfr (or block size) for a file is the (average) number of file

records stored in a disk block.

2014-02-06 7Tore Risch - UDBL - IT - UU

Operations on disk files
• Typical file operations include:

– OPEN: Readies the file for access, and associates a pointer called a cursor that
will refer to a current file record representing a current tuple.

– FIND: Searches for the first record in a file that satisfies a certain condition,
and makes it the cursor position.

– FINDNEXT: Searches for the next record from the current cursor position that
satisfies a certain condition, and makes it the current cursor position.

– READ: Reads the record in the current cursor position into program variables.
– DELETE: Removes the record at the current cursor position from the file,

usually by marking the record to indicate that it is no longer valid.
– MODIFY: Changes the values of some fields in the record of the current

cursor position, i.e. copies values from program variables to the current record.
– INSERT: Inserts a new record into the file and makes it the current cursor

position., i.e. copies values from program variables into a new record and
inserts it at the current cursor position.

– CLOSE: Terminates access to the file.
– REORGANIZE: Reorganizes the file records.

• For example, the records marked deleted are physically removed from the
file or batches of new records are merged into the file.

2014-02-06 8Tore Risch - UDBL - IT - UU

Streamed access to database operators

• The result of internal database operators (e.g. a join) is usually represented as
scans (~streams) of tuples

– The cursors represent positions in scans.
– Cursors can be moved iteratively forward over the scans until end-of-scan is reached

• SQL queries are translated by the query optimizer into programs called execution
plans.

• Execution plans call physical relational algebra operators that are programs that
iterate over scans of tuples and iteratively produce new scans of tuples as results.

• Scans can be defined over
– file records
– index records
– Reverse scans over files and indexes are also possible where scans move backwards
– records produced (emitted) by some physical relational algebra operator.

2014-02-06 9Tore Risch - UDBL - IT - UU

Streamed access to database operators

• SCAN operators
The following the three basic operators are defined over scans:

• OPEN: Opens the scan for reading tuples and sets the cursor to the first
tuple.

• NEXT: reads the next tuple in the scan a into some program variables and
makes it the current cursors position of the scan

• EOS: true is there are no more tuples in the scan
• CLOSE: Closes the scan and releases all its resources.

• Scans over physical files is represented by file pointers where a new read
record is read for each NEXT call.

• Scans over the result of a physical operator is usually represented as
iterator objects with next, eos, and close methods.

• Intermediate results may either be materialized as a list of blocks of tuples
or generated by some code (e.g. performing a join) when next is called

2014-02-06 10Tore Risch - UDBL - IT - UU

Scan-based database operators

• Examples of physical algebra operators (code) using and producing scans:
– FINDALL: emit all tuples in the result of a query. Such a scan operator call is

e.g. produced by the query processor to iteratively emit the result of a query.
Execution plans usually contain many FINDALL operators.

– STOPAFTER n.: iteratively emit the first n tuples in another scan
– DISTINCT: iteratively emit the tuples of another scan where duplicate tuples

are removed
– SORT: emit the tuples of another in sorted orders
– INDEXSCAN: Iterative emitting the tuples matching the key of an index
– REVESEINDEXSCAN: Iteratively emitting matching index tuples in reverse

order
– MATERIALIZE: Store each tuple in a scan in a file.

2014-02-06 11Tore Risch - UDBL - IT - UU

Unordered files

• Also called a heap file.
• New records are inserted at the end of the file.
• A linear search through the file records is necessary to search for a record.

– This requires reading and searching half the file blocks on the average, and is
hence does not scale as the file grows.

• Record insertion is quite efficient.
• Reading the records in order of a particular field requires sorting the file records,

which does not scale.

2014-02-06 12Tore Risch - UDBL - IT - UU

Ordered files

• Also called a index sequential (ISAM) file.
• File records are kept sorted by the values of an ordering field.
• Insertion is rather expensive: records must be inserted in the correct order.

– It is common to keep a separate unordered overflow (or transaction) file for
batching new records to improve insertion efficiency; this is periodically
merged with the main ordered file.

• A binary search can be used to search for a record on its ordering field value.
– This requires reading and searching log2 of the file blocks on the average, an

improvement over linear search.
• Reading the records in order of the ordering field is quite efficient.
• Efficiency is measured in # of read disk blocks.

2014-02-06 13Tore Risch - UDBL - IT - UU

Hash files

• Hashing for disk files is called External Hashing
• The file blocks are divided into M equal-sized buckets, numbered bucket0,

bucket1, ..., bucketM-1.
– Typically, a bucket corresponds to one disk block in a file.
– Each bucket represents one or several records (i.e. tuples)

• One of the fields of the records is designated to be the hash key of the file.
• The record with hash key value K is stored in bucket i, where i = h(K), and h is the

hashing function.
• Search and update is very efficient on equality of the hash key.
• Collisions occur when a new record hashes to a bucket that is already full.

– An overflow file is kept for storing such records.
– Overflow records that hash to each bucket can be linked together.

• Main disadvantages of static external hashing:
– Fixed number of buckets M is a problem if the number of records in the file

grows or shrinks.
– Ordered access on the hash key is quite inefficient (requires sorting the

records).

2014-02-06 14Tore Risch - UDBL - IT - UU

Hash files (contd.)

2014-02-06 15Tore Risch - UDBL - IT - UU

Hash files - overflow handling
• Methods for collision resolution include chaining:

– Overflow locations are kept, usually by extending the bucket with overflow positions.
– In addition, a pointer to a chain of overflow records is added to each bucket.
– A collision is resolved by placing the new record and its key in an unused overflow

location

2014-02-06 16Tore Risch - UDBL - IT - UU

Basic index concepts
• Indexes are data structures used to speed up access to sets of records stored in

a database (on disk or in main memory).
– E.g., author catalog in library

• An index consists of records, called index entries, of the form

• The key of an index is the attribute(s) of the indexed set of tuples used to look
up records, e.g. SSN, ISBN.

– The key is a record of one or several key values, which are usually stored directly
in the index entry (e.g. SSN + ACCOUNT#).

• The value is a tuple that stores the corresponding data values
– The value field is usually a pointer to a data record storing the values

• Two basic kinds of indices:
– Ordered indexes: search keys are stored in sorted order
– Hash indexes: search keys are distributed randomly across “buckets”

using a “hash function”.

key value

2014-02-06 17Tore Risch - UDBL - IT - UU

Types of indexes

• Primary Index
– Defined on an ordered data file
– The data file is ordered on one ore several key field(s)
– Includes one index entry for each block in the data file; the index entry has the

key field value for the first record in the block, which is called the block
anchor

• This makes primary indexes very compact
• Clustering Index

– Defined on an ordered data file
– The data file is ordered on one or several non-key field(s) unlike the primary

index, which requires that the ordering field of the data file has a distinct value
for each distinct value of the index.

– The index value for each distinct value of the search key points to the first data
block that contains records with that field value.

• For example, think on an index of four character string used to index a files
ordered on long strings.

2014-02-06 18Tore Risch - UDBL - IT - UU

Types of indexes (cont.)

• Secondary Index
– A secondary index provides a secondary means of accessing a file for which

some primary access already exists.
– It is a non-clustering index since the indexed records are not ordered by the

index keys
– Retrieving all records pointed to from a secondary index can be very slow if

the table is large.
• Unique index

– A unique index contains key thus having a single unique value for each key
– A multiple index indexes a non-key position and has a set of values for each

key value.

2014-02-06 19Tore Risch - UDBL - IT - UU

Clustered indexes

• clustered index • Non-clustered index

Presentatör
Presentationsanteckningar
Non-clustered index: The data is present in random order, but the logical ordering is specified by the index.

Clustered index: Clustering alters the data block into a certain distinct order to match the index, resulting in the row data being stored in order.

2014-02-06 20Tore Risch - UDBL - IT - UU

More index concepts

• The index is often specified on one attribute of the indexed tuples, but can also be
specified on several attributes.

• The index is sometimes called an access path to the indexed attribute.
• A search over an index yields a scan whose cursor points to file records
• Scans over ordered indexes are usually represented data structures representing

upper and lower limits of key values in a search along with the cursor
• Indexes can also be characterized as dense or sparse:

– A dense index has an index entry for every search key value (and hence every
record) in the data file. A secondary index is usually dense.

– A sparse (or nondense) index, on the other hand, has index entries for only
some of the search values. A primary index is usually sparse.

2014-02-06 21Tore Risch - UDBL - IT - UU

Ordered indexes

• Most ordered indexes use the highly scalable B-tree data structure (Bayer, Acta
Informatica 1(2), 1972)

• B-trees are automatically rebalanced trees with many children for each node (large
fan-out)

• Each B-tree node occupies one disk block.
– One disk block at the time is read into main memory by the DBMS
– The DBMS maintains a pool of disk blocks in main memory
– When pool is full disk blocks are flushed to disk

• In main memory each B-tree node should have a size close to the cache line size
used, to avoid memory cache misses.

2014-02-06 22Tore Risch - UDBL - IT - UU

B-tree indexes

• Each node is kept between half-full and completely full
• An insertion into a node that is not full is quite efficient

– Just fill an empty key/value slot in the node
• If a node is full the insertion causes a split into two nodes
• Splitting may propagate to neighboring tree levels
• A deletion is quite efficient if a node does not become less than half full
• If a deletion causes a node to become less than half full, it must be merged with

neighboring nodes
• On the average the nodes are 63% full
• B-trees also shown excellent in modern main memories with big differences in

speed between data in caches and in the rest of the memory (G. Graefe & P-Å.
Larsson, B-tree Indexes and CPU Caches, ICDE 2001).

2014-02-06 23Tore Risch - UDBL - IT - UU

B-tree Structures

2014-02-06 24Tore Risch - UDBL - IT - UU

B-trees

• Nodes in a B-tree are uniform:
((key, value, subtree) …)

• Each node in a B-tree contains an array of key/value pairs and pointers to subtrees.
• There is no difference between leaf nodes and intermediate nodes.
• Assume there are 108 tuples in the index
• Assume a block size of 8192 and that each B-tree node is on the average 63% full.
• Assume each (key,value,subtree) triple uses 12 bytes.

=> 8192*0.63/12 = 430 = triples per node
=> The average depth of the B-tree will be log430(108)=3.0
=> A key/value pair can be accessed with 3 block reads (disk accesses) on the
average
Root node kept in main memory => 2 blocks to read

2014-02-06 25Tore Risch - UDBL - IT - UU

The Nodes of a B+-tree

• FIGURE 14.11 The nodes of a B+-tree
– (a) Internal node of a B+-tree with q –1 search values.
– (b) Leaf node of a B+-tree with q – 1 search values and q – 1 data pointers.

2014-02-06 26Tore Risch - UDBL - IT - UU

B+-trees

• In a B+-tree, intermediate nodes contain keys + pointers to subtrees (no values)
Intermediate nodes: ((key, subtree) …)

• In a B+-tree, only the leaf-level nodes contain pointers to data records:
Leaf nodes: ((key, value) ….).

The leaf nodes are linked to enable fast scans.
• Because there are fewer data pointers in B+-trees, the fan-out (average number of

children) becomes larger with B+-trees than with B-trees.
• Assume a block size of 8193 and that each B-tree node is on the average 63% full.
• Assume each (key,value) or (key,suptree) pairs uses 8 bytes.

=> 8192*0.63/8 = 645 = pairs per node
=> The average depth of the B-tree will be log645(108)=2.8
=> A key/value pair can be accessed with 2.8-1=1.8 block reads on the average

2014-02-06 27Tore Risch - UDBL - IT - UU

Hash indexes

• Hash indexes organizes the keys with their associated value pointers, into a hash
table structure.

• Hash indexes are very fast for accessing a value (or a set of values) for a given key.
• Hash indexes do not support range searches.
• Hash indexes require dynamic hash tables that gracefully grow or schrink

without significant delays as the database is updated
• Regular hashing problematic when files grow and shrink dynamically

– Dynamic and graceful scale-up and scale-down of tables needed in DBMSs
– Special hashing techniques have been developed to allow in incremental and

dynamic growth and shrinking of the number of file records in hash files.
– The most used one is called LH, Linear Hashing (Litwin, VLDB 1980)
– Linear Hashing is also shown to be preferable when storing dynamic hash

tables in main memory (P-Å Larson, Dynamic Hash Tables, CACM 31(4),
1988).

2014-02-06 28Tore Risch - UDBL - IT - UU

Example of a hash index

2014-02-06 29Tore Risch - UDBL - IT - UU

Overview of LH

• Dynamic hash algorithm
• A hash file has buckets with some capacity b >> 1
• Not one hash functions but a series of hash functions hi (k) of

keys k as the hash file evolves.
• Typically hash by division hi (k) = k mod 2i , i=1,2,3,4,….
• Buckets split through the replacement of hi with h i+1 ; i = 0,1,..

as the file grows
• As the file grows and the load (number of keys) of the hash table

thereby increases beyond some threshold, buckets are
successively split. For split buckets b/2 keys move towards new
buckets.

• Shrinking the files is similarly possible by joining buckets when
the table load decreases below some threshold.

2014-02-06 30Tore Risch - UDBL - IT - UU

LH File Evolution

35
12
7

15
24

b = 4
i = 0
p=0

h0(k)=k mod 20

0

2014-02-06 31Tore Risch - UDBL - IT - UU

LH File Evolution

35
12
7

15
24

b = 4
i = 0
p=0

h0(k)=k mod 20

0

h1

2014-02-06 32Tore Risch - UDBL - IT - UU

LH File Evolution

12
24

b = 4
i = 1
p=0

h1(k)=k mod 21

0

35
7

15

1

h1 h1

2014-02-06 33Tore Risch - UDBL - IT - UU

LH File Evolution

32
58
12
24

b = 4
i = 1
p=0

h1(k)=k mod 21

0

21
11
35
7

15

1

h1 h1

2014-02-06 34Tore Risch - UDBL - IT - UU

LH File Evolution

32
12
24

b = 4
i = 1
p=1

h2(k)=k mod 22

0

21
11
35
7

15

1

58

2

h2 h1 h2

2014-02-06 35Tore Risch - UDBL - IT - UU

LH File Evolution

32
12
24

b = 4
i = 1
p=1

h2(k)=k mod 22

0

33
21
11
35
7

15

1

58

2

h2 h1 h2

2014-02-06 36Tore Risch - UDBL - IT - UU

LH File Evolution

32
12
24

b = 4
i = 1
p=1

h2(k)=k mod 22

0

33
21

1

58

2

h2 h2 h2

11
35
7

15

3

h2

2014-02-06 37Tore Risch - UDBL - IT - UU

LH File Evolution

32
12
24

b = 4
i = 2
p=0

h2(k)=k mod 22

0

33
21

1

58

2

h2 h2 h2

11
35
7

15

3

h2

2014-02-06 38Tore Risch - UDBL - IT - UU

Main-memory LH

• LH shown excellent also for main memory hash tables
(P-Å Larson 1988).

• No need for specifying size when hash table allocated
• Dynamic grow and shrink
• No buckets but just overflow chains possible in main

memory (i.e. b=1).
– As for B-tree a bucket size close to cache line size is

preferred.
• When say 200% full (twice as many keys as size of

table) after insert move p forward and add bucket
• When say 50% full after delete move p backwards and

delete bucket
• Problem: Need dynamically extensible array to hold

hash table

2014-02-06 39Tore Risch - UDBL - IT - UU

Index evaluation metrics

• Access operations supported efficiently. e.g.,
– Records with an explicitly specified value in the attribute (efficient get/put)
– Records with an attribute value falling in a specified range of values (range

search).
• Access time as the number of records grow
• Insertion time as the number of records grow
• Deletion time as the number of records grow
• Space overhead of representing the index
• Scalable dynamic behavior: The index should not make the DBMS behave

unpredicably, such as stopping for reorganization as the number of records grows
or shrinks.

	DATABASE DESIGN II - 1DL400�� Spring 2014
	Introduction to Indexing��Elmasri/Navathe ch 16 and 17� Padron-McCarthy/Risch ch 21 and 22
	Bildnummer 3
	Bildnummer 4
	Content
	Files of records
	Operations on disk files
	Streamed access to database operators
	Streamed access to database operators
	Scan-based database operators
	Unordered files
	Ordered files
	Hash files
	Hash files (contd.)
	Hash files - overflow handling
	Basic index concepts
	Types of indexes
	Types of indexes (cont.)
	Clustered indexes
	More index concepts
	Ordered indexes
	B-tree indexes
	B-tree Structures
	B-trees
	The Nodes of a B+-tree
	B+-trees
	Hash indexes
	Example of a hash index
	Overview of LH
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	LH File Evolution
	Main-memory LH
	Index evaluation metrics

