
2014-01-30 1Tore Risch - UDBL - IT - UU

DATABASE DESIGN II - 1DL400

Spring 2014
2014-01-30

A course on modern database systems

http://www.it.uu.se/research/group/udbl/kurser/DBII_VT14/activedb.pdf

Tore Risch
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,

Uppsala, Sweden

2014-01-30 2Tore Risch - UDBL - IT - UU

Active Databases

Elmasri/Navathe ch 24.1

Padron-McCarthy/Risch ch 15

Tore Risch

Uppsala Database Laboratory

Department of Information Technology, Uppsala University, Uppsala, Sweden

2014-01-30 3Tore Risch - UDBL - IT - UU

Active Databases

General principles of conventional DBMSs

DATABASE

DBMS

schema

(SQL)

queries and

updates

query

results

2014-01-30 4Tore Risch - UDBL - IT - UU

Conventional (Passive) DBMSs

• Provides data model (e.g. the relational data model)

• Provide transaction model

– ACID principle, e.g. updating account info, short transactions, small updates

– Passive model because client controls database updates

• Examples of real world problems not so well suited for passive databases:

– Inventory control

• reordering of items when quantity in stock falls below threshold.

– Travel waiting list

• book ticket as soon as right kind is available

– Stock market

• buy/sell stocks when price below/above threshold

– Maintenance of master tables, view materialization

• E.g. maintain table that contain sum of salaries for each department

2014-01-30 5Tore Risch - UDBL - IT - UU

DATABASE

(tables)
DBMS

T1: 25 copies of

Elmasri/Navathe sold

No. of copies of

E/N in stock?

If < 5 order 100

more copies!

Conventional Passive DBMS Solution

• In a passive database system, the application will periodically poll the DBMS:

– Frequent polling => expensive

– Infrequent polling => might miss the right time to react

– The problem is that the DBMS does not know that application is

polling

2014-01-30 6Tore Risch - UDBL - IT - UU

Active Database Solution

• In an active database system, the ADBMS recognizes predefined situations

(i.e. state changes) in the database .

• The ADBMS triggers predefined actions when situations occur, typically

database updates or calls to stored procedures.

• Actions are usually database updates, not calls to external programs to order

items as in the example.

DATABASE

(tables + rules)
ADBMS

T1: 25 copies of

Elmasri/Navathe sold

Order 100

more copies!

RULE:

on update of Sales

when quantity < 5

order 100 copies

2014-01-30 7Tore Risch - UDBL - IT - UU

Active Database Management System
• The general idea is that an ADBMS provides regular DBMS primitives and in

addition state change rules called triggers:

+ defining application-defined situations identifying state changes

+ triggering application-defined reactions when state changes occur

DATABASE

ADBMS

schema

Queries and

updates results

State change

rules

situation

notifications

(usually updates

too)

program invocations

(either poll event table

or use

persistent queue)

2014-01-30 8Tore Risch - UDBL - IT - UU

Applications for active databases

• Notification

– Automatic notification when certain condition occurs

– Oracle provides persistent queue of program invocations

– If not supported => poll event table

• Enforcing integrity constraints

– Triggers are on a lower programming level than database constraints (explained later)

– Can identify state changing situations,

• Maintenance of derived data

– Automatically update derived data (materialized views) to avoid anomalies due to
redundancy

2014-01-30 9Tore Risch - UDBL - IT - UU

Active database rule models

• Event-Condition-Action (ECA) rules is the most common model.

– Semantics of ECA rules:

• WHEN event occurs - IF condition holds - DO execute action

– Event:

• Usually an update of database record(s)

• Parameterized by using pseudo tables named OLD containing table state before the

update, and NEW containing the table state after the update.

– Condition:

• Query on database old and new database state as database queries

• Condition is considered true if query returns non-empty result

– Action:

• Usually SQL update statements or call to stored procedure referencing the updated row(s)

2014-01-30 10Tore Risch - UDBL - IT - UU

EA trigger example

Example of EA (Event – Action) trigger for maintaining derived
attribute department.totalsal attribute in tables:
employee(ssn, salary, dno)

department(dno, totalsal)

create trigger totalsal1

after update on employee

for each row

begin update department

set totalsal = totalsal + new.salary

where dno = new.dno;

update department

set totalsal = totalsal - old.salary

where dno = old.dno;

end;

Notice: ADBMS sees update as delete followed by insert

2014-01-30 11Tore Risch - UDBL - IT - UU

EA trigger example

Employee and department tables:

employee(ssn, salary, dno)

department(dno, totalsal)

Case 1: inserting (one or more) new employee tuples:

create trigger totalsal1

after update on employee

for each row

begin update department

set totalsal = totalsal + new.salary

where dno = new.dno;

update department

set totalsum = totalsum - old.salary

where dno = old.dno;

end;

Action

Can be INSERT,

UPDATE, DELETE

Event

2014-01-30 12Tore Risch - UDBL - IT - UU

EA trigger example cont …

Database state change case analysis should be done:

1. Does it work if someone is hired?

2. Does it work if someone is fired?

3. Does it work if someone changes department?

4. Does it work if a department is deleted?

5. Does it work is a new department is created?

6. Are these all possible state changes?

Eventually more triggers are needed!

Question: Are more triggers needed in this example?

2014-01-30 13Tore Risch - UDBL - IT - UU

Row-level vs. statement-level triggers

• Triggers can be:

– Row-level

• FOR EACH ROW specifies a row-level trigger

– Statement-level

• FOR EACH STATEMENT (default when FOR EACH ROW is not specified)

–

• Row level triggers

– Executed separately for each row affected for a given SQL statement (usually
update)

• Statement-level triggers

– Executed only once per entire SQL (update) statement sent to the DBMS

– Makes difference when update over many rows specified in update statement

2014-01-30 14Tore Risch - UDBL - IT - UU

Non-procedural alternative: Materialized views

Modern DBMSs (e.g. Oracle) has materialized views:

create materialized view department

as select dno, sum(salary) as totalsal

from employee

• A regular view is a virtual table, which is not stored in the database but computed
when a query using the table is issued.

• By contrast a materialized view is master table, which is automatically maintained
by the DBMS when there are updates on any of the tables in its view definition.

• Here: department automatically updated when employee is updated.

• Materialized views are not standard: DBMS may not have it, syntax may differ.

• Check manual for efficiency of materialized view maintenance.

2014-01-30 15Tore Risch - UDBL - IT - UU

Example of ECA (Event – Condition - Action) trigger for maintaining
salary constraint that the boss always earns more:
employee(ssn, salary, dno)

department(dno, mgrssn)

Situation1: Check employee salary increases

create trigger employee_raise

after update of salary on employee

for each row

when (select * from employee m, department d, new

where new.dno = d.dno and

new.ssn <> d.mgrssn and

new.salary > m.salary and

m.ssn = d.mgrssn and

m.dno = d.dno)

begin update employee e

set salary = old.salary*0.9

from orow; end;

new is employee in d

new gets higher salary than d:s boss

ECA trigger example

lower new salary

2014-01-30 16Tore Risch - UDBL - IT - UU

Example of ECA (Event – Condition - Action) trigger for maintaining
salary constraint that the boss earns more:
employee(ssn, salary, dno)

department(dno, mgrssn)

Situation 2: Check boss salary

create trigger boss_salary

after update of salary on employee

for each row

when(select * from employee e, department d, new

where new.dno = d.dno and

new.ssn = d.mgrssn and

new.salary < e.salary and

e.dno = d.dno and

e.ssn <> d.mgrssn)

begin rollback; end;

Some employee e in d

has higher salary

new is boss in d

ECA trigger example

2014-01-30 17Tore Risch - UDBL - IT - UU

ECA trigger example cont …

Database state change case analysis should be done here too:

1. Does it work if someone is hired?

2. Does it work if someone is fired?

3. Does it work if someone changes department?

4. Does it work if a department is deleted?

5. Does it work if a manager is hired?

6. Does it work is a manager is fired?

7. Does it work if a manager’s salary is lowered?

8. Does it work if an employee becomes a manager?

9. Does it work if a manager becomes an employee?

Any more situations?

Question: What more triggers needed in this example?

2014-01-30 18Tore Risch - UDBL - IT - UU

Non-procedural alternative: Assertions

Modern DBMSs have assertions:

create assertion salary_constraint

check (not exists

(select *

from employee e, employee m, department d

where e.salary > m.salary and

e.dno = d.dno and

d.mgsssn = m.ssn))

• Implementation of assertions (triggers, stored procedures) may differ in different
DBMSs.

• For example, advanced assertions may not be supported by the DBMS or be very
inefficient.

– A naive implementation of assertions that checks constraint after each update does not
scale.

• Assertions cannot make compensating actions depending on situation as triggers

2014-01-30 19Tore Risch - UDBL - IT - UU

Rule variants

• EA – Even Action rules

– Condition always true as in our first example

• CA – Condition Action rules

– Event detected by system

– Common in AI, forward chaining systems, OPS5 programming language

– Usually not in databases

– Difficult to identify actual state changes

• A – Action

– Would be stored procedures

• C – Condition

– Would be assertions

2014-01-30 20Tore Risch - UDBL - IT - UU

Summary active databases

• Active DBMSs provide situation-action rules in database

• Supports many functionalities: e.g. integrity control, derived data, change

notification, monitoring, database replication

• Cautions:

– very powerful mechanism:

– small statement => massive behavior changes.

– rope for programmer.

– requires careful design and situation analysis

• Make state change case analyzes when designing triggers.

– Make sure indefinite triggering or undesired cascading triggering cannot happen.

• Avoid using triggers unless really needed.

– Use queries, view materialization statements, referential integrity constraints, or stored

procedures instead if possible.

• DBMS itself uses triggers a lot

– E.g. data replication and constraint management in Oracle

