UNIVERSITET

DATABASE DESIGN Il - 1DL400

Spring 2014
2014-01-30

A course on modern database systems

http://www.it.uu.se/research/group/udbl/kurser/DBII_VT14/activedb.pdf

Tore Risch

Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

UPPSALA
UNIVERSITET

Active Databases

Elmasri/Navathe ch 24.1
Padron-McCarthy/Risch ch 15

Tore Risch
Uppsala Database Laboratory
Department of Information Technology, Uppsala University, Uppsala, Sweden

Active Databases

General principles of conventional DBMSs

schema

!

(SQL)
_ query
q“f;'ﬁii‘?d > DBMS) '

|

DATABASE

UPPSALA
UNIVERSITET

Conventional (Passive) DBMSs

* Provides data model (e.g. the relational data model)

e Provide transaction model
— ACID principle, e.g. updating account info, short transactions, small updates
— Passive model because client controls database updates

« Examples of real world problems not so well suited for passive databases:
— Inventory control
» reordering of items when quantity in stock falls below threshold.
— Travel waiting list
* book ticket as soon as right kind is available

— Stock market
* buy/sell stocks when price below/above threshold

— Maintenance of master tables, view materialization
« E.g. maintain table that contain sum of salaries for each department

Conventional Passive DBMS Solution

No. of copies of
E/N in stock?

If <5 order 100
more copies!

—)

T1: 25 copies of
Elmasri/Navathe sold

!

DBMS

DATABASE

(tables)

* In apassive database system, the application will periodically po// the DBMS:

— Frequent polling => expensive

— Infrequent polling => might miss the right time to react
— The problem 1s that the DBMS does not know that application is

polling

UPPSALA
UNIVERSITET

Active Database Solution

T1: 25 copies of RULE:
Elmasri/Navathe sold on update of Sales
when quantity <5
1 order 100 copies

DATABASE
(tables + rules)

Order 100
more copies! - ADBMS

* In an active database system, the ADBMS recognizes predefined situations
(1.e. state changes) in the database .

 The ADBMS triggers predefined actions when situations occur, typically
database updates or calls to stored procedures.

» Actions are usually database updates, not calls to external programs to order
items as in the example.

UPPSALA
UNIVERSITET

Active Database Management System

« The general idea is that an ADBMS provides regular DBMS primitives and in
addition state change rules called friggers:

+ defining application-defined situations identifying state changes
+ triggering application-defined reactions when state changes occur

Queries and
updates

situation
notifications
(usually updates
too)

schema

State change
S

m—)
m—)

11

ADBMS

DATABASE

m—)
m—)

results

program invocations
(either poll event table
or use
persistent queue)

UPPSALA
UNIVERSITET

Applications for active databases

Notification
— Automatic notification when certain condition occurs
— Oracle provides persistent queue of program invocations
— If not supported => poll event table

Enforcing integrity constraints
— Triggers are on a lower programming level than database constraints (explained later)
— Can 1dentify state changing situations,

Maintenance of derived data

— Automatically update derived data (materialized views) to avoid anomalies due to
redundancy

UPPSALA
UNIVERSITET

Active database rule models

» Event-Condition-Action (ECA) rules is the most common model.

— Semantics of ECA rules:
« WHEN event occurs - IF condition holds - DO execute action

— Event:
» Usually an update of database record(s)

« Parameterized by using pseudo tables named OLD containing table state before the
update, and NEW containing the table state af7er the update.

— Condition:
* Query on database old and new database state as database queries
« Condition is considered true if query returns non-empty result

— Action:
» Usually SQL update statements or call to stored procedure referencing the updated row(s)

UPPSALA

EA trigger example

Example of EA (Event — Action) trigger for maintaining derived
attribute department.totalsal attribute in tables:

employee (ssn, salary, dno)
department (dno, totalsal)

create trigger totalsall
after update on employee
for each row
begin update department
set totalsal = totalsal + new.salary
where dno = new.dno;
update department
set totalsal = totalsal - old.salary
where dno = old.dno;
end;
Notice: ADBMS sees update as delete followed by insert

UPPSALA

EA trigger example

Employee and department tables:

employee (ssn, salary, dno)
department (dno, totalsal)

Case 1: inserting (one or more) new employee tuples: Can be INSERT

UPDATE, DELETE

after update on employee+ Event

for each row

begin update department
set totalsal = totalsal + new.salary
where dno = new.dno;
update department «—| Action
set totalsum = totalsum - old.salary
where dno = old.dno;
end;

UPI
UNIVERSITET

EA trigger example cont ...

Database state change case analysis should be done:

Does it work if someone i1s hired?

Does it work if someone 1s fired?

Does it work 1f someone changes department?
Does it work if a department 1s deleted?

Does it work 1s a new department 1s created?
Are these all possible state changes?

AN

Eventually more triggers are needed!

Question: Are more triggers needed in this example?

UPPSALA
UNIVERSITET

Row-level vs. statement-level triggers

* Triggers can be:

— Row-level
« FOR EACH ROW specifies a row-level trigger
— Statement-level
« FOR EACH STATEMENT (default when FOR EACH ROW is not specified)

Row level triggers

— Executed separately for each row affected for a given SQL statement (usually
update)

Statement-level triggers
— Executed only once per entire SQL (update) statement sent to the DBMS
— Makes difference when update over many rows specified in update statement

Non-procedural alternative: Materialized views
Modern DBMSs (e.g. Oracle) has materialized views:

create materialized view department
as select dno, sum(salary) as totalsal
from employee

» A regular view is a virtual table, which is not stored in the database but computed
when a query using the table is issued.

* By contrast a materialized view is master table, which 1s automatically maintained
by the DBMS when there are updates on any of the tables in its view definition.

* Here: department automatically updated when employee is updated.
» Materialized views are not standard: DBMS may not have it, syntax may differ.
e Check manual for efficiency of materialized view maintenance.

UPPSALA

ECA trigger example
Example of ECA (Event — Condition - Action) trigger for maintaining
salary constraint that the boss always earns more:

employee (ssn, salary, dno)
department (dno, mgrssn)

Situationl: Check employee salary increases
create trigger employee raise
after update of salary on employee
for each row
when (select * from employee m, department d, new
where new.dno = d.dno and new is employee in d
new.ssn <> d.mgrssn and

new.salary > m.salary and

m.ssn = d.mgrssn and
m.dno = d.dno) new gets higher salary than d:s boss ‘
begin update employee e lower new salary

set salary = old.salary*0.9
from orow; end;

UPPSALA

ECA trigger example

Example of ECA (Event — Condition - Action) trigger for maintaining
salary constraint that the boss earns more:

employee (ssn, salary, dno)
department (dno, mgrssn)

Situation 2: Check boss salary

create trigger boss salary
after update of salary on employee
for each row
when (select * from employee e, department d, new

where new.dno = d.dno and new is boss in d
new.ssn = d.mgrssn and
new.salary < e.salary and
e.dno = d.dno and Some employee e in d
e.ssn <> d.mgrssn) has higher salary

begin rollback; end;

UP|
UNIVERSITET

ECA trigger example cont ...

Database state change case analysis should be done here too:

Does it work if someone is hired?

Does it work if someone is fired?

Does it work if someone changes department?
Does it work if a department is deleted?

Does it work if a manager is hired?

Does it work is a manager is fired?

Does it work if a manager’s salary is lowered?
Does it work if an employee becomes a manager?
Does it work if a manager becomes an employee?

ook =

Any more situations?

Question: What more triggers needed in this example?

UPPSALA

Non-procedural alternative: Assertions

Modern DBMSs have assertions:

create assertion salary constraint
check (not exists
(select *
from employee e, employee m, department d
where e.salary > m.salary and
e.dno = d.dno and
d.mgsssn = m.ssn))

« Implementation of assertions (triggers, stored procedures) may differ in different
DBMSs.

* For example, advanced assertions may not be supported by the DBMS or be very
inefficient.

— A naive implementation of assertions that checks constraint after each update does not
scale.

» Assertions cannot make compensating actions depending on situation as triggers

UNIVERSITET

Rule variants

« EA — Even Action rules

— Condition always true as in our first example
 CA — Condition Action rules

— Event detected by system

— Common in Al, forward chaining systems, OPS5 programming language

— Usually not in databases

— Difficult to identify actual state changes
« A —Action

— Would be stored procedures
 (C—Condition

— Would be assertions

UPPSALA
UNIVERSITET

Summary active databases

« Active DBMSs provide situation-action rules in database

e Supports many functionalities: e.g. integrity control, derived data, change
notification, monitoring, database replication
e Cautions:
— very powerful mechanism:
— small statement => massive behavior changes.
— rope for programmer.
— requires careful design and situation analysis
« Make state change case analyzes when designing triggers.
— Make sure indefinite triggering or undesired cascading triggering cannot happen.
* Avoid using triggers unless really needed.

— Use queries, view materialization statements, referential integrity constraints, or stored
procedures instead if possible.

 DBMS itself uses triggers a lot
— E.g. data replication and constraint management in Oracle

