

NoSQL Approach to Large Scale Analysis of Persisted

Streams

Khalid Mahmood, Thanh Truong, Tore Risch

Department of Information Technology, Uppsala University, Uppsala 75237, Sweden

{khalid.mahmood, thanh.truong, tore.risch}@it.uu.se

Abstract. A potential problem for persisting large volume of streaming logs

with conventional relational databases is that loading large volume of data logs

produced at high rates is not fast enough due to the strong consistency model

and high cost of indexing. As a possible alternative, state-of-the-art NoSQL da-

ta stores that sacrifice transactional consistency to achieve higher performance

and scalability can be utilized. In this paper, we describe the challenges in large

scale persisting and analysis of numerical streaming logs. We propose to devel-

op a benchmark comparing relational databases with state-of-the-art NoSQL da-

ta stores to persist and analyze numerical logs. The benchmark will investigate

to what degree a state-of-the-art NoSQL data store can achieve high perfor-

mance persisting and large-scale analysis of data logs. The benchmark will

serve as basis for investigating query processing and indexing of large-scale

numerical logs.

Keywords. NoSQL data stores, numerical stream logs, data stream archival.

1 Introduction

The data rate and volume of streams of measurements can become very high. This

becomes a bottleneck when using relational databases for large-scale analysis of

streaming logs [1, 2, 3, 4]. Persisting large volumes of streaming data at high rates

requires high performance bulk-loading of data into a database before analysis. The

loading time for relational databases may be time consuming due to full transactional

consistency [5] and high cost of indexing [6]. In contrast to relational DBMSs,

NoSQL data stores are designed to perform simple tasks with high scalability [7]. For

providing high performance updates and bulk-loading, NoSQL data stores generally

sacrifice strong consistency by providing so called eventual consistency compared

with the ACID transactions of regular DBMSs. Therefore, NoSQL data stores could

be utilized for analysis of streams of numerical logs where full transactional con-

sistency is not required.

Unlike NoSQL data stores, relational databases provide advanced query languages

and optimization technique for scalable analytics. It has been demonstrated in [8] that

indexing is a major factor for providing scalable performance, giving relational data-

bases a performance advantage compared to a NoSQL data store to speed up the ana-

mailto:tore.risch%7d@it.uu.se

lytical task. Like relational databases, some state-of-the-art NoSQL data stores (e.g.

MongoDB), also provide a query language and both primary and secondary indexing,

which should be well suited for analyzing persisted streams.

To understand how well NoSQL data stores are suited for persisting and analyzing

numerical stream logs, we propose to develop a benchmark comparing state-of-the-art

relational databases with state-of-the-art NoSQL data stores. Using the benchmark as

test bed, we will then investigate techniques for scalable query processing and index-

ing of numerical streams persisted with NoSQL data stores.

2 Application Scenario

The Smart Vortex EU project [1] serves as a real world application context, which

involves analyzing stream logs from industrial equipment. In the scenario, a factory

operates some machines and each machine has several sensors that measure various

physical properties like power consumption, pressure, temperature, etc. For each ma-

chine, the sensors generate logs of measurements, where each log record has

timestamp ts, machine identifier m, sensor identifier s, and a measured value mv. Re-

lational databases are used to analyze the logs by bulk-loading them in table measures

(m, s, ts, mv) which contains a large volume of data logs from many sensors of differ-

ent machines [3, 4].

Since the incoming sensor streams can be very large in volume, it is important that

the measurements are bulk-loaded fast. After stream logs have been loaded into the

database, the user can perform queries to detect anomalies of sensor readings. The

following query analyzes the values of mv from sensor logs for a given time interval

and parameterized threshold.
SELECT * FROM measures WHERE m = ? AND s = ?

AND ts > ? AND ts < ? AND mv > @th

In order to provide scalable performance of the query, we need an index on the com-

posite key of m, s, ts and a secondary B-tree index on mv.

3 Challenges in Analyzing Large Scale Persisted Streams

Analysis of large-scale stream logs in the above application scenario poses the follow-

ing challenges (C1 to C6) in utilizing relational and NoSQL data stores.

 C1. Bulk-loading: In relational DBMSs, the high cost of maintaining the indexes

and full transactional consistency can degrade the bulk-loading performance of large

volume of data logs. The loading performance of a relational DBMS from a major

commercial vendor, called DB-C and a popular open source relational database, called

DB-O for 6GB of data logs is shown in Fig. 1. It took more than 1 hour in a high per-

formance commodity machine for the state-of-the-art commercial DBMS, DB-C to

bulk-load data logs consisting of around 111 million sensor measurements. Some of

the data logs consist of more than a billion sensor measurements, which require high-

performance bulk-loading. To boost up the performance, weak consistency level of a

NoSQL or relational database can be utilized.

Fig. 1. Bulk-loading performance of 6GB logs

Fig. 2. Index and database size of 6GB of logs

C2. Index size: Fig. 2 shows the index and database sizes for 6GB of stream logs

loaded into the two DBMSs. The size of the index created in both relational DBMSs

was larger than the size of the original logs. For high performance and scalable analy-

sis of typical stream logs, hundreds of gigabytes of memory is required in our applica-

tion. It is interesting to see whether the state-of-the-art NoSQL data store can provide

memory efficient indexing strategies. Novel indexing techniques can also be incorpo-

rated in order to provide a memory efficient indexing for analyzing persisted streams.

 C3. Indexing strategies: Unlike relational databases and MongoDB, most

NoSQL data stores do not provide both primary and secondary indexing, which are

essential to scalable processing of queries over data logs. Some NoSQL data stores

such as Hbase, Cassandra, Memcached, Voldemort, and Riak do not provide full sec-

ondary indexing, which is needed for queries having inequalities over non-key attrib-

utes. CouchDB has secondary index, but queries have to be written as map-reduce

views [7], not transparently utilizing indexes.

C4. Query processing: Unlike relational databases, most NoSQL data stores do

not provide a query optimizer. Some NoSQL data stores, e.g. MongoDB, provide a

query language that is able to transparently utilize indexes. However, the sophistica-

tion of query optimizer still needs to be investigated for scalable analysis of data logs.

C5. Advanced analytics: Relational DBMS features for advanced analytics such

as joins or numerical expressions is limited in NoSQL data stores. Therefore, it needs

to be investigated how advanced numerical analytics over large-scale data logs could

be performed by NoSQL data stores.

C6. Parallelization of data: NoSQL data stores have the ability to distribute data

over many machines, which can provide parallel query execution. However, typical

queries for analyzing data logs can generate lots of intermediate results that need to be

transferred over the network between nodes, which can be a performance bottleneck.

Therefore, the performance of both horizontal and vertical partitioning of distributed

NoSQL data stores can be investigated for query execution over numerical logs.

4 Proposed Work

There are several investigations that can be performed for large-scale analysis of nu-

merical stream logs.

Stream log analysis benchmark: Typical TPC benchmarks [9] such as TPC-C,

TPC-DS, and TPC-H are targeted towards OLTP or decision support, not for log

analysis. To benchmark data stream management systems, the Linear Road Bench-

mark (LRB) [10] is typically used. However, LRB does not include the performance

22,105

3,882

0

15,000

30,000

0 2 4 6 8

Lo
a

d
 T

im
e

(s
)

DB size (GB)

DB-O
DB-C

11.4
7.5

6.3
7.5

0.0

10.0

20.0

DB-O DB-C

Si
ze

 (
G

B
)

Data Stores

Index
Data

of persisted streams. Analysis of large-scale data logs often requires scalable queries

(e.g. [3, 4]) over persisted numerical logs, which should be the focus the benchmark.

In the benchmark, several state-of-the-art NoSQL data stores should be compared

with relational DBMSs to investigate at what degree NoSQL data stores are suitable

for persisting and analyzing large scale numerical data streams. The performance of

bulk-loading capacities of the databases w.r.t. indexing and relaxed consistency

should be investigated in the benchmark. The queries should be fundamental to log

analyses and targeted to discover the efficiency of query processing and utilization of

primary and secondary index of the data logs. The benchmark should analyze and

compare the performance differences of loading with relaxed consistency, index utili-

zation, and query execution for both NoSQL and relational databases, which can pro-

vide the important insights into challenges C1, C3, C4, and C6.

Query processing: Supporting advanced analytics using a complete query lan-

guage with a NoSQL data store requires the development of query processing tech-

niques to compensate for the limitation of the NoSQL query languages, for example

lack of join and numerical operators. The push-down of query operators as generated

parallel server side scripts should be investigated. Furthermore, it should be investi-

gated how domain indexing strategies [11] in a main memory client-side database

(e.g. Amos II [12] developed at UDBL of Uppsala University and [13]) can improve

performance of numerical data log analyses of data retrieved from back-end NoSQL

databases. These can provide the insights of the challenges C2 and C5.

References

1. Smart Vortex Project, http://www.smartvortex.eu/

2. Zeitler, E., Risch, T.: Massive Scale-out of Expensive Continuous Queries. In: VLDB

(2011)

3. Truong, T., Risch, T.: Scalable Numerical Queries by Algebraic Inequality Transformations.

In: DASFAA (2014)

4. Zhu, M., Stefanova, S., Truong, T., Risch, T.: Scalable Numerical SPARQL Queries over

Relational Databases. In: LWDM Workshop (2014)

5. Doppelhammer, J., Höppler, T., Kemper, A., Kossmann, D.: Database performance in the

real world. In: SIGMOD (1997)

6. Stonebraker, M.: SQL databases v. NoSQL databases. Comm. ACM. (2010)

7. Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39 (2011)

8. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., Dewitt, D.J., Madden, S., Stonebraker, M.: A

Comparison of Approaches to Large-Scale Data Analysis. In: SIGMOD (2009)

9. Council, T.P.P.: TPC Benchmarks, http://www.tpc.org/information/benchmarks.asp

10. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stonebraker,

M., Tibbetts, R.: Linear road: a stream data management benchmark. In: VLDB (2004)

11. Gaede, V., Günther, O.: Multidimensional Access Methods. ACM Comput. Surv. 30 (1998)

12. Risch, T., Josifovski, V., Katchaounov, T.: Functional Data Integration in a Distributed Me-

diator System. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.) The

Functional Approach to Data Management (2004)

13. Freedman, C., Ismert, E., Larson, P.-Å.: Compilation in the Microsoft SQL Server Hekaton

Engine. In: IEEE Data Eng. Bull. 37, 1 (2014)

