
Scalable Splitting of Massive Data Streams

Erik Zeitler, Tore Risch

Department of Information Technology
Uppsala University

Sweden
erik.zeitler@it.uu.se
tore.risch@it.uu.se

Abstract. Scalable execution of continuous queries over massive data streams
often requires splitting input streams into parallel sub-streams over which query
operators are executed in parallel. Automatic stream splitting is in general very
difficult, as the optimal parallelization may depend on application semantics.
To enable application specific stream splitting, we introduce splitstream func-
tions where the user specifies non-procedural stream partitioning and replica-
tion. For high-volume streams, the stream splitting itself becomes a perform-
ance bottleneck. A cost model is introduced that estimates the performance of
splitstream functions with respect to throughput and CPU usage. We implement
parallel splitstream functions, and relate experimental results to cost model es-
timates. Based on the results, a splitstream function called autosplit is proposed,
which scales well for high degrees of parallelism, and is robust for varying pro-
portions of stream partitioning and replication. We show how user defined par-
allelization using autosplit provides substantially improved scalability (L = 64)
over previously published results for the Linear Road Benchmark.

Keywords: Distributed stream systems, parallelization, query optimization.

1 Introduction

Data Stream Management Systems (DSMS) are becoming commonplace for a wide
range of scientific and industrial applications, with high-volume data streams and
queries that involve complex computations. Scalable execution in such applications
requires parallelization. The parallelization of a query is called the parallelization
strategy. In general, it is very difficult to automate the parallelization strategy, since
the optimal parallelization may depend on application semantics. Our approach is to
extend the query language with second-order functions to enable the user to specify
non-procedural parallelization strategies. These functions split an input stream into
large collections of parallel streams over which queries produce collections of result
streams. Depending on the application, this collection of result streams can be
merged, aggregated or further partitioned.

Splitstream functions partition and/or replicate input streams into a collection of
streams. For each tuple in the input stream, splitstream decides whether the tuple
should be sent to one specific DSMS node (partitioning) or many DSMS nodes (repli-
cation). Partitioning a stream is necessary when executing expensive queries. Replica-

tion is required, e.g., when aggregates are computed over data distributed over many
local DSMS nodes. A splitstream function is compiled and optimized into a split-
stream plan. We show how to automatically generate an optimized splitstream plan
with high throughput and low CPU cost given a non-procedural splitstream specifica-
tion. A generic splitstream function autosplit is defined that generates an optimized
parallel splitstream plan based on a simple decision rule. To investigate the scalability
of splitstream functions, we have parallelized an implementation of the Linear Road
Benchmark (LRB), which is called scsq-plr. We focus on the performance bottleneck
in the parallelization strategy of scsq-plr, which is splitting the stream of position re-
ports and account balance queries. In summary, we present the following results:
• Splitstream functions are introduced, which enable non-procedural user defined

specification of parallelization strategies.
• A cost model is introduced that estimates CPU utilization and throughput of split-

stream plans.
• A theoretically optimal tree shaped splitstream plan is devised that has maximum

throughput according to the cost model. This plan is compared with other split-
stream plans.

• A generic splitstream function autosplit automatically generates tree shaped split-
stream plans. Autosplit is shown to improve the scalability of LRB substantially.

2 Splitstream Functions

A stream function, Q(S, …) So is a parameterized query that transforms one or
more input stream arguments S into one or more output streams So. A parallelization
function operates on collections of streams, and is used for specifying parallel execu-
tions of stream functions. Fig. 1 illustrates three basic classes of parallelization func-
tions; splitstream, mapstream, and mergestream. splitstream splits an input stream
into two or more output streams. The number of output streams of a splitsteam is
called its width. mapstream applies a stream function on each stream in a collection of
streams, while mergestream merges or joins a collection of streams into a single out-
put stream. Examples of mergestream functions are stream union and windowed
stream join. Although all parallelization functions are used in the final evaluation ex-
periment, the focus of this paper is to optimize splitstream functions since they are
shown to be a performance bottleneck.

Fig. 1. Splitstream, mapstreams, and mergestream.

A splitstream function has the basic signature splitstream(stream s, integer w, func-
tion rfn, function bfn) vector of stream sv. The input stream s is split into w output
streams in the vector sv. The first functional argument rfn is the routing function, hav-
ing signature rfn(object tpl, integer w) integer, which returns the output stream
number (between 0 and w – 1) for each tuple that should be routed to a single output

stream. The functional argument bfn(object tpl) boolean is the broadcast function,
which returns true for tuples to be broadcasted to all output streams. bfn and rfn return
nil for tuples that should neither be broadcasted nor routed. rfn and bfn are defined
declaratively in the query language by the user.

2.1 Parallelizing LRB

LRB [1] simulates a traffic system of expressways with variable tolling that depends
on the utilization of the roads and the presence of accidents. Vehicles undertake jour-
neys in the expressway system consisting of L expressways while emitting stream of
position reports. An implementation must respond correctly to the continuous and his-
torical queries of the benchmark within the allowed maximum response time (MRT).
The number of expressways that an implementation is able to handle is called the L-
rating of the implementation. An LRB implementation can be seen as a stream func-
tion LR(S) So. The LRB input stream S consists of four kinds of tuples; P, A, D,
and E (event type 0, 2, 3, and 4, respectively), of which 99% are position reports P.
The rest of the tuples are account balance queries A (0.5%), daily expenditure queries
D (0.1%), and estimated travel time queries E (0.4%). Currently, E tuples are ignored
[1]. The D tuples are computed over historical data, their frequency is very low, and
the allowed MRT is 10 sec, so any DBMS can respond to D tuples within the required
time. Allowed MRT for P and A tuples are five seconds. Since these tuples are very
frequent, they have to be processed efficiently. The input stream rate increases con-
tinuously during the 180 minutes of the simulation. The result stream So contains toll
and accident alerts (event type 0 and 1), and query responses (event type 2 and 3).
Some position reports do not result in toll alerts, so the rate of So is less than that of S.

Our single node LRB implementation scsq-lr [17], spent most of its CPU time
computing segment statistics. This processing is local to each expressway, i.e., events
on one expressway are independent of events on other expressways. Thus, the key to
efficient parallelization is to partition the input stream into L parallel streams, and
execute one instance of LR() for each expressway, as is employed in scsq-plr. The A
tuples require account balance information. In scsq-plr, a local account table is main-
tained on each LR(), so that vehicles accumulate account balance locally on each ex-
pressway. Then, account balance queries must aggregate account data from all ex-
pressways. Therefore, all A tuples are broadcasted to all DSMS nodes running LR().

 Fig. 2 illustrates this parallelization strategy for L = 4. The input stream is first
split by splitstreamD, whose routing function rfnD(e,w) is defined as:

create function rfnD(Event e, Integer w) Integer as

select i from integer i where

(eventtype(e)<3 and i=0) or (eventtype(e)=3 and i=1);

In splitstreamX, the body of rfnX(e,w) is select expressway(e) where
eventtype(e)=0, while bfnX(e) is defined as select eventtype(e)=2.
Each stream from splitstreamX is processed by an lr node (executing LR()), whose re-
sult stream is split by splitstreamO using rfnO(e,w) defined as select event-
type(e). splitstreamO and splitstreamD do not broadcast, so they have no bfn. All

toll and accident alert result streams are merged with union-all. Account balance an-
swers from each splitstreamO are joined on query id and added together.

Fig. 2. The parallelization strategy in scsq-plr. L = 4.

2.2 Single Process Splitstream

A splitstream function is naïvely implemented by a single process splitstream operator
fsplit, its modules being shown in Fig. 3. The input stream S is read and de-marshalled
by the consume module. In the process module, rfn and bfn are called for each tuple.
Each emit module marshals and emits tuples to its output stream Soi, i=0…w–1.

Fig. 3. Modules of fsplit.

The rate Φ of a stream is defined as the number of tuples per second. The CPU cost
C for executing fsplit in Fig. 3 is computed as

())()(bwrcebwrocpccC ⋅++⋅+++Φ= . (1)

In Equation 1, the consume cost cc measures reading and de-marshalling one input
tuple, the process cost cp measures the execution of rfn and bfn per input tuple, and
the emit cost ce measures emitting a tuple. b is the broadcast percentage, which is the
proportion of tuples in the input stream to be emitted to all w output streams accord-
ing to bfn. Notice that b is multiplied by w. r is the routing percentage, i.e. the propor-
tion of tuples to be routed according to rfn, while o is the omit percentage, which is
the proportion of tuples that are not emitted at all. As a tuple is either broadcasted,
routed, or omitted, r + b + o = 1. Thus, the cost C decreases if o increases because of
smaller emit cost. Assuming rfn routes each tuple with equal probability for all output
streams So0…Sow–1, the rate of each output stream is Φoi = Φ ⋅ (b + r / w) for all i.

For scsq-plr, Table 1 shows percentages o, b, and r, widths w, and output stream
rates Φ of splitstreamD, splitstreamX, and splitstreamO, respectively. E (0.4%) tuples
are dropped by splitstreamD. P (99%) and A (0.5%) tuples are routed to splitstreamX,
and D (0.1%) tuples are routed to dailyexp(). splitstreamX broadcasts A tuples to all
lr() nodes and routes P tuples of expressway j = 0…L–1 to the corresponding lr().
Thus, splitstreamX has b = 0.5% / 99.5% ≈ 0.5%, and r = 99% / 99.5% ≈ 99.5%. Each
splitstreamO routes the low rate result stream Φri from one lr() node.

According to Equation 1, the cost of fsplit increases when w is increasing if b > 0.
Therefore, the cost of splitstreamX increases when scaling L, turning splitstreamX into
the bottleneck when executing scsq-plr with high L. Stream replication is a scalability
problem for large w, even if b is very close to zero, as in LRB.

Table 1. Tuple percentages, widths, and output stream rates of splitstream functions in LRB.

 o b r w Φ
D 0.4% 0% 99.6% 2 ΦX = 99.5% ⋅ Φ ΦD = 0.1% ⋅ Φ
X 0% 0.5% 99.5% L Φi = ΦX ⋅ (0.5% + 99.5% / L)
O 0% 0% 100% 3 Φri < Φi

3 Splitstream Trees

To alleviate the bottleneck in splitstreamX when scaling w, we propose a hierarchical
splitstream plan, called a splitstream tree. Each level l in a splitstream tree is num-
bered, starting from 1 at the root to the depth d. Each node in the tree executes fsplit,
and the width of the nodes on level l is called the fanout fl of level l. A hierarchical
hash function defined in this section enables any user defined rfn to be executed in a
splitstream tree. Furthermore, we introduce a cost model for splitstream trees. Using
this cost model, a splitstream tree with maximum throughput can be generated if r and
b are known. We compare its performance to a practical splitstream tree, which does
not require knowledge of r and b.

3.1 Multi-Level Hash Function

Since each level l in a splitstream tree has fanout fl, the result of rfn on level l must be
an integer in range [0, fl –1]. In addition, a splitstream tree must result in the same set
of output streams as that of fsplit. To fulfill these requirements, the hierarchical hash
function defined in Equation 2 is applied on the result of the routing function rfn(t) at
each level l and tuple t.

.mod
1



















=

−
l

l
l ,frfn(t)(rfn(t))h

λ

(2)

The denominator λl-1 of Equation 2 is the cumulative fanout of level l – 1, i.e., the
fanout that the tuple has undergone in the tree levels above level l. The cumulative
fanout at the root is λ0 = f0 = 1, and the cumulative fanout λl is

.∏
≤

=
l

l
k

kfλ (3)

The output streams of a node at level l are denoted So(l)
i, i = 0…fl – 1. For exam-

ple, if splitstreamX in Fig. 2 is executed as a splitstream tree with f1 = 2 and f2 = L/2,
then h1(rfn) routes position reports of even-numbered expressways to output stream
So(1)

0 and position reports of odd-numbered expressways to So(1)
1, according to Equa-

tion 2. On level 2, h2(rfn) routes tuples of expressway number x to So(2)
i, i = x/2. bfn

is the same in all nodes, so that one copy of each broadcast tuple arrives at each leaf.

3.2 A Cost Model for Splitstream Trees

In the following discussion, we assume that then omit percentage o = 0, as in our
splitstreamX example. If b > 0 (and thus r < 1), the routing percentage decreases at
each level. This is because the number of tuples to broadcast stay the same in all out-
put streams, whereas the number of tuples to be routed decreases per level. Equation 4
defines the routing and broadcasting percentages rl and bl at level l.

1

1

1

;
−

−

− ⋅+
⋅

=
⋅+

=
l

l
l

l
l λ

λ
λ br

b
b

br
rr .

(4)

The rate of one of the output streams at level l is Φo(l).









+⋅=

l

l

λ
rbΦΦo)(.

(5)

The cost Cl of executing a node at level l in a splitstream tree depends on the out-
put stream rate from level l – 1 according to Equation 5.

() ()()lll
l

l bfrcecpccΦoC)(⋅+⋅++⋅= −1 . (6)

The emit capacity E of a node executing the fsplit operator is defined as its maxi-
mum stream rate. The throughput Φmax of a splitstream tree is limited by E and by the
level in the splitstream tree with the highest cost.

()ll
C

E
maxmax =Φ .

(7)

Finally, the total cost of a splitstream tree of depth d can be estimated by adding
the splitstream costs for all nodes at each level. The number of nodes at level l is λl -1.

∑
=

− ⋅=
d

CC
1

1
l

llλ .
(8)

3.3 Maxtree and Exptree splitstream trees

Assuming that the percentages r and b are known and constant, it is possible to con-
struct an optimal splitstream tree that maximizes the throughput according to the cost
model. We call this splitstream tree maxtree, which maximizes the throughput while
minimizing the total cost. The cost at level l = 1 is minimized by choosing f1 = 2, so
that C1 = Φ ⋅ (cc + (r + 2b) ⋅ (cp + ce)). Levels are added until λd ≥ w. By choosing a
fanout fl of each level l > 1 such that Cl ≤ C1, we ensure that no downstream level in
the splitstream tree will be a bottleneck. The total cost in Equation 8 is minimized by
minimizing the number of splitstream tree levels. The number of levels are minimized
by maximizing fl on all levels l > 1, while keeping Cl ≤ C1. Solving fl for Cl = C1 us-
ing Equation 6 obtains the following formula for the optimal fanout fl at level l (see
[17] for details).

.1112
1 


















−








+

++=
−l

l λcecp
cc

b
rf

(9)

The ratio between the costs a = cc/(cp+ce) depends on the costs of rfn and bfn and
on the properties of the computing and network environments. In general, these pa-
rameters are unknown, so the formula in Equation 9 cannot be determined. Therefore,
maxtree can only be used for comparison in controlled experiments where a is known.
We determined a = 1.08 for splitstreamX in a preliminary experiment. To simplify the
theoretical discussion of maxtree, a was rounded to 1.

Equation 9 shows that optimal fanout fl increases quickly for small l > 1 if r > 0.
Based on this observation, we introduce a splitstream tree called exptree, which in-
creases its fanout for each level with a constant factor. exptree was set to generate
trees with f1 = 2, and fl = 2 ⋅ fl -1 for all l > 1. We show that the performance of exptree
will be almost as good as that of maxtree, without the need to know a, r, and b.

3.4 Theoretical Evaluation

Throughput and total CPU cost were estimated for the splitstream plans using Equa-
tions 7 and 8, assuming cc = 1 and a = 1. In a scale-up evaluation, w was scaled from
2 to 256 while keeping b = 0.5%, as in splitstreamX. In a robustness evaluation, b was
scaled from 0 to 1 while keeping w = 64. Fig. 4 shows the estimated performance.

In the scale-up evaluation, the estimated throughput was plotted in Fig. 4 (a) as the
percentage of emit capacity E. The estimated total CPU cost was plotted in Fig. 4 (b).
As expected, the single-process fsplit degrades when w increases. On the other hand,
fsplit also consumes the least total CPU. The CPU cost of exptree increases when a

new tree level is added, e.g. when increasing w from 8 to 16. For such small values of
b = 0.5% as in LRB, maxtree generates a shallower tree and thus consumes less CPU
resources than exptree.

When scaling b in the robustness evaluation, Fig. 4 (d) shows that the CPU cost of
maxtree increases sharply when b increases. If b ≈ 1 in to Equation 9, fl = 2 on all
maxtree levels, resulting in a binary tree. A splitstream tree with so many nodes con-
sumes a lot of CPU. Fig. 4 (c) shows that all splitstream functions have the same
throughput for b = 0, but the throughput of fsplit drops quickly when b increases. For
moderate values of b (up to 10%), the estimated throughput of exptree is the same as
that of maxtree. For higher values of b, the estimated throughput of exptree is lower,
however much better than fsplit.

(a)

0

10

20

30

40

50

60

2 4 8 16 32 64 128 256
Width w

Th
ro

ug
hp

ut
 [%

 o
f
E

]

fsplit
maxtree
exptree

(b)

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256
Width w

C
PU

 c
os

t u
ni

ts

fsplit
maxtree
exptree

(c)

0

10

20

30

40

50

60

0 0.5 1 5 10 50 100
Broadcast percentage b

Th
ro

ug
hp

ut
 [%

 o
f
E

]

fsplit
maxtree
exptree

(d)

0
20
40
60
80

100
120
140
160
180
200

0 0.5 1 5 10 50 100
Broadcast percentage b

C
PU

 c
os

t u
ni

ts

fsplit
maxtree
exptree

Fig. 4. (a) Estimated throughput and (b) total CPU cost, b = 0.5%. (c) Estimated throughput and
(d) total CPU cost, w = 64.

4 Experimental Setup

The splitstream functions were implemented using our prototype DSMS SCSQ [21].
Queries and views are expressed in terms of typed functions in SCSQ’s functional
query language SCSQL, resulting in one of three collection types stream, bag, and
vector. A stream is an object that represents ordered (possibly unbounded) sequences
of objects, a bag represents relations, and a vector represents bounded sequences of
objects. For example, vectors are used to represent stream windows, and vectors of
streams are used to represent ordered collections of streams.

Queries are specified using SCSQL in a client manager. The distributed execution
plan of a query forms a directed acyclic graph of stream processes (SPs), each emit-
ting tuples on one or more streams. Continuous query definitions are shipped to a co-
ordinator. Unless otherwise hinted, the coordinator dynamically starts new SPs in a
round robin fashion over all its compute nodes, so that the load is balanced across the
cluster. The coordinator returns a handle of each newly started SP.

In the SPs, a cost-based query optimizer transforms each query to a local stream
query execution plan (SQEP), by utilizing the query optimizer of Amos II [9]. A
SQEP reads data from its input streams and delivers data on one or more of its output
streams. Stream drivers for several communication protocols are implemented using
non-blocking I/O and carefully tuned buffers. A timer flushes the output stream buff-
ers at regular time intervals to ensure that no tuples will remain for too long. The
SCSQ kernel is implemented in C, where SQEPs are interpreted. SQEPS may call the
Java VM to access DBMSs over JDBC. Thus, an SP may be stateful in that it stores,
indexes, and retrieves data using internal main memory tables or external databases.
In scsq-plr, local main memory tables are used to store account balance data, and
MySQL is used to store daily expenditure data.

In our experiments, each SP is a UNIX process on a cluster of compute nodes fea-
turing two quad-core Intel® Xeon® E5430 CPUs @ 2.66GHz and 6144 KB L2
cache. Six such compute nodes (48 cores in total) were available for the experiments.
For large splitstream trees, there were fewer CPUs than SPs. Then, some SPs were co-
located on the same CPU. For inter-node communication, TCP/IP was used over gi-
gabit Ethernet. Intra node communication used TCP/IP over the loopback interface.
Throughput is computed by measuring the execution time of SCSQ over a finite
stream. The CPU usage of each SP is determined using a profiler in SCSQ that meas-
ures the time spent in each function by interrupt driven sampling.

5 Preliminary Experiments

Two preliminary experiments were performed. The purpose of the first one is two-
fold: We show that the emit capacity for moderately sized tuples is bound by the CPU
and not by the network. We also show that the emit capacity E for an SP, and thus the
cost, is the same for moderately sized tuples no matter if streaming inter or intra node.
Since the cost is the same, the scheduling of SPs is greatly simplified.

One SP was streaming tuples of specified size to another SP, which counted them.
Intra node streaming was performed with the SPs on the same compute node, while
they were on different nodes for inter node streaming. The emit capacity is shown in
Fig. 5 (a), with less than 3.5% relative standard deviation. For tuples of moderate size,
the emit capacity is the same for inter and intra node streaming. LRB input stream tu-
ples have 15 attributes, occupying 83 bytes including header. The network bandwidth
consumption is 143 Mbit/s for these tuples, which is significantly less than the capac-
ity of a gigabit Ethernet interface. Streaming moderately sized tuples as in LRB is
CPU bound, because of the overhead of marshalling and (de)allocating many small
objects. For tuples of size greater than 512 bytes, the intra node throughput is better.
Usually however, tuples are smaller.

The purpose of the second preliminary experiment is to measure consume, process,
and emit costs (cc, cp, and ce) splitstreamX in our environment, as required by max-
tree. We do that by executing splitstreamX as an fsplit with w = 1. One SP generated a
stream of 3 million tuples. A second SP applied fsplit with w = 1 on the stream from
the first SP, using the rfn and bfn of splitstreamX. A third SP counted the number of
tuples in the single output stream from fsplit.

(a)

0

500

1000

1500

2000

27 31 39 55 83 128 256 512 1025 2049

Tpl size [bytes]

Th
ro

ug
hp

ut
 [M

bp
s]

inter node streaming
intra node streaming

(b)

0
2
4
6
8

10
12
14
16

cc cp ce

cost

C
PU

 ti
m

e
[s

]

Fig. 5. (a) Inter and intra node emit capacity, (b) CPU time breakdown for fsplit with w = 1.

The CPU times obtained from the fsplit SP are shown in Fig. 5 (b). Using these
CPU times, a = cc / (cp + ce) ≈ 1.08, which is used in all maxtree experiments. Fur-
thermore, the throughput of this simple splitstream was Φmax = 109 ⋅ 103 tuples per
second (relative standard deviation 0.6%). In LRB, the maximum input stream rate is
1670 tuples per second and expressway, so this throughput corresponds to 65
(109000/1670) expressways in LRB. No splitstream tree can be expected to have
higher throughput than fsplit with w = 1. Thus, no splitstream tree will be able to split
the input stream of LRB for L > 65.

6 Experimental Evaluation

The goal with the experimental evaluation is to investigate the properties of the split-
stream plans in a practical setting. Throughput and total CPU consumption were stud-
ied in a scale-up experiment and a robustness experiment, set up in the same way as
in the analytical evaluation. In order to establish statistical significance, each experi-
ment was performed five times and the average is plotted in the graphs.

Fig. 6 shows the throughput and CPU usage of the splitstream trees. Error bars
(barely visible) show one standard deviation. All experimental results agree perfectly
with the theoretical estimates in Fig. 4 with one exception: The measured throughput
of maxtree shown in Fig. 6 (c) was significantly lower for large values of b than esti-
mated. This is because the total CPU usage exceeds the CPU resources available for
our experiments. If resources were abundant, maxtree should have been feasible for
splitting streams with a high broadcast percentage. If resources are limited, exptree is
shown to achieve the same throughput as maxtree at a smaller CPU cost. The experi-
ments confirm that our cost model is realistic.

(a)

0

20000

40000

60000

80000

100000

120000

2 4 8 16 32 64 128 256

w

Th
ro

ug
hp

ut
 [t

pl
/s

]

fsplit
maxtree
exptree

(b)

0

20

40

60

80

100

120

2 4 8 16 32 64 128 256

w

C
P

U
 ti

m
e

[s
]

fsplit
maxtree
exptree

(c)

0

20000

40000

60000

80000

100000

120000

0 0.5 1 5 10 50 100
Broadcast percentage b

Th
ro

ug
hp

ut
 [t

pl
/s

]

fsplit
maxtree
exptree

(d)

0

500

1000

1500

2000

2500

0 0.5 1 5 10 50 100
Broadcast percentage b

To
ta

l C
PU

 ti
m

e
[s

]
fsplit
maxtree
exptree

Fig. 6. (a) Measured throughput and (b) measured total CPU cost for b = 0.5%. (c) Measured
throughput and (d) measured total CPU cost for w = 64.

6.1 Autosplit

We observe that exptree achieves the same scale-up as maxtree. Furthermore, the ro-
bustness of exptree is the same as that of maxtree when resources are not abundant.
Based on these results, we implement autosplit using the following decision rule: If
bfn is present, generate an exptree. If only rfn is present and thus b = 0, generate a
single fsplit, since a single fsplit has the same throughput as the splitstream trees for
b = 0, but consumes less CPU.

6.2 LRB Performance

To verify the high scalability of autosplit, it was used as the splitstream function in
scsq-plr as shown in Fig. 2. autosplit generated an exptree for splitstreamX and fsplit
for splitstreamD and splitstreamO since they had no bfn. The performance of LRB us-
ing autosplit is compared to LRB using fsplit in all splitstream functions. To simplify
the experiments, the dailyexp() node was disabled since the daily expenditure process-
ing has no bearing on scalability of LRB stream processing in scsq-plr.

When using the round robin scheduler of the coordinator described in Section 4,
scsq-plr with autosplit achieved L = 52. The limiting factor was that the first node of
the plan was not granted enough CPU resources, because too many SPs were assigned
to the same multi-core compute node. By adding a hint to the coordinator to limit the
number of SPs on the first compute node, the L-rating for autosplit improved to
L = 64, as illustrated by Fig. 7. The y-axis is the MRT, and the x-axis is the number of

minutes into the simulation. fsplit keeps up until minute 125, when response time ac-
cumulates and exceeds the allowed MRT at 129 minutes. When b = 0.5% as in split-
streamX, the maximum throughput of fsplit with w = 64 is 100000 tpl/sec according to
the results in Fig. 6(c). At 125 minutes, the stream rate for L = 64 is getting close to
100000 tpl/sec. Thus, fsplit is unable to keep up with the increasing input stream rate.
Since the maximum throughput of exptree is higher, autosplit achieves the higher L-
rating of L = 64. The bumps in the curves are because of cron jobs executing on the
compute nodes beyond our control.

In conclusion, we have shown that fsplit cannot achieve L = 64 in LRB, and that
smart scheduling is necessary to take full advantage of autosplit. fsplit with smart
scheduling was measured to achieve L = 52. Notice that in standard LRB, the im-
provement with autosplit could not be expected to be very large. However, as indi-
cated theoretically by Fig. 4 (a) and experimentally in Fig. 6 (c), the gain will be big-
ger if the broadcast percentage b is greater.

0
1
2
3
4
5

6
7
8
9

10

0 30 60 90 120 150 180

Time [minute]

M
ax

im
um

 R
es

po
ns

e
Ti

m
e

[s
]

fsplit
auto

Fig. 7. Maximum response time for L = 64.

7 Related Work

This paper complements other work on parallel DSMS implementations [4, 8, 12, 15,
19], by allowing the user to specify non procedural stream splitting, and by paralleliz-
ing the execution of stream splitting. This allows parallel execution of expensive que-
ries over massive data streams.

In previous work [22], we introduced stream processes, allowing the user to manu-
ally specify parallel stream processing. The stream splitting proved to be very effi-
cient for online spatio-temporal optimization of trip grouping [7], based on static or
dynamic routing decisions. Similarly, GSDM [12] distributed its stream computations
by selecting and composing distribution templates from a library, in which some basic
templates were defined including both splitting and joining. By contrast, the stream
splitting in this paper is specified through declarative second order splitstream func-
tions, allowing optimizable stream splitting insensitive to the percentages of tuples to
broadcast or route.

Gigascope [4] was extended with automatic query dependent data partitioning in
[14] for queries that monitored network streams. The query execution was automati-
cally parallelized by inferring partitioning sets based on aggregation and join attrib-
utes in the queries. The stream splitting was performed in special hardware, which

provided high throughput. By contrast, we have developed a method to split streams
involving both routing and broadcasting by generating efficient hierarchical split-
stream plans executing on standard PCs. Furthermore, splitstream functions allow the
user to declaratively specify splitstream strategies, which allows parallelization of
queries that cannot be parallelized automatically.

Efficient locking techniques were developed in [5] to parallelize aggregation op-
erators using threads. Since SCSQ uses processes instead of threads for paralleliza-
tion, locking is not an issue.

Partitioning a query plan by statically distributing the execution of its operators
proved to be a bottleneck in [13]. In [2], query plans were partitioned by dynamically
migrating operators between processors. However, expensive operators are still bot-
tlenecks. In our work, the bottleneck was overcome by splitting the input stream into
several parallel streams, and further reduced by parallelizing the stream splitting it-
self. Furthermore, allowing both routing and broadcasting provide a powerful method
to parallelize queries, as shown by scsq-plr.

The Flux operator [18] dynamically repartitions stateful operators in running
streams by adaptively splitting the input stream based on changes in load. By contrast,
we have studied user defined stream splitting. Dynamic scheduling of distributed op-
erators in continuous queries has been studied in [19] and [23]. A dynamic distributed
scheduling is introduced in [19] based on knowledge about anti-correlations in load
between different independent operators in a plan. In [23], stream operators are dy-
namically migrated between compute nodes based on the current load of the nodes.
By contrast, this paper concentrates stream splitting for parallel processing down-
stream. However, scheduling proved to be important, and future work should investi-
gate the effectiveness of these approaches when used with parallelization functions.

Dryad [10] generalizes Map-Reduce [6] by implementing an explicit process graph
building language where edges represent communication channels between vertices
representing processes. By contrast, SCSQ users specify parallelization strategies over
streams on a higher level using declarative second order parallelization functions.
These parallelization functions are automatically translated into parallel execution
plans (process graphs) depending on the arguments to the parallelization functions.

SCOPE [3] and Map-Reduce-Merge [20] are more specialized than Dryad, provid-
ing an SQL-like query language over large distributed files. The queries are optimized
into parallel execution plans. Dryad, Map-Reduce-Merge, and SCOPE operate on sets
rather than streams. None of these provide parallelization functions.

Out of the existing implementations of LRB, IBM’s Stream Processing Core (SPC)
is the only attempt to parallelize the execution [13]. The SPC implementation of LRB
was partitioned into 15 building blocks, each of which performed a part of the imple-
mentation. One processing element computed all segment statistics on a single CPU,
which proved to be a bottleneck. With the SCSQ implementation and autosplit, we
achieved over 25 times the L-rating of the SPC implementation by user defined paral-
lelization. The performance difference between SCSQ and SPC illustrates (i) the im-
portance of how the execution is parallelized; and (ii) the usefulness of splitstream
functions where the user provides application knowledge for the parallelization de-
claratively by specifying rfn and bfn.

For streams, rfn and bfn are analogous to fragmentation and replication schemes
for distributed databases [16]. However, for distributed databases the emphasis is

mainly on distributing data without skew. In our case, there are orders of magnitude
higher response time demands on stream splitting and replication than on disk data
fragmentation and replication. Therefore, the performance of stream splitting is criti-
cal.

8 Conclusions and Future Work

We investigated the performance of splitstream functions, which are parallelization
functions that provide both partitioning and replication of an input stream into a col-
lection of streams. A splitstream function is compiled into a splitstream plan. We first
defined a theoretical cost model to estimate the resource utilization of different split-
stream plans, and then investigated the performance of these splitstream plans ex-
perimentally using the SCSQ DSMS. Based on both theoretical and experimental
evaluations, we devised the splitstream function autosplit, which splits an input
stream, given the degree of parallelism, and two functions specifying how to distrib-
ute and partition the input stream. The routing function returns the output stream
number for each input tuple that should be routed to a single output stream. The
broadcast function selects the tuples that should be broadcasted to all output streams.
autosplit was shown to generate a robust and scalable execution plan with perform-
ance close to what is theoretically optimal for a tree shaped execution plan. autosplit
was used to parallelize the Linear Road DSMS Benchmark (LRB), and shown to
achieve an order of magnitude higher L-rating than other published implementations.

A simple scheduler was used in the experiments, which balanced the load evenly
between the compute nodes for all splitstream plans. This scheduler achieved L = 52
in the LRB experiment. By hinting the scheduler not to overload the first node of the
execution plan, the L-rating improved to 64, which is close to the theoretically maxi-
mum throughput for scsq-plr in our cluster environment.

As splitstream has shown to be sensitive to the cost of rfn and bfn, future work in-
cludes optimizing splitstream for a wider class of rfn and bfn. By devising a cost
model like in [24], the scheduling of SPs can be further improved. The robustness of
dynamic re-scheduling and SP migration should be investigated. It should be investi-
gated whether other, non-tree shaped splitstream plans can improve performance fur-
ther. Furthermore, other application scenarios are being studied within the iStreams
project [11].

Acknowledgments. This project is supported by VINNOVA in the iStreams project.
The experiments were performed using UPPMAX resources. We greatly appreciate
the insightful comments by the anonymous reviewers.

9 References

1. Arasu, A., et al.: Linear Road: A Stream Data Management Benchmark. In: VLDB (2004)
2. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-Based Load Management in

Federated Distributed Systems. In: NSDI (2004)

3. Chaiken, R., et al.: SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets.
In: VLDB (2008)

4. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: A Stream Database
for Network Applications. In: SIGMOD (2003)

5. Das, S., Antony S., Agrawal, D., El Abbadi, A.: Thread Cooperation in Multicore Archi-
tectures for Frequency Counting over Multiple Data Streams. In: VLDB (2009)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI (2004)

7. Gidofalvi, G., Pedersen, T. B., Risch, T., Zeitler, E.: Highly scalable trip grouping for
large-scale collective transportation systems. In: EDBT (2008)

8. Girod, L., Mei, Y., Newton, R., Rost, S., Thiagarajan, A., Balakrishnan, H., Madden, S.:
XStream: A Signal-Oriented Data Stream Management System. In: ICDE (2008)

9. Risch, T., Josifovski, V., Katchaounov, T.: Functional Data Integration in a Distributed
Mediator System. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.):
The Functional Approach to Data Management (2004)

10. Isard, M., et al.: Dryad: Distributed Data-Parallel Programs from Sequential Building
Blocks. ACM SIGOPS Operating Systems Review, Volume 41, 59–72, (2007)

11. iStreams homepage, http://www.it.uu.se/resnearch/group/udbl/html/iStreams.html.
12. Ivanova, M., Risch, T.: Customizable Parallel Execution of Scientific Stream Queries, In:

VLDB (2005)
13. Jain, N., et al.: Design, Implementation, and Evaluation of the Linear Road Benchmark on

the Stream Processing Core. In: SIGMOD (2006)
14. Johnson, S., Muthukrishnan, Shkapenyuk, V., Spatscheck, O.: Query-Aware Partitioning

for Monitoring Massive Network Data Streams. In: SIGMOD (2008)
15. Liu, B., Zhu , Y., Rundensteiner, E. A.: Run-Time Operator State Spilling for Memory In-

tensive Long-Running Queries. In: SIGMOD (2006)
16. Özsu, M. T., Valduriez, P. Principles of Distributed Database Systems, Second Edition.

Prentice-Hall (1999)
17. SCSQ-LR homepage, http://user.it.uu.se/~udbl/lr.html.
18. Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., Franklin, M. J.: Flux: An Adaptive

Partitioning Operator for Continuous Query Systems. In: ICDE (2002)
19. Xing, Y., Zdonik, S., Hwang, J.-H.: Dynamic Load Distribution in the Borealis Stream

Processor. In: ICDE (2005)
20. Yang, H., Dasdan, A., Hsiao, R.-L. Parker, D.S.: Map-reduce-merge: simplified relational

data processing on large clusters. In: SIGMOD (2007)
21. Zeitler, E., Risch, T.: Processing high-volume stream queries on a supercomputer. In:

ICDE Workshops (2006)
22. Zeitler, E., Risch, T., Using stream queries to measure communication performance of a

parallel computing environment. In: ICDCS Workshops (2007)
23. Zhou, Y., Ooi, B. C., Tan, K.-L., Wu. J.: Efficient Dynamic Operator Placement in a Lo-

cally Distributed Continuous Query System. In: On the Move to Meaningful Internet Sys-
tems (2006)

24. Zhou, Y., Aberer, K., and Tan, K.-L.: Toward massive query optimization in large-scale
distributed stream systems. In: Middleware (2009)

