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Abstract. Scalable execution of continuous queries over massive data streams 
often requires splitting input streams into parallel sub-streams over which query 
operators are executed in parallel. Automatic stream splitting is in general very 
difficult, as the optimal parallelization may depend on application semantics. 
To enable application specific stream splitting, we introduce splitstream func-
tions where the user specifies non-procedural stream partitioning and replica-
tion. For high-volume streams, the stream splitting itself becomes a perform-
ance bottleneck. A cost model is introduced that estimates the performance of 
splitstream functions with respect to throughput and CPU usage. We implement 
parallel splitstream functions, and relate experimental results to cost model es-
timates. Based on the results, a splitstream function called autosplit is proposed, 
which scales well for high degrees of parallelism, and is robust for varying pro-
portions of stream partitioning and replication. We show how user defined par-
allelization using autosplit provides substantially improved scalability (L = 64) 
over previously published results for the Linear Road Benchmark. 

Keywords: Distributed stream systems, parallelization, query optimization. 

1 Introduction 

Data Stream Management Systems (DSMS) are becoming commonplace for a wide 
range of scientific and industrial applications, with high-volume data streams and 
queries that involve complex computations. Scalable execution in such applications 
requires parallelization. The parallelization of a query is called the parallelization 
strategy. In general, it is very difficult to automate the parallelization strategy, since 
the optimal parallelization may depend on application semantics. Our approach is to 
extend the query language with second-order functions to enable the user to specify 
non-procedural parallelization strategies. These functions split an input stream into 
large collections of parallel streams over which queries produce collections of result 
streams. Depending on the application, this collection of result streams can be 
merged, aggregated or further partitioned. 

Splitstream functions partition and/or replicate input streams into a collection of 
streams. For each tuple in the input stream, splitstream decides whether the tuple 
should be sent to one specific DSMS node (partitioning) or many DSMS nodes (repli-
cation). Partitioning a stream is necessary when executing expensive queries. Replica-



tion is required, e.g., when aggregates are computed over data distributed over many 
local DSMS nodes. A splitstream function is compiled and optimized into a split-
stream plan. We show how to automatically generate an optimized splitstream plan 
with high throughput and low CPU cost given a non-procedural splitstream specifica-
tion. A generic splitstream function autosplit is defined that generates an optimized 
parallel splitstream plan based on a simple decision rule. To investigate the scalability 
of splitstream functions, we have parallelized an implementation of the Linear Road 
Benchmark (LRB), which is called scsq-plr. We focus on the performance bottleneck 
in the parallelization strategy of scsq-plr, which is splitting the stream of position re-
ports and account balance queries. In summary, we present the following results: 
• Splitstream functions are introduced, which enable non-procedural user defined 

specification of parallelization strategies. 
• A cost model is introduced that estimates CPU utilization and throughput of split-

stream plans. 
• A theoretically optimal tree shaped splitstream plan is devised that has maximum 

throughput according to the cost model. This plan is compared with other split-
stream plans. 

• A generic splitstream function autosplit automatically generates tree shaped split-
stream plans. Autosplit is shown to improve the scalability of LRB substantially. 

2 Splitstream Functions 

A stream function, Q(S, …)  So is a parameterized query that transforms one or 
more input stream arguments S into one or more output streams So. A parallelization 
function operates on collections of streams, and is used for specifying parallel execu-
tions of stream functions. Fig. 1 illustrates three basic classes of parallelization func-
tions; splitstream, mapstream, and mergestream. splitstream splits an input stream 
into two or more output streams. The number of output streams of a splitsteam is 
called its width. mapstream applies a stream function on each stream in a collection of 
streams, while mergestream merges or joins a collection of streams into a single out-
put stream. Examples of mergestream functions are stream union and windowed 
stream join. Although all parallelization functions are used in the final evaluation ex-
periment, the focus of this paper is to optimize splitstream functions since they are 
shown to be a performance bottleneck. 

 
Fig. 1. Splitstream, mapstreams, and mergestream. 

A splitstream function has the basic signature splitstream(stream s, integer w, func-
tion rfn, function bfn)  vector of stream sv. The input stream s is split into w output 
streams in the vector sv. The first functional argument rfn is the routing function, hav-
ing signature rfn(object tpl, integer w)  integer, which returns the output stream 
number (between 0 and w – 1) for each tuple that should be routed to a single output 



 

 

stream. The functional argument bfn(object tpl)  boolean is the broadcast function, 
which returns true for tuples to be broadcasted to all output streams. bfn and rfn return 
nil for tuples that should neither be broadcasted nor routed. rfn and bfn are defined 
declaratively in the query language by the user.  

2.1 Parallelizing LRB 

LRB [1] simulates a traffic system of expressways with variable tolling that depends 
on the utilization of the roads and the presence of accidents. Vehicles undertake jour-
neys in the expressway system consisting of L expressways while emitting stream of 
position reports. An implementation must respond correctly to the continuous and his-
torical queries of the benchmark within the allowed maximum response time (MRT). 
The number of expressways that an implementation is able to handle is called the L-
rating of the implementation. An LRB implementation can be seen as a stream func-
tion LR(S)  So. The LRB input stream S consists of four kinds of tuples; P, A, D, 
and E (event type 0, 2, 3, and 4, respectively), of which 99% are position reports P. 
The rest of the tuples are account balance queries A (0.5%), daily expenditure queries 
D (0.1%), and estimated travel time queries E (0.4%). Currently, E tuples are ignored 
[1]. The D tuples are computed over historical data, their frequency is very low, and 
the allowed MRT is 10 sec, so any DBMS can respond to D tuples within the required 
time. Allowed MRT for P and A tuples are five seconds. Since these tuples are very 
frequent, they have to be processed efficiently. The input stream rate increases con-
tinuously during the 180 minutes of the simulation. The result stream So contains toll 
and accident alerts (event type 0 and 1), and query responses (event type 2 and 3). 
Some position reports do not result in toll alerts, so the rate of So is less than that of S. 

Our single node LRB implementation scsq-lr [17], spent most of its CPU time 
computing segment statistics. This processing is local to each expressway, i.e., events 
on one expressway are independent of events on other expressways. Thus, the key to 
efficient parallelization is to partition the input stream into L parallel streams, and 
execute one instance of LR() for each expressway, as is employed in scsq-plr. The A 
tuples require account balance information. In scsq-plr, a local account table is main-
tained on each LR(), so that vehicles accumulate account balance locally on each ex-
pressway. Then, account balance queries must aggregate account data from all ex-
pressways. Therefore, all A tuples are broadcasted to all DSMS nodes running LR(). 

 Fig. 2 illustrates this parallelization strategy for L = 4. The input stream is first 
split by splitstreamD, whose routing function rfnD(e,w) is defined as: 

create function rfnD(Event e, Integer w)  Integer as  

select i from integer i where 

(eventtype(e)<3 and i=0) or (eventtype(e)=3 and i=1); 

In splitstreamX, the body of rfnX(e,w) is select expressway(e) where 
eventtype(e)=0, while bfnX(e) is defined as select eventtype(e)=2. 
Each stream from splitstreamX is processed by an lr node (executing LR()), whose re-
sult stream is split by splitstreamO using rfnO(e,w) defined as select event-
type(e). splitstreamO and splitstreamD do not broadcast, so they have no bfn. All 



toll and accident alert result streams are merged with union-all. Account balance an-
swers from each splitstreamO are joined on query id and added together. 

 
Fig. 2. The parallelization strategy in scsq-plr. L = 4. 

2.2 Single Process Splitstream 

A splitstream function is naïvely implemented by a single process splitstream operator 
fsplit, its modules being shown in Fig. 3. The input stream S is read and de-marshalled 
by the consume module. In the process module, rfn and bfn are called for each tuple. 
Each emit module marshals and emits tuples to its output stream Soi, i=0…w–1. 

 
Fig. 3. Modules of fsplit. 

The rate Φ of a stream is defined as the number of tuples per second. The CPU cost 
C for executing fsplit in Fig. 3 is computed as 

( ))()( bwrcebwrocpccC ⋅++⋅+++Φ= . (1) 

In Equation 1, the consume cost cc measures reading and de-marshalling one input 
tuple, the process cost cp measures the execution of rfn and bfn per input tuple, and 
the emit cost ce measures emitting a tuple. b is the broadcast percentage, which is the 
proportion of tuples in the input stream to be emitted to all w output streams accord-
ing to bfn. Notice that b is multiplied by w. r is the routing percentage, i.e. the propor-
tion of tuples to be routed according to rfn, while o is the omit percentage, which is 
the proportion of tuples that are not emitted at all. As a tuple is either broadcasted, 
routed, or omitted, r + b + o = 1. Thus, the cost C decreases if o increases because of 
smaller emit cost. Assuming rfn routes each tuple with equal probability for all output 
streams So0…Sow–1, the rate of each output stream is Φoi = Φ ⋅ (b + r / w) for all i. 



 

 

For scsq-plr, Table 1 shows percentages o, b, and r, widths w, and output stream 
rates Φ of splitstreamD, splitstreamX, and splitstreamO, respectively. E (0.4%) tuples 
are dropped by splitstreamD. P (99%) and A (0.5%) tuples are routed to splitstreamX, 
and D (0.1%) tuples are routed to dailyexp(). splitstreamX broadcasts A tuples to all 
lr() nodes and routes P tuples of expressway j = 0…L–1 to the corresponding lr(). 
Thus, splitstreamX has b = 0.5% / 99.5% ≈ 0.5%, and r = 99% / 99.5% ≈ 99.5%. Each 
splitstreamO routes the low rate result stream Φri from one lr() node. 

According to Equation 1, the cost of fsplit increases when w is increasing if b > 0. 
Therefore, the cost of splitstreamX increases when scaling L, turning splitstreamX into 
the bottleneck when executing scsq-plr with high L. Stream replication is a scalability 
problem for large w, even if b is very close to zero, as in LRB. 

Table 1.  Tuple percentages, widths, and output stream rates of splitstream functions in LRB.  

 o b r w Φ 
D 0.4% 0% 99.6% 2 ΦX = 99.5% ⋅ Φ ΦD = 0.1% ⋅ Φ 
X 0% 0.5% 99.5% L Φi = ΦX ⋅ (0.5% + 99.5% / L) 
O 0% 0% 100% 3 Φri < Φi 

3 Splitstream Trees 

To alleviate the bottleneck in splitstreamX when scaling w, we propose a hierarchical 
splitstream plan, called a splitstream tree. Each level l in a splitstream tree is num-
bered, starting from 1 at the root to the depth d. Each node in the tree executes fsplit, 
and the width of the nodes on level l is called the fanout fl of level l. A hierarchical 
hash function defined in this section enables any user defined rfn to be executed in a 
splitstream tree. Furthermore, we introduce a cost model for splitstream trees. Using 
this cost model, a splitstream tree with maximum throughput can be generated if r and 
b are known. We compare its performance to a practical splitstream tree, which does 
not require knowledge of r and b. 

3.1 Multi-Level Hash Function 

Since each level l in a splitstream tree has fanout fl, the result of rfn on level l must be 
an integer in range [0, fl –1]. In addition, a splitstream tree must result in the same set 
of output streams as that of fsplit. To fulfill these requirements, the hierarchical hash 
function defined in Equation 2 is applied on the result of the routing function rfn(t) at 
each level l and tuple t. 
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The denominator λl-1 of Equation 2 is the cumulative fanout of level l – 1, i.e., the 
fanout that the tuple has undergone in the tree levels above level l. The cumulative 
fanout at the root is λ0 = f0 = 1, and the cumulative fanout λl is 
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The output streams of a node at level l are denoted So(l)
i, i = 0…fl  – 1. For exam-

ple, if splitstreamX in Fig. 2 is executed as a splitstream tree with f1 = 2 and f2 = L/2, 
then h1(rfn) routes position reports of even-numbered expressways to output stream 
So(1)

0 and position reports of odd-numbered expressways to So(1)
1, according to Equa-

tion 2. On level 2, h2(rfn) routes tuples of expressway number x to So(2)
i, i = x/2. bfn 

is the same in all nodes, so that one copy of each broadcast tuple arrives at each leaf. 

3.2 A Cost Model for Splitstream Trees 

In the following discussion, we assume that then omit percentage o = 0, as in our 
splitstreamX example. If b > 0 (and thus r < 1), the routing percentage decreases at 
each level. This is because the number of tuples to broadcast stay the same in all out-
put streams, whereas the number of tuples to be routed decreases per level. Equation 4 
defines the routing and broadcasting percentages rl and bl at level l. 
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The rate of one of the output streams at level l is Φo(l). 
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The cost Cl of executing a node at level l in a splitstream tree depends on the out-
put stream rate from level l – 1 according to Equation 5. 

( ) ( )( )lll
l

l bfrcecpccΦoC )( ⋅+⋅++⋅= −1 . (6) 

The emit capacity E of a node executing the fsplit operator is defined as its maxi-
mum stream rate. The throughput Φmax of a splitstream tree is limited by E and by the 
level in the splitstream tree with the highest cost. 

( )ll
C

E
maxmax =Φ . 

(7) 

Finally, the total cost of a splitstream tree of depth d can be estimated by adding 
the splitstream costs for all nodes at each level. The number of nodes at level l is λl -1. 
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3.3 Maxtree and Exptree splitstream trees 

Assuming that the percentages r and b are known and constant, it is possible to con-
struct an optimal splitstream tree that maximizes the throughput according to the cost 
model. We call this splitstream tree maxtree, which maximizes the throughput while 
minimizing the total cost. The cost at level l = 1 is minimized by choosing f1 = 2, so 
that C1 = Φ ⋅ (cc + (r + 2b) ⋅ (cp + ce)). Levels are added until λd ≥ w. By choosing a 
fanout fl of each level l > 1 such that Cl ≤ C1, we ensure that no downstream level in 
the splitstream tree will be a bottleneck. The total cost in Equation 8 is minimized by 
minimizing the number of splitstream tree levels. The number of levels are minimized 
by maximizing fl on all levels l > 1, while keeping Cl ≤ C1. Solving fl for Cl = C1 us-
ing Equation 6 obtains the following formula for the optimal fanout fl at level l (see 
[17] for details). 
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The ratio between the costs a = cc/(cp+ce) depends on the costs of rfn and bfn and 
on the properties of the computing and network environments. In general, these pa-
rameters are unknown, so the formula in Equation 9 cannot be determined. Therefore, 
maxtree can only be used for comparison in controlled experiments where a is known. 
We determined a = 1.08 for splitstreamX in a preliminary experiment. To simplify the 
theoretical discussion of maxtree, a was rounded to 1. 

Equation 9 shows that optimal fanout fl increases quickly for small l > 1 if r > 0. 
Based on this observation, we introduce a splitstream tree called exptree, which in-
creases its fanout for each level with a constant factor. exptree was set to generate 
trees with f1 = 2, and fl = 2 ⋅ fl -1 for all l > 1. We show that the performance of exptree 
will be almost as good as that of maxtree, without the need to know a, r, and b. 

3.4 Theoretical Evaluation 

Throughput and total CPU cost were estimated for the splitstream plans using Equa-
tions 7 and 8, assuming cc = 1 and a = 1.  In a scale-up evaluation, w was scaled from 
2 to 256 while keeping b = 0.5%, as in splitstreamX. In a robustness evaluation, b was 
scaled from 0 to 1 while keeping w = 64. Fig. 4 shows the estimated performance. 

In the scale-up evaluation, the estimated throughput was plotted in Fig. 4 (a) as the 
percentage of emit capacity E. The estimated total CPU cost was plotted in Fig. 4 (b). 
As expected, the single-process fsplit degrades when w increases. On the other hand, 
fsplit also consumes the least total CPU. The CPU cost of exptree increases when a 



new tree level is added, e.g. when increasing w from 8 to 16. For such small values of 
b = 0.5% as in LRB, maxtree generates a shallower tree and thus consumes less CPU 
resources than exptree.  

When scaling b in the robustness evaluation, Fig. 4 (d) shows that the CPU cost of 
maxtree increases sharply when b increases. If b ≈ 1 in to Equation 9, fl = 2 on all 
maxtree levels, resulting in a binary tree. A splitstream tree with so many nodes con-
sumes a lot of CPU. Fig. 4 (c) shows that all splitstream functions have the same 
throughput for b = 0, but the throughput of fsplit drops quickly when b increases. For 
moderate values of b (up to 10%), the estimated throughput of exptree is the same as 
that of maxtree. For higher values of b, the estimated throughput of exptree is lower, 
however much better than fsplit. 
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Fig. 4. (a) Estimated throughput and (b) total CPU cost, b = 0.5%. (c) Estimated throughput and 
(d) total CPU cost, w = 64. 

4 Experimental Setup 

The splitstream functions were implemented using our prototype DSMS SCSQ [21]. 
Queries and views are expressed in terms of typed functions in SCSQ’s functional 
query language SCSQL, resulting in one of three collection types stream, bag, and 
vector. A stream is an object that represents ordered (possibly unbounded) sequences 
of objects, a bag represents relations, and a vector represents bounded sequences of 
objects. For example, vectors are used to represent stream windows, and vectors of 
streams are used to represent ordered collections of streams. 



 

 

Queries are specified using SCSQL in a client manager. The distributed execution 
plan of a query forms a directed acyclic graph of stream processes (SPs), each emit-
ting tuples on one or more streams. Continuous query definitions are shipped to a co-
ordinator. Unless otherwise hinted, the coordinator dynamically starts new SPs in a 
round robin fashion over all its compute nodes, so that the load is balanced across the 
cluster. The coordinator returns a handle of each newly started SP. 

In the SPs, a cost-based query optimizer transforms each query to a local stream 
query execution plan (SQEP), by utilizing the query optimizer of Amos II [9]. A 
SQEP reads data from its input streams and delivers data on one or more of its output 
streams. Stream drivers for several communication protocols are implemented using 
non-blocking I/O and carefully tuned buffers. A timer flushes the output stream buff-
ers at regular time intervals to ensure that no tuples will remain for too long. The 
SCSQ kernel is implemented in C, where SQEPs are interpreted. SQEPS may call the 
Java VM to access DBMSs over JDBC. Thus, an SP may be stateful in that it stores, 
indexes, and retrieves data using internal main memory tables or external databases. 
In scsq-plr, local main memory tables are used to store account balance data, and 
MySQL is used to store daily expenditure data. 

In our experiments, each SP is a UNIX process on a cluster of compute nodes fea-
turing two quad-core Intel® Xeon® E5430 CPUs @ 2.66GHz and 6144 KB L2 
cache. Six such compute nodes (48 cores in total) were available for the experiments. 
For large splitstream trees, there were fewer CPUs than SPs. Then, some SPs were co-
located on the same CPU. For inter-node communication, TCP/IP was used over gi-
gabit Ethernet. Intra node communication used TCP/IP over the loopback interface. 
Throughput is computed by measuring the execution time of SCSQ over a finite 
stream. The CPU usage of each SP is determined using a profiler in SCSQ that meas-
ures the time spent in each function by interrupt driven sampling. 

5 Preliminary Experiments 

Two preliminary experiments were performed. The purpose of the first one is two-
fold: We show that the emit capacity for moderately sized tuples is bound by the CPU 
and not by the network. We also show that the emit capacity E for an SP, and thus the 
cost, is the same for moderately sized tuples no matter if streaming inter or intra node. 
Since the cost is the same, the scheduling of SPs is greatly simplified. 

One SP was streaming tuples of specified size to another SP, which counted them. 
Intra node streaming was performed with the SPs on the same compute node, while 
they were on different nodes for inter node streaming. The emit capacity is shown in 
Fig. 5 (a), with less than 3.5% relative standard deviation. For tuples of moderate size, 
the emit capacity is the same for inter and intra node streaming. LRB input stream tu-
ples have 15 attributes, occupying 83 bytes including header. The network bandwidth 
consumption is 143 Mbit/s for these tuples, which is significantly less than the capac-
ity of a gigabit Ethernet interface. Streaming moderately sized tuples as in LRB is 
CPU bound, because of the overhead of marshalling and (de)allocating many small 
objects. For tuples of size greater than 512 bytes, the intra node throughput is better. 
Usually however, tuples are smaller. 



The purpose of the second preliminary experiment is to measure consume, process, 
and emit costs (cc, cp, and ce) splitstreamX in our environment, as required by max-
tree. We do that by executing splitstreamX as an fsplit with w = 1. One SP generated a 
stream of 3 million tuples. A second SP applied fsplit with w = 1 on the stream from 
the first SP, using the rfn and bfn of splitstreamX. A third SP counted the number of 
tuples in the single output stream from fsplit. 
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Fig. 5. (a) Inter and intra node emit capacity, (b) CPU time breakdown for fsplit with w = 1. 

The CPU times obtained from the fsplit SP are shown in Fig. 5 (b). Using these 
CPU times, a = cc / (cp + ce) ≈ 1.08, which is used in all maxtree experiments. Fur-
thermore, the throughput of this simple splitstream was Φmax = 109 ⋅ 103 tuples per 
second (relative standard deviation 0.6%). In LRB, the maximum input stream rate is 
1670 tuples per second and expressway, so this throughput corresponds to 65 
(109000/1670) expressways in LRB. No splitstream tree can be expected to have 
higher throughput than fsplit with w = 1. Thus, no splitstream tree will be able to split 
the input stream of LRB for L > 65. 

6 Experimental Evaluation 

The goal with the experimental evaluation is to investigate the properties of the split-
stream plans in a practical setting. Throughput and total CPU consumption were stud-
ied in a scale-up experiment and a robustness experiment, set up in the same way as 
in the analytical evaluation. In order to establish statistical significance, each experi-
ment was performed five times and the average is plotted in the graphs. 

Fig. 6 shows the throughput and CPU usage of the splitstream trees. Error bars 
(barely visible) show one standard deviation. All experimental results agree perfectly 
with the theoretical estimates in Fig. 4 with one exception: The measured throughput 
of maxtree shown in Fig. 6 (c) was significantly lower for large values of b than esti-
mated. This is because the total CPU usage exceeds the CPU resources available for 
our experiments. If resources were abundant, maxtree should have been feasible for 
splitting streams with a high broadcast percentage. If resources are limited, exptree is 
shown to achieve the same throughput as maxtree at a smaller CPU cost. The experi-
ments confirm that our cost model is realistic. 
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Fig. 6. (a) Measured throughput and (b) measured total CPU cost for b = 0.5%. (c) Measured 
throughput and (d) measured total CPU cost for w = 64. 

6.1 Autosplit 

We observe that exptree achieves the same scale-up as maxtree. Furthermore, the ro-
bustness of exptree is the same as that of maxtree when resources are not abundant. 
Based on these results, we implement autosplit using the following decision rule: If 
bfn is present, generate an exptree. If only rfn is present and thus b = 0, generate a 
single fsplit, since a single fsplit has the same throughput as the splitstream trees for 
b = 0, but consumes less CPU. 

6.2 LRB Performance 

To verify the high scalability of autosplit, it was used as the splitstream function in 
scsq-plr as shown in Fig. 2. autosplit generated an exptree for splitstreamX and fsplit 
for splitstreamD and splitstreamO since they had no bfn. The performance of LRB us-
ing autosplit is compared to LRB using fsplit in all splitstream functions. To simplify 
the experiments, the dailyexp() node was disabled since the daily expenditure process-
ing has no bearing on scalability of LRB stream processing in scsq-plr. 

When using the round robin scheduler of the coordinator described in Section 4, 
scsq-plr with autosplit achieved L = 52. The limiting factor was that the first node of 
the plan was not granted enough CPU resources, because too many SPs were assigned 
to the same multi-core compute node. By adding a hint to the coordinator to limit the 
number of SPs on the first compute node, the L-rating for autosplit improved to 
L = 64, as illustrated by Fig. 7. The y-axis is the MRT, and the x-axis is the number of 



minutes into the simulation. fsplit keeps up until minute 125, when response time ac-
cumulates and exceeds the allowed MRT at 129 minutes. When b = 0.5% as in split-
streamX, the maximum throughput of fsplit with w = 64 is 100000 tpl/sec according to 
the results in Fig. 6(c). At 125 minutes, the stream rate for L = 64 is getting close to 
100000 tpl/sec. Thus, fsplit is unable to keep up with the increasing input stream rate. 
Since the maximum throughput of exptree is higher, autosplit achieves the higher L-
rating of L = 64. The bumps in the curves are because of cron jobs executing on the 
compute nodes beyond our control.  

In conclusion, we have shown that fsplit cannot achieve L = 64 in LRB, and that 
smart scheduling is necessary to take full advantage of autosplit. fsplit with smart 
scheduling was measured to achieve L = 52. Notice that in standard LRB, the im-
provement with autosplit could not be expected to be very large. However, as indi-
cated theoretically by Fig. 4 (a) and experimentally in Fig. 6 (c), the gain will be big-
ger if the broadcast percentage b is greater. 
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Fig. 7. Maximum response time for L = 64. 

7 Related Work 

This paper complements other work on parallel DSMS implementations [4, 8, 12, 15, 
19], by allowing the user to specify non procedural stream splitting, and by paralleliz-
ing the execution of stream splitting. This allows parallel execution of expensive que-
ries over massive data streams. 

In previous work [22], we introduced stream processes, allowing the user to manu-
ally specify parallel stream processing. The stream splitting proved to be very effi-
cient for online spatio-temporal optimization of trip grouping [7], based on static or 
dynamic routing decisions. Similarly, GSDM [12] distributed its stream computations 
by selecting and composing distribution templates from a library, in which some basic 
templates were defined including both splitting and joining. By contrast, the stream 
splitting in this paper is specified through declarative second order splitstream func-
tions, allowing optimizable stream splitting insensitive to the percentages of tuples to 
broadcast or route. 

Gigascope [4] was extended with automatic query dependent data partitioning in 
[14] for queries that monitored network streams. The query execution was automati-
cally parallelized by inferring partitioning sets based on aggregation and join attrib-
utes in the queries. The stream splitting was performed in special hardware, which 



 

 

provided high throughput. By contrast, we have developed a method to split streams 
involving both routing and broadcasting by generating efficient hierarchical split-
stream plans executing on standard PCs. Furthermore, splitstream functions allow the 
user to declaratively specify splitstream strategies, which allows parallelization of 
queries that cannot be parallelized automatically. 

Efficient locking techniques were developed in [5] to parallelize aggregation op-
erators using threads. Since SCSQ uses processes instead of threads for paralleliza-
tion, locking is not an issue. 

Partitioning a query plan by statically distributing the execution of its operators 
proved to be a bottleneck in [13]. In [2], query plans were partitioned by dynamically 
migrating operators between processors. However, expensive operators are still bot-
tlenecks. In our work, the bottleneck was overcome by splitting the input stream into 
several parallel streams, and further reduced by parallelizing the stream splitting it-
self. Furthermore, allowing both routing and broadcasting provide a powerful method 
to parallelize queries, as shown by scsq-plr. 

The Flux operator [18] dynamically repartitions stateful operators in running 
streams by adaptively splitting the input stream based on changes in load. By contrast, 
we have studied user defined stream splitting. Dynamic scheduling of distributed op-
erators in continuous queries has been studied in [19] and [23]. A dynamic distributed 
scheduling is introduced in [19] based on knowledge about anti-correlations in load 
between different independent operators in a plan. In [23], stream operators are dy-
namically migrated between compute nodes based on the current load of the nodes. 
By contrast, this paper concentrates stream splitting for parallel processing down-
stream. However, scheduling proved to be important, and future work should investi-
gate the effectiveness of these approaches when used with parallelization functions. 

Dryad [10] generalizes Map-Reduce [6] by implementing an explicit process graph 
building language where edges represent communication channels between vertices 
representing processes. By contrast, SCSQ users specify parallelization strategies over 
streams on a higher level using declarative second order parallelization functions. 
These parallelization functions are automatically translated into parallel execution 
plans (process graphs) depending on the arguments to the parallelization functions. 

SCOPE [3] and Map-Reduce-Merge [20] are more specialized than Dryad, provid-
ing an SQL-like query language over large distributed files. The queries are optimized 
into parallel execution plans. Dryad, Map-Reduce-Merge, and SCOPE operate on sets 
rather than streams. None of these provide parallelization functions. 

Out of the existing implementations of LRB, IBM’s Stream Processing Core (SPC) 
is the only attempt to parallelize the execution [13]. The SPC implementation of LRB 
was partitioned into 15 building blocks, each of which performed a part of the imple-
mentation. One processing element computed all segment statistics on a single CPU, 
which proved to be a bottleneck. With the SCSQ implementation and autosplit, we 
achieved over 25 times the L-rating of the SPC implementation by user defined paral-
lelization. The performance difference between SCSQ and SPC illustrates (i) the im-
portance of how the execution is parallelized; and (ii) the usefulness of splitstream 
functions where the user provides application knowledge for the parallelization de-
claratively by specifying rfn and bfn. 

For streams, rfn and bfn are analogous to fragmentation and replication schemes 
for distributed databases [16]. However, for distributed databases the emphasis is 



mainly on distributing data without skew. In our case, there are orders of magnitude 
higher response time demands on stream splitting and replication than on disk data 
fragmentation and replication. Therefore, the performance of stream splitting is criti-
cal. 

8 Conclusions and Future Work 

We investigated the performance of splitstream functions, which are parallelization 
functions that provide both partitioning and replication of an input stream into a col-
lection of streams. A splitstream function is compiled into a splitstream plan. We first 
defined a theoretical cost model to estimate the resource utilization of different split-
stream plans, and then investigated the performance of these splitstream plans ex-
perimentally using the SCSQ DSMS. Based on both theoretical and experimental 
evaluations, we devised the splitstream function autosplit, which splits an input 
stream, given the degree of parallelism, and two functions specifying how to distrib-
ute and partition the input stream. The routing function returns the output stream 
number for each input tuple that should be routed to a single output stream. The 
broadcast function selects the tuples that should be broadcasted to all output streams. 
autosplit was shown to generate a robust and scalable execution plan with perform-
ance close to what is theoretically optimal for a tree shaped execution plan. autosplit 
was used to parallelize the Linear Road DSMS Benchmark (LRB), and shown to 
achieve an order of magnitude higher L-rating than other published implementations. 

A simple scheduler was used in the experiments, which balanced the load evenly 
between the compute nodes for all splitstream plans. This scheduler achieved L = 52 
in the LRB experiment. By hinting the scheduler not to overload the first node of the 
execution plan, the L-rating improved to 64, which is close to the theoretically maxi-
mum throughput for scsq-plr in our cluster environment. 

As splitstream has shown to be sensitive to the cost of rfn and bfn, future work in-
cludes optimizing splitstream for a wider class of rfn and bfn. By devising a cost 
model like in [24], the scheduling of SPs can be further improved. The robustness of 
dynamic re-scheduling and SP migration should be investigated. It should be investi-
gated whether other, non-tree shaped splitstream plans can improve performance fur-
ther. Furthermore, other application scenarios are being studied within the iStreams 
project [11].  
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