
Scalable Numerical Queries by Algebraic Inequality

Transformations

Thanh Truong and Tore Risch

Department of Information Technology, Uppsala University
 Box 337, SE-751 05, Sweden

thanh.truong@it.uu.se, tore.risch@it.uu.se

Abstract. To enable historical analyses of logged data streams by SQL queries,
the Stream Log Analysis System (SLAS) bulk loads data streams derived from
sensor readings into a relational database system. SQL queries over such log da-
ta often involve numerical conditions containing inequalities, e.g. to find sus-
pected deviations from normal behavior based on some function over measured
sensor values. However, such queries are often slow to execute, because the
query optimizer is unable to utilize ordered indexed attributes inside numerical
conditions. In order to speed up the queries they need to be reformulated to uti-
lize available indexes. In SLAS the query transformation algorithm AQIT (Al-
gebraic Query Inequality Transformation) automatically transforms SQL que-
ries involving a class of algebraic inequalities into more scalable SQL queries
utilizing ordered indexes. The experimental results show that the queries exe-
cute substantially faster by a commercial DBMS when AQIT has been applied
to preprocess them.

1 Introduction

We first introduce a real-world scenario application under investigation in the
Smart Vortex project [15], which requires queries involving numerical expressions. A
factory operates some machines. On each machine, there are a number of sensors to
measure different physical properties, e.g. power consumption, pressure, temperature,
etc. The sensors generate logs of measurements per machine that carry a time stamp
ts, a machine identifier m, a sensor identifier s, a measured value mv, and a measure-
ment class mc for the kind of measurements made by the sensor. Examples of meas-
urement classes are oil pressures of hydraulic filters and pressures of gear pumps. The
logs are analyzed by bulk loading them into a relational DBMS. To speed up perfor-
mance when analyzing sensors of the same kind on many different machines, there is
one table for each measurement class of each kind of physical property. To avoid
repetition of unchanged sensor readings, each measured value mv on machine m is
associated with a valid time interval bt and et indicating the begin time and end time
for mv, computed from the log time stamp ts when the data is bulk loaded. Hence, the
measurement of class mc=MC on machines m will be stored in the table measur-

esMC(m, s, bt, et, mv). These tables will contain large volumes of log data from many
sensors of the same kind on different machines.

After the data streams have been loaded into measuresMC(), the user can issue off-
line historical queries to find errors on machines in the past by looking for abnormal
values of mv. This often requires search conditions containing inequalities inside nu-
merical expression. In our scenario, in order to improve the performance of inequality
queries over mv, a B-tree index is added on each measuresMC.mv, denoted
idx(measuresMC.mv). The following are typical numerical query conditions on tables
measuresA, and measuresB to identify faulty behaviors of machines:

 C1: Were the measurements of class A higher than a threshold v0 = 15.6? We ex-
press the condition as 0:)(1 vmvmvC  .

 C2: Were the measurements of class A higher than r1 above the expected
value v1 = 15.6? We express the condition as 1:)(2 1 rvmvmvC  .

 C3: Were the measurements of class B outside the range r2 from the ideal

value v1 = 20? We express the condition as 21:)(3 rvmvmvC  .

 C4: Were the measurements of class B outside the range r3% from v1 = 20?

We express the condition as 3
1

1:)(4 r
v

vmv
mvC 


.

The above conditions can be expressed in SQL. Relational databases can handle
SQL query conditions of type C1 efficiently, since there is an ordered index
idx(measuresA.mv). However, in C2-C4 the inequalities are not defined directly over
the attribute mv but through some numerical expressions, which makes the query
optimizer not utilizing the indexes and hence the queries will execute slowly. We say
that the indexes idx(measuresA.mv) and idx(measuresB.mv) are not exposed in C2-C4.
To speed up such queries, the DBMS vendors recommend that the user reformulates
them [11] which often requires rather deep knowledge of low-level index operations.

To automatically transform a class of queries involving inequality expressions into
more efficient queries where indexes are exposed, we have developed the query trans-
formation algorithm AQIT (Algebraic Query Inequality Transformation). We show
that AQIT substantially improves performance for queries with conditions of type C2-
C4, exemplified by analyzing logged abnormal behavior in our scenario. Without the
proposed query transformations the DBMS will do a full scan, not utilizing any index.

AQIT transforms queries with inequality conditions on single indexed attributes to
utilize range search operations over B-tree indexes. In general, AQIT can transform
inequality conditions of form F(mv) ψ , where mv is a variable bound to an indexed
attribute A, F(mv) is an expression consisting of a combination of transformable func-
tions T, currently T  {+, -, /, *, power, sqrt, abs}, and  is an inequality comparison
  {≤, ≥, <, >}. AQIT tries to reformulate inequality conditions into equivalent con-
ditions, mv ’ F’() that makes the index on attribute A, idx(A) exposed to the query
optimizer. AQIT has a strategy to automatically determine ψ’ and F’(). If AQIT
fails to transform the condition, the original query is retained. For example, AQIT is

currently not applicable on multivariable inequalities, which are subjects for future
work.

In summary, our contributions are:

1. We introduce the algebraic query transformation strategy AQIT on a class of nu-
merical SQL queries. AQIT is transparent to the user and does not require manual
reformulation of queries. We show that it substantially improves query perfor-
mance.

2. The prototype system SLAS (Stream Log Analysis System) implements AQIT as a
SQL pre-processor to a relational DBMS. Thus, it can be used on top of any rela-
tional DBMS. Using SLAS we have evaluated the performance improvements of
AQIT on log data from industrial equipment in use.

This paper is organized as follows. Section 2 discusses related work. Section 3 pre-
sents some typical SQL queries where AQIT improves performance. Section 4 gives
an overview of SLAS and its functionality. Section 5 presents the AQIT algebraic
transformation algorithm on inequality expressions. Section 6 evaluates the scalability
of applying AQIT for a set of benchmark queries based on the scenario database,
along with a discussion of the results. Section 7 gives conclusions and follow-up fu-
ture work.

2 Related Work

The recommended solution to utilize an index in SQL queries involving arithmetic
expressions is to manually reformulate the queries so that index access paths are ex-
posed to the optimizer [5] [11] [13]. However, it may be difficult for the database user
to do such reformulations since it requires knowledge about indexing, the internal
structure of execution plans, and how query optimization works. There are a number
of tools [16] [11], which point out inefficient SQL statements but do not automatical-
ly rewrite them. In contrast, AQIT provides a transparent transformation strategy,
which automatically transforms queries to expose indexes, when possible. If this is
not possible, the query is kept intact.

Modern DBMSs such as Oracle, PostgreSQL, DB2, and SQL Server support func-
tion indexes [10] [8], which are indexes on the result of a complex function applied on
row-attribute values. When an insertion or update happens, the DBMS computes the
result of the function and stores the result in an index. The disadvantage of function
indexes compared to the AQIT approach is that they are infeasible for ad hoc queries,
since the function indexes have to be defined beforehand. In particular, function in-
dexes are very expensive to build in a populated database, since the result of the ex-
pression must be computed for every row in the database. By contrast, AQIT does not
require any pre-computations when data is loaded or inserted into the database. There-
fore AQIT makes the database updates more efficient, and simplifies database
maintenance.

Computer algebra systems like Mathematica [1] and Maple [4] and constraints da-
tabase systems [7] [9] also transform inequalities. However, those systems do not

have knowledge about database indexes as AQIT. The current implementation is a
DBMS independent SQL pre-processor that provides the index specific query rewrit-
ings.

FunctionDB [2] also uses an algebraic query processor. However, the purpose of
FunctionDB is to enable queries to continuous functions represented in databases, and
it provides no facilities to expose database indexes.

Extensible indexing [6] aims at providing scalable query execution for new kinds
of data by introducing new kinds of indexes. However, it is up to the user to reformu-
late the queries to utilize a new index. By contrast, our approach provides a general
mechanism for utilizing indexes in algebraic expressions, which complements exten-
sible indexing. In the paper we have shown how to expose B-tree indexes by algebraic
rewrites. Other kinds of indexes would require other algebraic rules, which is a sub-
ject of future work.

3 Example Queries
A relational database that stores both meta-data and logged data from machines has

the following three tables:
machine(m, mm) represents meta-data about each machine installation identified by

m where mm identifies the machine model. There is a secondary B-tree index on mm.
sensor(m, s, mc, ev, ad, rd) stores meta-data about each sensor installation s on

each machine m. To identify different kinds of measurements, e.g oil pressure, filter
temperature etc., the sensors are classified by their measurement class, mc. Each sen-
sor has some tolerance thresholds, which can be an absolute or relative error devia-
tion, ad or rd, from the expected value ev. There are secondary B-tree indexes on ev,
ad, and rd.

measuresMC(m, s, bt, et, mv) enables efficient analysis of the behavior of different
kinds of measurements over many machine installations over time. The table stores
measurements mv of class MC for sensor installations identified by machine m and
sensor s in valid time interval [bt,et). By storing bt and et temporal interval overlaps
can be easily expressed in SQL [3][14]. There are B-tree indexes on bt, et, and mv.

We use the abnormality thresholds @thA for queries determining deviations in ta-
ble measuresA, @thB for queries determining absolute deviation in table measuresB,
and @thRB for queries determining relative deviation in table measuresB. We shall
discuss these thresholds in Section 6 in greater details.

The following queries Q1, Q2, and Q3 identify abnormalities:
 Query Q1 finds when and on what machines, the pressure reading of class A was

higher than @thA from its expected value:
1 SELECT va.m, va.bt, va.et

2 FROM measures A va, sensor s

3 WHERE va.m = s.m AND va.s = s.s AND va.mv > s.ev + @thA.

AQIT has no impact for query Q1 since the index idx(measuresA.mv) is already
exposed.

 Query Q2 identifies abnormal behaviors based on absolute deviations: When and
for what machines did the pressure reading of class B deviate more than @thB

from its expected value? AQIT translates the query into the following SQL query
T2:

 Q2:
1 SELECT vb.m, vb.bt, vb.et
2 FROM measuresB vb, sensor s
3 WHERE vb.m =s.m AND vb.s=s.s AND
4 abs(vb.mv - s.ev) > @thB
5

T2:
SELECT vb.m, vb.bt, vb.et
FROM measuresB vb, sensor s
WHERE vb.m=vb.m AND vb.s=s.s AND
 ((vb.mv > @thB + s.ev) OR
 (vb.mv < - @thB + s.ev))

In T2 lines 4-5 expose the ordered index idx(measuresB.mv).

 Query Q3 identifies two different abnormal behaviors of the same machine at the
same time based on two different measurement classes and relative deviations:
When and for which machines were the pressure readings of class A higher than
@thA from its expected value at the same time as the pressure reading of class B
were deviating @thRB % from its expected value? After the AQIT transformation
Q3 becomes T3:

Q3:
1 SELECTva.m,greaest(va.bt,vb.bt)
2 least(va.et, vb.et)
3 FROM measuresA va,measuresB vb,
4 sensor sa, sensor sb
5 WHERE va.m=sa.m AND va.s=sa.s AND
6 vb.m=sb.m AND vb.s=sb.s AND
7 va.m=vb.m AND
8 va.bt<=vb.et AND va.et>=vb.bt AND
9 va.mv - sa.ev > @thA AND
10 abs((vb.mv-sb.ev)/sb.ev)>@thRB
11
12
13

T3:
SELECT va.m,greatest(va.bt, vb.bt),
 least(va.et, vb.et)
FROM measuresA va, measuresB vb,
 sensor sa, sensor sb
WHERE va.m=sa.m AND va.s=sa.s AND
 vb.m=sb.m AND vb.s=sb.s AND
 va.m =vb.m AND
 va.bt<=vb.et AND va.et>=vb.bt AND
 va.mv >@thA + sa.ev AND
((vb.mv>(1+@thRB)*sb.ev AND sb.ev >0)
OR (vb.mv<(1+@thRB)*sb.ev AND sb.ev<0)
OR (vb.mv<(-@thRB+1)*sb.ev ANDsb.ev>0)
OR (vb.mv>(-@thRB+1)*sb.ev AND sb.ev<0))

Lines 8 in Q3 selects temporal overlap of the time interval [va.bt, va.et] with
[vb.bt, vb.et]. The functions greatest(va.bt, vb.bt) and least(va.et, vb.et) return the
maximum and minimum values of their two arguments, respectively. These functions
are supported by Oracle, MySQL, DB2 and PostgreSQL but not by SQL Server [14].
Therefore, we defined greatest(x, y) and least(x, y) as user defined functions for SQL
Server.
In T3 line 9 exposes idx(measuresA.mv) and lines 10-13 expose idx(measuresB.mv).

4 Stream log analysis system (SLAS)
Fig. 1 illustrates the architecture of SLAS. It uses a data stream management sys-

tem, DSMS, to process raw streams of measurements from different machines. The
log writer receives from the DSMS a stream of tuples with format (mc, m, s, ts, mv)
specified as a continuous query. The log writer produces once per system-determined
time interval a CSV file of tuples (m, s, bt, et, mv) for each measurement class mc to
be loaded into the corresponding table measuresMC. Here, [bt,et) is the valid time
interval for mv, computed from ts. When the log writer has written a CSV file it noti-
fies the log loader for measurement class mc, which bulk loads the new log file rows
into the corresponding measurement log table measuresMC.

In order to limit and customize the amount of log data stored in the DBMS the log
deleter continuously deletes log data from the DBMS according to user specified
configuration parameters.

The user can analyze the stored data streams by issuing historical SQL queries over
loaded log data through the AQIT processor. The strategy used by AQIT to improve
numerical SQL queries is the focus of this paper.

Fig. 2 illustrates the query processing of AQIT. An SQL query is first parsed into an
internal query in a Datalog dialect [12]. The AQIT rewriter transforms the Datalog
query into an equivalent index exposed query. The SQL Generator transforms the
index exposed Datalog query into an equivalent shipped SQL query sent to the back-
end DBSM through JDBC for optimization and evaluation.

5 Algebraic Query Inequality Transformation
To explain the AQIT transformations we need the following definitions:
Definition 1: A source predicate r(…) of a query is a predicate that represents ac-

cess to a relation named r.
Definition 2: If there is a B-tree index idx(r.a) on some attribute a of a source

predicate r(…a…), we say that r is an indexed predicate.
Definition 3: If there is an occurrence of a variable v representing idx(r.a) in an in-

dexed predicate r(…v…) of a query, we say that v is an indexed variable in the query.
Definition 4: If there is an inequality (v,x) where v is an indexed variable, we say

that the indexed variable v is exposed by the inequality predicate .
In this section, we use Q1 and Q2 to show how AQIT works. First the parser trans-

lates Q1, and Q2 into the following Datalog queries DQ1 and DQ2:
DQ1(m,bt,et)

 measuresA(m,s,bt,et,mv) AND

 sensor(m,s,_,_,ev,_,_) AND

 v1 = ev + @thA AND

 mv > v1

DQ2(m,bt,et)

 measuresA(m,s,bt,et,mv) AND

 sensor(m,s,_,_,ev,_,_) AND

 v1 = mv – ev AND

 v2 = abs(v1) AND

 v2 > @thA

Here, the source predicates measuresA(m,s,bt,et,mv) and measuresB(m,s,bt.et,mv)
represent relational tables for two different measurement classes. For both tables there
is a B-tree index on mv to speed up comparison and proximity queries, and therefore

Fig. 1. Stream Log Analyse System Fig. 2. AQIT Preprocessor

measuresA() and measuresB() are indexed predicates and the variable mv is an in-
dexed variable. In Q1, the index idx(measuresA.mv) is already exposed because there
is a comparison between measuresA.mv and variable v1, so AQIT will have no effect.

In Q2, the index idx(measuresB.mv) is not exposed by the inequality predicate v2 >
@thB since the inequality is defined over a variable v2, which is not bound to the
indexed attribute measuresB.mv. Here AQIT transforms the predicates to expose the
index idx(measuresB.mv) so in T2 idx(measuresB.mv) is exposed in both OR branch-
es.

5.1 AQIT Overview
The AQIT algorithm takes a Datalog predicate as input and returns another seman-

tically equivalent predicate that exposes one or several indexes, if possible. AQIT is a
fixpoint algorithm that iteratively transforms the predicate to expose hidden indexes
until no further indexes can be exposed. The full pseudo code can be found in [17].

The transformations are made iteratively by the function transform_pred() in List-
ing 1. At each iteration, it invokes three functions, called chain(), expose(), and sub-
stitute(). chain() finds some path between an indexed variable and an inequality pred-
icate that can be exposed, expose() transforms the found path so that the index be-
comes exposed, and substitute() replaces the terms in the original predicate with the
new path.

function transform_pred(pred):
input: A predicate pred
output: A transformed predicate or the original pred
begin

if pred is disjunctive then

set failure = false
/*result list of transformed branches*/
set resl = null
do /*transform each branch*/

set b = the first not transformed branch in pred
set nb = transform_pred(b)/*new branch*/
if nb not null then add nb to resl
else set failure = true

until failure or no more branch of pred to try
 if not failure then
 /*return a disjunction from resl*/
 return orify(resl)
 end if

else if pred is conjunctive then

set path = chain(pred)
if path not null then

set exposedpath = expose(path)
if exposedpath not null then
 return substitute(pred, path, exposedpath)
end if

end if
end if
return pred

end

Listing 1: TRANSFORM PREDICATE

Chain: The chain() algorithm tries to produce a path of predicates that links one in-
dexed variable with one inequality predicate. If there are multiple indexed variables a
simple heuristic is applied. It sorts the indexed variables decreasingly based on selec-
tivities of the indexed attributes, which can be obtained first from the backend DBMS.
The path must be a conjunction of transformable terms that represent expressions
transformable by AQIT. Each transformable term in a path has a single common vari-
able with adjacent terms. Such a chain of connected predicates is called an index ine-
quality path (IIP). Query DQ2 has the following IIP called Q2-IIP from the indexed
variable mv to the inequality v2 > @thB, where the functions ‘–‘ and ‘abs’ are trans-
formable:
Q2-IIP: measuresB(m, s, bt, et, mv) v1=mv - ev  v2=abs(v1) v2>@thB

In this case Q2-IIP is the only possible IIP, since there are no other unexposed in-
dex variables in the query after Q2-IIP has been formed. The following graph illus-
trates Q2-IIP, where nodes represent predicates and arcs represent the common varia-
ble of adjacent nodes:

An IIP starts with an indexed origin predicate and ends with an inequality destina-

tion predicate. The origin node in an IIP is always an indexed predicate where the
outgoing arc represents one of the indexed variables.

chain() is a backtracking algorithm trying to extend partial IIPs consisting of trans-
formable predicates from an indexed variable until some inequality predicate is
reached, in which case the IIP is complete. The algorithm will try to find one IIP per
indexed variable. If there are several common variables between transformable terms,
chain() will try each of them until a complete IIP is found. If there are other not yet
exposed ordered indexes for some source predicates, the other IIPs may be discovered
later in the top level fixpoint iteration.

The chain() procedure successively extends the IIP by choosing new transformable
predicates q not on the partial IIP such that one of q’s arguments is the variable of the
right-most outgoing arc (mv in our case) of the partial IIP. For DQ2 only the predicate
v1=mv-ev can be chosen, since mv is the outgoing arc variable and ‘–‘ is the only
transformable predicate in DQ2 where mv is an argument. When there are several
transformable predicates, chain() will try each of them in turn until the IIP is complete
or the transformation fails.

An IIP through a disjunction is treated as a disjunction of IIPs with one partial IIP
per disjunct in Listing 1. In this case the index is considered utilized if all partial IIPs
are complete.

Expose: The expose() procedure is applied on each complete IIP in order to expose
the indexed variable. The indexed variable is already exposed if there are no interme-
diate nodes between the origin node and the destination node in the IIP. For example,
the IIP for Q1 is Q1-IIP: measuresA(m, s, bt, et, mv) mv>v1.Here the indexed

v1= mv -ev

measuresB(m, s bt, et, mv) v2=abs(v1)

 v2 > @thB m

v

v

Fig. 3. Q2-IIP

variable mv is already exposed to the inequality. Therefore, in this case expose() re-
turns the input predicate unchanged.

The idea of expose() is to shorten the IIP until the index variable is exposed by iter-
atively combining the two last nodes through the algebraic rules in

Table 4 into larger destination nodes while keeping the IIP complete. To keep the
IIP complete the incoming variable of the last node must participate in some inequali-
ty predicate. As an example, the two last nodes in Q2-IIP in Fig. 3 are combined into
a disjunction in Fig. 4 . Here the following algebraic rule is applied: R10: |x| > y  (x
> y  x < - y).

The algebraic rule R10 exposes a variable x hidden inside abs() of an inequality. The
following table shows how R10 is applied on the two last nodes in Fig. 3 to form the
new predicate in Fig. 4.

Table 1. Applying R10

Before After

v2 = abs(v1) AND v2 > @thB (v1 > @thB OR v1 < -@thB)

By iteratively exposing each variable on the IIP, the indexed variable (and the index)
will possibly be exposed. For example, Q2-IIP in Fig. 4 is reduced into Fig. 5 by
applying the algebraic rules R3: x - y > z  x > y+ z and R4: x - y < z  x < y+ z.

The following two tables show how rules R3 and R4 have been applied:
Table 2. Applying R3 Table 3. Applying R4

Before After Before After

v1 = mv –ev AND
v1 > @thB

v3 = ev + @thB AND
 mv > v3

v1 = mv –ev AND
v1 < -@thB

v4 = ev -@thB AND
mv < v4

The new variables v3 and v4 are created when applying the rewrite rules to hold in-

termediate values.
In Fig. 5, there are no more intermediate nodes and the index idx(measuresB.mv) is

exposed, so expose() succeeds.
expose() may fail if there is no applicable algebraic rule when trying to combine

some two last nodes, in which case the chain() procedure will be run again to find a
next possible IIP until as many indexed variables as possible are exposed.

measuresB(m,s, bt, et, mv)

 mv> v3 OR mv < v4
mv

Fig. 5. Q2-IIP after the second reduction

Fig. 4. Q2-IIP after the first reduction

Substitute: When expose() has succeeded, substitute() updates the original predicate
by replacing all predicates in the original IIP, except its origin, with the new destina-
tion predicate in the transformed IIP [17]. For Q2 this will produce the final trans-
formed Datalog query:
DQ2(m,bt,et) measuresB(m,s,bt,et,mv)AND

 sensor(m, s, _,_,ev,_,_) AND

 v3 = ev + @thB AND

 v4 = ev -@thB AND

 (mv < v4 OR mv > v3)

The Datalog query is the translated by the SQL Generator into SQL query T2.

5.2 Inequality Transformation Rules

Table 4 the algebraic rewrite rules currently used by AQIT are listed. The list can
be extended for new kinds of algebraic index exposures. In the rules, x, y, and z are
variables and  denotes any of the inequality comparisons ≥, ≤,, or , while --1
denotes the inverse of . CP denotes a positive constant (CP > 0), while CN denotes
a negative constant (CN < 0). Each rule shows how to expose the variable x hidden
inside an algebraic expression to some inequality expression.

Table 4. Algebraic inequality transformations

R1

(x + y)  z  x  (z – y)

R2

(y + x)  z  x  (z – y)

R3

(x - y)  z  x  (z + y)

R4

(y - x)  z  x  -1 (y – z)

R5

(x * CP)  z  (x  z/CP)

R6

(x * CN)  z  (x  -1 z/CN)

R7

x/y  z  y!= 0  (x  y*z  y > 0)  (x  -1 z*y  y < 0)

R8

y/x  z  (y/z  x  x*z > 0)  (y/z -1 x  x*z < 0)
 (y = 0  0  z)

R9

|x| ≤ y  (x ≤ y  x ≥ - y)

R10

|x| ≥ y  (x ≥ y  x ≤ - y)

R11  y
 x  y2

R12

xy  z 
(x   y > 0)  (x  -1  y < 0)
 (x  z  y = 0)

R13

(x+ y)/x  z  (1+ y/x)  z

x

y
z

y
z

R14

|(x - y) / y | > z  (x > (z + 1)* y  y > 0)  (x < (z + 1)* y  y < 0)
 (x < (- z+ 1)* y  y > 0) (x > (- z + 1)* y  y < 0)

6 Experimental Evaluation
We experimentally compared the performance of a number of typical queries find-

ing different kinds of abnormalities based on 16000 real log files from two industrial
machines. To simulate data streams from a large number of machines, 8000 log files
were constructed by pairing the real log files two-by-two and then time-stamping their
events based on off-sets from their first time-stamps. This produces realistic data logs
and enables scaling the data volume by using an increasing number of log files.

6.1 Setup
To investigate the impact of AQIT on the query execution time, we run the SLAS

system with SQL Server™ 2008 R2 as DBMS on a separate server node. The DBMS
was running under Windows Server 2008 R2 Enterprise on 8 processors of AMD
Opteron ™ Processor 6128, 2.00 GHz CPU and 16GB RAM. The experiments were
conducted with and without AQIT preprocessing.

6.2 Data
Fig. 6 (a) is a scatter plot from a small sampled time interval of pressure readings

of class A. This is an example of an asymmetric measurement series with an initial
warm-up period of 581.1 seconds.

The abnormal behavior in this case is that the measured values are larger than the

expected value (17.02) within a threshold. When the deviation threshold is 0 all
measurements are abnormal, while when the threshold is 359.44 no measurements are
abnormal. For example, Q1 finds when a sensor reading of class A is abnormal based
on threshold @thA that can be varied.

Fig. 6 (b) plots pressure readings of measurements of class B over a small sampled
time interval. Here the abnormality is determined by threshold @thB, indicating abso-
lute differences between a reading and the expected value (20.0), as specified in Q2.
When the threshold is 0 all measurements are abnormal, while when the threshold is
20.0 no measurements are abnormal.

In addition, the abnormality of measurements of class B is determined by threshold
@thRB as in Q3, indicating relative difference between a reading and the expected
value. When the relative deviation threshold is 0%, no measurements are abnormal,

Fig. 6. Pressure measured of class A (a) and class B (b)

while when the threshold is 100% all measurements are abnormal.

6.3 Benchmark Queries

We measured the impact of index utilization exposed by AQIT by varying the ab-
normality thresholds @thA for queries determining deviations in measuresA, and the
thresholds @thB and @thRB for queries determining deviations in measuresB. The
larger the threshold values the fewer abnormalities will be detected. We also defined
three other benchmark queries Q4, Q5, and Q6. All the detailed SQL and Datalog
formulations before and after AQIT for the benchmark queries are listed in [18].

 Q4 identifies when the pressure readings of class B deviates more than @thB for
the machines in a list machine-models of varying length. Here, if a query spans
many machine models the impact of AQIT should decrease since many different
index keys are accessed.

Q4: SELECT vb.m, vb.bt, vb.et

FROM measuresB vb, sensor s,

 machine ma

WHERE vb.m = s.m AND va.s=s.s AND

 vb.m = ma.m AND

 ma.mm in@machine-models AND

 abs(vb.mv - s.ev) > @thB

T4: SELECT vb.m, vb.bt, vb.et

FROM measuresB vb, sensor s,

 machine ma

WHERE vb.m = s.m AND va.s=s.s AND

 vb.m = ma.m AND

 ma.mm in @machine-models AND

(vb.mv > @thB + s.ev OR vb.mv < -

@thB + s.ev

 Q5 identifies when the pressure reading of class B deviates more than @thB for
two specific machine models using a temporal join. The query involves numeri-
cal expressions over two indexed variables, which are both exposed by AQIT.
See [18] for details.

Fig. 7 Thresholds and selectivity mappings

(A) (B)

(C)

 Query Q6 is a complex query that identifies a sequence of two different abnormal

behaviors of the same machine happening within a given time interval, based on
two different measurement classes: On what machines the pressure readings class
B were out-of-bounds more than @thB within 5 seconds after the pressure readings
of class A were higher than @thA from the expected value. Here, both
idx(measuresA.mv) and idx(measuresB.mv) are exposed by AQIT. See [18] for de-
tails.

6.4 Performance measurements

To measure performance based on different selectivities of indexed attributes, in
Fig. 7 we map the threshold values to the corresponding measured index selectivities
of idx(measuresA.mv) and idx(measuresB.mv). 100% of the abnormalities are detected
when any of the thresholds is 0 and thresholds above the maximum threshold values
(@thA=359.44, @thB=20.0, and @thRB=100%) detect 0% abnormalities.

Experiment A varies the database size from 5GB to 25GB while keeping the se-
lectivities (abnormality percentages) at 5% and a list of three different machine mod-
els in Q4.

Fig. 8 (a) shows the performance of example queries Q2, Q3, Q4, Q5, and Q6
(without AQIT) and their corresponding transformed queries T2, T3, T4, T5, and T6
(with AQIT) when varying the database size from 5 to 25 GB. The original queries
without AQIT are substantially slower since no indexes are exposed and the DBMS
will do full scans, while for transformed queries the DBMS backend can utilize the
exposed indexes.

Experiment B varies index selectivities of idx(measuresA.mv) and
idx(measuresB.mv) while keeping the database size at 25 GB and selecting three dif-
ferent machine models in Q4. We varied the index selectivities from 0% to 100%.
Fig. 8 (b) presents execution times of the all benchmark queries with and without
AQIT.

Without AQIT, the execution times for Q2 - Q6 stay constant when varying the se-
lectivity since no index is utilized and the database tables are fully scanned.

 Fig. 8 All queries while changing DB size (a) and selectivities (b)

Fig. 8 (b) shows that AQIT has more effect the lower the selectivity, since index
scans are more effective for selective queries. For non-selective queries the indexes
are not useful. When all rows are selected the AQIT transformed queries are slightly
slower than original ones; the reason being that they are more complex. In general
AQIT does not make the queries significantly slower.

Experiment C varies the number machine models in Q4 from 0 to 25 while keep-
ing the database size at 25 GB and the selectivity at 5%, as illustrated by Fig. 9. It
shows that when the list is small the transformed query T4 scales much better than the
original query Q4. However, when the list of machine increases, T4 is getting slower.
The reason is that the index idx(measuresB.mv) is accessed once per machine model,
which is faster for fewer models.

The experiments A, B, and C show that AQIT improves the performance of the
benchmark queries substantially and will never make the queries significantly slower.
In general AQIT exposes hidden indexes while the backend DBMS decides whether
to utilize them or not.

7 Conclusion & Future work

In order to improve the performance of queries involving complex inequality ex-
pression, we investigated and introduced the general algebraic query transformation
algorithm AQIT. It transforms a class of SQL queries so that indexes hidden inside
numerical expressions are exposed to the back-end query optimizer.

From experiments, which were made on a benchmark consisting of real log data
streams from industrial machines, we showed that the AQIT query transformation
substantially improves query execution performance.

We presented our general system architecture for analyzing logged data streams,
based on bulk loading data streams into a relational database. Importantly, looking for
abnormal behavior of logged data streams often requires inequality search conditions
and AQIT was shown to improve the performance of such queries.

We conclude that AQIT improves substantially the query performance by exposing
indexes without making the queries significantly slower.

Fig. 9 Execution times of Query 4 when varying the list of machine models

Since inequality conditions also appear in spatial queries we plan to extend AQIT
to support transforming spatial query conditions as well user defined indexing. We
also acknowledge that the inequality conditions could be more complex with multiple
variables and complex mathematical expression, which will require other algebraic
rules.

Acknowledgements

The work was supported by the Smart Vortex EU project [15].

References

1. A.D. Andrew, G.L. Cain, S. Crum, T.D. Morley, Calculus Projects Using Mathematica.
McGraw Hill (1996)

2. T.Arvind and M. Samuel. Querying continuous functions in a database system, Proc.
SIGMOD 2008, Vancouver, Canada, 791 – 804.

3. J.Celko. SQL for Smarties (Fourth Edition): Advanced SQL Programming, ISBN: 978-0-
12-382022-8, 2011.

4. C.M. Chang. Mathematical Analysis in Engineering, Cambridge University Press (1994)
5. B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaït, and M. Ziauddin. Automatic SQL Tun-

ing in Oracle 10g, Proc. VLDB 2004, Toronto, Canada, 1098-1109
6. M.Y. Eltabakh, R. Eltarras, W.G. Aref, Space-Partitioning Trees in PostgreSQL: Realiza-

tion and Performance, Proc ICDE April 2006, Atlanta, Georgia, USA,  100 – 112.

7. K.Gabriel, L.Leonid, and P.Jan: Constraint Databases. ISBN 978-3-642-08542-0,
Springer Berlin Heidelberg, 21-54.

8. J.Gray, A. Szalay, and G. Fekete. Using Table Valued Functions in SQL Server 2005 to
Implement a Spatial Data Library, Technical Report, Microsoft Research Advanced Tech-
nology Division, 2005.

9. S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex spatial que-
ries, Proc SIGMOD 1998, Seattle, Washington, 213-224

10. D.J-H. Hwang. Function-Based Indexing for Object-Oriented Databases, PhD Thesis,
Massachusetts Institute of Technology, 1994, 26-32.

11. Leccotech. LECCOTECH Performance Optimization Solution for Oracle, White Paper,
http://www.leccotech.com/, 2003.

12. W. Litwin and T. Risch. Main Memory Oriented Optimization of OO Queries using Typed
Datalog with Foreign Predicates, IEEE Transactions on Knowledge and Data Engineering,
Vol. 4, No. 6, December 1992.

13. Oracle Inc. Query Optimization in Oracle Database 10g Release 2. An Oracle White Pa-
per, June 2005.

14. R.T. Snodgrass. Developing Time-Oriented Database Applications in SQL , Morgan
Kaufmann Publishers, Inc., San Francisco, ISBN 1-55860-436-7, 1999

15. Smart Vortex Project - http://www.smartvortex.eu/
16. Quest Software. Quest Central for Oracle: SQLab Vision, http://www.quest.com, 2003.
17. http://www.it.uu.se/research/group/udbl/aqit/PseudoCode.pdf
18. http://www.it.uu.se/research/group/udbl/aqit/Benchmark_queries.pdf

