

Grand Challenge: Implementation by Frequently Emitting
Parallel Windows and User-Defined Aggregate Functions

Sobhan Badiozamany
Uppsala University

Sweden

Cheng Xu
Uppsala University

Sweden

Lars Melander
Uppsala University

Sweden

Tore Risch
Uppsala University

Sweden

Thanh Truong
Uppsala University

Sweden

Emails: Firstname.Lastname@it.uu.se

ABSTRACT
Our implementation of the DEBS 2013 Challenge is based on a
scalable, parallel, and extensible DSMS, which is capable of
processing general continuous queries over high volume data
streams with low delays. A mechanism to provide user defined
incremental aggregate functions over sliding windows of data
streams provide real-time processing by emitting results
continuously with low delays. To further eliminate delays caused
by time critical operations, the system is extensible so that
functions can be easily written in some external programming
language. The query language provides user defined
parallelization primitives where the user can express queries
specifying how high volume data streams are split and reduced
into lower volume parallel data streams. This enables expensive
queries over data streams to be executed in parallel based on
application knowledge. Our OS-independent implementation was
tested on several computers and achieves the real-time
requirement of the challenge on a regular PC.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Parallel databases,
Query processing

Keywords
Parallel data stream processing; continuous queries; spatio-
temporal window operators.

1. INTRODUCTION
Monitoring a soccer game requires a system than can process, in
real-time, large volumes of data to dynamically determine
physical properties as they appear. This requires a system having
the following properties:

 To keep up with the very high data flow the system
must deliver high throughput while processing
expensive computations over high volume data.

 Response in real-time requires continuous delivery of
query results with low latency.

 Continuous identification of physical phenomena, such
as moving balls and players, requires complex spatio-
temporal algebraic computations over windows.

Our EPIC (Extensible, Parallel, Incremental, and Continuous)
DSMS provides very high throughput and low latency through
parallelization, extensibility, and user defined incremental
aggregation of windowed data streams. The high level query
language provides numerical data representations and data stream
windows as first class objects, which simplifies complex
numerical computations over streaming data and enables
automatic query optimization. To provide very high performance
of low level numerical and byte processing functions the system is
easily extensible with user defined functions over streams and
numerical data, which allows accessing external systems and
plugging in time-critical user algorithms.

EPIC extends the SCSQ system [9] with several kinds of data
stream windows and incremental evaluation of user-defined
aggregate functions over the windows. In particular the window
operator FEW (Frequently Emitting Windowizer) decouples the
frequency of emitted tuples from a window’s slide.

To process expensive queries with high-throughput and low
latency the system provides application specific stream
parallelization functions where general distribution queries
specify how to parallelize and reduce outgoing data streams.

2. THE EPIC APPROACH
First FEW and its incremental user-define aggregation are
presented in sections 2.1 and 2.2, and then the solution is outlined
in section 2.3.

Figure 1 shows the overall data stream flow of the
implementation. The thickness of the arrows in all data flow
diagrams in this paper correspond to the relative volume of the
data streams. Each node in the dataflow diagram is a separate OS
process, called a query processing node, in which a partial
continuous execution plan is running. The topology of the
dataflow diagram is completely expressed in the query language
where it is possible to specify continuous sub-queries running in
parallel [9]. The system automatically creates OS processes
running the execution plans of the sub-queries and the
communication channels between them (local TCP). In the Grand
Challenge implementation, the query processing nodes all run on
the same computer and the OS is responsible for assigning CPUs
to the processes. The system can also distribute query processing
nodes over several computers but those features are not used here.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright © ACM 978-1-4503-1758-0/13/06...$15.00.

325

2.1 Frequently Emitting Windowizer, FEW
EPIC provides window forming operators that support several
kinds of windows, including time, count, and predicate windows
[5][2][7]. The windows are formed by window functions mapping
streams to streams of objects of type Window. For example, the
window function

tWindowize(Stream s, Number length, Number stride) -> Stream
of Window ws

forms a stream ws of timed windows over a stream s where
windows of length time units (seconds) slide every stride time
units. To avoid copying, the windows are represented by pointers
to their first and last elements. When a window slides the pointers
are updated.

A naive implementation of tWindowize() would emit tuples only
when the formed windows slide. This causes substantial delays, in
particular for large windows. For example, when forming a 10
minutes window, it is not practical to wait 10 minutes for the
aggregation to be emitted. To be able to emit aggregation results
before a complete window is formed, we have introduced a
window function having a parameter ef, the emit frequency:

fewtWindowize(Stream s, Number length, Number stride, Number
ef) -> Stream of Window pw

The window forming function fewtWindowize() forms partial time
windows, pw, every ef time units. The emitted partial windows are
landmark sub-windows of the elements of the window being
formed. When the formed window is complete it is emitted as
well before it slides, and then the landmark is reset to the start
time of the newly slided window.

The FEW windows are required when:

 The results must be emitted before the window is
formed.

 The results must be emitted more often than the slide
(not used in this application).

2.2 User-defined incremental window
aggregate functions
The windowing mechanism in EPIC supports incrementally
evaluated user defined aggregate functions [1][8]. These are
defined by associating init(), add(), and remove() functions with a
user defined aggregate function:

 init() -> Object o_new creates a new aggregation
object, o_new, which is used for accumulating changes
in a window.

 add(Object o_cur, Object e) -> Object o_nxt takes the
current aggregation object o_cur and the current stream
element e and returns the updated aggregation object
o_nxt.

 remove(Object o_cur, Object e_exp) -> Object o_nxt
removes from the current aggregation object o_cur the
contribution of an element e_exp that has expired from a
window. It returns the updated o_nxt.

A user defined aggregate function is registered with the system
function:
aggregate_function(Charstring agg_name, Charstring initfn,
Charstring addfn, Charstring removefn) -> Object

For example, the following shows how to define the aggregate
function mysum() over windows of numbers:

create function initsum() -> Number s as 0;

create function addsum(Number s_cur, Number
e) -> Number s_nxt as res + e;

create function removesum(Number s_cur,
Number e_exp) -> Number s_nxt as s_cur –
e_exp;

These functions are registered to the system as the aggregate
function mysum() by the function call:

aggregate_function(‘mysum’,’initsum’,’addsum
’,’removesum’);

After the registration mysum() can be used in CQs as:

select mysum(w) from Window w where w in
fewtWindowize(s, 10, 2, 1);

In this simple example the aggregation object is a single number.
It can also be arbitrary objects, including dictionaries (temporary
tables) holding sets of rows, which is used in the Challenge
implementation to incrementally maintain complex spatio-
temporal aggregations.

2.3 Solution outline
In Figure 1 the Event Reader node reads the full-game CSV file
and produces the Game stream consisting of events for both balls
and players. The Event Reader then scales the time stamps by
subtracting the start time. It also transforms the position, velocity,
and acceleration values to metric scales. To avoid the Event
Reader becoming a bottleneck it is implemented as a foreign
function in C. To speed up the communication we use binary
representation of all events communicated between query
processing nodes, while the input and output log files use the CSV
format.

The Interrupt Reader node produces the Interrupt stream, which
contains referee interruptions, by reading and transforming the
provided game interruptions files.

The DEBS Splitter node merges the two input streams based on
the time stamps in the streams and produces parallel input streams
for the different queries. It also filters out those event stream
tuples of the Game stream that are in-between game interruptions.
The nodes Q1 Front End, Q2/Q4 Ball Hitter, and Q3 Front End
receive parallel data streams required for the four Grand
Challenge queries Q1-Q4. Q2 and Q4 share some downstream
computations executed by Q2/Q4 Ball Hitter node.

Figure 1. High level data stream flow

326

In EPIC the splitstream() system function provides customizable
distribution and transformation of stream tuples. The user can
provide customizable splitting logic as a distribution query over
an incoming tuple that specifies how a tuple is to be distributed,
filtered and transformed.

The distribution query for the DEBS Splitter in Listing 1 is passed
as an argument to splitstream().

The result of the query are pairs (i, ev) specifying that an
incoming event ev is to be sent to output stream number i. In the
DEBS splitter distribution query three output streams enumerated
by i are specified. They produce the corresponding streams Q1
Input, Q2/Q4 Input, and Q3 Input. The Boolean function
isPlayer(v) returns true if v is a player sensor reading.

To speed up the processing, shared computations are made in
separate nodes. In Figure 1 the Q1 Front End and the Q3 Front
End nodes perform stream preprocessing and reduction for queries
1 and 3, respectively, while the Q2/Q4 Ball Hitter node detects
hits to the ball needed by queries 2 and 4.

2.3.1 Query Q1: Running Analysis
Figure 2 shows the topology of Q1. The aggregated running
statistics for different time windows are computed in parallel
based on the common current running statistics produced by the
Q1 Front End node. The stream containing player sensor readings
is sent to the Q1 Front End node (see Listing 1), which produces
the running statistics. The running statistics is then broadcasted to
four other nodes to compute the aggregated running statistics of
different time window lengths.

2.3.1.1 Incremental maintenance of running statistics
In order to make the result more reliable for the current running
statistics, we first create a 1 s tumbling window and then calculate
the statistics for each player over that window. The window
length 1 s was chosen experimentally to produce stable results.
Both running and aggregate statistics utilize user defined
aggregate functions to maintain arrays of the two types of
statistics for each player.

2.3.1.2 Current running statistics
For each incoming player sensor reading in the current 1 s
window, the following statistics tuple for each player is
incrementally maintained in an array:

(ts_start, ts_stop, pid, left_x_start, left_y_start, left_x_stop,
left_y_stop, right_x_start, right_y_start, right_y_stop,
right_y_stop, sum_speed, count)

The time stamp ts_start stores the first time when a sensor reading
of player pid arrives to the current window, while ts_stop stores
the last sensor reading. The elements left_x_start, left_y_start,
right_x_start, and right_y_start are the position readings of the
left and right foot of the player at time ts_start, while left_x_stop,
left_y_stop, right_x_stop, and right_y_stop are the corresponding
foot position readings at time ts_stop. To incrementally calculate
the average velocity the elements sum_speed and count are also
included. ts_start, left_x_start, left_y_start, right_x_start, and
right_y_start are updated only when the first sensor reading of the
player pid arrives to the window, while all the other elements are
updated every time a sensor reading of pid arrives. Here, no
remove function is needed for the aggregation, since we are
maintaining a stream of tumbling windows where the statistic will
be re-initialized every time the window tumbles.

With the statistics above, the current running statistics for a given
player is calculated as the Euclidian distance between the average
position of the first and last update during the time window.

2.3.1.3 Aggregate running statistics
We have chosen to log the result tuple of Q1 in CSV format every
1 s since the current running statistics are not emitted more often
than once per second. Four FEW time windows were defined for
aggregating running statistics with lengths 1 minute, 5 minutes, 20
minutes, and the entire game. All windows slide and emit results
every 1 s. FEW is critical for early emission while the first
windows are being formed.

Aggregate running statistics over the window are incrementally
maintained in an array similar to current running statistics.

The stream from the Q1 Front End node contains the elements
ts_start, ts_stop, player_id, intensity, distance, and speed. The
difference ts_stop – ts_start is used to incrementally maintain the
duration of a player being in the corresponding running intensity
class. Analogously, the moving distance is maintained for the
corresponding intensity classes by incrementally associating the
incoming distance with the right intensity.

2.3.2 Query Q2: Ball Possession
Figure 3 shows the data flow of queries Q2 and Q4 combined.
The Q2/Q4 input stream consists of player, ball, and interrupt
sensor readings. The Q2/Q4 Ball Hitter computes the Ball Hitter
and the Ball streams. The Ball Hitter stream contains ball hitter
events, which occur when a player pid at timestamp ts hits the
ball. The Ball stream contains Ball Hitter events interleaved with
ball sensor readings. The Q2/Q4 Ball Hitter node emits the Ball
stream to the Shot on Goals query processing node, which
executes the final stages of query Q4. The Ball Hitter stream
contains only ball hitter events and is sent to the Player
Possession node, which calculates and broadcasts the same Player
Ball Possession stream to four Team Possession query processing
nodes. The Team Possession nodes log every 10 s statistics of
team ball possessions for the two teams with the different window
lengths: 1 minute, 5 minutes, 20 minutes, and a landmark window
of the entire game. As an alternative, we also measured reporting

Figure 2. Query 1 data stream flow

1 select i, ev from Integer i
2 where (i = 0 and isPlayer(ev)) or
3 (i = 1) or
4 (i = 2 and isPlayer(ev));

Listing 1. DEBS Splitter distribution query

327

team possessions every 1 s resulting in the same latency and
throughput.

2.3.2.1 The Q2/Q4 Ball Hitter query processing node
In order to compute a stream of ball hitters, we maintain
acceleration of the ball ballacc, its position bx, by, bz, the shortest
distance from a player to the ball sdist, and the player pid.

For every input ball sensor reading, the Q2/Q4 Ball Hitter node
incrementally updates the ball acceleration and the ball position
accordingly. When a player sensor reading arrives, it
incrementally maintains sdist.

A ball hitter event is emitted when both the following criteria
hold:

 C1: The ball acceleration reaches a predefined threshold:
ballacc > 55 m / s2.

 C2: The shortest distance sdist is within the player’s
proximity: sdist < 1 m.

There are 36*200 player sensor readings per second. In addition,
after being hit, the ball acceleration remains high for a while, in
particular before the ball leaves the player’s proximity. Therefore,
the two conditions C1 and C2 will hold for a short period of time
within which several ball hitter events could be reported for the
same actual ball hit by the player. To avoid generating false ball
hitter events, we employ a dropping policy to drop player sensor
readings occurring significantly later than the last report time. The
dropping policy is expressed by the following query condition
over a player sensor reading v:

ts(v)-lrts > epsilon;

Here, lrts is the latest timestamp when a ball hitter event was
reported, and epsilon is the minimum time period between two
reports. Because Q4 is more sensitive to the ball hitter events, we
have empirically tuned this parameter to 0.2 s to get the best
possible accuracy of Q4.

2.3.2.2 The Player Possession query processing node
The Player Possession node emits the Player Ball Possession
(PBP) stream consisting of the variables fts, pid, and hits, which
state that the player pid possessed the ball hits times, starting from
first time the player hits the ball, fts.

The Player Possession node increases the variable hits if a ball
hitter event bhe is from the same player pid. Otherwise, it will
emit ball possession events for player pid and then reset the
variables. The total possession time is the interval between the
timestamps bhe and fts.

2.3.2.3 The Team Possession query processing nodes
There are four Team Possession nodes, each with different
window length: 1 minute, 5 minutes, 20 minutes, and a landmark
of the whole game. For the received Player Ball Possession
stream they compute team possession statistics as follows:

- Incrementally calculate the sum of the ball possessions
of all players in each team when a corresponding player
ball possession arrives.

- When a report is logged, the following two percentages
are calculated:

ܲ ൌ 	
ܣ݉ܽ݁ܶ݉ݑݏ

ܣ	݉ܽ݁ܶ݉ݑݏ ܤ݉ܽ݁ܶ	݉ݑݏ
			

ܲ ൌ 	
ܤ݉ܽ݁ܶ݉ݑݏ

ܣ	݉ܽ݁ܶ݉ݑݏ ܤ݉ܽ݁ܶ	݉ݑݏ
			

Here FEW windows are used to frequently report while the first
windows are being formed. For example, the results must be
regularly delivered every 10 s while the team possession
landmark window is being formed.

2.3.3 Query 4: Shot on Goal
The Shot on Goal node receives three different kinds of events in
the Ball stream:

 A ball hitter event marks a shot and contains a time stamp and
the pid of the shooting player.

 A ball event contains the current ball sensor reading.

 An interrupt event indicates a game interruption. It is good
practice to reset the shot detection when an interruption
occurs.

Q4 shares detection of a ball hit with Q2. However, the logic for
detecting a shot is slightly different for the two queries: Q2 is
specified stricter than needed for Q4. To share computations this
stricter logic is also used for Q4.

The operation of Q4 is straightforward; it is an iteration over the
Ball stream to keep track of the state of a shot:

1. Wait for the next ball hitter event.

2. Check ball events until the ball has travelled one meter.

3. Return ball events as long as the ball is approaching the
opposite team’s goal.

The calculation of the ball direction uses basic linear algebra over
the ball sensor readings.

Gravity is accounted for to an extent. The expected time for the
ball to travel to the goal line is multiplied twice with the
acceleration constant g, and added to the height of the goal bar.
The actual ball trajectory is not considered, but the current
calculation should be an adequate approximation.

Using the Q2 requirements for detecting a ball hit has the draw-
back that some events are not detected, such as the header at
12:19 in the second half our example Game stream, since the ball
is more than one meter away from any sensor. Whether that is
technically a “shot” is questionable.

Curve balls need special attention. For example, at 26:07 in the
first half there is a curve ball goal. In this case the direction of the
ball is pointing outside the goal posts, while the ball later curves
inwards and comes to rest inside the goal.

To handle curve balls we have introduced a state pending,
indicating that a shot is not yet dismissed, but could later be

Figure 3. Query 2 and Query 4 data stream flow

328

become a shot on goal. The model adds two meters of margin on
both sides of the goal posts and the shot is considered pending if it
points in the direction of the margin area.

Bounces are considered as long as the direction of the bounce is
within the negative distance of the goal bar plus gravity. While the
instructions do not account for bounces at all, this limit should add
some correctness to the algebra.

Shots that are bounces, which we detect, are not included in the
provided list of shots on goal. In the second half of the game there
are four shots on goal that are bounces. They are at 4:11, 19:39,
24:36 and 29:29. Setting the bounce threshold to zero, i.e. not
considering bounces creates a result in accordance to the
specification. Viewing the video makes it apparent that the
specification is not correct in this regard.

2.3.4 Query 3: Heat Map
In Query 3 a grid on the field is formed where the cells are
numbered in row order, for example from 0 to 6399 in a 64 X 100
grid. Given the position of a player (x,y), the function
cell_id(x,y,grid_size) returns the corresponding cell number for a
given grid size. Query results for lower resolution grids are
computed by aggregating the results for the higher resolution
grids. Thus we incrementally maintain the results only for the
highest resolution.

Note that the results of longer windows cannot be built on top of
the results from a shorter window. This is due to the 1 s stride
parameter in all the queries. For example, the 5 minute window
can’t be built on top of the results produced by the 1 minute
window, since the 5 minute window needs to remove the
contributions made to the statistics by the expired elements, i.e.
the elements with the time stamp ts – 300 s, where ts is the current
time stamp. Those elements are too old to be in the 1 minute
window. Nevertheless, the definition of longer windows in terms
of shorter ones could have been utilized if the stride was one
minute instead of the one second stride in the Challenge
specification.

2.3.4.1 Q3 Front End
Figure 4 shows the dataflow diagram for query Q3. As specified
in Listing 1 the Q3 Input Stream contains all player sensor
readings. The Q3 Front End node produces the One Second
HeatMap (OSHM) stream by forming 1 s tumbling windows over
the incoming tuples. Thereby incremental user defined aggregate
functions are used to maintain statistics per second in a table
heamap1s(pid, cell_id, ts, cnt) local per window. Here ts is the
latest time stamp player pid has been present in the cell identified
by cell_id cell identifier in the highest resolution grid (64 X 100).
cnt is the total number of sensor readings for player pid in the cell
in the current window.

The OSHM stream is produced by emitting all the rows
accumulated in the table during the past second.

The Q3 Front End significantly reduces the stream volume by
summarizing it. It receives 200 tuples per second from 36 sensors,
in total 7200 tuples/second. It emits at maximum the total number
of cells all the players have been present in the highest grid
resolution during one second, which is about 70 tuples per second,
i.e. a factor 10 reduction in stream flow.

2.3.4.2 Q3 query nodes
The OSHM stream is broadcasted to four Q3 query nodes Q3 1
Min, Q3 5 Min, Q3 10 Min, and Q3 Landmark. These nodes run
parallel CQs over time windows with lengths 1, 5, 10 minutes,
and whole game, respectively. The windows are formed by the
FEW window specification fewtWindowize(oshm, length, 1, 1),
where length is 60s, 300s, 600s and the whole game duration,
respectively. The stride and the emit frequency are both 1 s. The
emit frequency is needed so that sub-windows are emitted while
the window is being formed the first time.

Similar to Q3 Front End, the Q3 query nodes incrementally
maintain user defined aggregates by updating the following local
tables inside each window as the input stream elements arrive:

heatmap(pid, cell_id, ts, cnt)

sensor_count(pid, total_cnt)

In table heatmap, the attribute cell_id is the cell player pid has
been present in, ts is the latest time player pid was in the cell, cnt
is the number of times the player has been present in the cell. To
enable translation of cnt into percentages per cell, the Q3 query
nodes also maintain total_cnt per player, which stores the total
number of position reports in all cells for a given player during the
window in question.

Since Q3 query nodes only maintain the statistics for the highest
resolution in a given window length, at reporting time they
compute lower resolutions by aggregating grid cells per player to
fill the bigger cells in the higher resolutions.

The Q3 query nodes log the output CSV streams to files. Since
each Q3 query nodes cover all grid settings in a given window
size, the produced log files contains output stream elements for
more than one grid setting. We use the following grid identifiers
to tag streams per grid: 6400 for 64 X 100, 1600 for 32 X 50, 400
for 16*25, and 104 for 8 X 13 grid setting.

The size of these log files is huge (ca 400,000 rows/s) since they
cover all movements between grid cells over several very long
windows. Here it becomes important to use SSD as storage
medium, which is fast at writing big blocks in parallel, while disk
arm movements for writing different log files has been observed
to slow down the entire system throughput with a factor of around
two.

3. PERFORMANCE
We measured the performance of our implementation based on
both throughput and delay. The throughput was measured as the
total execution time per query and for all queries in parallel over
the entire game. The latency was measured by propagating the
system wall clock of the entry time of the latest event contributing
to each result tuple. The delay was calculated by subtracting the
propagated entry time from the wall time when a result tuple is
delivered. The throughput is measured per query while the latency
is measured per output stream.

We ran our experiments on a VMware virtual machine with
Windows Server 2008 R2 x64, running on a laptop with the

Figure 4. Query 3 data stream flow

329

following specifications: Dell Latitude E6530, CPU: Intel Core
i7-3720QM @2.60 GHz, RAM: 8 GB, Hard Disk Device:
ST500LX003-1AC15G, OS: Windows 7 64-bit.

Figure 5 illustrates the throughput of the individual queries as well
as all queries running together. Queries Q1, Q2, and Q4 take
around 5 minutes to finish separately, while Q3 takes considerably
longer time, which is mainly due to intensive report computations
in the Q3 query nodes. To investigate the log writing time, Q3 and
the all queries columns have a watermark indicating how much
time it takes to execute them without logging to disk, showing that
this takes around 35 % of the Q3 alone time and 25 % of all
queries together. We also investigated whether it would be
favorable to parallelize the logging of the result stream for Q3
query nodes, but that turned out to be slower in our current
environment.

Since all queries run in parallel according to the dataflow
diagrams, running all of them together takes approximately the
same time as running the slowest one, Q3.

Figure 6 shows the average delay per output stream while running
all queries together. Notice that Q2 and Q4 are time critical
queries since they immediately report real-time phenomena. By
contrast Q1 and Q3 report delayed statistics aggregated over time.

The VMware virtual machine containing our implementation of
the Grand Challenge can be downloaded from
http://udbl2.it.uu.se/DEBS/. There is also a zip archive that can be
run on any Windows machine.

4. RELATED WORK
In the stream processing community, there has been a lot of work
for developing query languages over data streams [5]. [7]
introduced a formal specification of different kinds of windows
over data streams and provided a taxonomy of window variants.
The notation of report (emit) frequency was proposed in SECRET
[2] without any actual implementation. SECRET is a descriptive
model to help users understand the result of window-based
queries from different stream processing engines. Esper [4] also
allows a report frequency but does not have user defined window
aggregate functions. Furthermore Esper’s sliding window model
is different from FEW because the slides are triggered by window
content changes rather than explicitly specified time periods.

To efficiently calculate the aggregate result over long windows
with small strides, [6] and [1] use delta computations to reduce the
latency and the memory usage. The focus of [8] is to extend a
DSMS with online data mining facilities by user defined
aggregate functions over windows. The implementation described
in this paper shows that EPIC is general enough to define very
complicated user defined aggregations as functions while in [1]
and [8] the aggregates are defined as updates.

5. CONCLUSIONS
We have addressed the Grand Challenge by expressing continuous
queries in a high level language that supports incremental
evaluation of aggregate functions over windows and frequently
emitting windowing. We meet the real-time requirements of the
real-time queries on a virtual machine running on a laptop. The
extensibility of the query engine was used for supporting high
throughput and low latency of time critical operations.

ACKNOWLEDGMENTS
This work was supported by the Swedish Foundation for Strategic
Research, grant RIT08-0041 and by the EU FP7 project Smart
Vortex.

REFERENCES
[1] Bai, Y., Thakkar, H., Wang, H., Luo, C., and Zaniolo, C.: A

Data Stream Language and System Designed for Power and
Extensibility. Proc. CIKM Conf., 2006.

[2] Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R. J.
and Tatbul, N. SECRET: A Model for Analysis of the
Execution Semantics of Stream Processing Systems. Proc.
VLDB Conf., 2010.

[3] Botan, I., Fischer, P. M., Florescu, D., Kossmann, D.,
Kraska, T., and Tamosevicius, R. Extending XQuery with
Window Functions. Proc. VLDB Conf., 2007.

[4] http://esper.codehaus.org/

[5] Law, Y-N, Wang, H., and Zaniolo, C.: Relational Languages
and Data Models for Continuous Queries on Sequences and
Data Streams. ACM TODS 36, 2, (May 2011).

[6] Li, J., Maier, D., Tufte, K., Papadimos,V., and Tucker, P. A.
Semantics and evaluation techniques for window aggregates
in data streams. Proc. SIGMOD Conf., pp. 311 - 322, 2005.

[7] Patroumpas, K. and Sellis, T. Window specification over
data streams. Proc. EDBT Conf., 2006.

[8] Thakkar, H., Mozafari, B. and Zaniolo, C.: Designing an
Inductive Data Stream Management System: the Stream Mill
Experience. Proc. 2nd International Workshop on Scalable
Stream Processing Systems, 2008.

[9] Zeitler, E. and Risch, T.: Massive scale-out of expensive
continuous queries, Proc. of the VLDB Endowment, ISSN
2150-8097, Vol. 4, No. 11, pp.1181-1188, 2011

Figure 6. Delays

Figure 5. Performance

330

