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ABSTRACT 
Our implementation of the DEBS 2013 Challenge is based on a 
scalable, parallel, and extensible DSMS, which is capable of 
processing general continuous queries over high volume data 
streams with low delays. A mechanism to provide user defined 
incremental aggregate functions over sliding windows of data 
streams provide real-time processing by emitting results 
continuously with low delays. To further eliminate delays caused 
by time critical operations, the system is extensible so that 
functions can be easily written in some external programming 
language. The query language provides user defined 
parallelization primitives where the user can express queries 
specifying how high volume data streams are split and reduced 
into lower volume parallel data streams. This enables expensive 
queries over data streams to be executed in parallel based on 
application knowledge. Our OS-independent implementation was 
tested on several computers and achieves the real-time 
requirement of the challenge on a regular PC.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Parallel databases, 
Query processing  

Keywords 
Parallel data stream processing; continuous queries; spatio-
temporal window operators. 

1. INTRODUCTION 
Monitoring a soccer game requires a system than can process, in 
real-time, large volumes of data to dynamically determine 
physical properties as they appear. This requires a system having 
the following properties: 

 To keep up with the very high data flow the system 
must deliver high throughput while processing 
expensive computations over high volume data. 

 Response in real-time requires continuous delivery of 
query results with low latency. 

 Continuous identification of physical phenomena, such 
as moving balls and players, requires complex spatio-
temporal algebraic computations over windows. 

Our EPIC (Extensible, Parallel, Incremental, and Continuous) 
DSMS provides very high throughput and low latency through 
parallelization, extensibility, and user defined incremental 
aggregation of windowed data streams. The high level query 
language provides numerical data representations and data stream 
windows as first class objects, which simplifies complex 
numerical computations over streaming data and enables 
automatic query optimization. To provide very high performance 
of low level numerical and byte processing functions the system is 
easily extensible with user defined functions over streams and 
numerical data, which allows accessing external systems and 
plugging in time-critical user algorithms.  

EPIC extends the SCSQ system [9] with several kinds of data 
stream windows and incremental evaluation of user-defined 
aggregate functions over the windows. In particular the window 
operator FEW (Frequently Emitting Windowizer) decouples the 
frequency of emitted tuples from a window’s slide.  

To process expensive queries with high-throughput and low 
latency the system provides application specific stream 
parallelization functions where general distribution queries 
specify how to parallelize and reduce outgoing data streams.  

2. THE EPIC APPROACH 
First FEW and its incremental user-define aggregation are 
presented in sections 2.1 and 2.2, and then the solution is outlined 
in section 2.3. 

Figure 1 shows the overall data stream flow of the 
implementation. The thickness of the arrows in all data flow 
diagrams in this paper correspond to the relative volume of the 
data streams. Each node in the dataflow diagram is a separate OS 
process, called a query processing node, in which a partial 
continuous execution plan is running. The topology of the 
dataflow diagram is completely expressed in the query language 
where it is possible to specify continuous sub-queries running in 
parallel [9]. The system automatically creates OS processes 
running the execution plans of the sub-queries and the 
communication channels between them (local TCP). In the Grand 
Challenge implementation, the query processing nodes all run on 
the same computer and the OS is responsible for assigning CPUs 
to the processes. The system can also distribute query processing 
nodes over several computers but those features are not used here.  
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2.1 Frequently Emitting Windowizer, FEW 
EPIC provides window forming operators that support several 
kinds of windows, including time, count, and predicate windows 
[5][2][7]. The windows are formed by window functions mapping 
streams to streams of objects of type Window. For example, the 
window function  

tWindowize(Stream s, Number length, Number stride) -> Stream 
of Window ws 

forms a stream ws of timed windows over a stream s where 
windows of length time units (seconds) slide every stride time 
units. To avoid copying, the windows are represented by pointers 
to their first and last elements. When a window slides the pointers 
are updated.  

A naive implementation of tWindowize() would emit tuples only 
when the formed windows slide. This causes substantial delays, in 
particular for large windows. For example, when forming a 10 
minutes window, it is not practical to wait 10 minutes for the 
aggregation to be emitted. To be able to emit aggregation results 
before a complete window is formed, we have introduced a 
window function having a parameter ef, the emit frequency: 

fewtWindowize(Stream s, Number length, Number stride, Number 
ef) -> Stream of Window pw 

The window forming function fewtWindowize() forms partial time 
windows, pw, every ef time units. The emitted partial windows are 
landmark sub-windows of the elements of the window being 
formed.  When the formed window is complete it is emitted as 
well before it slides, and then the landmark is reset to the start 
time of the newly slided window. 

The FEW windows are required when: 

 The results must be emitted before the window is 
formed. 

 The results must be emitted more often than the slide 
(not used in this application).  

 

2.2 User-defined incremental window 
aggregate functions 
The windowing mechanism in EPIC supports incrementally 
evaluated user defined aggregate functions [1][8]. These are 
defined by associating init(), add(), and remove() functions with a 
user defined aggregate function: 

 init() -> Object o_new creates a new aggregation 
object, o_new, which is used for accumulating changes 
in a window.  

 add(Object o_cur, Object e) -> Object o_nxt takes the 
current aggregation object o_cur and the current stream 
element e and returns the updated aggregation object 
o_nxt. 

 remove(Object o_cur, Object e_exp) -> Object o_nxt 
removes from the current aggregation object o_cur the 
contribution of an element e_exp that has expired from a 
window. It returns the updated o_nxt. 

A user defined aggregate function is registered with the system 
function: 
aggregate_function(Charstring agg_name, Charstring initfn, 
Charstring addfn, Charstring removefn) -> Object 

For example, the following shows how to define the aggregate 
function mysum() over windows of numbers: 

create function initsum() -> Number s as 0; 

create function addsum(Number s_cur, Number 
e) -> Number s_nxt as res + e; 

create function removesum(Number s_cur, 
Number e_exp) -> Number s_nxt as s_cur – 
e_exp; 

These functions are registered to the system as the aggregate 
function mysum() by the function call: 

aggregate_function(‘mysum’,’initsum’,’addsum
’,’removesum’); 

After the registration mysum() can be used in CQs as: 

select mysum(w) from Window w where w in 
fewtWindowize(s, 10, 2, 1); 

In this simple example the aggregation object is a single number. 
It can also be arbitrary objects, including dictionaries (temporary 
tables) holding sets of rows, which is used in the Challenge 
implementation to incrementally maintain complex spatio-
temporal aggregations. 

2.3 Solution outline 
In Figure 1 the Event Reader node reads the full-game CSV file 
and produces the Game stream consisting of events for both balls 
and players. The Event Reader then scales the time stamps by 
subtracting the start time. It also transforms the position, velocity, 
and acceleration values to metric scales. To avoid the Event 
Reader becoming a bottleneck it is implemented as a foreign 
function in C. To speed up the communication we use binary 
representation of all events communicated between query 
processing nodes, while the input and output log files use the CSV 
format.  

The Interrupt Reader node produces the Interrupt stream, which 
contains referee interruptions, by reading and transforming the 
provided game interruptions files.  

The DEBS Splitter node merges the two input streams based on 
the time stamps in the streams and produces parallel input streams 
for the different queries. It also filters out those event stream 
tuples of the Game stream that are in-between game interruptions. 
The nodes Q1 Front End, Q2/Q4 Ball Hitter, and Q3 Front End 
receive parallel data streams required for the four Grand 
Challenge queries Q1-Q4. Q2 and Q4 share some downstream 
computations executed by Q2/Q4 Ball Hitter node.  

 
Figure 1. High level data stream flow 
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In EPIC the splitstream() system function provides customizable 
distribution and transformation of stream tuples. The user can 
provide customizable splitting logic as a distribution query over 
an incoming tuple that specifies how a tuple is to be distributed, 
filtered and transformed. 

The distribution query for the DEBS Splitter in Listing 1 is passed 
as an argument to splitstream().  

 
The result of the query are pairs (i, ev) specifying that an 
incoming event ev is to be sent to output stream number i. In the 
DEBS splitter distribution query three output streams enumerated 
by i are specified. They produce the corresponding streams Q1 
Input, Q2/Q4 Input, and Q3 Input. The Boolean function 
isPlayer(v) returns true if v is a player sensor reading. 

To speed up the processing, shared computations are made in 
separate nodes. In Figure 1 the Q1 Front End and the Q3 Front 
End nodes perform stream preprocessing and reduction for queries 
1 and 3, respectively, while the Q2/Q4 Ball Hitter node detects 
hits to the ball needed by queries 2 and 4.  

2.3.1 Query Q1: Running Analysis 
Figure 2 shows the topology of Q1. The aggregated running 
statistics for different time windows are computed in parallel 
based on the common current running statistics produced by the 
Q1 Front End node. The stream containing player sensor readings 
is sent to the Q1 Front End node (see Listing 1), which produces 
the running statistics. The running statistics is then broadcasted to 
four other nodes to compute the aggregated running statistics of 
different time window lengths. 

 

2.3.1.1 Incremental maintenance of running statistics 
In order to make the result more reliable for the current running 
statistics, we first create a 1 s tumbling window and then calculate 
the statistics for each player over that window. The window 
length 1 s was chosen experimentally to produce stable results. 
Both running and aggregate statistics utilize user defined 
aggregate functions to maintain arrays of the two types of 
statistics for each player. 

2.3.1.2 Current running statistics 
For each incoming player sensor reading in the current 1 s 
window, the following statistics tuple for each player is 
incrementally maintained in an array: 

(ts_start, ts_stop, pid, left_x_start, left_y_start, left_x_stop, 
left_y_stop, right_x_start, right_y_start, right_y_stop, 
right_y_stop, sum_speed, count) 

The time stamp ts_start stores the first time when a sensor reading 
of player pid arrives to the current window, while ts_stop stores 
the last sensor reading. The elements left_x_start, left_y_start, 
right_x_start, and right_y_start are the position readings of the 
left and right foot of the player at time ts_start, while left_x_stop, 
left_y_stop, right_x_stop, and right_y_stop are the corresponding 
foot position readings at time ts_stop. To incrementally calculate 
the average velocity the elements sum_speed and count are also 
included. ts_start, left_x_start, left_y_start, right_x_start, and 
right_y_start are updated only when the first sensor reading of the 
player pid arrives to the window, while all the other elements are 
updated every time a sensor reading of pid arrives. Here, no 
remove function is needed for the aggregation, since we are 
maintaining a stream of tumbling windows where the statistic will 
be re-initialized every time the window tumbles.  

With the statistics above, the current running statistics for a given 
player is calculated as the Euclidian distance between the average 
position of the first and last update during the time window.  

2.3.1.3 Aggregate running statistics 
We have chosen to log the result tuple of Q1 in CSV format every 
1 s since the current running statistics are not emitted more often 
than once per second. Four FEW time windows were defined for 
aggregating running statistics with lengths 1 minute, 5 minutes, 20 
minutes, and the entire game. All windows slide and emit results 
every 1 s. FEW is critical for early emission while the first 
windows are being formed. 

Aggregate running statistics over the window are incrementally 
maintained in an array similar to current running statistics. 

The stream from the Q1 Front End node contains the elements 
ts_start, ts_stop, player_id, intensity, distance, and speed. The 
difference ts_stop – ts_start is used to incrementally maintain the 
duration of a player being in the corresponding running intensity 
class. Analogously, the moving distance is maintained for the 
corresponding intensity classes by incrementally associating the 
incoming distance with the right intensity. 

2.3.2 Query Q2: Ball Possession 
Figure 3 shows the data flow of queries Q2 and Q4 combined. 
The Q2/Q4 input stream consists of player, ball, and interrupt 
sensor readings. The Q2/Q4 Ball Hitter computes the Ball Hitter 
and the Ball streams. The Ball Hitter stream contains ball hitter 
events, which occur when a player pid at timestamp ts hits the 
ball. The Ball stream contains Ball Hitter events interleaved with 
ball sensor readings.  The Q2/Q4 Ball Hitter node emits the Ball 
stream to the Shot on Goals query processing node, which 
executes the final stages of query Q4. The Ball Hitter stream 
contains only ball hitter events and is sent to the Player 
Possession node, which calculates and broadcasts the same Player 
Ball Possession stream to four Team Possession query processing 
nodes. The Team Possession nodes log every 10 s statistics of 
team ball possessions for the two teams with the different window 
lengths: 1 minute, 5 minutes, 20 minutes, and a landmark window 
of the entire game. As an alternative, we also measured reporting 

 
Figure 2. Query 1 data stream flow 

1 select i, ev from Integer i 
2 where (i = 0 and isPlayer(ev)) or    
3       (i = 1) or 
4       (i = 2 and isPlayer(ev)); 

 

Listing 1. DEBS Splitter distribution query 
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team possessions every 1 s resulting in the same latency and 
throughput.  

 

2.3.2.1 The Q2/Q4 Ball Hitter query processing node 
In order to compute a stream of ball hitters, we maintain 
acceleration of the ball ballacc, its position bx, by, bz, the shortest 
distance from a player to the ball sdist, and the player pid.  

For every input ball sensor reading, the Q2/Q4 Ball Hitter node 
incrementally updates the ball acceleration and the ball position 
accordingly. When a player sensor reading arrives, it 
incrementally maintains sdist.  

A ball hitter event is emitted when both the following criteria 
hold: 

 C1: The ball acceleration reaches a predefined threshold: 
ballacc > 55 m / s2. 

 C2: The shortest distance sdist is within the player’s 
proximity: sdist < 1 m. 

There are 36*200 player sensor readings per second. In addition, 
after being hit, the ball acceleration remains high for a while, in 
particular before the ball leaves the player’s proximity. Therefore, 
the two conditions C1 and C2 will hold for a short period of time 
within which several ball hitter events could be reported for the 
same actual ball hit by the player. To avoid generating false ball 
hitter events, we employ a dropping policy to drop player sensor 
readings occurring significantly later than the last report time. The 
dropping policy is expressed by the following query condition 
over a player sensor reading v: 

ts(v)-lrts > epsilon; 

Here, lrts is the latest timestamp when a ball hitter event was 
reported, and epsilon is the minimum time period between two 
reports. Because Q4 is more sensitive to the ball hitter events, we 
have empirically tuned this parameter to 0.2 s to get the best 
possible accuracy of Q4. 

2.3.2.2 The Player Possession query processing node 
The Player Possession node emits the Player Ball Possession 
(PBP) stream consisting of the variables fts, pid, and hits, which 
state that the player pid possessed the ball hits times, starting from 
first time the player hits the ball, fts.  

The Player Possession node increases the variable hits if a ball 
hitter event bhe is from the same player pid. Otherwise, it will 
emit ball possession events for player pid and then reset the 
variables. The total possession time is the interval between the 
timestamps bhe and fts. 

2.3.2.3 The Team Possession query processing nodes 
There are four Team Possession nodes, each with different 
window length: 1 minute, 5 minutes, 20 minutes, and a landmark 
of the whole game. For the received Player Ball Possession 
stream they compute team possession statistics as follows: 

- Incrementally calculate the sum of the ball possessions 
of all players in each team when a corresponding player 
ball possession arrives. 

- When a report is logged, the following two percentages 
are calculated: 

ܲ ൌ 	
ܣ݉ܽ݁ܶ݉ݑݏ

ܣ	݉ܽ݁ܶ݉ݑݏ  ܤ݉ܽ݁ܶ	݉ݑݏ
			 

ܲ ൌ 	
ܤ݉ܽ݁ܶ݉ݑݏ

ܣ	݉ܽ݁ܶ݉ݑݏ  ܤ݉ܽ݁ܶ	݉ݑݏ
			 

 

Here FEW windows are used to frequently report while the first 
windows are being formed. For example, the results must be 
regularly delivered every 10 s while the team possession 
landmark window is being formed.  

2.3.3 Query 4: Shot on Goal 
The Shot on Goal node receives three different kinds of events in 
the Ball stream: 

 A ball hitter event marks a shot and contains a time stamp and 
the pid of the shooting player. 

 A ball event contains the current ball sensor reading. 

 An interrupt event indicates a game interruption. It is good 
practice to reset the shot detection when an interruption 
occurs. 

Q4 shares detection of a ball hit with Q2. However, the logic for 
detecting a shot is slightly different for the two queries: Q2 is 
specified stricter than needed for Q4. To share computations this 
stricter logic is also used for Q4. 

The operation of Q4 is straightforward; it is an iteration over the 
Ball stream to keep track of the state of a shot: 

1. Wait for the next ball hitter event. 

2. Check ball events until the ball has travelled one meter. 

3. Return ball events as long as the ball is approaching the 
opposite team’s goal. 

The calculation of the ball direction uses basic linear algebra over 
the ball sensor readings. 

Gravity is accounted for to an extent. The expected time for the 
ball to travel to the goal line is multiplied twice with the 
acceleration constant g, and added to the height of the goal bar. 
The actual ball trajectory is not considered, but the current 
calculation should be an adequate approximation. 

Using the Q2 requirements for detecting a ball hit has the draw-
back that some events are not detected, such as the header at 
12:19 in the second half our example Game stream, since the ball 
is more than one meter away from any sensor. Whether that is 
technically a “shot” is questionable. 

Curve balls need special attention. For example, at 26:07 in the 
first half there is a curve ball goal. In this case the direction of the 
ball is pointing outside the goal posts, while the ball later curves 
inwards and comes to rest inside the goal.  

To handle curve balls we have introduced a state pending, 
indicating that a shot is not yet dismissed, but could later be 

 
Figure 3. Query 2 and Query 4 data stream flow 
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become a shot on goal. The model adds two meters of margin on 
both sides of the goal posts and the shot is considered pending if it 
points in the direction of the margin area.  

Bounces are considered as long as the direction of the bounce is 
within the negative distance of the goal bar plus gravity. While the 
instructions do not account for bounces at all, this limit should add 
some correctness to the algebra.  

Shots that are bounces, which we detect, are not included in the 
provided list of shots on goal. In the second half of the game there 
are four shots on goal that are bounces. They are at 4:11, 19:39, 
24:36 and 29:29. Setting the bounce threshold to zero, i.e. not 
considering bounces creates a result in accordance to the 
specification. Viewing the video makes it apparent that the 
specification is not correct in this regard. 

2.3.4 Query 3: Heat Map 
In Query 3 a grid on the field is formed where the cells are 
numbered in row order, for example from 0 to 6399 in a 64 X 100 
grid. Given the position of a player (x,y), the function 
cell_id(x,y,grid_size) returns the corresponding cell number for a 
given grid size. Query results for lower resolution grids are 
computed by aggregating the results for the higher resolution 
grids. Thus we incrementally maintain the results only for the 
highest resolution.  

Note that the results of longer windows cannot be built on top of 
the results from a shorter window. This is due to the 1 s stride 
parameter in all the queries. For example, the 5 minute window 
can’t be built on top of the results produced by the 1 minute 
window, since the 5 minute window needs to remove the 
contributions made to the statistics by the expired elements, i.e. 
the elements with the time stamp ts – 300 s, where ts is the current 
time stamp.  Those elements are too old to be in the 1 minute 
window. Nevertheless, the definition of longer windows in terms 
of shorter ones could have been utilized if the stride was one 
minute instead of the one second stride in the Challenge 
specification. 

2.3.4.1 Q3 Front End 
Figure 4 shows the dataflow diagram for query Q3. As specified 
in Listing 1 the Q3 Input Stream contains all player sensor 
readings. The Q3 Front End node produces the One Second 
HeatMap (OSHM) stream by forming 1 s tumbling windows over 
the incoming tuples. Thereby incremental user defined aggregate 
functions are used to maintain statistics per second in a table 
heamap1s(pid, cell_id, ts, cnt) local per window. Here ts is the 
latest time stamp player pid has been present in the cell identified 
by cell_id cell identifier in the highest resolution grid (64 X 100). 
cnt is the total number of sensor readings for player pid in the cell 
in the current window. 

 

The OSHM stream is produced by emitting all the rows 
accumulated in the table during the past second. 

The Q3 Front End significantly reduces the stream volume by 
summarizing it. It receives 200 tuples per second from 36 sensors, 
in total 7200 tuples/second. It emits at maximum the total number 
of cells all the players have been present in the highest grid 
resolution during one second, which is about 70 tuples per second, 
i.e. a factor 10 reduction in stream flow. 

2.3.4.2 Q3 query nodes 
The OSHM stream is broadcasted to four Q3 query nodes Q3 1 
Min, Q3 5 Min, Q3 10 Min, and Q3 Landmark. These nodes run 
parallel CQs over time windows with lengths 1, 5, 10 minutes, 
and whole game, respectively. The windows are formed by the 
FEW window specification fewtWindowize(oshm, length, 1, 1), 
where length is 60s, 300s, 600s  and the whole game duration, 
respectively. The stride and the emit frequency are both 1 s. The 
emit frequency is needed so that sub-windows are emitted while 
the window is being formed the first time.  

Similar to Q3 Front End, the Q3 query nodes incrementally 
maintain user defined aggregates by updating the following local 
tables inside each window as the input stream elements arrive: 

heatmap(pid, cell_id, ts, cnt)  

sensor_count(pid, total_cnt) 

In table heatmap, the attribute cell_id is the cell player pid has 
been present in, ts is the latest time player pid was in the cell, cnt 
is the number of times the player has been present in the cell. To 
enable translation of cnt into percentages per cell, the Q3 query 
nodes also maintain total_cnt per player, which stores the total 
number of position reports in all cells for a given player during the 
window in question. 

Since Q3 query nodes only maintain the statistics for the highest 
resolution in a given window length, at reporting time they 
compute lower resolutions by aggregating grid cells per player to 
fill the bigger cells in the higher resolutions. 

The Q3 query nodes log the output CSV streams to files. Since 
each Q3 query nodes cover all grid settings in a given window 
size, the produced log files contains output stream elements for 
more than one grid setting. We use the following grid identifiers 
to tag streams per grid: 6400 for 64 X 100, 1600 for 32 X 50, 400 
for 16*25, and 104 for 8 X 13 grid setting.  

The size of these log files is huge (ca 400,000 rows/s) since they 
cover all movements between grid cells over several very long 
windows. Here it becomes important to use SSD as storage 
medium, which is fast at writing big blocks in parallel, while disk 
arm movements for writing different log files has been observed 
to slow down the entire system throughput with a factor of around 
two. 

3. PERFORMANCE 
We measured the performance of our implementation based on 
both throughput and delay. The throughput was measured as the 
total execution time per query and for all queries in parallel over 
the entire game. The latency was measured by propagating the 
system wall clock of the entry time of the latest event contributing 
to each result tuple. The delay was calculated by subtracting the 
propagated entry time from the wall time when a result tuple is 
delivered. The throughput is measured per query while the latency 
is measured per output stream. 

We ran our experiments on a VMware virtual machine with 
Windows Server 2008 R2 x64, running on a laptop with the 

 
Figure 4. Query 3 data stream flow 
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following specifications: Dell Latitude E6530, CPU: Intel Core 
i7-3720QM @2.60 GHz, RAM: 8 GB, Hard Disk Device: 
ST500LX003-1AC15G, OS: Windows 7 64-bit. 

Figure 5 illustrates the throughput of the individual queries as well 
as all queries running together. Queries Q1, Q2, and Q4 take 
around 5 minutes to finish separately, while Q3 takes considerably 
longer time, which is mainly due to intensive report computations 
in the Q3 query nodes. To investigate the log writing time, Q3 and 
the all queries columns have a watermark indicating how much 
time it takes to execute them without logging to disk, showing that 
this takes around 35 % of the Q3 alone time and 25 % of all 
queries together. We also investigated whether it would be 
favorable to parallelize the logging of the result stream for Q3 
query nodes, but that turned out to be slower in our current 
environment. 

Since all queries run in parallel according to the dataflow 
diagrams, running all of them together takes approximately the 
same time as running the slowest one, Q3. 

Figure 6 shows the average delay per output stream while running 
all queries together. Notice that Q2 and Q4 are time critical 
queries since they immediately report real-time phenomena. By 
contrast Q1 and Q3 report delayed statistics aggregated over time. 

The VMware virtual machine containing our implementation of 
the Grand Challenge can be downloaded from 
http://udbl2.it.uu.se/DEBS/. There is also a zip archive that can be 
run on any Windows machine. 

4. RELATED WORK 
In the stream processing community, there has been a lot of work 
for developing query languages over data streams [5]. [7] 
introduced a formal specification of different kinds of windows 
over data streams and provided a taxonomy of window variants. 
The notation of report (emit) frequency was proposed in SECRET 
[2] without any actual implementation. SECRET is a descriptive 
model to help users understand the result of window-based 
queries from different stream processing engines. Esper [4] also 
allows a report frequency but does not have user defined window 
aggregate functions. Furthermore Esper’s sliding window model 
is different from FEW because the slides are triggered by window 
content changes rather than explicitly specified time periods.  

To efficiently calculate the aggregate result over long windows 
with small strides, [6] and [1] use delta computations to reduce the 
latency and the memory usage. The focus of [8] is to extend a 
DSMS with online data mining facilities by user defined 
aggregate functions over windows. The implementation described 
in this paper shows that EPIC is general enough to define very 
complicated user defined aggregations as functions while in [1] 
and [8] the aggregates are defined as updates. 

5. CONCLUSIONS 
We have addressed the Grand Challenge by expressing continuous 
queries in a high level language that supports incremental 
evaluation of aggregate functions over windows and frequently 
emitting windowing. We meet the real-time requirements of the 
real-time queries on a virtual machine running on a laptop. The 
extensibility of the query engine was used for supporting high 
throughput and low latency of time critical operations. 
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