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Abstract 
 
We have developed a data stream management system 
that supports declarative stream queries running over 
high data volumes in a supercomputing environment. To 
enable specification of massively parallel computations 
our query language provides processes as query 
language objects. The queries call process construction 
functions that execute stream sub-queries assigned to a 
CPU. Such queries can be used to define query functions 
that parallelize computations. The CPU assignment is 
normally automatic, but can also be influenced by the 
user. We show how this enables performance measure-
ments of different communication topologies in a hetero-
geneous hardware environment containing a Linux clus-
ter and a BlueGene. 
 
1. Introduction 
 
LOFAR [13] is currently building a radio telescope using 
an array of 25,000 omni-directional antenna receivers 
whose signals are digitized into data streams of very high 
rate. Scientists perform computations on these data 
streams to gain scientific insight. The LOFAR antenna 
array will be the largest sensor network in the world. The 
receivers produce raw data streams that arrive at the cen-
tral processing facilities at a rate, which is too high for the 
data to be saved on disk. Furthermore, advanced numeri-
cal computations are performed on the streams in real 
time to detect astronomical events as they occur. For 
these data-intensive computations, LOFAR utilizes an 
IBM BlueGene supercomputer combined with 
conventional Linux clusters. 

To enable stream processing in heterogeneous and 
massively parallel environments of LOFAR’s kind we 
have developed a data stream management system called 
SCSQ (Super Computer Stream Query processor, pro-
nounced sis-queue) [22]. SCSQ transparently executes on 
a variety of hardware platforms and operating systems, 
including MS Windows, Linux, and BlueGene. To sup-
port transparent streaming in a heterogeneous environ-

ment consisting of clusters with different communication 
subsystems, SCSQ features internal drivers that currently 
support MPI and TCP for carrying streams. 

Continuous queries (CQs) are declaratively specified 
in a query language, SCSQL (pronounced sis-kel). To 
maximize throughput of streams and computations it is 
important to parallelize CQs into continuous subqueries, 
each executing as a separate process on a CPU. To enable 
a customized parallelization, SCSQL provides stream 
processes (SPs) as first-class objects in queries. The user 
associates subqueries with SPs. Massively parallel com-
putations are defined in terms of sets of subqueries, exe-
cuting on sets of stream processes. 

Properties of the different CPUs, communication 
mechanisms, and operating systems substantially 
influence query execution performance. These properties 
are stored in a database, which is used by the query 
optimizer when assigning an SP to a CPU. 

In implementing the query optimizer, it is crucial to 
understand how different strategies to distribute 
computation and communication influence the execution 
performance. It is particularly important for our 
application to maximize the bandwidth of the data 
streams from the receivers into the compute nodes of the 
BlueGene. The incoming streams are critical paths of the 
application since a sub-optimal input data rate will slow 
down the entire stream processing chain. In this paper, we 
use SCSQL queries in order to measure the streaming 
bandwidth of different communication topologies 
between a back-end Linux cluster and the BlueGene, as 
well as between compute nodes inside the BlueGene. 
SCSQ optionally allows the user to influence the choice 
of CPU to which an SP is assigned. We use this facility to 
specify different communication topologies in SCSQL. 

In summary, we present the following contributions: 
 The introduction of stream processes enables 

specification of massively parallel computations 
in the query language SCSQL.  

 We show how SCSQL can be used to measure 
streaming bandwidth inside a BlueGene using dif-
ferent communication topologies. The results from 



these measurements provide a basis for automatic 
CPU allocation strategies inside BlueGene. 

 Analogously, inbound streaming bandwidth from 
a Linux cluster to BlueGene is measured using 
different communication topologies specified in 
SCSQL to provide a basis for automatic set-up of 
inbound streaming communication. 

Before presenting the results, we give an overview of 
the SCSQ system and the heterogeneous hardware envi-
ronment in which the experiments were performed. An 
introduction to the query language SCSQL is also given, 
and we show how to formulate mapreduce [8] and radix 
fft [12] queries using SCSQL. 
 
2. The SCSQ system 
 
In this section, we first describe the LOFAR hardware 
environment that is used for our experiments. Then, we 
present the overall SCSQ architecture and finally we de-
scribe the features of SCSQL that are used in the experi-
ments. 
 
2.1. Hardware environment 
 
Figure 1 illustrates the stream dataflow in the LOFAR 
hardware environment. Users interact with SCSQ on a 
Linux front-end cluster. Another Linux back-end cluster 
first receives the streams from the sensors where they are 
pre-processed. Next, the BlueGene processes these 
streams. The output streams from the BlueGene are then 
post-processed in the front-end cluster and the result 
stream is finally delivered to the user. Thus, three com-
puter clusters are involved. 

 

Figure 1. Stream data flow in the LOFAR environ-
ment. 

The hardware components are characterized by differ-
ent architectures. The BlueGene features dual PowerPC 
440d 700MHz (5.6 Gflops max) compute nodes con-
nected by a 1.4 Gbps 3D torus network, and a 2.8 Gbps 
tree network. The time it takes for a compute node to send 
data to another one depends on the relative locations of 
these nodes in the torus, and how loaded the nodes be-
tween them are. Each compute node has a local 512 MB 
memory. The compute nodes run the compute node 
kernel (CNK) OS [15], a simple single-threaded operating 
system that provides a subset of UNIX functionality. One 
important limitation of CNK is the lack of support for 
server capabilities (no listen(), accept() or select()). Each 
compute node has two CPUs, of which normally one is 
used for computation and the other one for communica-

tion with other compute nodes. A native MPI implemen-
tation is used for communication between BlueGene com-
pute nodes, whereas communication with the Linux clus-
ters utilizes I/O nodes that provide TCP or UDP. Each 
I/O-node is equipped with a 1 Gbit/s network interface. 
I/O nodes are only used for communication, and cannot 
be used for computations. In LOFAR’s BlueGene, there 
are 6144 dual processor compute nodes, grouped in 
processing sets of 8 compute nodes and one I/O node. 

The Linux front and back-end clusters are IBM JS20 
computers with dual PowerPC 970 2.2GHz processors. 
Each computer in the back-end cluster has a 1 Gigabit 
Ethernet interface connected via a switch to the 
BlueGene. 
 
2.2. SCSQ architecture 
 
Figure 2 illustrates a query that is set up for execution in 
the hardware environment. SCSQ users interact with the 
client manager, in which they specify CQs using SCSQL. 
The execution of a CQ forms a directed acyclic graph of 
running processes (RPs), each executing the subquery 
specified in one SP. 

Figure 2. Set-up of a CQ for execution in SCSQ. 
Wide arrows indicate data streams. 

The execution of CQs may be stopped either by ex-
plicit user intervention or by a stop condition in the query 
that makes the stream finite. When a CQ is stopped, its 
RPs are terminated. RPs regularly exchange control mes-
sages, which are used to regulate the stream flow between 
them and to terminate execution upon a stop condition. 

When a user submits a CQ, it is optimized and started 
in the client manager. When the client manager identifies 
an SP, the sub-query of that SP is registered with the 
coordinator of the cluster where the sub-query is to be 
executed (feCC, bgCC, or beCC in Figure 2). Then, the 
coordinator starts an RP to execute the sub-query. In ad-
dition, an RP can dynamically start new RPs by 
requesting them from the cluster coordinator of the cluster 
where the new RP is started. 

Since the BlueGene lacks server functionality, sub-
queries from the client manager to be executed on the 
BlueGene are registered with the feCC. The bgCC re-
trieves new sub-queries from the feCC by polling. As 
BlueGene compute nodes can execute only one process, 



each new RP in BlueGene is assigned to a new compute 
node. 

Each cluster coordinator maintains an internal compute 
node database (CNDB) containing the properties and 
status of the possibly thousands of compute nodes in its 
cluster. A node selection algorithm in the cluster coor-
dinator starts the new RP on a suitable compute node by 
querying its CNDB. Currently, a naïve node selection al-
gorithm is used, returning the next available node. 
 
2.3. Running Processes 
 
An RP has the components shown in Figure 3. It is 
responsible for i) compiling its subquery into a local 
Stream Query Execution Plan, SQEP and interpreting it, 
ii) delivering the result to other RPs, its subscribers, iii) 
dynamically requesting new RPs from a coordinator if 
needed, iv) retrieving its input data from other RPs, its 
producers, and v) monitoring the execution of its SQEP. 

Figure 3. A SCSQ running process. 
The operators in the SQEP are executed when data ar-

rives. Incoming data is buffered in a receiver driver and 
de-marshaled (materialized) into objects. Streams of 
materialized data objects are delivered to the operators of 
the SQEP. The objects resulting from the operators are 
passed on to the sender driver, which marshals them and 
sends the buffer contents to subscribers. Objects are 
dynamically de-allocated when no longer needed by any 
operator. The sender and receiver drivers can use various 
network protocols for carrying the streams. We have 
implemented stream carrier protocols based on MPI and 
TCP. SCSQ supports the use of MPI on any MPI enabled 
cluster. MPI is always used inside the BlueGene as that is 
the only allowed protocol, while TCP is always used 
when communicating between clusters. The MPI sender 
and receiver drivers contain double buffers so that one 
buffer can be processed while the other one is read or 
written. 

 
2.4. SCSQL 

 
SCSQL is a query language similar to SQL, but extended 
with streams and stream processes as first-class objects. 
Stream processes allows dynamic parallelization of con-

tinuous queries, which is used in this paper to measure the 
performance of a massively parallel and heterogeneous 
computing environment. This section introduces SCSQL. 

All data in SCSQ is represented by objects in SCSQL. 
The relation between first-class objects in SCSQL is il-
lustrated in Figure 4. A stream is an object that represents 
(possibly unbounded) sequences of any kind of objects. 
The result of a continuous subquery is a stream. 
Continuous subqueries are assigned to stream processes. 
Users of SCSQL define parallel and distributed stream 
computations by assigning continuous subqueries to 
stream processes. 

 
Figure 4. The relation between streams, stream 
processes and objects in SCSQL. 

The function sp(s, c) assigns the subquery s to a new 
stream process to be run in cluster c. The function ex-
tract(p) requests elements (objects) from the subquery 
assigned to stream process p. If p ever terminates, ex-
tract(p) also terminates. The function streamof(e) trans-
forms the output of any expression e to a stream. This is 
useful when a stream output is desired from functions that 
do not naturally return streams, e.g. count(), which 
returns a single integer. 

To enable easy handling of sets of parallel stream 
processes, the function spv(s, c) assigns each subquery in 
the set s to a new stream process on some compute node 
in the cluster c, and returns a set (bag) of handles to the 
assigned stream processes. 

The function merge(p) generalizes extract() by re-
questing elements from each stream process in p. merge() 
terminates when (if ever) the last stream process in p ter-
minates. 

The use of the data types representing streams and 
stream processes allows specification of parallel and dis-
tributed CQs with different topologies. merge() provides 
stream combinations, while variables bound to sets of 
stream processes provide parallel execution. 

For example, the distributed grep mapreduce [8] query 
using 1000 parallel grep calls is specified in SCSQL as 
follows: 
1
2
3
4

merge(spv(
     select grep("pattern", filename(i)) 
     from integer i  
     where i in iota(1,1000))); 

Line 1 contains the reduce predicate. In this case there 
is no reduction, so there is no function outside the merge. 



On line 2, the subquery performs a grep for a pattern on 
the ith filename in a table. Each subquery executes in a 
separate process. Line 4 specifies the degree of parallel-
ism, in this case 1000 processes. iota(n,m) generates all 
integers from n to m. In this example, iota() is used to 
generate 1000 duplicates of the select stream, and to pro-
vide a key to the filename() table. 

Splitting of streams is specified by referencing com-
mon variables bound to stream processes, as illustrated by 
the following query function, which implements the 
radix2 parallelization of FFT [12] for a stream source 
named s. 
1 
2 
3 
4 
5 
6 
7 

create function radix2(string s) 
                       ->stream 
as select radixcombine(merge({a,b})) 
from sp a, sp b, sp c 
where a=sp(fft(odd (extract(c)))) 
  and b=sp(fft(even(extract(c)))) 
  and c=sp(receiver(s)); 

The receiver() function returns a stream of 1D arrays 
of signal data. odd(x) and even(x) obtain odd and even 
elements from array x,  respectively. radixcombine() com-
bines the results from the partial FFT algorithms working 
in parallel. 

Optionally, the SCSQL user can constrain the allowed 
compute nodes for the node selection algorithm by speci-
fying a node allocation query as an extra argument to sp() 
and spv(). This query returns a stream of allowable com-
pute nodes in preferred allocation order, called the allo-
cation sequence. The allocation sequence is passed to the 
node allocation algorithm of the cluster coordinator when 
it allocates the RP for an SP. The node selection 
algorithm will choose the first available node in the allo-
cation sequence. (In case the stream contains no available 
node, the query will fail.) Thus, allocation sequences al-
low the user to restrict and prioritize the node selection 
order.  

In the next section we show how we utilize allocation 
sequences to enforce different communication topologies. 
This helps us determine how to achieve maximum 
streaming bandwidth. The gained knowledge will be used 
to improve the node selection algorithm. 
 
3. Streaming performance 
 
Using SCSQL and its allocation sequence option, we set 
up different communication topologies and measure how 
they influence the streaming bandwidth. The following 
experiments are performed: 

1. The streaming bandwidth between RPs executing 
on compute nodes inside the BlueGene is meas-
ured. For good performance of extract() and 
merge(), SCSQ buffers incoming elements in the 
receiver driver. Different buffer settings for MPI 
streams inside the BlueGene are evaluated. Fur-

thermore, explicit node selections are used to 
measure different communication topologies in-
side the BlueGene. 

2. The bandwidth is measured for communicating 
streams from RPs in the back-end cluster to RPs 
inside the BlueGene. The impact on the 
bandwidth of different node selections in the 
back-end cluster and in the BlueGene is measured. 
As the system uses TCP for communication 
between the back-end cluster and BlueGene, we 
rely on the buffering of the TCP stack in this case. 

In all experiments, the streams contain arrays of nu-
merical data, as required by the application. The band-
width is computed by measuring the total time to commu-
nicate a finite stream of 3MB arrays between stream proc-
esses. Small array sizes increase processing overhead, and 
we are primarily interested in communication perform-
ance, hence the large array size. Each experiment was 
performed five times in order to achieve low variance in 
the measurements. 
 
3.1. Intra-BG streaming 

 
The following experiments are performed: 

1. We measure the bandwidth of point-to-point com-
munication between two RPs, which execute on 
different BlueGene compute nodes. 

2. We measure the bandwidth of stream merging 
from two RPs to a third one. 

In the experiments, we vary the buffer sizes of the 
communication subsystem. We also compare the usage of 
double and single buffering. 

Figure 5 illustrates the set-up of the point-to-point 
measurement. a generates a stream of large arrays and b 
counts the total number of arrays in the finite stream ex-
tracted from a. The result of the count is sent to the front-
end. Since only one number is transmitted from b to the 
client manager, the total time measured is dominated by 
the time for streaming the data from a to b. 

 
Figure 5. Intra-BG point to point streaming. 

The sending RP a (i) generates the arrays, (ii) marshals 
them into a send buffer and (iii) transmits the send buffers 
when they are full. The receiving RP b (iv) receives buff-
ers, (v) de-marshals the buffer contents, (vi) allocates new 
arrays, (vii) counts them, and (viii) de-allocates them. 
Only the result of the count is streamed to the front-end. 
The query is expressed in SCSQL as follows: 
1
2 
3 
4 

select extract(b)
from sp a, sp b 
where b=sp(streamof(count(extract(a))) 
           'bg',0) and 



5    a=sp(gen_array(3000000,100),'bg',1);
gen_array() generates the finite stream of 100 arrays 

of size 3MB each. The calls to sp() assign the streams to 
new stream processes on a compute nodes in the ’bg’ 
(BlueGene) cluster. The function count() counts the num-
ber of elements in a bag. The function streamof() makes a 
stream of the output of count(). Allocation sequences are 
specified in the third arguments of the sp() calls as single 
node identifier values (0 and 1), since we want to exactly 
specify the selected node here. The selected node cannot 
be busy in this query since we know what nodes are allo-
cated and where they are located in the BlueGene. 

Figure 6 shows the bandwidth of intra-BG point-to-
point streaming. As can be seen, the optimal buffer size is 
1000 bytes for both single and double buffering. The 
drop-off above the 1000-byte buffer size is probably due 
to cache misses. The performance degradation for buffers 
smaller than 1000 bytes buffer size is because 1K is the 
smallest message size that can be exchanged in the 
BlueGene 3D torus. Furthermore, we observe that double 
buffering pays off for large buffers. A number of bumps 
are clearly seen in the double-buffer curve. No explana-
tion for this phenomenon can be found, but it is neverthe-
less statistically significant. 
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Figure 6. Point to point streaming performance. 
For stream merging, we measure the throughput when 

two RPs send data to a third one. When messages are sent 
between non-adjacent nodes in BlueGene, they must be 
routed through the communication co-processors of the 
nodes in between. Communication will be slower if these 
co-processors are busy. 

Since the enumeration of compute nodes in the 
BlueGene 3D torus is known, it is easy to specify the two 
communication topologies in Figure 7 using the 
allocation sequence feature of SCSQL. In both cases c 
merges data from the streams of a and b. The two 

experiments are defined in SCSQL by varying x and y in 
the following query: 
1 
2 
3 
4 
5 

Select extract(c) 
from sp a, sp b, sp c 
where c=sp(count(merge({a,b})), 'bg',0) 
and a=sp(gen_array(3000000,100),'bg',x) 
and b=sp(gen_array(3000000,100),'bg',y); 

count() counts the total number of arrays in the merged 
streams a and b. The explicit node selections 0, x, and y 
on lines 3–5 specify the exact BlueGene node numbers 
where the RPs execute. 

Figure 7. Alternative BlueGene node selections 
for stream merging. 

Figure 7A shows a sequential node selection, where 
MPI messages from b to c are routed through the commu-
nication co-processor of a. Here, x=1 and y=2 to select 
compute nodes arranged as in figure 7A. Figure 7B shows 
a balanced node selection, where messages from a and b 
are sent directly to c over individual communication 
channels. Here, x=1 and y=4 to select compute nodes 
arranged as in figure 7B. 

Figure 8 shows the total streaming input bandwidth at 
node c for stream merging using the two node selection 
strategies. Both single and double buffering is evaluated. 
Analogously to the results of the point-to-point streaming 
experiment shown in Figure 6, we expected double 
buffering to pay off for large buffers. 
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Figure 8. Alternative BlueGene node selections 
for stream merging. 



We observe the following: 
1. The streaming bandwidth depends highly on the 

compute nodes to which the RPs are allocated. 
This is because of the topology of the BlueGene 
3D torus interconnection network. 

2. The benefit of double buffering is less significant 
than that of point-to-point communication. 

3. Finally, an interesting observation is that buffers 
smaller than 10K are much slower for stream 
merging than for point-to-point communication. 

The reason for better performance for large buffers 
when merging streams is that the single-threaded commu-
nication co-processor of c must handle data streams from 
both a and b. In c, it switches between receiving 
messages from a and b. Less frequent switching improves 
communication. By contrast, for point-to-point 
communication, all messages come from the same source, 
so the co-processor does not pay any switching penalty. 
Thus, sending larger but fewer messages is beneficial for 
stream merging while the opposite holds for point-to-
point communication. 
 
3.2. BG inbound streaming 
 
We conducted experiments for six different ways to inject 
data streams into the BlueGene, named Query 1 through 
Query 6. The inbound streaming bandwidth of each query 
is measured for different numbers of parallel input 
streams by altering a query variable n. In all experiments, 
the total number of arrays in all the finite streams 
produced in the back-end cluster is counted. The output 
data from the query is a single integer. Thus, the time to 
execute the query is dominated by time for streaming the 
data from the back-end cluster into the BlueGene. 

Query 1 investigates the streaming bandwidth when all 
streams 1 through n are sent from a single node in the 
back-end cluster through a single I/O node into a single 
compute node in the BlueGene. Query 2 differs from 
Query 1 in that several compute nodes in the back-end 
cluster are injecting data into BlueGene. This is to inves-
tigate whether parallelization over several compute nodes 
in the back-end cluster will improve the streaming band-
width compared to that of Query 1. Queries 3 and 4 trans-
fer all data over one single I/O node but parallelize the 
receiving over several compute nodes in BlueGene. This 
is to see whether parallelizing the receiving compute 
nodes will improve the streaming bandwidth in compari-
son to all streams being received on a single compute 
node. Queries 5 and 6 are analogous to Queries 3 and 4 
but parallelize the data injection into BlueGene over sev-
eral I/O nodes. By intuition, query 6 can be expected to 
achieve the highest streaming bandwidth of all queries, 
since parallel back-end compute nodes inject data through 
parallel I/O channels. 

The distribution pattern of Query 1 is shown in Figure 
9. All streams are produced on a1 through an, executing 
on the same compute node in the back-end cluster. All 
streams are sent to b inside BlueGene, which merges and 
counts them. c extracts the count from b unchanged and 
sends it to the client manager in the front cluster. The rea-
son to include c in this query is to make all experiments 
comparable. 
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Figure 9. Execution distribution of Query 1. 
Query 1 is formulated in SCSQL as follows: 

1
2
3
4
5
6
7
8
9
10

select extract(c) from 
bag of sp a, sp b, sp c,  
integer n 
where c=sp(extract(b),'bg') 
and   b=sp(count(merge(a)), 'bg') 
and   a=spv( 
  (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', 1) 
and n=4; 

The explicit node selection on line 9 assigns all back-
end SPs to compute node 1 in the back-end cluster. 

The execution distribution of Query 2 is shown in 
Figure 10. In this query, a1 through an execute on 
different compute nodes in the back-end cluster. All 
streams are sent to b inside the BlueGene, which merges 
them and counts the total number of arrays. c passes on 
the count unchanged as before. 

Figure 10. Execution distribution of Query 2. 
Query 2 is formulated in SCSQL as follows: 

1
2
3
4
5
6
7
8

select extract(c) from 
bag of sp a, sp b, sp c,  
integer n 
where c=sp(extract(b), 'bg') 
and   b=sp(count(merge(a)), 'bg') 
and   a=spv( 
  (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 



9 
10 

            'be', urr('be')) 
and n=4; 

Only the last argument to spv() in line 9 differs from 
Query 1. Here we want to assign each SP in a to different 
compute nodes. The node allocation function urr(cl) re-
trieves a stream from the CNDB of cluster cl of compute 
node identifiers where each identifier represents a new 
available node in the cluster in a round-robin fashion. 
This allocation sequence stream is later shipped back to 
the cluster coordinator by the spv() call to be used by the 
node selection algorithm. By shipping stream handles we 
avoid unnecessary data shipping. 

The execution distribution of Query 3 in Figure 11 
parallelizes the aggregation over several RPs, each one 
running on a separate receiving BlueGene compute node. 
Compute nodes belonging to the same pset use the same 
I/O node for inbound communication. All streams from 
the back-end cluster are sent to the BlueGene compute 
nodes through a single I/O node by specifying b1 through 
bn to belong to the same pset. 
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Figure 11. Execution distribution of Query 3. 
Query 3 is defined by the following SCSQL query. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b)),  
           'bg')) 
and   b=spv( 
  (select streamof(count(extract(p))) 
   from sp p 
   where p in a), 
            'bg', inPset(1)) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', 1) 
and n=4; 

On line 10, the processor selection function inPset(k), 
which returns a stream of compute node identifiers in pset 
number k, forces all SPs to belong to the same pset. 

The execution distribution of Query 4, shown in 
Figure 12, differs from Query 3 in that the back-end RPs 
run on different compute nodes. 

Query 4 is defined by the following SCSQL query. 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b))), 
'bg') 
and   b=spv( 
  (select streamof(count(extract(p))) 
  from sp p 
  where p in a), 
            'bg', inPset(1)) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', urr('be')) 
and n=4; 

The only difference from Query 3 is the call to urr() 
on line 14, enforcing all RPs to execute on different 
compute nodes in the back-end cluster. 

Figure 12. Execution distribution of Query 4. 
The execution distribution of Query 5, shown in 

Figure 13, utilizes different I/O nodes for the 
communication of streams from the back-end cluster. 

Figure 13. Execution distribution of Query 5. 
The following SCSQL query defines Query 5.  

1
2
3
4
5
6
7
8
9
10
11

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b))),     
           'bg') 
and   b=spv( 
 (select streamof(count(extract(p))) 
  from sp p  
  where p in a), 
            'bg', psetrr()) 
and a=spv(



12 
13 
14 

 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
          'be', 1) and n=4; 

This query differs from Query 3 in the processor selec-
tion on line 10. The function psetrr() returns a stream of 
BlueGene compute node numbers, where each succeeding 
node number belongs to a new pset in a round-robin 
fashion. This will parallelize the inbound communication 
over different I/O nodes, since compute nodes belonging 
to different psets will use different I/O nodes. 

Finally, the execution distribution of Query 6 is shown 
in Figure 14. This query differs from Query 5 in that 
back-end stream processes run on different nodes in the 
back-end cluster. 

Figure 14. Execution distribution of Query 6. 
The following SCSQL query defines Query 6.  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b))),  
           'bg') 
and   b=spv( 
 (select streamof(count(extract(p))) 
  from sp p 
  where p in a), 
            'bg', psetrr()) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
          'be', urr('be')) 
and n=4; 

The difference from Query 5 is the call to urr() on line 
14, assigning all SPs to different compute nodes in the 
back-end cluster. 

Figure 15 compares the BG inbound streaming band-
width for Queries 1 through 6. n is the number of RPs in 
the back-end cluster that inject streams into the 
BlueGene. The y-axis measures the total inbound 
streaming bandwidth from the back-end cluster into the 
BlueGene compute nodes.  

We observe the following: 
(1) Queries 1 through 4 all communicate using a sin-

gle I/O node on the BlueGene. They all have sig-
nificantly lower bandwidth than that of Queries 5 

and 6. Thus, as expected, it is favorable to use 
many I/O nodes. 

(2) The streaming bandwidth of Queries 3 and 4 are 
slightly better than that of Queries 1 and 2. 
Changing from one to two receiving BlueGene 
compute nodes off-loads the communication bur-
den, while further increasing the number of re-
ceiving compute nodes is not worthwhile since the 
total streaming bandwidth does not increase. 
Hence, it pays off to increase the number of re-
ceiving compute nodes from one to two even if 
there is only one I/O node available. This commu-
nication topology should be used in the node se-
lection algorithm when compute nodes are avail-
able but the number of I/O nodes is limited. 
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Figure 15. Results for queries 1 through 6. 
(3) As can be seen, the best streaming bandwidth is 

achieved for Query 5, which peaks at ~920 Mbps. 
It is surprising that a single 1 Gbps connection 
from the back-end cluster is faster than four sepa-
rate 1 Gbps connections as in Query 6. It is thus 
faster to inject streams over different I/O nodes 
from the same back-end cluster compute node 
than from different back-end compute nodes. This 
indicates coordination problems in the I/O node 
when communicating with many outside nodes. 
The conclusion is that the node selection 
algorithm should attempt to co-locate back-end 
RPs to the same compute node until saturation. 

(4) Similarly, the streaming bandwidth of Query 1 is 
better than that of Query 2, indicating that it is 
better to run as many RPs on the same back-end 
node as possible rather than running them on dif-
ferent back-end nodes. 

(5) In Query 5, there is a significant performance dip 
for n=5. This is probably because there were only 



four I/O nodes available on the BlueGene 
partition where the experiments were performed. 
For n>4, compute nodes have to share I/O nodes 
and therefore the bandwidth decreases. In this 
case, the node selection algorithm could resort to 
increase the number of receiving compute nodes 
as in observation (2) above. 

We are currently investigating how to extend the node 
selection algorithm with the above knowledge. 
 
4. Related work 
 
There are many data stream management system (DSMS) 
implementations, some of which execute on a single node 
[3] [5] [7] [9] [14] [17] [19], and some are distributed [1] 
[4] [10] [11] [16] [20] [21]. Some of these implementa-
tions provide high-level SQL-like query languages such 
as STREAM [3] and TelegraphCQ [5]. In [3], streams are 
treated as continuously updated relations, while in [5] 
they are implemented as external functions emitting 
tuples as an unbounded bag. Unlike all other DSMS 
projects, the SCSQ data model treats both streams and 
processes as first class objects. Stream processes allow 
users to specify massively parallel and distributed 
computations in CQs by dynamically starting stream 
processes at run time. Furthermore, the SCSQ user can 
optionally even influence the location for the node 
assignments, which has been used in this paper to 
measure communication performance. 

Tribeca [19] provides pipes as first-class objects in its 
query language. These pipes are similar to our stream data 
type but Tribeca provides no parallelization of their exe-
cution, and no dynamic process creation. Similarly, 
WaveScope [9] provides a stream processing language 
where arbitrary computations can be specified as 
functions over streams in a non-distributed stream 
processing environment. 

SPC [11] was evaluated using the Linear Road Bench-
mark [2] on a highly parallel PC cluster. However, the 
distribution is manual and SPC has no query language as 
SCSQL. 

Dynamic load balancing for distributed DSMSs has 
been studied in [4] [20] [21]. In Borealis [1], a central 
coordinator migrated stream processing operators 
between nodes using load statistics [21]. Medusa nodes 
migrate operators between each other using 
computational economy methods [4]. In D-CAPE [20], 
different initial distribution and redistribution strategies 
were experimentally evaluated. The explicit optional node 
placement primitives of SCSQ can be used for static load 
balancing, as was done in this paper to measure 
performance. In addition, SQCQL provides user 
primitives to specify how to logically parallelize 
algorithms dynamically through stream processes. This is 
orthogonal to load balancing.   

Distributed execution of expensive user-defined 
stream query functions has been studied in GSDM [10]. 
GSDM distributes its stream computations by selecting 
and composing distribution templates from a library. By 
contrast, all distribution topologies are expressed as 
SCSQL queries. In [10], only one parallelization topology 
(partition, compute, and combine) for user-defined 
functions is provided. Mapreduce [8] also provides 
another special distribution topology, namely map and 
reduce. SCSQL allows the specification of any 
communication topology. Sawzall [17] features a high-
level language that enables compact specifications of 
massively parallel mapreduce tasks. However, Sawzall is 
restricted to the mapreduce distribution topology. 
Furthermore, Sawzall lacks many advanced operators for 
aggregation and computation, whereas SCSQ features all 
common stream operators including window aggregation. 
 
5. Conclusions and future work 
 
We presented the SCSQ system, which is a DSMS that 
runs in a massively parallel hardware environment featur-
ing a BlueGene. Several different kinds of clusters are 
included in the execution of a continuous query. 

The query language SCSQL provides both streams 
and stream processes as first class objects. The users of 
SCSQ are thereby given control over the parallelization 
of stream queries and functions. Users specify parallel 
computations by assigning sub-queries to stream 
processes executed in parallel. We have shown how to 
parallelize mapreduce and radix FFT using SCSQL. 

Furthermore, SCSQL also allows the user to specify 
allocation sequences that restrict and prioritize which 
compute nodes to be chosen for execution. Using such 
allocation sequences, we specified different physical 
communication topologies for a mapreduce-like query. 
These experiments measured different topologies for in-
bound streaming into BlueGene. The measurement 
showed that in order to achieve reasonable performance, a 
considerable amount of I/O nodes must be designated to 
handle input streams. In our experiments, we also discov-
ered that it is favorable to use as few as possible input 
compute nodes in the back-end cluster. This indicates that 
the BlueGene I/O is a bottleneck. These experiments pro-
vide basis for extending the node selection algorithm.  

Moreover, our experiments show that the flexibility of 
the query language provides a powerful tool for investi-
gating the streaming performance of any computer envi-
ronment. These experiments can easily be repeated on 
other kinds of clusters to understand their streaming per-
formance and to provide basis for specific node selection 
algorithms. 

SCSQL allocation sequences were also used to meas-
ure the bandwidth of communication between compute 
nodes inside BlueGene using native MPI. The impact of 



buffer sizes and double buffering used in the MPI com-
munication was measured for different topologies. The 
optimal stream buffer size for MPI communication inside 
BlueGene was highly dependent on whether point-to-
point or merging stream communication was performed. 
In general, the buffer should be much larger in the case of 
stream merging. Double buffering proved to be less im-
portant in our experiments. 

Furthermore, the location of the BlueGene compute 
nodes highly affects the inter-node communication since 
data may be routed through intermediate nodes in the 3D-
torus of BlueGene. We showed that stream merging per-
forms up to 60% better if no busy intermediate nodes are 
involved in the communication. 

We are currently experimenting with refinements of 
the node selection algorithm for the BlueGene based on 
the results of this paper. It should be investigated whether 
it is possible to parameterize the node selection algorithm 
so that it can be used in any parallel hardware 
environment. In the current hardware configuration, we 
have only four I/O nodes and four nodes in the back-end 
cluster. It remains to be investigated what happens for 
large amounts of back-end and I/O nodes. It is also 
important to analyze the performance of continuous 
queries involving expensive functions. Further 
measurements could be made using benchmarks such as 
The Linear Road Benchmark [2]. The goal is to 
understand how to distribute streams and computations 
optimally in a heterogeneous hardware environment. 
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