

Using stream queries to measure communication
performance of a parallel computing environment

Erik Zeitler and Tore Risch
Department of Information Technology, Uppsala University, Sweden

{erik.zeitler, tore.risch}@it.uu.se

Abstract

We have developed a data stream management system
that supports declarative stream queries running over
high data volumes in a supercomputing environment. To
enable specification of massively parallel computations
our query language provides processes as query
language objects. The queries call process construction
functions that execute stream sub-queries assigned to a
CPU. Such queries can be used to define query functions
that parallelize computations. The CPU assignment is
normally automatic, but can also be influenced by the
user. We show how this enables performance measure-
ments of different communication topologies in a hetero-
geneous hardware environment containing a Linux clus-
ter and a BlueGene.

1. Introduction

LOFAR [13] is currently building a radio telescope using
an array of 25,000 omni-directional antenna receivers
whose signals are digitized into data streams of very high
rate. Scientists perform computations on these data
streams to gain scientific insight. The LOFAR antenna
array will be the largest sensor network in the world. The
receivers produce raw data streams that arrive at the cen-
tral processing facilities at a rate, which is too high for the
data to be saved on disk. Furthermore, advanced numeri-
cal computations are performed on the streams in real
time to detect astronomical events as they occur. For
these data-intensive computations, LOFAR utilizes an
IBM BlueGene supercomputer combined with
conventional Linux clusters.

To enable stream processing in heterogeneous and
massively parallel environments of LOFAR’s kind we
have developed a data stream management system called
SCSQ (Super Computer Stream Query processor, pro-
nounced sis-queue) [22]. SCSQ transparently executes on
a variety of hardware platforms and operating systems,
including MS Windows, Linux, and BlueGene. To sup-
port transparent streaming in a heterogeneous environ-

ment consisting of clusters with different communication
subsystems, SCSQ features internal drivers that currently
support MPI and TCP for carrying streams.

Continuous queries (CQs) are declaratively specified
in a query language, SCSQL (pronounced sis-kel). To
maximize throughput of streams and computations it is
important to parallelize CQs into continuous subqueries,
each executing as a separate process on a CPU. To enable
a customized parallelization, SCSQL provides stream
processes (SPs) as first-class objects in queries. The user
associates subqueries with SPs. Massively parallel com-
putations are defined in terms of sets of subqueries, exe-
cuting on sets of stream processes.

Properties of the different CPUs, communication
mechanisms, and operating systems substantially
influence query execution performance. These properties
are stored in a database, which is used by the query
optimizer when assigning an SP to a CPU.

In implementing the query optimizer, it is crucial to
understand how different strategies to distribute
computation and communication influence the execution
performance. It is particularly important for our
application to maximize the bandwidth of the data
streams from the receivers into the compute nodes of the
BlueGene. The incoming streams are critical paths of the
application since a sub-optimal input data rate will slow
down the entire stream processing chain. In this paper, we
use SCSQL queries in order to measure the streaming
bandwidth of different communication topologies
between a back-end Linux cluster and the BlueGene, as
well as between compute nodes inside the BlueGene.
SCSQ optionally allows the user to influence the choice
of CPU to which an SP is assigned. We use this facility to
specify different communication topologies in SCSQL.

In summary, we present the following contributions:
 The introduction of stream processes enables

specification of massively parallel computations
in the query language SCSQL.

 We show how SCSQL can be used to measure
streaming bandwidth inside a BlueGene using dif-
ferent communication topologies. The results from

these measurements provide a basis for automatic
CPU allocation strategies inside BlueGene.

 Analogously, inbound streaming bandwidth from
a Linux cluster to BlueGene is measured using
different communication topologies specified in
SCSQL to provide a basis for automatic set-up of
inbound streaming communication.

Before presenting the results, we give an overview of
the SCSQ system and the heterogeneous hardware envi-
ronment in which the experiments were performed. An
introduction to the query language SCSQL is also given,
and we show how to formulate mapreduce [8] and radix
fft [12] queries using SCSQL.

2. The SCSQ system

In this section, we first describe the LOFAR hardware
environment that is used for our experiments. Then, we
present the overall SCSQ architecture and finally we de-
scribe the features of SCSQL that are used in the experi-
ments.

2.1. Hardware environment

Figure 1 illustrates the stream dataflow in the LOFAR
hardware environment. Users interact with SCSQ on a
Linux front-end cluster. Another Linux back-end cluster
first receives the streams from the sensors where they are
pre-processed. Next, the BlueGene processes these
streams. The output streams from the BlueGene are then
post-processed in the front-end cluster and the result
stream is finally delivered to the user. Thus, three com-
puter clusters are involved.

Figure 1. Stream data flow in the LOFAR environ-
ment.

The hardware components are characterized by differ-
ent architectures. The BlueGene features dual PowerPC
440d 700MHz (5.6 Gflops max) compute nodes con-
nected by a 1.4 Gbps 3D torus network, and a 2.8 Gbps
tree network. The time it takes for a compute node to send
data to another one depends on the relative locations of
these nodes in the torus, and how loaded the nodes be-
tween them are. Each compute node has a local 512 MB
memory. The compute nodes run the compute node
kernel (CNK) OS [15], a simple single-threaded operating
system that provides a subset of UNIX functionality. One
important limitation of CNK is the lack of support for
server capabilities (no listen(), accept() or select()). Each
compute node has two CPUs, of which normally one is
used for computation and the other one for communica-

tion with other compute nodes. A native MPI implemen-
tation is used for communication between BlueGene com-
pute nodes, whereas communication with the Linux clus-
ters utilizes I/O nodes that provide TCP or UDP. Each
I/O-node is equipped with a 1 Gbit/s network interface.
I/O nodes are only used for communication, and cannot
be used for computations. In LOFAR’s BlueGene, there
are 6144 dual processor compute nodes, grouped in
processing sets of 8 compute nodes and one I/O node.

The Linux front and back-end clusters are IBM JS20
computers with dual PowerPC 970 2.2GHz processors.
Each computer in the back-end cluster has a 1 Gigabit
Ethernet interface connected via a switch to the
BlueGene.

2.2. SCSQ architecture

Figure 2 illustrates a query that is set up for execution in
the hardware environment. SCSQ users interact with the
client manager, in which they specify CQs using SCSQL.
The execution of a CQ forms a directed acyclic graph of
running processes (RPs), each executing the subquery
specified in one SP.

Figure 2. Set-up of a CQ for execution in SCSQ.
Wide arrows indicate data streams.

The execution of CQs may be stopped either by ex-
plicit user intervention or by a stop condition in the query
that makes the stream finite. When a CQ is stopped, its
RPs are terminated. RPs regularly exchange control mes-
sages, which are used to regulate the stream flow between
them and to terminate execution upon a stop condition.

When a user submits a CQ, it is optimized and started
in the client manager. When the client manager identifies
an SP, the sub-query of that SP is registered with the
coordinator of the cluster where the sub-query is to be
executed (feCC, bgCC, or beCC in Figure 2). Then, the
coordinator starts an RP to execute the sub-query. In ad-
dition, an RP can dynamically start new RPs by
requesting them from the cluster coordinator of the cluster
where the new RP is started.

Since the BlueGene lacks server functionality, sub-
queries from the client manager to be executed on the
BlueGene are registered with the feCC. The bgCC re-
trieves new sub-queries from the feCC by polling. As
BlueGene compute nodes can execute only one process,

each new RP in BlueGene is assigned to a new compute
node.

Each cluster coordinator maintains an internal compute
node database (CNDB) containing the properties and
status of the possibly thousands of compute nodes in its
cluster. A node selection algorithm in the cluster coor-
dinator starts the new RP on a suitable compute node by
querying its CNDB. Currently, a naïve node selection al-
gorithm is used, returning the next available node.

2.3. Running Processes

An RP has the components shown in Figure 3. It is
responsible for i) compiling its subquery into a local
Stream Query Execution Plan, SQEP and interpreting it,
ii) delivering the result to other RPs, its subscribers, iii)
dynamically requesting new RPs from a coordinator if
needed, iv) retrieving its input data from other RPs, its
producers, and v) monitoring the execution of its SQEP.

Figure 3. A SCSQ running process.
The operators in the SQEP are executed when data ar-

rives. Incoming data is buffered in a receiver driver and
de-marshaled (materialized) into objects. Streams of
materialized data objects are delivered to the operators of
the SQEP. The objects resulting from the operators are
passed on to the sender driver, which marshals them and
sends the buffer contents to subscribers. Objects are
dynamically de-allocated when no longer needed by any
operator. The sender and receiver drivers can use various
network protocols for carrying the streams. We have
implemented stream carrier protocols based on MPI and
TCP. SCSQ supports the use of MPI on any MPI enabled
cluster. MPI is always used inside the BlueGene as that is
the only allowed protocol, while TCP is always used
when communicating between clusters. The MPI sender
and receiver drivers contain double buffers so that one
buffer can be processed while the other one is read or
written.

2.4. SCSQL

SCSQL is a query language similar to SQL, but extended
with streams and stream processes as first-class objects.
Stream processes allows dynamic parallelization of con-

tinuous queries, which is used in this paper to measure the
performance of a massively parallel and heterogeneous
computing environment. This section introduces SCSQL.

All data in SCSQ is represented by objects in SCSQL.
The relation between first-class objects in SCSQL is il-
lustrated in Figure 4. A stream is an object that represents
(possibly unbounded) sequences of any kind of objects.
The result of a continuous subquery is a stream.
Continuous subqueries are assigned to stream processes.
Users of SCSQL define parallel and distributed stream
computations by assigning continuous subqueries to
stream processes.

Figure 4. The relation between streams, stream
processes and objects in SCSQL.

The function sp(s, c) assigns the subquery s to a new
stream process to be run in cluster c. The function ex-
tract(p) requests elements (objects) from the subquery
assigned to stream process p. If p ever terminates, ex-
tract(p) also terminates. The function streamof(e) trans-
forms the output of any expression e to a stream. This is
useful when a stream output is desired from functions that
do not naturally return streams, e.g. count(), which
returns a single integer.

To enable easy handling of sets of parallel stream
processes, the function spv(s, c) assigns each subquery in
the set s to a new stream process on some compute node
in the cluster c, and returns a set (bag) of handles to the
assigned stream processes.

The function merge(p) generalizes extract() by re-
questing elements from each stream process in p. merge()
terminates when (if ever) the last stream process in p ter-
minates.

The use of the data types representing streams and
stream processes allows specification of parallel and dis-
tributed CQs with different topologies. merge() provides
stream combinations, while variables bound to sets of
stream processes provide parallel execution.

For example, the distributed grep mapreduce [8] query
using 1000 parallel grep calls is specified in SCSQL as
follows:
1
2
3
4

merge(spv(
 select grep("pattern", filename(i))
 from integer i
 where i in iota(1,1000)));

Line 1 contains the reduce predicate. In this case there
is no reduction, so there is no function outside the merge.

On line 2, the subquery performs a grep for a pattern on
the ith filename in a table. Each subquery executes in a
separate process. Line 4 specifies the degree of parallel-
ism, in this case 1000 processes. iota(n,m) generates all
integers from n to m. In this example, iota() is used to
generate 1000 duplicates of the select stream, and to pro-
vide a key to the filename() table.

Splitting of streams is specified by referencing com-
mon variables bound to stream processes, as illustrated by
the following query function, which implements the
radix2 parallelization of FFT [12] for a stream source
named s.
1
2
3
4
5
6
7

create function radix2(string s)
 ->stream
as select radixcombine(merge({a,b}))
from sp a, sp b, sp c
where a=sp(fft(odd (extract(c))))
 and b=sp(fft(even(extract(c))))
 and c=sp(receiver(s));

The receiver() function returns a stream of 1D arrays
of signal data. odd(x) and even(x) obtain odd and even
elements from array x, respectively. radixcombine() com-
bines the results from the partial FFT algorithms working
in parallel.

Optionally, the SCSQL user can constrain the allowed
compute nodes for the node selection algorithm by speci-
fying a node allocation query as an extra argument to sp()
and spv(). This query returns a stream of allowable com-
pute nodes in preferred allocation order, called the allo-
cation sequence. The allocation sequence is passed to the
node allocation algorithm of the cluster coordinator when
it allocates the RP for an SP. The node selection
algorithm will choose the first available node in the allo-
cation sequence. (In case the stream contains no available
node, the query will fail.) Thus, allocation sequences al-
low the user to restrict and prioritize the node selection
order.

In the next section we show how we utilize allocation
sequences to enforce different communication topologies.
This helps us determine how to achieve maximum
streaming bandwidth. The gained knowledge will be used
to improve the node selection algorithm.

3. Streaming performance

Using SCSQL and its allocation sequence option, we set
up different communication topologies and measure how
they influence the streaming bandwidth. The following
experiments are performed:

1. The streaming bandwidth between RPs executing
on compute nodes inside the BlueGene is meas-
ured. For good performance of extract() and
merge(), SCSQ buffers incoming elements in the
receiver driver. Different buffer settings for MPI
streams inside the BlueGene are evaluated. Fur-

thermore, explicit node selections are used to
measure different communication topologies in-
side the BlueGene.

2. The bandwidth is measured for communicating
streams from RPs in the back-end cluster to RPs
inside the BlueGene. The impact on the
bandwidth of different node selections in the
back-end cluster and in the BlueGene is measured.
As the system uses TCP for communication
between the back-end cluster and BlueGene, we
rely on the buffering of the TCP stack in this case.

In all experiments, the streams contain arrays of nu-
merical data, as required by the application. The band-
width is computed by measuring the total time to commu-
nicate a finite stream of 3MB arrays between stream proc-
esses. Small array sizes increase processing overhead, and
we are primarily interested in communication perform-
ance, hence the large array size. Each experiment was
performed five times in order to achieve low variance in
the measurements.

3.1. Intra-BG streaming

The following experiments are performed:

1. We measure the bandwidth of point-to-point com-
munication between two RPs, which execute on
different BlueGene compute nodes.

2. We measure the bandwidth of stream merging
from two RPs to a third one.

In the experiments, we vary the buffer sizes of the
communication subsystem. We also compare the usage of
double and single buffering.

Figure 5 illustrates the set-up of the point-to-point
measurement. a generates a stream of large arrays and b
counts the total number of arrays in the finite stream ex-
tracted from a. The result of the count is sent to the front-
end. Since only one number is transmitted from b to the
client manager, the total time measured is dominated by
the time for streaming the data from a to b.

Figure 5. Intra-BG point to point streaming.

The sending RP a (i) generates the arrays, (ii) marshals
them into a send buffer and (iii) transmits the send buffers
when they are full. The receiving RP b (iv) receives buff-
ers, (v) de-marshals the buffer contents, (vi) allocates new
arrays, (vii) counts them, and (viii) de-allocates them.
Only the result of the count is streamed to the front-end.
The query is expressed in SCSQL as follows:
1
2
3
4

select extract(b)
from sp a, sp b
where b=sp(streamof(count(extract(a)))
 'bg',0) and

5 a=sp(gen_array(3000000,100),'bg',1);
gen_array() generates the finite stream of 100 arrays

of size 3MB each. The calls to sp() assign the streams to
new stream processes on a compute nodes in the ’bg’
(BlueGene) cluster. The function count() counts the num-
ber of elements in a bag. The function streamof() makes a
stream of the output of count(). Allocation sequences are
specified in the third arguments of the sp() calls as single
node identifier values (0 and 1), since we want to exactly
specify the selected node here. The selected node cannot
be busy in this query since we know what nodes are allo-
cated and where they are located in the BlueGene.

Figure 6 shows the bandwidth of intra-BG point-to-
point streaming. As can be seen, the optimal buffer size is
1000 bytes for both single and double buffering. The
drop-off above the 1000-byte buffer size is probably due
to cache misses. The performance degradation for buffers
smaller than 1000 bytes buffer size is because 1K is the
smallest message size that can be exchanged in the
BlueGene 3D torus. Furthermore, we observe that double
buffering pays off for large buffers. A number of bumps
are clearly seen in the double-buffer curve. No explana-
tion for this phenomenon can be found, but it is neverthe-
less statistically significant.

0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000 100000 1000000

Stream buffer size (bytes)

St
re

am
in

g
ba

nd
w

id
th

 (M
bi

t/s
)

double buffers

single buffer

Figure 6. Point to point streaming performance.
For stream merging, we measure the throughput when

two RPs send data to a third one. When messages are sent
between non-adjacent nodes in BlueGene, they must be
routed through the communication co-processors of the
nodes in between. Communication will be slower if these
co-processors are busy.

Since the enumeration of compute nodes in the
BlueGene 3D torus is known, it is easy to specify the two
communication topologies in Figure 7 using the
allocation sequence feature of SCSQL. In both cases c
merges data from the streams of a and b. The two

experiments are defined in SCSQL by varying x and y in
the following query:
1
2
3
4
5

Select extract(c)
from sp a, sp b, sp c
where c=sp(count(merge({a,b})), 'bg',0)
and a=sp(gen_array(3000000,100),'bg',x)
and b=sp(gen_array(3000000,100),'bg',y);

count() counts the total number of arrays in the merged
streams a and b. The explicit node selections 0, x, and y
on lines 3–5 specify the exact BlueGene node numbers
where the RPs execute.

Figure 7. Alternative BlueGene node selections
for stream merging.

Figure 7A shows a sequential node selection, where
MPI messages from b to c are routed through the commu-
nication co-processor of a. Here, x=1 and y=2 to select
compute nodes arranged as in figure 7A. Figure 7B shows
a balanced node selection, where messages from a and b
are sent directly to c over individual communication
channels. Here, x=1 and y=4 to select compute nodes
arranged as in figure 7B.

Figure 8 shows the total streaming input bandwidth at
node c for stream merging using the two node selection
strategies. Both single and double buffering is evaluated.
Analogously to the results of the point-to-point streaming
experiment shown in Figure 6, we expected double
buffering to pay off for large buffers.

0

200

400

600

800

1000

1200

1 10 100 1000

Stream buffer size (kbytes)

S
tre

am
in

g
ba

nd
w

id
th

 (M
bi

t/s
)

Balanced node selection, double buffers

Balanced node selection, single buffer

Sequential node selection, double buffers

Sequential node selection, single buffer

Figure 8. Alternative BlueGene node selections
for stream merging.

We observe the following:
1. The streaming bandwidth depends highly on the

compute nodes to which the RPs are allocated.
This is because of the topology of the BlueGene
3D torus interconnection network.

2. The benefit of double buffering is less significant
than that of point-to-point communication.

3. Finally, an interesting observation is that buffers
smaller than 10K are much slower for stream
merging than for point-to-point communication.

The reason for better performance for large buffers
when merging streams is that the single-threaded commu-
nication co-processor of c must handle data streams from
both a and b. In c, it switches between receiving
messages from a and b. Less frequent switching improves
communication. By contrast, for point-to-point
communication, all messages come from the same source,
so the co-processor does not pay any switching penalty.
Thus, sending larger but fewer messages is beneficial for
stream merging while the opposite holds for point-to-
point communication.

3.2. BG inbound streaming

We conducted experiments for six different ways to inject
data streams into the BlueGene, named Query 1 through
Query 6. The inbound streaming bandwidth of each query
is measured for different numbers of parallel input
streams by altering a query variable n. In all experiments,
the total number of arrays in all the finite streams
produced in the back-end cluster is counted. The output
data from the query is a single integer. Thus, the time to
execute the query is dominated by time for streaming the
data from the back-end cluster into the BlueGene.

Query 1 investigates the streaming bandwidth when all
streams 1 through n are sent from a single node in the
back-end cluster through a single I/O node into a single
compute node in the BlueGene. Query 2 differs from
Query 1 in that several compute nodes in the back-end
cluster are injecting data into BlueGene. This is to inves-
tigate whether parallelization over several compute nodes
in the back-end cluster will improve the streaming band-
width compared to that of Query 1. Queries 3 and 4 trans-
fer all data over one single I/O node but parallelize the
receiving over several compute nodes in BlueGene. This
is to see whether parallelizing the receiving compute
nodes will improve the streaming bandwidth in compari-
son to all streams being received on a single compute
node. Queries 5 and 6 are analogous to Queries 3 and 4
but parallelize the data injection into BlueGene over sev-
eral I/O nodes. By intuition, query 6 can be expected to
achieve the highest streaming bandwidth of all queries,
since parallel back-end compute nodes inject data through
parallel I/O channels.

The distribution pattern of Query 1 is shown in Figure
9. All streams are produced on a1 through an, executing
on the same compute node in the back-end cluster. All
streams are sent to b inside BlueGene, which merges and
counts them. c extracts the count from b unchanged and
sends it to the client manager in the front cluster. The rea-
son to include c in this query is to make all experiments
comparable.

Back-end BlueGene Front-end

CM

a1

a2

a3

a4

b cI/O

Figure 9. Execution distribution of Query 1.
Query 1 is formulated in SCSQL as follows:

1
2
3
4
5
6
7
8
9
10

select extract(c) from
bag of sp a, sp b, sp c,
integer n
where c=sp(extract(b),'bg')
and b=sp(count(merge(a)), 'bg')
and a=spv(
 (select gen_array(3000000,100)
 from integer i where i in iota(1,n)),
 'be', 1)
and n=4;

The explicit node selection on line 9 assigns all back-
end SPs to compute node 1 in the back-end cluster.

The execution distribution of Query 2 is shown in
Figure 10. In this query, a1 through an execute on
different compute nodes in the back-end cluster. All
streams are sent to b inside the BlueGene, which merges
them and counts the total number of arrays. c passes on
the count unchanged as before.

Figure 10. Execution distribution of Query 2.
Query 2 is formulated in SCSQL as follows:

1
2
3
4
5
6
7
8

select extract(c) from
bag of sp a, sp b, sp c,
integer n
where c=sp(extract(b), 'bg')
and b=sp(count(merge(a)), 'bg')
and a=spv(
 (select gen_array(3000000,100)
 from integer i where i in iota(1,n)),

9
10

 'be', urr('be'))
and n=4;

Only the last argument to spv() in line 9 differs from
Query 1. Here we want to assign each SP in a to different
compute nodes. The node allocation function urr(cl) re-
trieves a stream from the CNDB of cluster cl of compute
node identifiers where each identifier represents a new
available node in the cluster in a round-robin fashion.
This allocation sequence stream is later shipped back to
the cluster coordinator by the spv() call to be used by the
node selection algorithm. By shipping stream handles we
avoid unnecessary data shipping.

The execution distribution of Query 3 in Figure 11
parallelizes the aggregation over several RPs, each one
running on a separate receiving BlueGene compute node.
Compute nodes belonging to the same pset use the same
I/O node for inbound communication. All streams from
the back-end cluster are sent to the BlueGene compute
nodes through a single I/O node by specifying b1 through
bn to belong to the same pset.

Back-end BlueGene Front-end

CM

a1

a2

a3

a4

c

b1

b2

b3

b4

I/O

Figure 11. Execution distribution of Query 3.
Query 3 is defined by the following SCSQL query.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

select extract(c) from
bag of sp a, bag of sp b, sp c,
integer n
where c=sp(streamof(sum(merge(b)),
 'bg'))
and b=spv(
 (select streamof(count(extract(p)))
 from sp p
 where p in a),
 'bg', inPset(1))
and a=spv(
 (select gen_array(3000000,100)
 from integer i where i in iota(1,n)),
 'be', 1)
and n=4;

On line 10, the processor selection function inPset(k),
which returns a stream of compute node identifiers in pset
number k, forces all SPs to belong to the same pset.

The execution distribution of Query 4, shown in
Figure 12, differs from Query 3 in that the back-end RPs
run on different compute nodes.

Query 4 is defined by the following SCSQL query.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

select extract(c) from
bag of sp a, bag of sp b, sp c,
integer n
where c=sp(streamof(sum(merge(b))),
'bg')
and b=spv(
 (select streamof(count(extract(p)))
 from sp p
 where p in a),
 'bg', inPset(1))
and a=spv(
 (select gen_array(3000000,100)
 from integer i where i in iota(1,n)),
 'be', urr('be'))
and n=4;

The only difference from Query 3 is the call to urr()
on line 14, enforcing all RPs to execute on different
compute nodes in the back-end cluster.

Figure 12. Execution distribution of Query 4.
The execution distribution of Query 5, shown in

Figure 13, utilizes different I/O nodes for the
communication of streams from the back-end cluster.

Figure 13. Execution distribution of Query 5.
The following SCSQL query defines Query 5.

1
2
3
4
5
6
7
8
9
10
11

select extract(c) from
bag of sp a, bag of sp b, sp c,
integer n
where c=sp(streamof(sum(merge(b))),
 'bg')
and b=spv(
 (select streamof(count(extract(p)))
 from sp p
 where p in a),
 'bg', psetrr())
and a=spv(

12
13
14

 (select gen_array(3000000,100)
 from integer i where i in iota(1,n)),
 'be', 1) and n=4;

This query differs from Query 3 in the processor selec-
tion on line 10. The function psetrr() returns a stream of
BlueGene compute node numbers, where each succeeding
node number belongs to a new pset in a round-robin
fashion. This will parallelize the inbound communication
over different I/O nodes, since compute nodes belonging
to different psets will use different I/O nodes.

Finally, the execution distribution of Query 6 is shown
in Figure 14. This query differs from Query 5 in that
back-end stream processes run on different nodes in the
back-end cluster.

Figure 14. Execution distribution of Query 6.
The following SCSQL query defines Query 6.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

select extract(c) from
bag of sp a, bag of sp b, sp c,
integer n
where c=sp(streamof(sum(merge(b))),
 'bg')
and b=spv(
 (select streamof(count(extract(p)))
 from sp p
 where p in a),
 'bg', psetrr())
and a=spv(
 (select gen_array(3000000,100)
 from integer i where i in iota(1,n)),
 'be', urr('be'))
and n=4;

The difference from Query 5 is the call to urr() on line
14, assigning all SPs to different compute nodes in the
back-end cluster.

Figure 15 compares the BG inbound streaming band-
width for Queries 1 through 6. n is the number of RPs in
the back-end cluster that inject streams into the
BlueGene. The y-axis measures the total inbound
streaming bandwidth from the back-end cluster into the
BlueGene compute nodes.

We observe the following:
(1) Queries 1 through 4 all communicate using a sin-

gle I/O node on the BlueGene. They all have sig-
nificantly lower bandwidth than that of Queries 5

and 6. Thus, as expected, it is favorable to use
many I/O nodes.

(2) The streaming bandwidth of Queries 3 and 4 are
slightly better than that of Queries 1 and 2.
Changing from one to two receiving BlueGene
compute nodes off-loads the communication bur-
den, while further increasing the number of re-
ceiving compute nodes is not worthwhile since the
total streaming bandwidth does not increase.
Hence, it pays off to increase the number of re-
ceiving compute nodes from one to two even if
there is only one I/O node available. This commu-
nication topology should be used in the node se-
lection algorithm when compute nodes are avail-
able but the number of I/O nodes is limited.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10
n

St
re

am
in

g
ba

nd
w

id
th

 [M
bp

s] Query 1 Query 2

Query 3 Query 4

Query 5 Query 6

Figure 15. Results for queries 1 through 6.
(3) As can be seen, the best streaming bandwidth is

achieved for Query 5, which peaks at ~920 Mbps.
It is surprising that a single 1 Gbps connection
from the back-end cluster is faster than four sepa-
rate 1 Gbps connections as in Query 6. It is thus
faster to inject streams over different I/O nodes
from the same back-end cluster compute node
than from different back-end compute nodes. This
indicates coordination problems in the I/O node
when communicating with many outside nodes.
The conclusion is that the node selection
algorithm should attempt to co-locate back-end
RPs to the same compute node until saturation.

(4) Similarly, the streaming bandwidth of Query 1 is
better than that of Query 2, indicating that it is
better to run as many RPs on the same back-end
node as possible rather than running them on dif-
ferent back-end nodes.

(5) In Query 5, there is a significant performance dip
for n=5. This is probably because there were only

four I/O nodes available on the BlueGene
partition where the experiments were performed.
For n>4, compute nodes have to share I/O nodes
and therefore the bandwidth decreases. In this
case, the node selection algorithm could resort to
increase the number of receiving compute nodes
as in observation (2) above.

We are currently investigating how to extend the node
selection algorithm with the above knowledge.

4. Related work

There are many data stream management system (DSMS)
implementations, some of which execute on a single node
[3] [5] [7] [9] [14] [17] [19], and some are distributed [1]
[4] [10] [11] [16] [20] [21]. Some of these implementa-
tions provide high-level SQL-like query languages such
as STREAM [3] and TelegraphCQ [5]. In [3], streams are
treated as continuously updated relations, while in [5]
they are implemented as external functions emitting
tuples as an unbounded bag. Unlike all other DSMS
projects, the SCSQ data model treats both streams and
processes as first class objects. Stream processes allow
users to specify massively parallel and distributed
computations in CQs by dynamically starting stream
processes at run time. Furthermore, the SCSQ user can
optionally even influence the location for the node
assignments, which has been used in this paper to
measure communication performance.

Tribeca [19] provides pipes as first-class objects in its
query language. These pipes are similar to our stream data
type but Tribeca provides no parallelization of their exe-
cution, and no dynamic process creation. Similarly,
WaveScope [9] provides a stream processing language
where arbitrary computations can be specified as
functions over streams in a non-distributed stream
processing environment.

SPC [11] was evaluated using the Linear Road Bench-
mark [2] on a highly parallel PC cluster. However, the
distribution is manual and SPC has no query language as
SCSQL.

Dynamic load balancing for distributed DSMSs has
been studied in [4] [20] [21]. In Borealis [1], a central
coordinator migrated stream processing operators
between nodes using load statistics [21]. Medusa nodes
migrate operators between each other using
computational economy methods [4]. In D-CAPE [20],
different initial distribution and redistribution strategies
were experimentally evaluated. The explicit optional node
placement primitives of SCSQ can be used for static load
balancing, as was done in this paper to measure
performance. In addition, SQCQL provides user
primitives to specify how to logically parallelize
algorithms dynamically through stream processes. This is
orthogonal to load balancing.

Distributed execution of expensive user-defined
stream query functions has been studied in GSDM [10].
GSDM distributes its stream computations by selecting
and composing distribution templates from a library. By
contrast, all distribution topologies are expressed as
SCSQL queries. In [10], only one parallelization topology
(partition, compute, and combine) for user-defined
functions is provided. Mapreduce [8] also provides
another special distribution topology, namely map and
reduce. SCSQL allows the specification of any
communication topology. Sawzall [17] features a high-
level language that enables compact specifications of
massively parallel mapreduce tasks. However, Sawzall is
restricted to the mapreduce distribution topology.
Furthermore, Sawzall lacks many advanced operators for
aggregation and computation, whereas SCSQ features all
common stream operators including window aggregation.

5. Conclusions and future work

We presented the SCSQ system, which is a DSMS that
runs in a massively parallel hardware environment featur-
ing a BlueGene. Several different kinds of clusters are
included in the execution of a continuous query.

The query language SCSQL provides both streams
and stream processes as first class objects. The users of
SCSQ are thereby given control over the parallelization
of stream queries and functions. Users specify parallel
computations by assigning sub-queries to stream
processes executed in parallel. We have shown how to
parallelize mapreduce and radix FFT using SCSQL.

Furthermore, SCSQL also allows the user to specify
allocation sequences that restrict and prioritize which
compute nodes to be chosen for execution. Using such
allocation sequences, we specified different physical
communication topologies for a mapreduce-like query.
These experiments measured different topologies for in-
bound streaming into BlueGene. The measurement
showed that in order to achieve reasonable performance, a
considerable amount of I/O nodes must be designated to
handle input streams. In our experiments, we also discov-
ered that it is favorable to use as few as possible input
compute nodes in the back-end cluster. This indicates that
the BlueGene I/O is a bottleneck. These experiments pro-
vide basis for extending the node selection algorithm.

Moreover, our experiments show that the flexibility of
the query language provides a powerful tool for investi-
gating the streaming performance of any computer envi-
ronment. These experiments can easily be repeated on
other kinds of clusters to understand their streaming per-
formance and to provide basis for specific node selection
algorithms.

SCSQL allocation sequences were also used to meas-
ure the bandwidth of communication between compute
nodes inside BlueGene using native MPI. The impact of

buffer sizes and double buffering used in the MPI com-
munication was measured for different topologies. The
optimal stream buffer size for MPI communication inside
BlueGene was highly dependent on whether point-to-
point or merging stream communication was performed.
In general, the buffer should be much larger in the case of
stream merging. Double buffering proved to be less im-
portant in our experiments.

Furthermore, the location of the BlueGene compute
nodes highly affects the inter-node communication since
data may be routed through intermediate nodes in the 3D-
torus of BlueGene. We showed that stream merging per-
forms up to 60% better if no busy intermediate nodes are
involved in the communication.

We are currently experimenting with refinements of
the node selection algorithm for the BlueGene based on
the results of this paper. It should be investigated whether
it is possible to parameterize the node selection algorithm
so that it can be used in any parallel hardware
environment. In the current hardware configuration, we
have only four I/O nodes and four nodes in the back-end
cluster. It remains to be investigated what happens for
large amounts of back-end and I/O nodes. It is also
important to analyze the performance of continuous
queries involving expensive functions. Further
measurements could be made using benchmarks such as
The Linear Road Benchmark [2]. The goal is to
understand how to distribute streams and computations
optimally in a heterogeneous hardware environment.

Acknowledgements

This work is supported by ASTRON.

References

[1] D. J. Abadi et al, “The Design of the Borealis Stream Proc-

essing Engine”, Proc. CIDR 2005 Conf., Asilomar, CA.
[2] A. Arasu et al, “Linear Road: A Stream Data Management

Benchmark”, Proc. VLDB 2004 Conf., Toronto, Canada,
pp 480–491.

[3] A. Arasu et al, “STREAM: The Stanford Data Stream
Management System”, http://infolab.stanford.edu/stream/.

[4] M. Balazinska, H. Balakrishnan, and M. Stonebraker,
“Contract-Based Load Management in Federated Distrib-
uted Systems”, Proc. 1st Symp. on Networked Systems De-
sign and Implementation, USENIX Association 2004, pp
197 – 210.

[5] S. Chandrasekaran et al, “TelegraphCQ: Continuous Data-
flow Processing for an Uncertain World”, Proc. CIDR
2003, Asilomar, CA.

[6] M. Cherniack et al, “Scalable distributed stream process-
ing”, Proc. CIDR 2003, Asilomar, CA.

[7] C. Cranor, Theodore Johnson, Oliver Spataschek, and
Vladislav Shkapenyuk, “Gigascope: A Stream Database for
Network Applications”, Proc. SIGMOD 2003 Conf., San
Diego, CA, pp 647–651.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters”, Proc. 6th Symp. on OS De-
sign and Implementation, USENIX Association 2004, pp
137 – 150.

[9] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H.
Balakrishnan, S. Madden, “The Case for a Signal-Oriented
Data Stream Management System”, Proc. CIDR 2007,
Asilomar, CA.

[10] M. Ivanova and T. Risch, ”Customizable Parallel Execu-
tion of Scientific Stream Queries”, Proc. VLDB 2005,
Trondheim, Norway, pp 157–168.

[11] N. Jain et al, “Design, Implementation, and Evaluation of
the Linear Road Benchmark on the Stream Processing
Core”, Proc. SIGMOD 2006, Chicago, IL, USA.

[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis, ”Introduc-
tion to Parallel Computing”, The Benjamin Cummings
Publishing Company, Inc., 1994.

[13] LOFAR, http://www.lofar.nl/.
[14] S. Madden, M. A. Shah, J. M. Hellerstein, and

Vijayshankar Raman, “Continuously adaptive continuous
queries over streams”, Proc. SIGMOD 2002 Conf., Madi-
son, WI, USA, pp 49–60.

[15] J. E. Moreira et al, “Blue Gene/L programming and operat-
ing environment”, IBM J. of Research and Development,
49(2/3), 2005, pp 367–376.

[16] K. W. Ng and R. R. Muntz, “Parallelizing user-defined
functions in distributed object-relational DBMS”, Proc.
IDEAS Symp. 1999, Montreal, Canada, pp 442–450.

[17] R. Pike, S. Dorward, R. Griesemer, S. Quinlan, “Interpret-
ing the Data: Parallel Analysis with Sawzall”, Scientific
Programming Journal 13:4, pp. 227-298.

[18] E. A. Rundensteiner et al, “CAPE: A Constraint-Aware
Adaptive Stream Processing Engine”, in N.Chaudhry, K.
Shaw, and M. Abdelguerfi (eds.): “Stream Data Manage-
ment”, Advances in Database Systems Series, Springer
2005, pp 83–111.

[19] M. Sullivan, A. Heybey, “Tribeca: A System for Managing
Large Databases of Network Traffic”, Proc. USENIX
Conf., New Orleans, 1998.

[20] T. Sutherland, B. Liu, M. Jbantova, E. A. Rundensteiner,
”D-CAPE: Distributed and SelfTuned Continuous Query
Processing”, Proc. CIKM 2005 Conf., Bremen, Germany.

[21] Y. Xing, S. Zdonik, J.-H. Hwang, “Dynamic Load
Distribution in the Borealis Stream Processor”, Proc. ICDE
2005 Conf., Tokyo, Japan.

[22] E. Zeitler, T. Risch, “Processing high-volume stream que-
ries on a supercomputer”, Proc. ICDE 2006 Workshops,
Atlanta, GA, USA.

