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Abstract—Multidimensional array data, such as remote-
sensing imagery and timeseries, climate model simulations, tele-
scope observations, and medical images, contribute massively to
virtually all science and engineering domains, and hence play a
key role in ’Big Data’ challenges. Pure array storage management
and analytics is relatively well understood today. However, arrays
in practice never come alone, but are accompanied by metadata,
including domain, range, provenance information, etc. The struc-
ture of this metadata is far less regular than arrays or tables,
and may be incomplete or different from one array instance
to another. Particularly in the field of the Semantic Web such
integrated representations must convey a sufficiently complete
and reasonable semantics for machine-machine communication.
We show how the Resource Description Framework (RDF), the
Semantic Web graph model for metadata, can be leveraged
for such data/metadata integration specifically for representing
spatio-temporal grid data. Based on the notion of a coverage
as established by the Open Geospatial Consortium (OGC) we
present a hybrid data store where efficiently represented arrays
are incorporated as nodes into RDF graphs and connected to
their metadata. We have extended the Semantic Web query
language SPARQL to incorporate array query semantics and
other functionality making it suitable for processing of large
numeric arrays, including geo coverages.

I. INTRODUCTION

Massive multi-dimensional arrays play a central role in
science, engineering, and beyond. Consequently, a significant
number of approaches for storage and retrieval on arrays have
been proposed, both by scientific communities (such as [32],
[1]) and in databases, where efforts have led to the new class
of array database systems (such as [16], [10], [11], [36], [34],
[18]) with impact on standardization [12][28].

In practice, though, arrays typically are forming part of
some larger data structure. Metadata support in this context
has been largely ignored, leading to a widely acknowledged
impedance mismatch that is generally detrimental to the devel-
opment of modern web-enabled, flexible and scalable scientific
applications [20].

Let us look at a representative example. The notion of
a coverage in geoinformatics describes a digital represen-
tation of some space-time-varying phenomenon, in practice:
regular and irregular grids, point clouds, and meshes [24],
[13]. Grid coverages consist of an array ornamented with
metadata essentially describing the location of each grid point
in space-time. Technically, coverages as per the respective
OGC standard [13] additionally can hold any kind of domain
and use case specific information. Earth Science communities

have established their own metadata standards, such as EO-
Metadata [19], and recently web service protocols [14], [12],
which tentatively focus on allowing any kind of application
specific metadata to be associated with the data.

Any conceptual modeling of a coverage, therefore, must
be able to integrate arrays into the common framework. In
particular in the realm of the Semantic Web and machine-
to-machine communication it is indispensable to represent
the full semantics in a coherent manner. On metadata level
this is well under way – there is a strong trend towards
metadata annotation of resources on the web within the
Semantic Web paradigm; obviously, standardized, commonly
understood metadata facilitate data integration and building
federated datasets, thus making scientific data more accessible
to the users. The relevant common vocabularies and ontologies
include RDFS [21], VoiD[6], SKOS [3], RDF Data Cube [2].

As of today, coverage data are not yet accessible within the
RDF framework, mainly due to lack of efficient representations
and operations on arrays. To remedy this, an effort towards
integration of coverages (and, hence, arrays) into RDF has
started in the World-Wide Web Consortium (W3C) as part
of the initiative on describing spatial image data (generally:
gridded coverages) through RDF [4]. No results are available
yet, and actually this W3C standardization work where we are
engaged has motivated this research.

We propose the Semantic Web Ontology capturing all as-
pects of the metadata essential for understanding and querying
Grid Coverages, while staying open and flexible enough for ex-
tensions with additional application-specific metadata. Arrays
are incorporated as nodes into the RDF graph, and connected
to all their metadata. We suggest using hybrid data stores,
efficiently handling array data and RDF. Mediator technology
accomplishes dispatching of sub-queries to dedicated database
engines, while achieving an integrated logical representation.
We encourage the users to combine array data and metadata
within single queries, which brings the following benefits:

• Queries are more transparent and self-contained than
array-only queries; there is no need to explicitly encode
metadata values in queries, since the metadata can be
retrieved from the same database.

• Metadata is used for both result selection and post-
processing on the server, reducing the communication
costs and improving scalability in contrast to client-based
postprocessing.



• Clients can conveniently get answers to complex prob-
lems with just a single round trip, rather than through
iterative communication with several servers employing
different models and retrieval paradigms.

• The query optimizer has more freedom in building bet-
ter access plans, when both metadata and data can be
combined in the same query.

In our previous work [9], [7] we extended the Semantic
Web query language, SPARQL, to incorporate array query
semantics, together with additional functionality (second-order
functions, closures, user-defined functions, storage extensibil-
ity) making it suitable for processing large numeric arrays,
including grid coverages - this language we call SciSPARQL.
Our implementation of SciSPARQL is capable of answering
metadata-rich array queries in addition to the traditional array
retrieval and processing requests. By modeling grid cover-
ages as introduced above we show how to translate pro-
cessing requests on grid coverages to equivalent SciSPARQL
queries based on the formal Grid Coverage Ontology, thus
opening raster geospatial data to the Semantic Web users.
The query semantics is based on the OGC Web Coverage
Processing Service (WCPS) standard [12], a geo query lan-
guage grounding on the OGC coverage model. Our current
work couples SciSPARQL with the rasdaman array database,
where array-relevant SciSPARQL subqueries are pushed down
into rasdaman to benefit from the array query optimization
and parallelization available in rasdaman. For this purpose,
we have further extended SciSPARQL with 2nd-order array
functions ARRAY(), MAP(), CONDENSE(), as described
in Section 3, which offer great flexibility to the user and
correspond to rasdaman array processing primitives.

In the next section we give an overview of work related
to our effort presented here. Section III presents SciSPARQL,
with an integration with rasdaman as a backend array database
system. Section IV presents our RDF ontology on Grid Cov-
erages, along with examples of representative queries. Finally
Section V concludes the paper.

II. RELATED WORK

Arrays play a core role in science, engineering, and beyond.
Traditionally, file formats (such as netCDF [32]) have been
established and subsequently been enhanced with processing
interfaces, such as OPenDAP [1]. These are constrained in
their functionality and lack joins between datasets, etc. Con-
versely, tools like R offer advanced array processing, but do
not scale well beyond main memory sizes. Our approach com-
bines expressiveness of an array query model and language
with proven scalability [16].

In databases, arrays have found attention only gradually.
Mapping arrays to BLOBs looses all semantics, and conse-
quently adequate query semantics cannot be provided; addi-
tionally, this linearization destroys spatial proximity on disk.
An initiative is under way, though, to extend the ISO SQL
standard with arrays [28].

Array databases have been pioneered with rasdaman [10]
and Array Algebra [11]. Declarative array primitives are

embedded in expression languages which are optimizable and
parallelizable. Today there is a number of array database
systems in different stages of development, such as SciQL
[36], SciDB [34], and Ophidia [18].

GeoSPARQL [29] is OGC’s effort to add support for rep-
resenting and querying geospatial data on the Semantic Web.
Since GeoSPARQL is based on the Simple Feature Access ISO
19125 standard [25], [23], geospatial data in this case actually
refers to vector data, rather than gridded, raster data. Modeling
of raster data in RDF is explored in [35], although focusing on
the representation of feature objects extracted from the data
and their relationships. With our approach, gridded structure
of the data is preserved in order to be queried.

Integration of arrays into overall models varies. While
”pure” array databases like SciDB do not emphasize integra-
tion, others address such aspects, currently mainly for SQL
[36][28]. An integration of arrays into RDF has started in
W3C as part of the effort to describe spatial image data
(generally: gridded coverages) through RDF [4]. No results are
available yet, and this is where the work in this paper comes in.
xWCPS [27] is a query language integrating WCPS [12] and
XQuery [17]. As such it aims to achieve similar goals, but with
XML as the model for semi-structured metadata associated
with scientific data.

The Resource Description Framework (RDF) [26] graph
data model was designed for expressing metadata about all
kinds of resources on the web, including databases, raster
images, etc. When it comes to storing multidimensional nu-
meric data, pure RDF suggests two main approaches: nested
collections and RDF Data Cube vocabulary [2], the latter being
a Semantic Web adaptation of SDMX (Statistical Data and
Metadata eXchange) [5], designed to exchange OLAP cubes.
Both of these approaches create a number of graph nodes
for each numerical element to store. Apart from inefficiency
arising from this ’too general’ graph-based storage and pro-
cessing of arrays, this representation also fails to give im-
portant guarantees about the data structure, and the SPARQL
queries lack the clarity of the array access. Our RDF with
Arrays data model addresses all these issues, and SciSPARQL
query language incorporates the array query semantics. Array-
based storage of RDF collections and RDF Data Cubes is
supported with our system, providing backwards-compatibility
with original RDF representations.

III. SCIENTIFIC SPARQL OVERVIEW

In this work we show that our data model, RDF with Arrays,
is well-suited for representing spatio-temporal gridded cover-
ages, together with any metadata, including those currently
used in WCS/WCPS requests. We model arrays as value nodes
in RDF graph, and each array has associated element type and
shape (i.e. sizes in each dimension).

The language: SciSPARQL [8], [9] is an extended version
of the W3C query language SPARQL 1.1 [22]. SciSPARQL
extends SPARQL with syntax and semantics for selecting
and processing numeric array data along with the metadata



represented in RDF terms. The extensions (prior to this work)
include:

• syntax for array dereference, slicing, and range selection
(optionally with a stride). The syntax is borrowed from
MATLAB, array subscripts are 1-based, and ranges are
specified as lo:stride:hi (for each dimension indepen-
dently), with hi value always in range1.

• binding of free query variables to the sets of available
array subscripts, for example an expression ?A[7, ?j]
would bind (otherwise unbound) ?j variable to all col-
umn indices in ?A matrix.

• functions to transform the arrays, permuting the array
dimensions (generalized N-dimensional transposition),
obtaining array shape and element type;

• library of array aggregate functions (operating across
array elements), and SPARQL 1.1 standard bag-oriented
aggregate functions like SUM, AVG, MIN, MAX, re-
defined to handle bags of arrays as well;

• extensibility with algorithms expressed in conventional
algorithmic languages, like Python, Java, or C. It is
possible to define both regular and aggregate functions,
thus making use of any existing computational libraries;

• functional views, which are user-defined functions ex-
pressed in terms of SELECT queries. This allows for
building up libraries of SciSPARQL subqueries defining
standard computation formulas or common data retrieval
tasks for further use.

• second-order functions, like ARGMIN and ARGMAX,
taking functional closures as arguments. A closure is
a function call with some of parameters specified and
some free, marked by *. For example, an expression
ARGMAX(f(*, 5)) would return the value for the first
argument of function f(), where it reaches its maximum,
while the second argument is fixed to 5. Certainly, the set
of allowed values for the free argument to f() should be
finite, which is typically the case with functional views,
for example:
DEFINE f(?x ?y) AS
SELECT ?value
WHERE { ?o a :Observation ;

:x ?x ;
:y ?y ;
:value ?value }

During query processing the functional views and certain
second-order functional expressions are expanded similarly
to SQL views, in order to give the query optimizer greater
freedom for finding the optimal order of execution. As a query
language, SciSPARQL is declarative, optimizable, and terse.
This means that most kinds of conditions and constraints on
the data retrieved from a database can be expressed directly
as algebraic equations. It is the responsibility of the DBMS
to come up with a good execution plan, taking into account
storage statistics, distribution, communication and computa-
tion time estimates. The user-defined foreign functions can

1We also support a Python-compliant dialect of SciSPARQL, with 0-based
subscripts and a NumPy range syntax

be provided cost and cardinality models for improved query
optimization.

Array storage: SciSPARQL is implemented with Scientific
SPARQL Database Manager, which includes query proces-
sor, functional extensibility mechanisms, and an in-memory
database, designed for efficient storage of RDF with Arrays.
In order to provide scalability beyond the memory bounds,
a highly flexible storage backend interface is included. This
flexibility comes from utilizing different capabilities of storage
back-ends, including selection of array subsets, computing
aggregate functions etc. Currently supported storage back-
ends include RDBMS (arrays are stored in binary chunks),
specialized file formats (e.g. .mat files used together with
MATLAB integration in [7]), and specialized array stores [9].

Whenever an array is stored in a back-end system, it is
represented by an array proxy object in the RDF graph. Array
dereference, slicing and range selection operations are stacked
by deriving one proxy object from another during the query
execution (which is very cheap), so the array data is retrieved
lazily - only when it is needed for computations. This helps
greatly reducing disk access and communication overheads,
compared to ’eager’ data retrieval.

Integration with rasdaman and new features: The integra-
tion with the rasdaman array database [31] is an important
step forward, since the latter system has a rich array algebra
[10], [11] implementation, which can handle most of the array
processing workload expressed in SciSPARQL queries. While
SciSPARQL is handling query processing and communica-
tion with the client, an extensive set of array operations is
propagated to rasdaman together with data retrieval requests.
This should result in practically the same performance, as
if rasdaman was addressed directly, while providing the full
power of RDF metadata querying available with SciSPARQL.

For the purpose of this integration, SciSPARQL was ex-
tended with three more second-order functions, which translate
clearly into MARRAY operator calls in rasdaman:

• ARRAY(type, shape, mapper) array constructor,
where mapper function or closure is called to compute
the value of each cell, given a 1-dimensional array of
logical cell subscripts as an argument;

• MAP(type, mapper, v1, ..., vn) array map-
per, constructing a new array filled with results of
mapper function or closure, applied to the respective
elements of v1, ... vn aligned arrays;

• CONDENSE(op, v, filter) generalized array ag-
gregation, where the aggregate operation op (any
SciSPARQL aggregate function) is applied to elements
of the array v for which the filter function or closure
returns true.

The element-wise array operations, including arithmetic .+,
.-, .*, ./, .ˆ, comparison .=, .>, .>=, .<, .<=, and
logical .&, .| are defined for operand types (array, array),
(array, number) and (number, array) as simple yet polymorphic
shortcuts for the respective MAP operations. For example, the
expression ?a .* ?b can be also expressed as
MAP(xsd:double, times(*, *), ?a, ?b)



if both ?a and ?b are arrays, and their widest numeric type
is xsd:double, or
MAP(xsd:integer, times(*, ?b), ?a)

if ?b is integer and ?a is an array of integer. Both examples
are using built-in function times(), an alias for * multipli-
cation operator.

The intergated solution utilizes the back-end interface of
SciSPARQL Database Manager, translating query predicates
to rasdaman API calls whenever possible, thus pushing the
computations closer to the array storage, and retrieving smaller
amounts of data from rasdaman.

IV. GRID COVERAGES IN RDF
Multidimensional grids, both regular and irregular, come

up as the natural representation of various space/time varying
data in the geospatial domain, such as 1D time-series, 2D
remote sensing imagery, 3D x/y/t image time-series and x/y/z
geophysical data, as well as 4D x/y/z/t atmospheric and ocean
data. Dealing with any of these types of data requires taking
into account more than just the array data itself. The location
information of the array contents is needed to properly relate
such values to physical positions in the world. Frequently,
elevation / depth and time coordinates have to be considered
as well.

In geoinformatics, gridded data form a special case of
coverages with its standards mainly maintained by the Open
Geospatial Consortium (OGC). According to the abstract
model of ISO 19123 [24] and its OGC implementation model
[13], a coverage represents some space/time varying phe-
nomenon, with subtypes available for regular and irregular
grids, point clouds, and meshes. Formally, a coverage es-
tablishes a function mapping from a given multidimensional
domain (the set of direct positions altogether forming the
domain set) to some value set (referred to as the range set,
described by the coverage’s range type). We call a location in
the domain set together with the value it is associated to a cell.
For a 7-band Landsat satellite image, for example, the domain
set is 2D with point coordinates expressed in some horizontal
Coordinate Reference System (CRS) such as WGS84; the
range type is a 7-component structure of unsigned integers.
For image timeseries, the domain set is 3D with the additional
third axis describing image acquisition times.

The domain set is described in varying complexity, depend-
ing on the grid type (see Figure 1). Regular grids (Figure
1 left) require only an origin vector plus one single offset
vector describing the (uniform) stepping in each direction.
Irregular grids (Figure 1 middle right), where axes are straight
but at individual distances along each axis, require a list of
offset vectors per axis indicating the grid distances at each
direct position. Warped grids (Figure 1 right), finally, aban-
don any fixed location and allow arbitrary placement of the
direct positions (as long as the grid topology is maintained);
therefore, for each grid point its individual location has to be
maintained, effectively requiring a second array whose values
are coordinates. Additionally, grids can be skewed (Figure 1
middle left).

Fig. 1. Grid types [30].

The OGC complements this coverage concept with the Web
Coverage Service (WCS) standards suite [14], [12], a concrete,
interoperable and modular coverage implementation model
[13]. Our focus is on WCPS as it establishes a declarative
coverage query language. As XML today is the most widely
used metadata format in geo services, WCPS has been crafted
compatible with XQuery syntax [12]. Based on a for loop
over coverage objects the where and return clauses may
contain coverage expressions. In these expressions, coverages
can be created, combined, and aggregated. The basic con-
structs are the coverage constructor, which delivers a new
coverage possibly derived from others, and the condenser (aka
aggregator), which summarizes over a coverage by iterating
over its direct positions. Shorthand operations are available for
all usual arithmetic, exponential, trigonometric, etc. functions.
The following example shows the flavour of the language:
”From MODIS scenes M1, M2, M3 retrieve the pixel-wise
difference between the red and nir channels, encoded in TIFF
– but only those where nir exceeds 127 somewhere”.
for $c in ( M1, M2, M3 )
where some( $c.nir > 127 )
return encode( $c.red - $c.nir, "image/tiff" )

A. RDF Grid Coverage Ontology

Here we establish an RDF ontology, of the OGC cover-
age model, that would allow native integration of coverages
within the Semantic Web ecosystem, metadata modelling
and coverage analytics with SciSPARQL queries. The native
components of gridded coverages are:

1) coverage identifier
2) domain set describing the spatio-temporal region of

interest, within which the coverage values are defined.
One of the below for grid coverages:

• a geometric grid of equidistant points, described
with integer dimension d, axis names (string
vector of size d) and the coordinates of diago-
nally opposed corners of a rectangular region (low
and high limits as integer vectors of size d).

• a rectified grid for which there is an affine con-
version between the grid coordinates and the coor-
dinates of an external coordinate reference system
(CRS). It is defined by the coordinate (in some CRS)
of the grid origin (a tuple of size d, which can
be a mixture of float, integer, or other user-
defined type of values, depending on the CRS), and
d offset vectors of size d (same type as the origin
coordinate) that determine the grid spacing in each
direction in terms of the CRS.



• a referenceable grid which explicitly specifies the
coordinates of each position individually (as a com-
plete list).

3) range type, a structure description and technical meta-
data required for an appropriate (however, application
independent) understanding of a coverage; modeled on
the definition of ’Record’ from [33]. It is composed of
one or more fields, each of which having its own:

• name identifier
• human readable description
• type definition referring with a URI to an ontology

for example
• a list of allowed values, or an interval within which

the range values must fit in
• a list of nil values used to denote that a value is not

available with a URI referencing a human readable
reason

• unit of measure specified as a string according
to the Unified Code for Units of Measure2, or a URI
referring to an externally defined UoM

• whether the field is optional
• whether the data is updatable

4) coverage function, mapping domain locations to range
attribute values, which can be:

• Grid function provides an explicit mapping rule for
grid geometries, consisting of a start point, the index
position of a point in the grid that is mapped to the
first point in the range, a sequence rule, the method
for sequential enumeration of the grid points, that
can be one of Linear, Boustrophedonic, Cantor-
diagonal, Spiral, Morton or Hilbert, as defined in
[24], and an axis order as a list of axes (the
incrementation order to be used on an axis of the
grid, positive or negative).

• Coverage mapping rule which can be a formal
(in MathML for example), informal as text, or a
reference to an external description of the coverage
function.

Ontology: One benefit of representing the metadata with
RDF in general, is that the set of properties for each instance
of each class becomes open: applications are free to enrich
the metadata without necessarily changing the schema. So the
schema (formally defined in RDFS format by means of classes,
properties and relationships) remains very simple, and captures
only the most common and essential features. (In contrast,
relational schemas tend to address every tiny need of every
conceived application, thus becoming overly complex.

We will be using GridDomain and RangeType classes
to capture all the information about the domains and ranges
of a grid coverage. As shown on Figure 2, a GridCoverage in-
stance would have an id and a references to GridDoman and
RangeType instances, so that it is clear when two coverage
instances are ’aligned’ - they share the same GridDomain,

2http://unitsofmeasure.org/ucum.html

or ’uniform’ - they share the same RangeType. Besides
that, GridCoverage instances will have array-valued properties,
defined as instances of Field class.
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Fig. 2. Grid Coverage Ontology.

The variety of domain types is captured by GridDomain
subclasses. Any GridDomain has dimensionality, a list of
axis names, low and high vectors containing the bounding
values for each dimension. All domain types refer to a
particular Coordinate Reference system (grid’s own coordinate
axes in the simplest case), identified by a URI pointing
to a GML document [15], and the origin vector. Rectified
grid domains will contain an offset vector, used in a simple
coordinate transformation. ReferenceableGridDomain
instances require a geo-coordinate vector for every point in
the grid, together represented by coordinateGrid array
attribute. This would be a problem in any storage system that
rigidly separates data from metadata but RDF with Arrays is
designed to handle big arrays as part of RDF graph, and there
are no restrictions on how small the ”metadata” should be.

A RangeType is simply a collection of fields, jointly
specified to by GridCoverage instances. The coverage fields,
as specified by SWE [33] standard, have textual name and
description, URI definition, specifications of reserved NIL val-
ues, and, most importantly, Range. There is a number of ways
to define the range of a field, modelled by Range subclasses.
One option is to define a range as a basic RDF/XSD type, e.g.
xsd:integer. Alternatively, one could provide an interval
of values (IntervalRange), or a full list of possible values.

Example coverage: To illustrate the use of our RDF Grid
Coverage Ontology, we make an RDF description of a cover-
age ”myCoverage”, containing 3-dimensional data along x/y/t
axes, without binding to any particular CRS (so the example
is self-contained). First, we are going to specify the domain,
including low and high vectors:

@prefix : <http://udbl.uu.se/GCO/> .
@prefix ex: <http://udbl.uu.se/GCO/example> .
ex:myGridDomain a :GridDomain ;

:dimensionality 3 ;
:low (-100, -100, 0) ;
:high (100, 100, 365) ;
:axisNames ("x" "y" "t") .

and the range, including the definitions of each field:



ex:myRangeType a :RangeType ;
:hasField ex:nir ;
:hasField ex:red .

ex:nir a :Field ;
:name "nir" ;
:description "Near infra-red part of the spectrum" ;
:definition <http://opengis.net/def/

property/OGC/0/Radiance> ;
:hasRange ex:greyScale ;
:isUpdatable true ;
:hasNILValue ex:SensorFaultNIL ;
:unitOfMeasure "N/A" .

(We omit the definition of the similar ex:red field) The
interval range and the allowed NIL values are specified as
follows:
ex:greyScale a :IntervalRange ;

:low 0 ;
:high 255 .

ex:SensorFaultNIL a :NILValue ;
:reason <http://www.opengis.net/def/

property/OGC/0/
BelowDetectionRange> ;

:value 0 .

And finally, comes an instance of our coverage, referring to
the nir and red variables storing array data in a NetCDF
file:
ex:myCoverage a :GridCoverage ;

:id "myCoverage" ;
:hasDomain ex:myGridDomain ;
:hasRange ex:myRangeType ;
ex:nir <file://myCoverage.nc#nir> ;
ex:red <file://myCoverage.nc#red> .

This is a complete example, and a queryable RDF with
Arrays dataset. Below, we show how SciSPARQL queries
can be used instead of WCPS requests (which do not handle
any metadata beyond what is described in this section), and
xWCPS queries, which address an open set of metadata found
in GML documents.

B. WCPS/xWCPS requests in SciSPARQL

Slicing: Get a slice from the coverage with id ’myocean’,
at t=25 in png format
for $c in ( myocean )
return
encode( $c[t(25)], "png")

In SciSPARQL it would correspond to array slicing expression
SELECT (?v[:,:,25] AS ?result)
WHERE { ?c :id "myocean" ;

ex:value ?v }

NDVI: Derive Normalized Difference Vegetation Index
NDVI on the fly. The NDVI is a measure of the probability of
vegetation in remote sensing: The closer to +1 a pixel value
is, the more likely it is plants.
for $c in ( mycoverage )
return
encode(((unsigned char)
(((((float)$c.nir - $c.red) /

((float)$c.nir + $c.red)) > $x) * 255),
"png")

In SciSPARQL, we expect the RDF graph to contain
two aligned arrays storing the NIR and RED components
as the properties :nir and :red of the node with id
"mycoverage".

SELECT (MAP(xsd:integer, NDVI(*, *, $x),
?nir, ?red) AS ?result)

WHERE { ?c :id "mycoverage" ;
ex:nir ?nir ;
ex:red ?red }

where function NDVI is mapped to the corresponding pairs of
array elements

DEFINE FUNCTION NDVI(?nir ?red ?x)
AS SELECT (255 * xsd:integer(

((?nir - ?red) / (?nir + ?red)) > ?x) AS ?result)

Note that this translation separates the standard computation
involved from the data retrieval per se. A query can hard-code
a particular data instance (identifying it by unique :id value in
this case), while the computation function NDVI can be used
in other queries, both for post-processing and filtering.

Average chlorophyll concentration: Return the average
chlorophyll concentration for the whole area for a given time
step for the ’myocean’ coverage:

for $c in ( myocean )
return
avg(($c[t(29)] > 0.0) * $c[t(29)] )

This request constructs a Boolean array for the selected slice
first, and than uses it as a mask when computing the average
for that slice. SciSPARQL also has element-wise comparison
and multiplication operations, so formulating an equivalent
query is straightforward:

SELECT (AVG((?v[:,:,29] .> 0.0) .* ?v[:,:,29]) ?result)
WHERE { ?c :id "myocean" ;

:value ?v }

The alternative expression of the same query is using a con-
denser, which would skip allocating an intermediate Boolean
array:

for $c in ( myocean )
return
(condense +
over $i x(imageCrsDomain($c, x)),

$j y(imageCrsDomain($c, y))
using $c[x($i), y($j), t(29)]
where $c[x($i), y($j), t(29)] > 0.0) /

(condense +
over $i x(imageCrsDomain($c, x)),

$j y(imageCrsDomain($c, y))
using 1
where $c[x($i), y($j), t(29)] > 0.0)

Here, we directly use a SciSPARQL condenser, which
allows to use built-in AVG aggregate function:

SELECT (CONDENSE(AVG, ?v, gt(*, 0)) AS ?result)
WHERE { ?c :id "myocean" ;

:grid ?v }

The built-in function gt() used for condenser condition re-
turns true when first argument is greater than second argument,
and false otherwise. Next example uses a similar eq() built-in
function for equality.

Histogram computation: Compute histogram for the values
between 0 and 255:

for $c in ( myocean )
return
encode(coverage histogram over $n x(0:255)

values count( $c = $n ), "csv" )



In SciSPARQL, we would use ARRAY() constructor, which
maps every coordinate vector with the provided functional ar-
gument. The first two arguments are the array type and shape,
the latter being specified using the literal array constructor
A().
SELECT (ARRAY(xsd:integer, A(256),

histogramEq(?c, *)) AS ?result)
WHERE { :myocean :grid ?c }

where the function histogramEq() counts the number of
elements in the given array ?a, which are equal to the first
component in ?coords:
DEFINE FUNCTION histogramEq(?a ?coords)
AS SELECT (CONDENSE(COUNT,

?a, eq(*, ?coords[0])) AS ?result)

The interesting aspect about the above query is the super-
position of two second-order array functions: constructor over
condenser.

Search metadata, return data: This is a xWCPS request
addressing the web service at http://acme.com, that has in-
formation about a number of coverages and their associated
metadata. It returns the difference between red and near-
infrared channels of each coverage of Austria, in which some
near-infrared cell has a value greater than 127:
for $c in doc("http://acme.com")//coverage
where
some( $c.nir > 127 ) and
$c/metadata/@region = "Austria"

return
encode( $c.red - $c.nir, "image/tiff" )

If we use SciSPARQL, we would send the following query
to the SciSPARQL endpoint with access to an RDF with
Arrays graph, that contains nodes of type :Coverage with
their :nir and :red array properties, and string :region
properties.

Notice that some is a shortcut for a condenser with OR
(whereas all would be a shortcut for a condenser with AND)
SELECT (MAP(xsd:integer, minus(*, *),

?red, ?nir) AS ?result)
WHERE { ?c a :Coverage ;

:region "Austria" ;
:nir ?nir ;
:red ?red .

FILTER ( CONDENSE(OR, ?nir, gt(*, 127)) ) }

Discover anomalies: Count the exceedances of fractional
snow cover with respect to a given threshold of 30.
for $c in ( SnowCover )
return
encode(
coverage count_cov
over $px x(imageCrsDomain($c, Long)),

$py y(imageCrsDomain($c, Lat))
values count($c[Long($px), Lat($py), *] > 30),

"csv")

Figure 3 visualizes the result. The function
imageCrsDomain() returns the low and high
components of grid bounding box along the specified
axis. In WCPS, the axis is specified by either grid axis name,
or corresponding (by order of enumeration) CRS axis name,
as Long and Lat in this example. In SciSPARQL, since all
we need is the grid size defined by low and high properties

of GridDomain, we simply use vector .- operation to get
the new image size.
DEFINE FUNCTION gridDomainSize(?coverage)
AS SELECT (?high .- ?low AS ?result)

WHERE { ?coverage :hasDomain [ :low ?low ;
:high ?high ] }

Now the query can be expressed as an array constructor,
creating the array according to the first two components of
the coverage size:
SELECT (ARRAY(xsd:integer,

gridDomainSize(?coverage)[1:2],
ex:snowHistogram(?gray, *, 30))

AS ?result)
WHERE { ?coverage :id "SnowCover" ;

ex:gray ?gray }

where we define our function ex:snowHistogram() to
count the elements of the given array along the third dimen-
sion, with coordinates in the first two dimensions specified in
the argument:
DEFINE FUNCTION ex:snowHistogram(?gray, ?coords,

?threshold)
AS SELECT (CONDENSE(COUNT,

?gray[?coords[1], ?coords[2], :],
gt(*, ?threshold))

AS ?result)

Fig. 3. Count the number of fractional snow cover exceedances over a region
of interest.

V. CONCLUSION

Providing a common and flexible framework for storage
and machine-readable annotation of spatio-temporal grids has
been in the focus of Earth Science communities’ efforts for a
long time. This is becoming more important and challenging,
as the diversity of the datasets and the applications increases.
Obviously, one size does not fit all, so a model for extensible
metadata is certainly needed. RDF is one such model, widely
adopted by the Semantic Web community, in order to describe
all kinds of resources on the web. Any instance of any
RDF class can be completed with properties specified in any
vocabulary, thus forming a graph of globally-identifiable class
and instance nodes, which any application is free to extend.

In this work we bring together the best from the two
worlds - a mature and flexible array store, efficiently han-
dling a wide class of array retrieval and processing requests;
and a powerful query language, so that queries combining
raster/grid/array data and graph-structured metadata can be
optimized and processed entirely on the server. Useful Array
Algebra abstractions have been defined as part of the query



language, including second-order functions and closures. And,
since our integrated solution is extensible both storage-wise
and computation-wise, there is practically no limit to the kinds
of functionality a user can invoke from a query.

Certainly, the extensions to SciSPARQL, as well as the
integrated storage solution, combining it with rasdaman, are
useful well beyond the geospatial applications, as far as RDF
and array processing are combined. With respect to spatio-
temporal gridded data processing, we have shown that even
though WCPS and SciSPARQL have slightly different array
models, it is easy to formulate WCPS requests in terms of
SciSPARQL queries. This provides flexibility and potential
efficiency benefits to WCPS users, and opens geospatial data
to the Semantic Web users. We designed the ontology to
represent the common Grid Coverages data and metadata
as RDF with Arrays, so that it can be extended with any
additional metadata. As an ongoing work, we are completing
and testing our integrated solution, and collecting more use
cases from the geo-spatioal gridded data domain.
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and J. Siméon. XQuery 1.0: An XML query language (second
edition). W3C proposed edited recommendation, W3C, Apr. 2009.
http://www.w3.org/TR/2009/PER-xquery-20090421/.

[18] S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D. Williams, and G. Aloisio.
Ophidia: Toward big data analytics for escience. Procedia Computer
Science, 18(0):2376 – 2385, 2013. 2013 International Conference on
Computational Science.

[19] J. Gasperi, F. Houbie, A. Woolf, and S. Smolders. Earth observation
metadata profile of observations and measurements. OGC 10–157r3,
2012.

[20] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, G. Heber, and
D. DeWitt. Scientific Data Management in the Coming Decade. ACM
SIGMOD Record, 34(4):35–41, January 2005. also as MSR-TR-2005-
10.

[21] R. Guha and D. Brickley. RDF schema 1.1. W3C recommenda-
tion, W3C, Feb. 2014. http://www.w3.org/TR/2014/REC-rdf-schema-
20140225/.

[22] S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C
recommendation, W3C, Mar. 2013. http://www.w3.org/TR/2013/REC-
sparql11-query-20130321/.

[23] J. R. Herring. OpenGIS Implementation Standard for Geographic infor-
mation - Simple feature access - Part 1: Common architecture. OpenGIS
Implementation Standard 06–103r4, Open Geospatial Consortium Inc,
2011.

[24] ISO 19123:2005: Geographic information – Schema for coverage ge-
ometry and functions, 2005.

[25] ISO 19125-1:2004 Geographic information – Simple feature access –
Part 1: Common architecture, 2004.

[26] G. Klyne and J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. W3C recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[27] P. Liakos, P. Koltsida, G. Kakaletris, and P. Baumann. xwcps: Bridging
the gap between array and semi-structured data. In Knowledge Engi-
neering and Knowledge Management - EKAW 2014 Satellite Events,
VISUAL, EKM1, and ARCOE-Logic, Linköping, Sweden, November 24-
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