
LH*LH: A Scalable High Performance Data
Structure for Switched Mult icomputers

Jonas S Karlsson 1, Witold Litwin 2 and Tore Risch I

1 E D S L A B - Engineering Databases and Systems Laboratory,
Department of Computer and Information Science, LinkSping University,

Sweden, Email: {jonka,torri}@ida.liu.se
2 Universite Paris 9 Dauphine, Place du Marechal de Lattre de Tassigny

75775 Paris Cedex 16, France, Emalh litwin@cidmac.danphine.fr

Abs t r ac t . LH*LH is a new data structure for scalable high-performance
hash files on the increasingly popular switched multicomputers, i.e.,
MIMD multiprocessor machines with distributed RAM memory and with-
out shared memory. An LH*LH file scales up gracefully over available
processors and the distributed memory, easily reaching Gbytes. Address
calculus does not require any centralized component that could lead to
a hot-spot. Access times to the file can be under a millisecond and the
file can be used in parallel by several client processors. We show the
LH*LH design, and report on the performance analysis. This includes
experiments on the Parsytec GC/PowerPlus multicomputer with up to
128 Power PCs divided into 64 nodes with 32 MB of RAM per node. We
prove the efficiency of the method and justify various algorithmic choices
that were made. LH*LH opens a new perspective for high-performance
applications, especially for the database management of new types of
data and in real-time environments.

1 Introduct ion

New applications of databases require increased performance. One way is to use
parallel and distributed architectures [17][2]. The multicomputers, i.e., networks
of multiple CPUs with local storage become a popular hardware pla t form for this
purpose[17][2][21]. In particular, mul t icomputer files need to be able to scale
to large sizes over the distributed storage, especially the RAM. The Scalable
Distributed Data Structures (SDDSs)[15] is an approach towards this goal. An
SDDS file can gracefully expand with the inserts from a single storage site to as
many as needed, e.g., thousands, appended dynamical ly to the file. The da ta sites
termed servers can be used from any number of autonomous sites termed clients.
To avoid a hot-spot, there is no central directory for the addressing accross the
current structure of the file. Each client has its own image of this structure. An
image can become outdated when the file expands. The client may then send
a request to an incorrect server. The servers forward such requests, possible in
several steps, towards the correct address. The correct server appends to the
reply a special message to the client, called Image Adjustment Message (IAM).
The client adjusts its image, avoiding to repeat the error. A well designed SDDS

574

should make addressing errors occasional and forwards few, and should provide
for the scalability of the access performance when the file grows.

Up to now, the design of SDDSs was aimed at network multicomputers consti-
tuted of autonomous PCs and WSs linked through a local network. A promising
type of multicomputer is also shared-nothing multiprocessor multicomputers, also
called switched multicompur (SM) [21]. Both types of multicomputers share
the idea of cooperating autonomous CPUs communicating through message pass-
ing. This suggests that an SDDS could be useful for an SM as well. We have
developed and implemented a variant of LH*, which we call LH*LH, designed
specifically for this purpose. Performance analysis showed that LH*LH should
be an attractive data structure for CPU and RAM intensive multiprocessor ap-
plications.

LH*LH allows for scalable RAM files spanning over several CPUs of an SM
and its RAMs. On our testbed machine, a Parsytec GC/PowerPlus with 64
nodes of 32 MB RAM each, a RAM file can scale up to almost 2 GB with an
average load factor of 70%. A file may be created and searched by several (client)
CPUs concurrently. The access times may be about as fast as the communication
network allows it to be. On our testbed, the average time per insert is as low as
1.2 ms per client. Eight clients building a file concurrently reach a throughput
of 2500 inserts/second i.e., 400 #s/insert. These access times are more than an
order of magnitude better than the best ones with the current disk file technology
and will probably never be reached by mechanical devices.

Below we present the LH*LH design and performance. With respect to LH*
[15], LH*LH is characterized by several original features. Its overall architecture
is geared towards an SM while that of LH* was designed for a network multi-
computer. Then, the design of LH*LH involves local bucket management while
in [15] this aspect of LH* design was left for further study. In LH*LH one us-
es for this purpose a modified version of main-memory Linear Hashing defined
in [19] on the basis of [11]. An interesting interaction between LH and LH* ap-
pears, allowing for much more efficient LH* bucket splitting. The reason is that
LH*LH allows the splitting of Ltt*-buckets without visiting individual keys.

The average access time is of primary importance for any SDDS on a network
computer or SM. Minimizing the worst case is, however, probably more impor-
tant for an SM where processors work more tightly connected than in a network
computer. The worst case for LH* occurs when a client accesses a bucket under-
going a split. LH* splits should be infrequent in practice since buckets should
be rather large. In the basic LH* schema, a client's request simply waits at the
server till the split ends. In the Parsytec context, performance measurements
show that this approach may easily lead to several seconds per split, e.g. three
to seven seconds in our experiences (as compared to 1 - 2 msec per request on
the average). Such a variance would be detrimental to many SM applications.

LH*LH is therefore provided with an enhanced splitting schema, termed con-
current splilting. It is based on ideas sketched in [14] allowing for the client's
request to be dealt with while the split is in progress. Several concurrent split-
ting schemes were designed and experimented with. Our performance studies

575

shows superiority of one of these schemes, termed concurrent splitting with bulk
shipping. The maximal response time of an insert while a split occurs decreases
by a factor of three hundred to a thousand times. As we report in what follows,
it becomes about 7 msec for one active client in our experiences and 25 msec for
a file in use by eight clients. The latter value is due to interference among clients
requesting simultaneous access to the server splitting.

Given the space limitations, in what follows we assume basic knowledge of
LH* as in [15], and of LH as defined in [13]. Section 2 discusses related work.
Section 3 presents the Parsytec machine. Section 4 describes LH*LH. Section 5
shows performance study. Section 6 concludes the paper.

2 R e l a t e d W o r k

In traditional distributed files systems, in implementations like NFS or AFS, a
file resides entirely at one specific site. This gives obvious limitations not only
on the size of the file but also on the access performance scalability. To overcome
these limitations distributions over multiple sites have been used. One example of
such a scheme is round-robin [1] where records of a file are evenly distributed by
rotating through the nodes when records are inserted. The hash-declustering [8]
assigns records to nodes on basis of a hashing function. The range-partitioning [4]
divides key values into ranges and different ranges are assigned to different nodes.
All these schemes are static which means that the declustering criterion does not
change over time. Hence, updating a directory or declustering function is not
required. The price to pay is that the file cannot expand over more sites than
initially allocated.

To overcome this limitation of static schemes, the dynamic partitioning start-
ed appearing. The first such scheme is DLH [20]. This scheme was designed for a
shared memory system. In DLH, the file is in RAM and the file parameters are
cached in the local memory of each processor. The caches are refreshed selec-
tively when addressing errors occur and through atomic updates to all the local
memories at some points. DLH shows impressively efficient for high insert rates.

SDDSs were proposed for distributing files in the network multicomputer
environment, hence without a shared memory. The first scheme was LH* [15].
Distributed Dynamic Hashing (DDH) [3] is another SDDS, it is based on Dy-
namic Hashing [10]. The idea with respect to LH* is that DDH allows greater
splitting autonomy by immediately splitting overflowing buckets. One drawback
is that while LH* limits the number of forwardings to two 3 when the client
makes an addressing error, DDH may use O(log 2 N) forwardings, where N is
the number of buckets in the DDH file.

Another SDDS has been defined in [22]. It extends LH* and DDH to more
efficiently control the load of a file. The main idea is to manage several buckets
of a file per server while LH* and DDH have basically only one bucket per server.
One also controls the server load as opposed to bucket load for LH*.

s In theory, communication delays could trigger more forwarding [22].

576

Finally, in [9] and in [16] SDDSs for (primary key) ordered files are proposed.
In [9] the access computations on the clients and servers use a distributed bi-
nary search tree. The SDDSs in [16], collectively termed RP*, use broadcast or
distributed n-dry trees. It is shown that both kinds of SDDSs allow for much
larger and faster files than the traditional ones.

3 The Parsytec Multicomputer

~ PowerPC

i I'
T~ne~|it~r

Transputer
T805

Illi
RAM

I
I

I

fill

J k.J %.�9 '~.J %J ~.

(~ , ~ t , ,) ,) ,
J ~.J %.�9 %

" " 1 (,, ,,.,, ,,., , , ,,,.

(% / k r~, , , /"% ,

(% ,~, E , ~ I t'% ,

() () (1
k % / f~ f% r

�9 %J %)

() ()
"() (()

~, f% t) �9 %,1 �9
�9 f% f)
�9 %.1 �9

)

(a) One node. (b) 64 nodes interconnection
grid.

Fig. 1. The Parsytec architecture.

The Parsytec GC/PowerPlus architecture (Figure 1) is massively parallel with
distributed memory, also know as MIMD (Multiple Instruction Multiple Data).
The machine used for the LH*LH implementation has 128 PowerPC-601 RISC-
processors, constituting 64 nodes. One node is shown in Figure la. Each node
has 32 MB of memory shared between two PowerPC processors and four T805
Transputer processors. The latter are used for communication. Each Transputer
has four bidirectional communication links. The nodes are connected through a
bidirectional fat (multiple) grid network with packet message routing.

577

The communication is point-to-point. The software libraries [18] support
both synchronous and asynchronous communicat ion and some other types of
communication, e.g. mailboxes.

The response time of a communication depends on the actual machine topol-
ogy. The closer the communicating nodes are the faster is the response. Routing
is done statically by the hardware as in Figure lb with the packages first routed
in the horizontal direction.

4 L H * L H O v e r v i e w

4.1 O v e r a l l A r c h i t e c t u r e

An LH*LH-client is a process that accesses an LH*LH file on the behalf of the
application. An LH*LH-server at a node stores data of LH*LH files. An applica-
tion can use several clients to explore a file. This way of processing increases the
throughput, as will be shown in Section 5. Both clients and servers are created
dynamically. In the current implementation, the allocation of clients start from
the higher numbered nodes. The servers are allocated from the lower nodes, as
in Figure 2a.

0 1 2 3

~ 0
0 0 0 0

~ 0 0 I ~

28 29 30 31

(a) Alloca-
tion of
clients and
servers.

level of hash function
forward

i " ~ ~ ~ - - - . ~ r . - - Split token moves

~ 2 H 3 H , H 0 t q ,

DataServers

DataClient

level - 1 Client image
pointer. 0

(b) LIt* File Expansion Scheme

Fig. 2. Clients and Servers.

578

At a server, one bucket per LH* file contains the stored data. The bucket
management is described in Section 4.5. The file starts at one server and expands
to others when it overloads the buckets already used.

4.2 LH* Addressing Scheme

The global addressing rule in LH*LH file is that every key C is inserted to the
server s c whose address s = 0, 1, . . . N - 1 is given by the following LH addressing
algorithm [13]:

s c := h i (C)

if sc < then sc := h i+l(C) ,

where i (LH* file level) and n (split pointer address) are file parameters evolving
with splits. The hi functions are basically:

hi (C) = C mod (2 i • K) , K = 1, 2,..

and K = 1 in what follows. No client of an LIt* file knows the current i and
n of the file. Every client has its own image of these values, let it be i ~ and n~;
typically i ~ __< i [15]. The client sends the query, e.g. the insert of key C, to the
address sb(i ' , n').

The server s~ verifies upon query reception whether its own address s~ is
s~ = so using a short algorithm stated in [15]. If so the server processes the
query. Otherwise, it calculates a forwarding address s~ using the forwarding
algorithm in [15] and sends the query to server s~. Server s~ acts as s~ and
perhaps resends the query to server s~ t as shown for Server 1 in Figure 2h.
It is proven in [15] that then s~' must be the correct server. In every case, of
forwarding, the correct server sends to the client an Image Adjustment Message
(IAM) containing the level i of the correct server. Knowing the i and the sc
address, the client adjusts its i' and n' (see [15]) and from now on will send C
directly to sc .

4.3 LH* File Expansion

LH* file expands through bucket splits as in Figure 2. The bucket next to split
is generally noted bucket n, n = 0 in the figure. Each bucket keeps the value of i
used (called Ltt*-bucket level) in its header starting from i = 0 for bucket 0 when
the file is created. Bucket n splits through the replacement of hi with h~+l for
every C it contains. As result, typically half of its records move to a new bucket
N, appended to the file with address n+2 i. In Figure 2, one has N = 8. After the
split, n is set to (n + 1) mod 2 i. The successive values of n can thus be seen as a
linear move of a split token through the addresses 0, 0, 1, 0, 1,2, 3, 0,..., 2 i - 1, 0,
The arrows of Figure 2 show both the token moves and a new bucket address
for every split, as resulting from this scheme.

There are many strategies, called split control strategies, that one can use to
decide when a bucket should split [14] [13] [22]. The overall goal is to avoid the
file to overload. As no LH* bucket can know the global load, one way to proceed

579

is to fix some threshold S on a bucket load [14]. Bucket n splits when it gets an
insert and the actual number of objects it stores is at least S. S can be fixed as a
file parameter. A potentially more performant strategy for an SM environment
is to calculate S for bucket n dynamically through the following formula:

2 i + n
S = M x V x ~

where i is the n-th LH*-bucket level, M is a file parameter, and V is the bucket
capacity in number of objects. Typically one sets M to some value between 0.7
and 0.9.

The performance analysis in Section 5.1 shows indeed that the dynamic strat-
egy should be preferred in our context. This is the strategy adopted for LH*LH.

4.4 C o m m u n i c a t i o n M o d e

In the LH*LH implementation on the Parsytec machine a server receiving a
request must have issued the receive call before the client can do any further
processing. This well known rendezvous technique enforces entry flow control on
the servers, preventing the clients from working much faster than the server could
accept requests 4. Insert operations do not give any specific acknowledge messages
by the LH* manager since communication is "safe" on the Parsytec machine (if
send returns ok the message is guaranteed to be received). IAMs, split messages
with the split token, and general service messages use the asynchronous type of
communication.

4.5 Se rve r A r c h i t e c t u r e

The server consists of two layers, as shown in Figure 3a. The LII*-Manager
handles communications and concurrent splits. The LH-Manager manages the
objects in the bucket. It uses the Linear Hashing algorithm [12].

T h e L H M a n a g e r LH creates files able to grow and shrink gracefully on a site.
In our implementation, the LI-I-manager stores all data in the main memory.
The LtI variant used is a modified implementation of Main Memory Linear
Hashing [19].

The LI-I file in an LH*-bucket (Figure 3b) essentially contains (i) a header
with the LH-level, an LH-splitting pointer, and the count x of objects stored,
and (ii) a dynamic array of pointers to LH-buckets, and (iii) Lit-buckets with
records. An LH-bucket is implemented as a linked list of the records. Each record
contains the calculated hash value, called a pseudo-key. Both the pointer to the

4 The overloaded server could run out of memory space and could send outdated
IAMs [6].

580

LH* Manager

LH Manager

Servers & Clients

Communication

I LH* Concurrent Splitter

I LH Splitter

(a) Data Server.

LbI-Buckets

0

1

2

3

4

5

6

7

8

@

- "rows" Linked List of Objects

(b) LH-structure.

Fig. 3. The Data Server and the LH-structure.

actual key, and the pointer to the object are stored as bitstrings. Pseudo-keys
make the rehashing faster. An LH-bucket split occurs when L = 1, with:

X
L - - - -

b x r n '

where b is the number of buckets in the LH file, and m is a file parameter being
the required mean number of objects in the LH-buckets (linked list). Linear
search is most efficient up to an m about 10.

LH* P a r t i t i o n i n g of an L H Fi le The use of LH allows the LH* splitting in
a particularly efficient way. The reason is that individual keys are not visited for
rehashing. Figure 4 and Figure 5 illustrate the ideas.

LH and LH* share the pseudo-key. The pseudo-key has J bits, in Figure 4;
J = 32 at every bucket. LH* uses the lower 1 bits (bt-l,bz-2, ...b0). LH uses j
bits (bj+t-2, bj+t-3, ...bt), where j -4- l < J. During an LH*-split l increases by
one whereas j decreases by one. The value of the new lth bit determines whether
an LH-bucket is to be shipped. Only the odd LH-buckets i.e. with bt = 1 are
shipped to the new LH*-bucket N. The array of the remaining LH-buckets is
compacted, the count of objects is adjusted, the LH-bucket level is decreased by
one (LH uses one bit less), and the split pointer is halved. Figure 5 illustrates
this process.

Further inserts to the bucket may lead to any number of new LIt splits,
increasing j in Figure 4 to some f . Next LH* split of the bucket will then
decrease f to j ' := j~ - 1, and set l := l + 1 again.

581

31

frore LH* Split

fter LH* Split

Before next LH* Split

fter next LH* Split

>

j' >J

j ' :=j-1 ~ . _

J

j:=j-1

0

�9 ~ . ~ i ~ 1 : =l+/..~._

l:=l+l

LH-bits LH*-bits

LH-Buckcts = "rows"

...OOCO

...0(301

...COl0

...con -HZ

...01CO

,..0101

..,0110 - ~

...0111

...100o -.4Z

...1001

Fig. 4. Pseudo-key usage by LH and LH*.

Linked List of Objects ~a~: S~ys

...COl 0

..010 0

..011 0

ICO

,,.COO

,,.C01

,..010

...]CO

Fig. 5. Partitioning of an LH-file by LH* splitting.

C o n c u r r e n t R e q u e s t P rocess ing and Spl i t t ing A split is a much longer
operation than a search or an insert. The split should also be atomic for the
clients. Basic LI-I* [15] simply requires the client to wait till the split finishes. For
the high-performance applications on an SM multicomputer it is fundamental
that the server processes a split concurrently with searches and inserts. This is
achieved as follows in LH*LH.

Requests received by the server undergoing a split are processed as if the
server had not started splitting, with one exception: a request that concerns parts

582

of the local LH structure processed by the Splitter is queued to be processed by
the Splitter.

The Splitter processes the queue of requests since these requests concern LH-
buckets of objects that have been or are being shipped. If the request concerns
an LH-bucket that has already been shipped the request is forwarded, since the
data is guaranteed to arrive at the destination. If the request, concerns an LH-
bucket not yet shipped it is processed in the local LH table as usual. The requests
that concerns the current LH-bucket being shipped is first searched among the
remaining objects in that LH-bucket. If not found there it is forwarded by the
Splitter. All forwardings are serialized within the Splitter task.

Shipping Shipping means transferring the objects selected during the LH*-
bucket split to the newly appended bucket N: In LH* [14] the shipping was
assumed basically to be of the bulk type with all the objects packed into a single
message. After shipping has been completed, bucket N sends back a commit
message. In LH*LH there is no need for the commit message. The communication
is safe, and the sender's data cannot be updated before the shipping is entirely
received. In particular, no client can directly access bucket N before the split is
complete.

In the LH*LH environment there are several reasons for not shipping too
many objects in a message, especially all the objects in a single message. Packing
and unpacking objects into a message requires CPU time and memory transfers,
as objects are not stored contiguously in the memory. One also needs buffers of
sizes at least proportional to the message size, and a longer occupation of the
communication subsystem. Sending objects individually simplifies these aspects
but generates more messages and more overhead time in the dialog with the
communication subsystem. It does not seem that one can decide easily which
strategy is finally more effective in practice.

The performance analysis in Section 5.2 motivated the corresponding design
choice for LH*LH. The approach is that of bulk shipping but with a limited
message size. At least one object is shipped per message and at most one LH-
bucket. The message size is a parameter allowing for an application dependent
packing factor. For the test data using bulks of a dozen of records per shipment
showed to be much more effective than the individual shipping.

5 P e r f o r m a n c e E v a l u a t i o n

The access performance of our implementation was studied experimentally. The
measurements below show elapsed times of various operations and their scala-
bility. Each experiment consists of a series of inserts creating an LH* file. The
number of clients, the file parameters M and m, and the size of the objects are
LH*LH parameters.

At the time when the tests were performed only 32 nodes were available at
our site. The clients are allocated downwards from node 31 and downwards and
servers from node 0 and upwards. The clients read the test data (a random list

583

of words) from the file system in advance to avoid that the I /O disturbs the
measurements. Then the clients start inserting their data, creating the example
LH*LH-file. When a client sends a request to the server it continues with the
next item only when the request has been accepted by the server (rendezvous).
Each time before the LH* file is split measures are collected by the splitting
server. Some measurements are also collected at some client, especially timing
values for each of that client's requests.

5.1 Scalability

350

300

250

200

150

100

50

0

B u i l d

50000 100000 150000 200000
I1

(a) Build time

1.4 " ~ r - ~ : : :_ .~ .~

/
1.2 -

50000 100000 150000 200000
n

(b) Global insert time

Fig. 6. Build and insert time for LH*LH for different number of clients (1-8).

Figure 6a plots the elapsed time to constitute the example LH*LH file through
n inserts; n = 1, 2..N and N = 235.000; performed simultaneously by k clients
k = 1, 2..8. This time is called build time and is noted Tb(n), or Tbk(N) with
k as a parameter. In Figure 6a, Tb(N) is measured in seconds. Each point in
a curve corresponds to a split. The splits were performed using the concurrent
splitting with the dynamic control and the bulk shipping. The upper curve is
Tbl(n). Next lower curve is Tb2(n), etc., until TbS(n).

The curves show that each Tb k (n) scales-up about linearly with the file size
n. This is close to the ideal result. Also, using more clients to build the file,

k / / I k t I t uniformly decreases Tb , i.e., k > k - > Tb (n)<_Tb k (n) for every n. Us-
ing two clients almost halves Tb, especially Tb(N), from TbZ(N) = 330 sec to
Tb2(N) = 170 sec. Building the file through eight clients decreases Tb further,
by a factor of four. Tb(N) becomes only TbS(N) = 80 sec. While this is in prac-
tice an excellent performance, the ideal scale-up could reach k times, i.e., the
build time TbS(N) = 40 sec only. The difference results from various communi-
cation and processing delays at a server shared by several clients, discussed in
the previous sections and in what follows.

584

Figure 6b plots the curves of the global insert t ime Ti k (n) = Tb k (n) /n [msec].
Ti measures the average time of an insert from the perspective of the application
building the file on the multicomputer. The internal mechanics of LH*LH file is
transparent at this level including the distribution of the inserts among the k
clients and several servers, the corresponding parallelism of some inserts, the
splits etc. The values of n, N and k are those from Figure 6a. To increase k im-
proves Ti in the same way as for Tb. The curves are also about as linear, constant
in fact, as they should be. Higly interestingly, and perhaps unexpectedly, each
Tb k (n) even decreases when n grows, the gradient increasing with k. One reason
is the increasing number of servers of a growing file, leading to fewer requests
per server. Also, our allocation schema decreases the mean distance through the
net between the servers and the clients of the file.

The overall result is that Ti always is under 1.6 msec. Increasing k uniformly
decreases Ti, until TiS(n) < 0.8 msec, and TiS (N) < 0.4 msec. These values
are about ten to twenty times smaller than access times to a disk file, typically
over 10 msec per insert or search. They are likely to remain forever beyond the
reach of any storage on a mechanical device. On the other hand, a faster net
and more efficient communication subsystem than the one used should allow for
even much smaller Ti's, in the order of dozens of #sees [14] [16].

I -

3000

2500

2000

1500

1000

500

i i i i

i i I i

50000 100000 150000 200000
n

(a) Throughput

"5

o

8 i 1 i t i J i

7 Sc, alabifity

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8
c l i e n t s

(b) Scalability

Fig. 7. Throughput scale-up for different number of clients.

Figure 7a plots the global throughput T k (n) defined as Tk(n) = 1/Ti(n)[i/sec]
(inserts per second). The curves express again an almost linear scalability with
n. For the reasons above discussed, T ~ even increases for larger files, up to
2700 i/sec. An increase of k also uniformly increases T for every n. To see
the throughput scalability more clearly, Figure 7b plots the relative throughput
Tr(k) = T k (n) / T l (n) for a large n; n = N. One compares T r to the plot of the
ideal scale-up that is simply TIr(k) = k. The communication and service delays

585

we spoke about clearly play an increasing role when k increases. Although Tr
monotonically increases with k, it diverges more and more from T'v. For k = 8,
one has Tr = 4 which is only the half of the ideal scale-up. It means that the
actual throughput per client, Tc~(n) = Tk(n)/k, comparatively also decreases
until the half of the throughput T 1 of a single client.

A

450

400

350

300

250

200

150

100

50

0

t J i i

static -.,,-j
0 ~ - .

I I I I
50000 100000 150000 200000

I1

(a) One chent

250

200

150

50

0

i , i i

f ~ . . , + 4 ~ . ~ 4 . d "

l I / I

50000 100000 150000 200000
n

(b) Four chents

Fig. 8. Static and dynamic split control.

Figure 8 shows the comparative study of the dynamic and the static split
control strategies. The plots show build times, let it be Tb'(n) for the static
control and Tb(n) for the dynamic one. The curves correspond to the constitution
of our example file, with k = 1 in Figure 8a and k = 4 in Figure 8b. The plots Tb
are the same as in Figure 6a. Figure 8 clearly justifies our choice of the dynamic
control strategy. Static control uniformly leads to the longer build time, i.e., for
every n and k one has Tb'(n) > Tb(n). The relative difference (Tb'- Tb)/Tb
reaches 30% for k = 1, e.g. Tb'(N) = 440 and Tb(N) = 340. For k = 4 the
dynamic strategy more than halves the build time, e.g from 230 to 100 sec.

Note that the dynamic strategy also generates splits generally more uniformly
over the inserts, particularly for k = 1. The static strategy leads to short periods
when a few inserts generate splits of about every bucket. This creates a heavier
load on the communication system and increases the insert and search times
during that period.

5.2 Efficiency of Concur ren t Spl i t t ing

Figure 9 shows the study of comparative efficiency of individual and bulk ship-
ping for LIt* atomic splitting (non-concurrent), as described earlier. The curves
plot the insert time Til(t) measured at t seconds during the constitution of the
example file by a single client. A bulk message contains at most all the records

586

f I t i i i] P

Atomic, I n d i v i d u a l sh ipp ing

1
50 100 150 200 250 3@ 0 350 40@ 450

t [seconds] elapsed time

(a) Individual Shipping

0 . 6

0.5

c

c 0 . 4
\

0 . 3

~ 0 . 2
^

L- 0 . I

0
0

I I] I

Atomio, ~ulk sh ipp ing

tl
t~

50
t

 lii I' " II I
iO0 150 200

[seconds] elapsed

illI
s 3 0 0

time

(b) Bulk Shipping

Fig. 9. Efficiency of (a) individual and (b) bulk shipping.

constituting an LH-bucket to ship. In this experiment there are 14 records per
bulk on the average. A peak corresponds to a split in progress, when an insert
gets blocked till the split ends.

The average insert time beyond the peaks is 1.3 msec. The corresponding Ti's
are barely visible at the bottom of the plots. The individual shipping, Figure 9a,
leads to a peak of Ti = 7.3 sec. The bulk shipping plot, Figure 9b, shows the
highest peak of Ti -- 0.52 see, i.e., 14 times smaller. The overall build time
Tb(N) decreases also by about 1/3, from 450 sec in Figure 9a, to 320 sec in
Figure 9b. The figures clearly prove the utility of the bulk shipping.

Observe that the maximal peak size got reduced accordingly to the bulk
size. It means that larger bulks improve the access performance. However, such
bulks require also more storage for themselves as well as for the intermediate
communication buffers and more CPU for the bulk assembly and disassembly.
To choose the best bulk size in practice, one has to weight all these factors
depending on the application and the hardware used.

Figure 10 shows the results of the study where the bulk shipping from Fig-
ure 9 is finally combined with the concurrent splitting. Each plot Ti(t) shows
the evolution of the insert time at one selected client among k clients; k = 1..4, 8;
concurrently building the example file with the same insert rate per client. The
peaks at the figures correspond again to the splits in progress but they are much
lower. For k = 1, they are under 7 msec, and for k = 8 they reach 25 msec. The
worst insert time with respect to Figure 9 improves thus by a factor of 70 for
k = 1 and of 20 for k = 4. This result clearly justifies the utility of the concurrent
splitting and our overall design of the splitting algorithm of LH*LH.

The plots in Figures 10a to 10e show the tendency towards higher peaks of
Ti~ as well as towards higher global average and variances of Ti over Ti(t), when
more clients build the file. The plot in Figure 10f confirms this tendency for the

587

7

456 feee ee

3

2

1

0
8

i i

One client

e~ o
e ~ o

ee o a

$0 100 150 200 250
elapsed time [$]

(a) One active client

300

12

18

8

g

4

e

e

e

e e

$ e e

I I I I

Two clients e

0

0 20 40 68 88 100
elapsed t ime [s]

120 140

(b) Two active clients

IG

14

12

10

8

G

4

2

0

I ~ I I L

Three c l i e n t s e

o
e

a

$$.~*

0 20 40 60 BO
elapsed time Csl

(c) Three active clients

16

c

~ 8

^ G +,
v

2

0
100 0

l t = i i L 14

§ Four c l i e n t s e
e e

e
e

10 20 30 40 50 60 70 80
elapsed time Is]

(d) Four active clients

25

20

15

10

5

0 10 20 30 40 58 60 70
elapsed time [$l

(e) Eight active clients

2.5

1.5

E
1

0.5

Mean

/ J

/ / / / /

I I I I t I

2 3 4 5 6 7
c l i e n t s

(f) Average, std. deviation

Fig. 10. Efficiency of the concurrent splitting.

588

i .65

1.6

1.55

1.5

i .45

1.4

1.35

1.3

i .25

1.2

1.15

I I I I

One c l i e n t e
2.4

2

c 1 . 8

1.6

1.4 -v

| 1 ~ 2

I I I I i 17 1

50 100 150 200 250 300
elapsed time Is]

(a) One active client

i i i , i

Two c]ient$

i i i q I ~ i
20 40 60 80 100 120 140

elapsed time Is]

(b) Two active clients

3.5

3

c 2,5

2

1,5

1

i E i , 5

�9 j 4 . 5

4

S
3 . 5

c

2 . 5

2

1 . 5

I I t I 1
20 40 60 80 I00

e lapsed t ime I s]

(c) Three active cfients

E i i ~ i i i

Four clients e

I I

10 20 30 40 50 60 70 BO
elapsed tLme Is]

(4) Four active clients

8 , ~ , ,

: ~ E igh t c l i e n t s e

2

[! I ~ } I I I I
i0 20 30 48 50 60 70

e]apsed glme [s]

(e) Eight active clients

Fig. 11, LH*LH client insert time scatability.

589

average and the variance. Figures 10d and 10e show also that the insert times
become especially affected when the file is still small, as one can see for t < 10 in
these figures. All these phenomena are due to more clients per server for a larger
k. A client has then to wait more for the service. A greater k is nevertheless
advantageous for the global throughput as it was shown earlier.

Figure 10 hardly allows to see the tendency of the insert t ime when the
file scales up, as non-peak values are buried in the black areas. Figure 11 plots
therefore the evolution of the corresponding marginal client insert time T m ~.
T m k is computed as an average over a sliding window of 500 inserts plotted
in Figure 10. The averaging smoothes the variability of successive values giving
the black areas in Figure 10. The plots T m k (t) show that the insert times not
only do not deteriorate when the file grows, but even improve. T m 1 decreases
from 1.65 msec to under 1.2 msec, and T m s from 8 msec to 1.5 msec. This
nice behavior is due again to the increase in the number of servers and to the
decreasing distauce between the clients and the servers.

The plots show also that T m k (t) uniformly increases with k, i.e. k I~ >
k'---~Tm~"(t) > Tmk ' (t) , for every t. This phenomena is due to the increased
load of each server. Also interestingly, the shape of T m k becomes stepwise, for
greater k's, with insert times about halving at each new step. A step corresponds
to a split token trip at some level i. The drop occurs when the last bucket of
level i splits and the split token comes back to bucket 0. This tendency seems to
show that the serialization of inserts contributing most to a T m k value occurs
mainly at the buckets that are not yet split.

The overall conclusion from Figure 11 is that the insert times at a client of
a file equally shared among k clients, is basically either always under 2 msec,
for k = 1, or tends to be under this time when the file enlarges. Again this
performance shows excellent scale-up behavior of LH*LH. The performance is in
particular largely superior to the one of a typical disk file used in a similar way.
For k = 8 clients, for example, the speed-up factor could reach 40 times, i.e., 2
msec versus 8 * 10 msec.

6 C o n c l u s i o n s

Switched multicomputers such as the Parsytec GC/PowerPlus are powerful tools
for high-performance applications. LH*LH was shown an efficient new data struc-
ture for such multicomputers. Performance analysis showed that access times
may be in general of the order of a milisecond, reaching 0.4 msec per insert in
our experiences, and that the throughput may reach thousands of operations per
second, over 2700 in our study, regardless of the file scale-up. An LH'~LH file can
scale-up over as much of distributed RAM as available, e.g., 2 Gbytes on the
Parsytec, without any access performance deterioration. The access times are in
particular an order of magnitude faster than one could at tain using disk files.

Performance analysis confirmed also various design choices made for LH*LH.
In particular, the use of LH for the bucket management, as well as of the concur-
rent splitting with the dynamic split control and the bulk shipping, effectively

590

reduced the peaks of response time. The improvement reached a thousand times
in our experiences, from over 7sec that would characterize LH*, to under 7 msec
for LH*LH. Without this reduction, LH*LH would likely to be inadequate for
many high-performance applications.

Future work should concern a deeper performance analysis of LH*LH under
various conditions. More experiments with actual data should be performed. A
formal performance model is also needed. In general such models yet lack for
the SDDSs. The task seems of even greater complexity than for more traditional
data structures. If the algorithm is to be used for more than one file a different
physical mapping (e.g. randomization) to the nodes should be used for each file
to distribute the load.

The ideas put into the LH*LH design should apply also to other known
SDDSs. They should allow for the corresponding variants for switched multi-
computers. One benefit would be scalable high performance ordered files. SDDSs
in [16], or [9] should be a promising basis towards this goal.

A particularly promising direction should be the integration of LH*LH as a
component of a DBMS. One may expect important performance gain, opening
to DBMSs new application perspectives. Video servers seem one promising axis,
as it is well known that major DBMS manufacturers look already upon switched
multicomputers for this purpose. The complex real-time switching data manage-
ment in telephone networks seems another interesting domain.

To approach these goals, we plan to make use of the implementation of
LH*LH for high-performance databases. We will interface it with our research
platform AMOS [5], which is an extensible object-relational database manage-
ment system with a complete query language [7]. AMOS would then reside on
an ordinary workstation, whereas some datatypes/relations/functions would be
stored and searched by the MIMD machine. AMOS will then act as a front-end
system to the parallel stored data. The query optimization of AMOS will have
to be extended to also take into account the communication time and possible
speed-up gained by using distributed parallel processing. Other SDDSs than LH*
are also of interest for evaluation, a new candidate is the RP* [16] that handles
ordered data sets.

Acknowledgment

This project was supported by NUTEK (The Swedish National Board for In-
dustrial and Technical Development), and CENIIT (The Center for Industrial
Information Technology).

R e f e r e n c e s

1. Teradata Corporation. DBC/1012 data base computer concepts and facilities.
Technical Report Teradata Document C02-001-05, Teradata Corporation, 1988.

2. D. Culler. NOW: Towards Everyday Supercomputing on a Network of Worksta-
tions. Technical report, EECS Tech. Rep. UC Berkeley, 1994.

591

3. R. Devine. Design and implementation of DDH: A distributed dynamic hashing
algorithm. In Proc. of the ~th Intl. Conf. on Foundations of Data Organization
and Algorithms (FODO), 1993.

4. D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Muralikrishna.
GAMMA: A high performance dataflow database machine. In Proc of VLDB,
August 1986.

5. G. Fahl, T. Risch, and M. SkSld. AMOS - An Architecture for Active Mediators.
In IEEE Transactions on Knowledge and Data Engineering, Haifa, Israel, June
1993.

6. J. S. Karlsson. LI,I-I*LI,I: Architecture and Implementation. Technical report, IDA,
Linkping University, Sweden, 1995.

7. J. S. Karlsson, S. Larsson, T. Risch, M. Sk61d, and M. Werner. AMOS User's
Guide. CAELAB, IDA, IDA, Dept. of Computer Science and Information Sci-
ence, Link6ping University, Sweden, memo 94-01 edition, Mars 1994. URL:
http://www.ida.llu.se/labs/edslab/amos/amosdoc.html.

8. M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Architecture and performance of
relational algebra machine GRACE. In Proc. of the Intl. Conf. on Parallel Pro-
cessing, Chicago, 1984.

9. B. Kroll and P. Widmayer. Distributing a Search Tree Among a Growing Number
of Processors. In ACM-SIGMOD Int. Conf. On Management of Data, 1994.

10. P.A. Larson. Dynamic hashing. BIT, 18(2):184-201, 1978.
11. P.A. Larson. Dynamic hash tables. In Communications of the ACM, volume 31(4),

pages 446-57. April 1988.
12. W. Litwin. Linear Hashing: A new tool for file and table addressing. Montreal,

Canada, 1980. Proc. of VLDB.
13. W. Litwin. Linear Hashing: A new tool for file and table addressing. In Michael

Stonebraker, editor, Readings in DATABASE SYSTEMS, 2nd edition, pages 96-
107. 1994.

14. W. Litwin, M-A. Neimat, and D. Schneider. LH*: A Scalable Distributed Data
Structure. submitted for journal publication, Nov 1993.

15. W. Litwin, M-A Neimat, and D. Schneider. LH*: Linear hashing for distributed
files. ACM SIGMOD International Conference on Management of Data, May 1993.

16. W. Litwin, M-A Neimat, and D. Schneider. RP*: A Family of Order Preserving
Scalable Distributed Data Structures. VLDB Conference, 1994.

17. M. Tamer ()zsu and Patrick Valduriez. Principles of Distributed Database Systems.
Number ISBN 0-13-715681-2. Prentice Hall, 1991.

18. Parsytec Computer GmbH. Programmers Guide, Parix 1.2-PowerPC, 1994.
19. M. Pettersson. Main-Memory Linear Hashing - Some Enhancements of Larson's

Algorithm. Technical Report LiTH-IDA-R-93-04, ISSN-0281-4250, IDA, 1993.
20. C. Severance, S. Pramanik, and P. Wolberg. Distributed linear hashing and paral-

lel projection in main memory databases. In Proceedings of the 16th International
Conference on VLDB, Brisbane, Australia, 1990.

21. Andrew S. Tanenbaum. Distributed Operating Systems. 1995.
22. R. Wingralek, Y. Breitbart, and G. Weikum. Distributed file organisation with

scalable cost/performance. In Proc of ACM-SIGMOD, May 1994.

