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Abs t r ac t .  LH*LH is a new data structure for scalable high-performance 
hash files on the increasingly popular switched multicomputers, i.e., 
MIMD multiprocessor machines with distributed RAM memory and with- 
out shared memory. An LH*LH file scales up gracefully over available 
processors and the distributed memory, easily reaching Gbytes. Address 
calculus does not require any centralized component that could lead to 
a hot-spot. Access times to the file can be under a millisecond and the 
file can be used in parallel by several client processors. We show the 
LH*LH design, and report on the performance analysis. This includes 
experiments on the Parsytec GC/PowerPlus multicomputer with up to 
128 Power PCs divided into 64 nodes with 32 MB of RAM per node. We 
prove the efficiency of the method and justify various algorithmic choices 
that were made. LH*LH opens a new perspective for high-performance 
applications, especially for the database management of new types of 
data and in real-time environments. 

1 Introduct ion 

New applications of databases require increased performance. One way is to use 
parallel and distributed architectures [17][2]. The multicomputers, i.e., networks 
of multiple CPUs with local storage become a popular  hardware pla t form for this 
purpose[17][2][21]. In particular,  mul t icomputer  files need to be able to scale 
to large sizes over the distributed storage, especially the RAM. The Scalable 
Distributed Data Structures (SDDSs)[15] is an approach towards this goal. An 
SDDS file can gracefully expand with the inserts from a single storage site to as 
many  as needed, e.g., thousands, appended dynamical ly to the file. The da ta  sites 
termed servers can be used from any number  of autonomous sites termed clients. 
To avoid a hot-spot,  there is no central directory for the addressing accross the 
current structure of the file. Each client has its own image of this structure. An 
image can become outdated when the file expands. The client may  then send 
a request to an incorrect server. The servers forward such requests, possible in 
several steps, towards the correct address. The correct server appends to the 
reply a special message to the client, called Image Adjustment Message (IAM). 
The client adjusts its image, avoiding to repeat  the error. A well designed SDDS 
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should make addressing errors occasional and forwards few, and should provide 
for the scalability of the access performance when the file grows. 

Up to now, the design of SDDSs was aimed at network multicomputers consti- 
tuted of autonomous PCs and WSs linked through a local network. A promising 
type of multicomputer is also shared-nothing multiprocessor multicomputers, also 
called switched multicompur (SM) [21]. Both types of multicomputers share 
the idea of cooperating autonomous CPUs communicating through message pass- 
ing. This suggests that  an SDDS could be useful for an SM as well. We have 
developed and implemented a variant of LH*, which we call LH*LH, designed 
specifically for this purpose. Performance analysis showed that  LH*LH should 
be an attractive data  structure for CPU and RAM intensive multiprocessor ap- 
plications. 

LH*LH allows for scalable RAM files spanning over several CPUs of an SM 
and its RAMs. On our testbed machine, a Parsytec GC/PowerPlus with 64 
nodes of 32 MB RAM each, a RAM file can scale up to almost 2 GB with an 
average load factor of 70%. A file may be created and searched by several (client) 
CPUs concurrently. The access times may be about as fast as the communication 
network allows it to be. On our testbed, the average time per insert is as low as 
1.2 ms per client. Eight clients building a file concurrently reach a throughput 
of 2500 inserts/second i.e., 400 #s/insert. These access times are more than an 
order of magnitude better than the best ones with the current disk file technology 
and will probably never be reached by mechanical devices. 

Below we present the LH*LH design and performance. With respect to LH* 
[15], LH*LH is characterized by several original features. Its overall architecture 
is geared towards an SM while that  of LH* was designed for a network multi- 
computer. Then, the design of LH*LH involves local bucket management while 
in [15] this aspect of LH* design was left for further study. In LH*LH one us- 
es for this purpose a modified version of main-memory Linear Hashing defined 
in [19] on the basis of [11]. An interesting interaction between LH and LH* ap- 
pears, allowing for much more efficient LH* bucket splitting. The reason is that  
LH*LH allows the splitting of Ltt*-buckets without visiting individual keys. 

The average access time is of primary importance for any SDDS on a network 
computer or SM. Minimizing the worst case is, however, probably more impor- 
tant  for an SM where processors work more tightly connected than in a network 
computer. The worst case for LH* occurs when a client accesses a bucket under- 
going a split. LH* splits should be infrequent in practice since buckets should 
be rather large. In the basic LH* schema, a client's request simply waits at the 
server till the split ends. In the Parsytec context, performance measurements 
show that  this approach may easily lead to several seconds per split, e.g. three 
to seven seconds in our experiences (as compared to 1 - 2 msec per request on 
the average). Such a variance would be detrimental to many SM applications. 

LH*LH is therefore provided with an enhanced splitting schema, termed con- 
current splilting. It is based on ideas sketched in [14] allowing for the client's 
request to be dealt with while the split is in progress. Several concurrent split- 
ting schemes were designed and experimented with. Our performance studies 
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shows superiority of one of these schemes, termed concurrent splitting with bulk 
shipping. The maximal response time of an insert while a split occurs decreases 
by a factor of three hundred to a thousand times. As we report in what follows, 
it becomes about 7 msec for one active client in our experiences and 25 msec for 
a file in use by eight clients. The latter value is due to interference among clients 
requesting simultaneous access to the server splitting. 

Given the space limitations, in what follows we assume basic knowledge of 
LH* as in [15], and of LH as defined in [13]. Section 2 discusses related work. 
Section 3 presents the Parsytec machine. Section 4 describes LH*LH. Section 5 
shows performance study. Section 6 concludes the paper. 

2 R e l a t e d  W o r k  

In traditional distributed files systems, in implementations like NFS or AFS, a 
file resides entirely at one specific site. This gives obvious limitations not only 
on the size of the file but also on the access performance scalability. To overcome 
these limitations distributions over multiple sites have been used. One example of 
such a scheme is round-robin [1] where records of a file are evenly distributed by 
rotating through the nodes when records are inserted. The hash-declustering [8] 
assigns records to nodes on basis of a hashing function. The range-partitioning [4] 
divides key values into ranges and different ranges are assigned to different nodes. 
All these schemes are static which means that  the declustering criterion does not 
change over time. Hence, updating a directory or declustering function is not 
required. The price to pay is that  the file cannot expand over more sites than 
initially allocated. 

To overcome this limitation of static schemes, the dynamic partitioning start- 
ed appearing. The first such scheme is DLH [20]. This scheme was designed for a 
shared memory system. In DLH, the file is in RAM and the file parameters are 
cached in the local memory of each processor. The caches are refreshed selec- 
tively when addressing errors occur and through atomic updates to all the local 
memories at some points. DLH shows impressively efficient for high insert rates. 

SDDSs were proposed for distributing files in the network multicomputer 
environment, hence without a shared memory. The first scheme was LH* [15]. 
Distributed Dynamic Hashing (DDH) [3] is another SDDS, it is based on Dy- 
namic Hashing [10]. The idea with respect to LH* is that  DDH allows greater 
splitting autonomy by immediately splitting overflowing buckets. One drawback 
is that  while LH* limits the number of forwardings to two 3 when the client 
makes an addressing error, DDH may use O(log 2 N) forwardings, where N is 
the number of buckets in the DDH file. 

Another SDDS has been defined in [22]. It extends LH* and DDH to more 
efficiently control the load of a file. The main idea is to manage several buckets 
of a file per server while LH* and DDH have basically only one bucket per server. 
One also controls the server load as opposed to bucket load for LH*. 

s In theory, communication delays could trigger more forwarding [22]. 
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Finally, in [9] and in [16] SDDSs for (primary key) ordered files are proposed. 
In [9] the access computations on the clients and servers use a distributed bi- 
nary search tree. The SDDSs in [16], collectively termed RP*, use broadcast or 
distributed n-dry trees. It is shown that  both kinds of SDDSs allow for much 
larger and faster files than the traditional ones. 

3 The Parsytec Multicomputer 
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Fig.  1. The Parsytec architecture. 

The Parsytec GC/PowerPlus architecture (Figure 1) is massively parallel with 
distributed memory, also know as MIMD (Multiple Instruction Multiple Data). 
The machine used for the LH*LH implementation has 128 PowerPC-601 RISC- 
processors, constituting 64 nodes. One node is shown in Figure la. Each node 
has 32 MB of memory shared between two PowerPC processors and four T805 
Transputer processors. The latter are used for communication. Each Transputer 
has four bidirectional communication links. The nodes are connected through a 
bidirectional fat (multiple) grid network with packet message routing. 



577 

The communication is point-to-point. The software libraries [18] support 
both synchronous and asynchronous communicat ion and some other types of 
communication, e.g. mailboxes. 

The response time of a communication depends on the actual machine topol- 
ogy. The closer the communicating nodes are the faster is the response. Routing 
is done statically by the hardware as in Figure lb  with the packages first routed 
in the horizontal direction. 

4 L H * L H  O v e r v i e w  

4.1 O v e r a l l  A r c h i t e c t u r e  

An LH*LH-client is a process that  accesses an LH*LH file on the behalf of the 
application. An LH*LH-server at a node stores data  of LH*LH files. An applica- 
tion can use several clients to explore a file. This way of processing increases the 
throughput,  as will be shown in Section 5. Both clients and servers are created 
dynamically. In the current implementation, the allocation of clients start  from 
the higher numbered nodes. The servers are allocated from the lower nodes, as 
in Figure 2a. 
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Fig. 2. Clients and Servers. 
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At a server, one bucket per LH* file contains the stored data. The bucket 
management is described in Section 4.5. The file starts at one server and expands 
to others when it overloads the buckets already used. 

4.2 LH* Addressing Scheme 

The global addressing rule in LH*LH file is that  every key C is inserted to the 
server s c  whose address s = 0, 1, . . . N -  1 is given by the following LH addressing 
algorithm [13]: 

s c  := h i ( C )  

if sc  < then sc  := h i+l(C) ,  

where i (LH* file level) and n (split pointer address) are file parameters evolving 
with splits. The hi functions are basically: 

hi (C)  = C mod (2 i • K ) , K  = 1, 2,.. 

and K = 1 in what follows. No client of an LIt* file knows the current i and 
n of the file. Every client has its own image of these values, let it be i ~ and n~; 
typically i ~ __< i [15]. The client sends the query, e.g. the insert of key C, to the 
address sb( i '  , n').  

The server s~ verifies upon query reception whether its own address s~ is 
s~ = so using a short algorithm stated in [15]. If so the server processes the 
query. Otherwise, it calculates a forwarding address s~ using the forwarding 
algorithm in [15] and sends the query to server s~. Server s~ acts as s~ and 
perhaps resends the query to server s~ t as shown for Server 1 in Figure 2h. 
It is proven in [15] that  then s~' must be the correct server. In every case, of 
forwarding, the correct server sends to the client an Image Adjustment Message 
(IAM) containing the level i of the correct server. Knowing the i and the sc  
address, the client adjusts its i' and n' (see [15]) and from now on will send C 
directly to sc .  

4.3 LH* File Expansion 

LH* file expands through bucket splits as in Figure 2. The bucket next to split 
is generally noted bucket n, n = 0 in the figure. Each bucket keeps the value of i 
used (called Ltt*-bucket level) in its header starting from i = 0 for bucket 0 when 
the file is created. Bucket n splits through the replacement of hi with h~+l for 
every C it contains. As result, typically half of its records move to a new bucket 
N, appended to the file with address n+2  i. In Figure 2, one has N = 8. After the 
split, n is set to (n + 1) mod 2 i. The successive values of n can thus be seen as a 
linear move of a split token through the addresses 0, 0, 1, 0, 1,2, 3, 0,..., 2 i -  1, 0, .... 
The arrows of Figure 2 show both the token moves and a new bucket address 
for every split, as resulting from this scheme. 

There are many strategies, called split control strategies, that  one can use to 
decide when a bucket should split [14] [13] [22]. The overall goal is to avoid the 
file to overload. As no LH* bucket can know the global load, one way to proceed 
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is to fix some threshold S on a bucket load [14]. Bucket n splits when it gets an 
insert and the actual number of objects it stores is at least S. S can be fixed as a 
file parameter. A potentially more performant strategy for an SM environment 
is to calculate S for bucket n dynamically through the following formula: 

2 i + n  
S = M x V x ~  

where i is the n-th LH*-bucket level, M is a file parameter, and V is the bucket 
capacity in number of objects. Typically one sets M to some value between 0.7 
and 0.9. 

The performance analysis in Section 5.1 shows indeed that  the dynamic strat- 
egy should be preferred in our context. This is the strategy adopted for LH*LH. 

4.4 C o m m u n i c a t i o n  M o d e  

In the LH*LH implementation on the Parsytec machine a server receiving a 
request must have issued the receive call before the client can do any further 
processing. This well known rendezvous technique enforces entry flow control on 
the servers, preventing the clients from working much faster than the server could 
accept requests 4. Insert operations do not give any specific acknowledge messages 
by the LH* manager since communication is "safe" on the Parsytec machine (if 
send returns ok the message is guaranteed to be received). IAMs, split messages 
with the split token, and general service messages use the asynchronous type of 
communication. 

4.5 Se rve r  A r c h i t e c t u r e  

The server consists of two layers, as shown in Figure 3a. The LII*-Manager 
handles communications and concurrent splits. The LH-Manager manages the 
objects in the bucket. It uses the Linear Hashing algorithm [12]. 

T h e  L H  M a n a g e r  LH creates files able to grow and shrink gracefully on a site. 
In our implementation, the LI-I-manager stores all data in the main memory. 
The LtI variant used is a modified implementation of Main Memory Linear 
Hashing [19]. 

The LI-I file in an LH*-bucket (Figure 3b) essentially contains (i) a header 
with the LH-level, an LH-splitting pointer, and the count x of objects stored, 
and (ii) a dynamic array of pointers to LH-buckets, and (iii) Lit-buckets with 
records. An LH-bucket is implemented as a linked list of the records. Each record 
contains the calculated hash value, called a pseudo-key. Both the pointer to the 

4 The overloaded server could run out of memory space and could send outdated 
IAMs [6]. 
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Fig. 3. The Data Server and the LH-structure. 

actual key, and the pointer to the object are stored as bitstrings. Pseudo-keys 
make the rehashing faster. An LH-bucket split occurs when L = 1, with: 

X 
L - -  - -  

b x r n '  

where b is the number of buckets in the LH file, and m is a file parameter being 
the required mean number of objects in the LH-buckets (linked list). Linear 
search is most efficient up to an m about 10. 

LH*  P a r t i t i o n i n g  of  an  L H  Fi le  The use of LH allows the LH* splitting in 
a particularly efficient way. The reason is that  individual keys are not visited for 
rehashing. Figure 4 and Figure 5 illustrate the ideas. 

LH and LH* share the pseudo-key. The pseudo-key has J bits, in Figure 4; 
J = 32 at every bucket. LH* uses the lower 1 bits (bt-l,bz-2, ...b0). LH uses j 
bits (bj+t-2, bj+t-3, ...bt), where j -4- l < J.  During an LH*-split l increases by 
one whereas j decreases by one. The value of the new lth bit determines whether 
an LH-bucket is to be shipped. Only the odd LH-buckets i.e. with bt = 1 are 
shipped to the new LH*-bucket N. The array of the remaining LH-buckets is 
compacted, the count of objects is adjusted, the LH-bucket level is decreased by 
one (LH uses one bit less), and the split pointer is halved. Figure 5 illustrates 
this process. 

Further inserts to the bucket may lead to any number of new LIt splits, 
increasing j in Figure 4 to some f .  Next LH* split of the bucket will then 
decrease f to j '  := j~ - 1, and set l := l + 1 again. 
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C o n c u r r e n t  R e q u e s t  P rocess ing  and  Spl i t t ing  A split is a much longer 
operation than a search or an insert. The split should also be atomic for the 
clients. Basic LI-I* [15] simply requires the client to wait till the split finishes. For 
the high-performance applications on an SM multicomputer it is fundamental 
that the server processes a split concurrently with searches and inserts. This is 
achieved as follows in LH*LH. 

Requests received by the server undergoing a split are processed as if the 
server had not started splitting, with one exception: a request that concerns parts 
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of the local LH structure processed by the Splitter is queued to be processed by 
the Splitter. 

The Splitter processes the queue of requests since these requests concern LH- 
buckets of objects that have been or are being shipped. If the request concerns 
an LH-bucket that has already been shipped the request is forwarded, since the 
data is guaranteed to arrive at the destination. If the request, concerns an LH- 
bucket not yet shipped it is processed in the local LH table as usual. The requests 
that concerns the current LH-bucket being shipped is first searched among the 
remaining objects in that LH-bucket. If not found there it is forwarded by the 
Splitter. All forwardings are serialized within the Splitter task. 

Shipping Shipping means transferring the objects selected during the LH*- 
bucket split to the newly appended bucket N: In LH* [14] the shipping was 
assumed basically to be of the bulk type with all the objects packed into a single 
message. After shipping has been completed, bucket N sends back a commit 
message. In LH*LH there is no need for the commit message. The communication 
is safe, and the sender's data cannot be updated before the shipping is entirely 
received. In particular, no client can directly access bucket N before the split is 
complete. 

In the LH*LH environment there are several reasons for not shipping too 
many objects in a message, especially all the objects in a single message. Packing 
and unpacking objects into a message requires CPU time and memory transfers, 
as objects are not stored contiguously in the memory. One also needs buffers of 
sizes at least proportional to the message size, and a longer occupation of the 
communication subsystem. Sending objects individually simplifies these aspects 
but generates more messages and more overhead time in the dialog with the 
communication subsystem. It does not seem that one can decide easily which 
strategy is finally more effective in practice. 

The performance analysis in Section 5.2 motivated the corresponding design 
choice for LH*LH. The approach is that of bulk shipping but with a limited 
message size. At least one object is shipped per message and at most one LH- 
bucket. The message size is a parameter allowing for an application dependent 
packing factor. For the test data using bulks of a dozen of records per shipment 
showed to be much more effective than the individual shipping. 

5 P e r f o r m a n c e  E v a l u a t i o n  

The access performance of our implementation was studied experimentally. The 
measurements below show elapsed times of various operations and their scala- 
bility. Each experiment consists of a series of inserts creating an LH* file. The 
number of clients, the file parameters M and m, and the size of the objects are 
LH*LH parameters. 

At the time when the tests were performed only 32 nodes were available at 
our site. The clients are allocated downwards from node 31 and downwards and 
servers from node 0 and upwards. The clients read the test data (a random list 
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of words) from the file system in advance to avoid that  the I /O disturbs the 
measurements. Then the clients start inserting their data, creating the example 
LH*LH-file. When a client sends a request to the server it continues with the 
next item only when the request has been accepted by the server (rendezvous). 
Each time before the LH* file is split measures are collected by the splitting 
server. Some measurements are also collected at some client, especially timing 
values for each of that  client's requests. 

5.1 Scalability 
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Fig. 6. Build and insert time for LH*LH for different number of clients (1-8). 

Figure 6a plots the elapsed time to constitute the example LH*LH file through 
n inserts; n = 1, 2..N and N = 235.000; performed simultaneously by k clients 
k = 1, 2..8. This time is called build time and is noted Tb(n), or Tbk(N) with 
k as a parameter. In Figure 6a, Tb(N) is measured in seconds. Each point in 
a curve corresponds to a split. The splits were performed using the concurrent 
splitting with the dynamic control and the bulk shipping. The upper curve is 
Tbl(n). Next lower curve is Tb2(n), etc., until TbS(n). 

The curves show that  each Tb k (n) scales-up about linearly with the file size 
n. This is close to the ideal result. Also, using more clients to build the file, 

k / / I  k t I t  uniformly decreases Tb , i.e., k > k - > Tb (n)<_Tb k (n) for every n. Us- 
ing two clients almost halves Tb, especially Tb(N), from TbZ(N) = 330 sec to 
Tb2(N) = 170 sec. Building the file through eight clients decreases Tb further, 
by a factor of four. Tb(N) becomes only TbS(N) = 80 sec. While this is in prac- 
tice an excellent performance, the ideal scale-up could reach k times, i.e., the 
build time TbS(N) = 40 sec only. The difference results from various communi- 
cation and processing delays at a server shared by several clients, discussed in 
the previous sections and in what follows. 
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Figure 6b plots the curves of the global insert t ime Ti  k (n) = Tb k (n ) /n  [msec]. 
Ti  measures the average time of an insert from the perspective of the application 
building the file on the multicomputer.  The internal mechanics of LH*LH file is 
transparent at this level including the distribution of the inserts among the k 
clients and several servers, the corresponding parallelism of some inserts, the 
splits etc. The values of n, N and k are those from Figure 6a. To increase k im- 
proves Ti  in the same way as for Tb. The curves are also about as linear, constant 
in fact, as they should be. Higly interestingly, and perhaps unexpectedly, each 
Tb k (n) even decreases when n grows, the gradient increasing with k. One reason 
is the increasing number of servers of a growing file, leading to fewer requests 
per server. Also, our allocation schema decreases the mean distance through the 
net between the servers and the clients of the file. 

The overall result is that  Ti  always is under 1.6 msec. Increasing k uniformly 
decreases Ti,  until TiS(n)  < 0.8 msec, and TiS (N)  < 0.4 msec. These values 
are about ten to twenty times smaller than access times to a disk file, typically 
over 10 msec per insert or search. They are likely to remain forever beyond the 
reach of any storage on a mechanical device. On the other hand, a faster net 
and more efficient communication subsystem than the one used should allow for 
even much smaller Ti's, in the order of dozens of #sees [14] [16]. 
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Figure 7a plots the global throughput T k (n) defined as Tk(n)  = 1/Ti(n)[i/sec] 
(inserts per second). The curves express again an almost linear scalability with 
n. For the reasons above discussed, T ~ even increases for larger files, up to 
2700 i/sec. An increase of k also uniformly increases T for every n. To see 
the throughput  scalability more clearly, Figure 7b plots the relative throughput  
Tr(k )  = T k ( n ) / T l ( n )  for a large n; n = N. One compares T r  to the plot of the 
ideal scale-up that  is simply TIr(k)  = k. The communication and service delays 
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we spoke about clearly play an increasing role when k increases. Although Tr 
monotonically increases with k, it diverges more and more from T'v. For k = 8, 
one has Tr = 4 which is only the half of the ideal scale-up. It means that the 
actual throughput per client, Tc~(n) = Tk(n)/k, comparatively also decreases 
until the half of the throughput T 1 of a single client. 
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Fig. 8. Static and dynamic split control. 

Figure 8 shows the comparative study of the dynamic and the static split 
control strategies. The plots show build times, let it be Tb'(n) for the static 
control and Tb(n) for the dynamic one. The curves correspond to the constitution 
of our example file, with k = 1 in Figure 8a and k = 4 in Figure 8b. The plots Tb 
are the same as in Figure 6a. Figure 8 clearly justifies our choice of the dynamic 
control strategy. Static control uniformly leads to the longer build time, i.e., for 
every n and k one has Tb'(n) > Tb(n). The relative difference (Tb'- Tb)/Tb 
reaches 30% for k = 1, e.g. Tb'(N) = 440 and Tb(N) = 340. For k = 4  the 
dynamic strategy more than halves the build time, e.g from 230 to 100 sec. 

Note that the dynamic strategy also generates splits generally more uniformly 
over the inserts, particularly for k = 1. The static strategy leads to short periods 
when a few inserts generate splits of about every bucket. This creates a heavier 
load on the communication system and increases the insert and search times 
during that period. 

5.2 Efficiency of  Concur ren t  Spl i t t ing  

Figure 9 shows the study of comparative efficiency of individual and bulk ship- 
ping for LIt* atomic splitting (non-concurrent), as described earlier. The curves 
plot the insert time Til(t) measured at t seconds during the constitution of the 
example file by a single client. A bulk message contains at most all the records 
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Fig. 9. Efficiency of (a) individual and (b) bulk shipping. 

constituting an LH-bucket to ship. In this experiment there are 14 records per 
bulk on the average. A peak corresponds to a split in progress, when an insert 
gets blocked till the split ends. 

The average insert time beyond the peaks is 1.3 msec. The corresponding Ti's 
are barely visible at the bottom of the plots. The individual shipping, Figure 9a, 
leads to a peak of Ti = 7.3 sec. The bulk shipping plot, Figure 9b, shows the 
highest peak of Ti -- 0.52 see, i.e., 14 times smaller. The overall build time 
Tb(N) decreases also by about 1/3, from 450 sec in Figure 9a, to 320 sec in 
Figure 9b. The figures clearly prove the utility of the bulk shipping. 

Observe that the maximal peak size got reduced accordingly to the bulk 
size. It means that larger bulks improve the access performance. However, such 
bulks require also more storage for themselves as well as for the intermediate 
communication buffers and more CPU for the bulk assembly and disassembly. 
To choose the best bulk size in practice, one has to weight all these factors 
depending on the application and the hardware used. 

Figure 10 shows the results of the study where the bulk shipping from Fig- 
ure 9 is finally combined with the concurrent splitting. Each plot Ti(t) shows 
the evolution of the insert time at one selected client among k clients; k = 1..4, 8; 
concurrently building the example file with the same insert rate per client. The 
peaks at the figures correspond again to the splits in progress but they are much 
lower. For k = 1, they are under 7 msec, and for k = 8 they reach 25 msec. The 
worst insert time with respect to Figure 9 improves thus by a factor of 70 for 
k = 1 and of 20 for k = 4. This result clearly justifies the utility of the concurrent 
splitting and our overall design of the splitting algorithm of LH*LH. 

The plots in Figures 10a to 10e show the tendency towards higher peaks of 
Ti~ as well as towards higher global average and variances of Ti over Ti(t), when 
more clients build the file. The plot in Figure 10f confirms this tendency for the 
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average and the variance. Figures 10d and 10e show also that  the insert times 
become especially affected when the file is still small, as one can see for t < 10 in 
these figures. All these phenomena are due to more clients per server for a larger 
k. A client has then to wait more for the service. A greater k is nevertheless 
advantageous for the global throughput as it was shown earlier. 

Figure 10 hardly allows to see the tendency of the insert t ime when the 
file scales up, as non-peak values are buried in the black areas. Figure 11 plots 
therefore the evolution of the corresponding marginal client insert time T m  ~. 
T m  k is computed as an average over a sliding window of 500 inserts plotted 
in Figure 10. The averaging smoothes the variability of successive values giving 
the black areas in Figure 10. The plots T m k ( t )  show that  the insert times not 
only do not deteriorate when the file grows, but even improve. T m  1 decreases 
from 1.65 msec to under 1.2 msec, and T m  s from 8 msec to 1.5 msec. This 
nice behavior is due again to the increase in the number of servers and to the 
decreasing distauce between the clients and the servers. 

The plots show also that  T m k ( t )  uniformly increases with k, i.e. k I~ > 
k'---~Tm~"(t) > Tmk ' ( t ) ,  for every t. This phenomena is due to the increased 
load of each server. Also interestingly, the shape of T m  k becomes stepwise, for 
greater k's, with insert times about halving at each new step. A step corresponds 
to a split token trip at some level i. The drop occurs when the last bucket of 
level i splits and the split token comes back to bucket 0. This tendency seems to 
show that  the serialization of inserts contributing most to a T m  k value occurs 
mainly at the buckets that  are not yet split. 

The overall conclusion from Figure 11 is that  the insert times at a client of 
a file equally shared among k clients, is basically either always under 2 msec, 
for k = 1, or tends to be under this time when the file enlarges. Again this 
performance shows excellent scale-up behavior of LH*LH. The performance is in 
particular largely superior to the one of a typical disk file used in a similar way. 
For k = 8 clients, for example, the speed-up factor could reach 40 times, i.e., 2 
msec versus 8 * 10 msec. 

6 C o n c l u s i o n s  

Switched multicomputers such as the Parsytec GC/PowerPlus  are powerful tools 
for high-performance applications. LH*LH was shown an efficient new data struc- 
ture for such multicomputers. Performance analysis showed that  access times 
may be in general of the order of a milisecond, reaching 0.4 msec per insert in 
our experiences, and that  the throughput may reach thousands of operations per 
second, over 2700 in our study, regardless of the file scale-up. An LH'~LH file can 
scale-up over as much of distributed RAM as available, e.g., 2 Gbytes on the 
Parsytec, without any access performance deterioration. The access times are in 
particular an order of magnitude faster than one could at tain using disk files. 

Performance analysis confirmed also various design choices made for LH*LH. 
In particular, the use of LH for the bucket management,  as well as of the concur- 
rent splitting with the dynamic split control and the bulk shipping, effectively 
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reduced the peaks of response time. The improvement reached a thousand times 
in our experiences, from over 7sec that would characterize LH*, to under 7 msec 
for LH*LH. Without this reduction, LH*LH would likely to be inadequate for 
many high-performance applications. 

Future work should concern a deeper performance analysis of LH*LH under 
various conditions. More experiments with actual data should be performed. A 
formal performance model is also needed. In general such models yet lack for 
the SDDSs. The task seems of even greater complexity than for more traditional 
data structures. If the algorithm is to be used for more than one file a different 
physical mapping (e.g. randomization) to the nodes should be used for each file 
to distribute the load. 

The ideas put into the LH*LH design should apply also to other known 
SDDSs. They should allow for the corresponding variants for switched multi- 
computers. One benefit would be scalable high performance ordered files. SDDSs 
in [16], or [9] should be a promising basis towards this goal. 

A particularly promising direction should be the integration of LH*LH as a 
component of a DBMS. One may expect important performance gain, opening 
to DBMSs new application perspectives. Video servers seem one promising axis, 
as it is well known that major DBMS manufacturers look already upon switched 
multicomputers for this purpose. The complex real-time switching data manage- 
ment in telephone networks seems another interesting domain. 

To approach these goals, we plan to make use of the implementation of 
LH*LH for high-performance databases. We will interface it with our research 
platform AMOS [5], which is an extensible object-relational database manage- 
ment system with a complete query language [7]. AMOS would then reside on 
an ordinary workstation, whereas some datatypes/relations/functions would be 
stored and searched by the MIMD machine. AMOS will then act as a front-end 
system to the parallel stored data. The query optimization of AMOS will have 
to be extended to also take into account the communication time and possible 
speed-up gained by using distributed parallel processing. Other SDDSs than LH* 
are also of interest for evaluation, a new candidate is the RP* [16] that handles 
ordered data sets. 
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