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Abstract. Various business application scenarios need to analyse the working 

status of products, e.g. to discover abnormal machine behaviours from logged 

sensor readings. The geographic locations of machines are often widely distrib-

uted and have measurements of logged sensor readings stored locally in autono-

mous relational databases, here called log databases, where they can be analysed 

through queries. A global meta-database is required to describe machines, sen-

sors, measurements, etc. Queries to the log databases can be expressed in terms 

of these meta-data. FLOQ (Fused LOg database Query processor) enables queries 

searching collections of distributed log databases combined through a common 

meta-database. To speed up queries combining meta-data with distributed logged 

sensor readings, sub-queries to the log databases should be run in parallel. We 

propose two new strategies using standard database APIs to join meta-data with 

data retrieved from distributed autonomous log databases. The performance of 

the strategies is empirically compared with a state-of-the-art previous strategy to 

join autonomous databases. A cost model is used to predict the efficiency of each 

strategy and guide the experiments. We show that the proposed strategies sub-

stantially improve the query performance when the size of selected meta-data or 

the number of log databases are increased. 

1 Introduction 

Various business applications need to observe the working status of products in order 

to analyse their proper behaviours. Our application is from a real-world scenario [11], 

where machines such as trucks, pumps, kilns, etc. are widely distributed at different 

geographic locations and where sensors on machines produce large volumes of data. 

The data describes time stamped sensor readings of machine components (e.g. oil tem-

perature and pressure) and can be used to analyse abnormal behaviours of the equip-

ment. In order to analyse passed behaviour of monitored equipment, the sensor readings 

can be stored in relational databases and analysed with SQL. In our application area, 

data is produced and maintained locally at many different sites in autonomous relational 

DBMSs called log databases. New sites and log databases are dynamically added and 

removed from the federation. The number of sites is potentially large, so it is important 

that the query processing scales with increasing number of sites. A global meta-data-

base enables a global view of the working status of all machines on different sites. It 

stores meta-data about machines, sensors, sites, etc. 
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A particular challenge in our scenario is a scalable way to process queries that join 

meta-data with data selected from the collection of autonomous log databases using 

standard DBMS APIs. This paper proposes two strategies to perform such joins, namely 

parallel bind-join (PBJ) and parallel bulk-load join (PBLJ). PBJ generalizes the bind-

join (BJ) [4] operator, which is a state-of-the-art algorithm for joining data from an 

autonomous external database with a central database. One problem with bind-join in 

our scenario is that large numbers of SQL queries will be sent to the log databases for 

execution, one for each parameter combination selected from the meta-database, which 

is slow. Furthermore, whereas bind-join is well suited for joining data from a single log 

database with the meta-database, our application scenario requires joining data from 

many sites. 

With both PBJ and PBLJ, streams of selected meta-data variable bindings are dis-

tributed to the wrapped log databases and processed there in parallel. After the parallel 

processing the result streams are merged asynchronously by FLOQ. 

 With PBJ the streams of bindings selected from the meta-database are bind-

joined in the distributed wrappers with their encapsulated log databases. The 

bind-joins of different wrapped log databases are executed in parallel.  

 With PBLJ the selected bindings are first bulk loaded in parallel into a binding 

table in each log database where a regular join is performed between the 

loaded bindings and the local measurements. 

The strategies are implemented in our prototype system called FLOQ (Fused LOg 

database Query processor). FLOQ provides general query processing over collections 

of autonomous relational log databases residing on different sites. The collection of log 

databases is integrated by FLOQ through a meta-database where properties about data 

in the log databases are stored. On each site the log database is encapsulated by a FLOQ 

wrapper to pre- and post-process queries. 

To investigate our strategies, a cost model is proposed to evaluate the efficiency of 

each strategy. To evaluate the performance we define fundamental queries for detecting 

abnormal sensor readings and investigate the impact of our join strategies. A relational 

DBMS from a major commercial vendor is used for storing the log databases. 

In summary the contributions are: 

 Two join strategies are proposed and compared: parallel bind-join and parallel 

bulk-load join, for parallel execution of queries joining meta-data with data 

from collections of autonomous databases using external DBMS APIs. 

 A cost model is proposed to evaluate the strategies.  

 The conclusions from the cost model are verified experimentally. 

The rest of this paper is organized as follows: Section 2 overviews the FLOQ system 

architecture and presents the scenario and queries used for the performance evaluation. 

Section 3 presents the join strategies and the cost model used in the evaluation. Section 

4 presents the performance evaluation for the join strategies. Section 5 describes related 

work. Finally, Section 6 concludes and outlines some future work. 

 



2 FLOQ 

Fig. 1 illustrates the FLOQ architecture. To analyse machine behaviours, the user sends 

queries over the integrated log databases to FLOQ. FLOQ processes a query by first 

querying the meta-database to find the identifiers of the queried log databases contain-

ing the desired data, then in parallel sending distributed queries to the log databases, 

and finally collecting and merging the distributed query results to obtain the final result. 

Scalable parallel processing of queries making joins between a meta-database and many 

large log databases is the subject of this paper.  

 
Each log database is encapsulated with a FLOQ wrapper called from the FLOQ server 

to process queries over the wrapped log database. A FLOQ wrapper contains a full 

query processor which enables, e.g. local bind-joins between a stream of bindings se-

lected from the meta-database and the log database. Parallel processing is provided 

since the FLOQ wrappers work independently of each other. Each FLOQ wrapper 

sends back to the FLOQ server the result of executing a query as a stream of tuples. 

The results from many wrappers are asynchronously merged by the FLOQ server while 

emitting the result to the user. Details of the query processor are described in [10], [13, 

14] and are outside the scope of this paper. 

2.1 The FLOQ schema 

The schema for the FLOQ meta-database is shown in Fig. 2(a). The table Machine-

Model(m, mmn, descr, mmanuf) stores data about machine models, i.e. a unique ma-

chine model identifier m, along with its name mmn, description descr, and manufacturer 

mmanuf. The table MachineInstallation(mi, m, sid) stores meta-data about each ma-

chine installation, i.e. a unique machine installation identifier mi, its installed site sid 

and its machine model identifier m (foreign key). The table SensorModel(sm, sname, 

smanuf) stores information about sensor models, i.e. a unique sensor model identifier 

sm, the sensor model name sname, and its manufacturer smanuf. The table SensorIn-

stallation(si, mi, sm, ev) stores the sensor installation information, i.e. a sensor installa-

tion identifier si, the machine installation mi of si, the sensor model sm, and the ex-
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pected measured value ev. The columns m and sid in table MachineInstallation are for-

eign keys in tables MachineModel and Site, respectively. The column mi in table Sen-

sorInstallation is foreign key to MachineInstallation. 

 
The table Site(sid, name, logdb) stores information about the sites where the log data-

bases are located: a numeric site identifier sid, its name, and an identifier of its log 

database, logdb. A new log database is registered to FLOQ by inserting a new row in 

table Site. Each site presents to FLOQ its log data as a temporal local relation 

Measures(mi, si, bt, et, mv) (Fig. 2(b)) representing measurements from the sensors 

installed on the machines at the site, i.e. temporal local-as-view [5] data integration is 

used. For a machine installation mi at a particular site the local view presents the meas-

ured readings from sensor installation si in the valid time interval [bt,et). The columns 

mi and si in Measures are foreign keys from the corresponding columns in the meta-

database tables MachineInstallation and SensorInstallation, respectively. 

The view VMeasures (Fig. 2(c)) in FLOQ integrates the collection of log databases. 

It is logically a union-all of the local Measures views at the different sites. In 

VMeasures the attribute logdb identifies the origin of each tuple. Through the meta-

database users can make queries over the log databases by joining other meta-data with 

VMeasures. Since the set of log databases is dynamic it is not feasible to define 

VMeasures as a static view; instead FLOQ processes queries to VMeasures by dynam-

ically submitting SQL queries to the log databases and collecting the results. In the 

experiments we populate the meta-database and the log databases with data from a real-

world application [11]. 

2.2 Example Queries 

Q1 in Fig. 3 is a simple query that retrieves unexpected sensor readings. It returns ma-

chine identifiers mi together with the time intervals [bt,et) when a sensor on the ma-

chine has measured values mv higher than the expected values ev by a threshold param-

eter th on line 5 marked ‘?’. 
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Q1: 
1  SELECT m.mi, m.bt, m.et 

2  FROM Measures m, Site s, 

3       MachineInstallation mi, 

4       SensorInstallation si  

5  WHERE m.mv > si.ev+? AND  

6        mi.mi > ? AND 

7        si.mi = mi.mi AND 

8        m.si = si.si AND 

9        m.logdb = s.logdb AND 

10       s.sid < ? 

Fig. 3. Query Q1 

Q2: 
1  SELECT count(*) 

2  FROM Measures m, Site s, 

3       MachineInstallation mi, 

4       SensorInstallation si  

5  WHERE m.mv > si.ev+? AND  

6        mi.mi > ? AND 

7        si.mi = mi.mi AND 

8        m.si = si.si AND 

9        m.logdb = s.logdb AND 

10       s.sid < ? 

 Fig. 4. Query Q2 



Query Q1 is used for the basic scalability experiments. It contains a simple numerical 

expression over the log database view in terms of th. On line 6 there is a constraint on 

the selected machine identifiers mi and on line 10 the selected sites sid are restricted. 

The experiments are scaled by varying these parameters. The number of log databases 

is varied by restricting sid, the amount of data selected from each log database is varied 

by th, and the number of bindings selected from the meta-database is varied by mi. 

Query Q2 in Fig. 4 is similar to Q1, the difference being that it applies an aggregate 

function over Q1, i.e. it computes the number of faulty sensor readings. Here only a 

single value is returned from each log database. The purpose of the query is to investi-

gate the join strategies without concerning the overhead of transferring substantial 

amounts of data back to the client. 

 
Query Q3 in Fig. 5 is an example of a more complex numerical query for identifying 

machine failures. It detects situations where the relative deviation of sensor readings 

from ev is larger than a threshold parameter we denote rth. One property of Q3 is that 

the query optimizer of the used DBMS cannot utilize an ordered index on the measured 

value mv, so the entire local table Measures on each site will be scanned entirely. This 

query thus has a high query execution cost for searching the log databases. 

Query Q4 in Fig. 6 is a manually transformed version of Q3 to expose the index 

column mv of Measures table for query optimizer of the DBMS for scalable search. 

Here all parameter occurrences in the query (marked ?) refer to the supplied value of 

rth. FLOQ automatically makes this algebraic transformation by utilizing the algorithm 

in [12]. The difference between Q3 and Q4 shows the trade-off between full scan and 

index scan in the log databases enabled by the rewrite. Q3 is an expensive query com-

pared to Q4. 

3 Join Strategies 

The two strategies, PBJ and PBLJ, for parallel execution of queries joining data be-

tween the meta-database and the log databases are illustrated in Fig. 7 and Fig. 8, re-

spectively. With both strategies FLOQ first extracts parameter bindings from the meta-

database. The result is a stream of tuples is called the binding stream B where each 

tuple (i, v1, v2, …, vp) is a parameter binding. The elements v1, v2, …, vp of the binding 

stream are the values of the free variables in the query fragment sent to the log data-

bases. For example, in Q1 the free variables are (mi, si, ev). Each binding tuple is pre-

fixed with a destination site, i, identifying where the log database RDBi resides. The 

Q3: 
1  SELECT m.mi, m.bt, m.et 

2  FROM Measures m, Site s, 

3       MachineInstallation mi, 

4       SensorInstallation si  

5  WHERE abs(m.mv-si.ev)/si.ev>? AND  

6        si.mi = mi.mi AND 

7        m.si = si.si AND 

8        m.logdb=s.logdb        

 

Fig. 5. Query Q3 

Q4: 
1  SELECT m.mi, m.bt, m.et 

2  FROM Measures m, Site s,  

3       MachineInstallation mi, 

4       SensorInstallation si 

5  WHERE si.mi = mi.mi AND 

6        m.si = si.si AND 

7        m.logdb = s.logdb AND 

8        ((m.mv>(1+?)*si.ev and si.ev>0) or 

9         (m.mv<(1+?)*si.ev and si.ev<0) or  

10        (m.mv<(1-?)*si.ev and si.ev>0) or 

11        (m.mv>(1-?)*si.ev and si.ev<0)) 

       
Fig. 6. Transformed Q3 
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parameter binding tuples are joined with measurements in the log databases. Thus the 

binding stream is split into one site binding stream Bi per log database RDBi, B =B1 ∪ 

B2 … ∪ Bn, where n is the number of sites. The destination i determines to which site 

the rest of the tuple, (v1, v2, …, vp), is routed. The join strategies are defined as follows: 

PBJ, parallel bind-join: PBJ (Fig. 7) is a generalization of bind-join [4] to handle 

parallel execution between a common meta-database and a collection of wrapped rela-

tional databases RDBi. On each site i the tuples in the binding stream Bi received by a 

FLOQ wrapper is bind joined (BJ) with the query i sent to the database RDBi through 

parameterized (prepared) JDBC calls. The tuples in the result stream Ri from the JDBC 

calls are then streamed back to the FLOQ server, where they are merged asynchro-

nously with the result tuples from other sites. With PBJ, a parameterized query is exe-

cuted many times in each wrapped log database, once for each parameter binding in Bi. 
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               Fig. 7.  PBJ                                                       Fig. 8. PBLJ   

PBLJ, parallel bulk-load join: With PBLJ (Fig. 8) each FLOQ wrapper first bulk 

loads the entire binding stream Bi into a binding table in RDBi. When all parameter 

bindings have been loaded, the system submits a single SQL query to the log database 

to join the loaded binding table with i. As for PBJ, the result stream Ri is shipped back 

to the FLOQ server through the wrapper for asynchronous merging. Compared to PBJ, 

the advantage of this approach is that only one query is sent to each log database. It 

requires the extra step of bulk loading in parallel the entire parameter streams into each 

log database, which, however, should be less costly compared to calling many prepared 

SQL statements through JDBC with PBJ. The bulk loading facility of the DBMS is 

utilized for high performance. 

BJ, regular bind-join: If there is a single log database, PBJ is analogous to BJ and is 

a baseline in our evaluations. With BJ one prepared SQL query per binding is shipped 

from the FLOQ wrapper to only one log database, RDB1. 



3.1 Cost Model for Join Strategies 

The total cost in terms of response times of the proposed join strategies is divided be-

tween the cost of execution in the FLOQ server 𝐶𝐹𝐿𝑂𝑄  and the maximum site cost 𝐶𝑖. 

 𝐶𝐽𝑜𝑖𝑛 = 𝐶𝐹𝐿𝑂𝑄 + 𝑚𝑎𝑥 ({𝐶𝑖 ∶ 𝑖 = 1, … , 𝑛})  (1) 

The total cost of the FLOQ server execution is approximately divided between two 

major components, which are the cost of splitting the binding stream 𝐵, 𝐶𝑠, and the cost 

of merging all result streams 𝑅𝑖, 𝐶𝑚. The cost of the FLOQ server execution is inde-

pendent of any join strategies, i.e.: 

                                               𝐶𝐹𝐿𝑂𝑄 = 𝐶𝑠 + 𝐶𝑚          (2) 

The variables used in analysing cost models are described in Table 1. 

Table 1. Variables used in the cost model 

Variable Description Variable Description 

𝐶𝐽𝑜𝑖𝑛 Total cost of a join 𝐶𝐹𝐿𝑂𝑄 Total execution cost in the FLOQ server 

𝐵𝑖 Binding stream to site i 𝐶𝑆 Cost of splitting the binding stream 𝐵 in the FLOQ server 

𝑅𝑖 Result stream from site i 𝛽 A single binding from the binding stream 𝐵𝑖 

𝐶𝑖 Total cost at site i 𝐶𝑚 Cost of merging  result streams 𝑅𝑖 in the FLOQ server 

𝐶𝜎𝑖
 Cost of  executing i in RDBi 𝐶𝐽𝐷𝐵𝐶 Cost of  JDBC call for a single binding 𝛽 

𝐶⋈𝑖
 Cost of  local join at site i 𝜎𝑖 The query to RDBi.  

𝐶𝐵𝑢𝑙𝑘𝑙𝑜𝑎𝑑𝑖
 Cost of  bulk loading in RDBi 𝐶𝐵𝑖

 Cost of  transferring binding stream 𝐵𝑖 to site i 

𝐶𝜎𝛽
 Selection Cost for a single binding 𝛽 𝐶𝑅𝑖

 Cost of  transferring result stream 𝑅𝑖 from site i 

𝑅𝐷𝐵𝑖  The relational log database at site i 𝐶𝑁𝑒𝑡 Network communication overhead cost for a single binding 𝛽 

The total site cost 𝐶𝑖 is approximately divided between four major cost components: (i) 

transferring the binding stream 𝐵𝑖  from the FLOQ server to the site, 𝐶𝐵𝑖
, (ii) executing 

i in the log database, 𝐶𝜎𝑖
, (iii) local join 𝐶⋈𝑖

 either in RDBi (𝐶⋈𝑖

𝐿𝑜𝑔𝐷𝐵
 for PBLJ) or in 

the FLOQ wrapper ( 𝐶⋈𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
for PBJ), and (iv) transferring the result stream 𝑅𝑖 to the 

FLOQ server, 𝐶𝑅𝑖
. Thus the total site cost Ci is defined as: 

 𝐶𝑖 = 𝐶𝐵𝑖
+ 𝐶𝜎𝑖

+ 𝐶⋈𝑖
+ 𝐶𝑅𝑖

 (3) 

By combining equation (1), (2), and (3), the total cost of a distributed join becomes: 

 𝐶𝐽𝑜𝑖𝑛 = 𝐶𝑠 + 𝐶𝑚 + 𝑚𝑎𝑥 ({ (𝐶𝐵𝑖
+ 𝐶𝜎𝑖

+ 𝐶⋈𝑖
+ 𝐶𝑅𝑖

) ∶ 𝑖 = 1, … , 𝑛})        (4) 

For each site, the binding stream 𝐵𝑖  is significantly smaller than the number of logged 

measurements in 𝑅𝐷𝐵𝑖: 

  |𝐵𝑖| ≪  |𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠(𝑅𝐷𝐵𝑖)| (5) 

For PBJ, the bind-join is performed in each FLOQ wrapper, therefore, the cost of a 

local join 𝐶⋈𝑖 
can be replaced with the cost of a bind-join in the wrapper, 𝐶⋈𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
. 

Also the cost of executing the sub-query i that selects data from a log database, 𝐶𝜎𝑖
, is 

replaced with the BJ selection cost, 𝐶𝜎𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
, in the site cost in (3). 

 𝐶𝑖
𝑃𝐵𝐽 = 𝐶𝐵𝑖

𝑃𝐵𝐽 + 𝐶𝜎𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
+ 𝐶⋈𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
+ 𝐶𝑅𝑖

 (6) 

In PBLJ the joins and selections are combined into one sub-query to each RDBi. There-

fore, the cost of 𝐶⋈𝑖
 and 𝐶𝜎𝑖 

in the site cost in equation (3) for PBLJ can be replaced 

with the cost of join and selection in the log database ( 𝐶⋈𝑖

𝐿𝑜𝑔𝐷𝐵
 and  𝐶𝜎𝑖

𝐿𝑜𝑔𝐷𝐵
): 



 𝐶𝑖
𝑃𝐵𝐿𝐽 = 𝐶𝐵𝑖

𝑃𝐵𝐿𝐽 + 𝐶𝜎𝑖

𝐿𝑜𝑔𝐷𝐵
+ 𝐶⋈𝑖

𝐿𝑜𝑔𝐷𝐵
+ 𝐶𝑅𝑖

 (7) 

In PBJ, the FLOQ server transfers the binding stream 𝐵𝑖  to a FLOQ wrapper through 

the standard network protocol. Therefore, the cost of transferring bindings to each site, 

𝐶𝐵𝑖

𝑃𝐵𝐽
, is the aggregated network communication overhead for each binding, 𝐶𝑁𝑒𝑡. 

 𝐶𝐵𝑖

𝑃𝐵𝐽 = |𝐵𝑖| × 𝐶𝑁𝑒𝑡 ,  where|𝐵𝑖| ≥ 1 (8) 

In PBLJ all the bindings Bi are bulk-loaded directly into the log database. The cost of 

sending all bindings to site i, 𝐶𝐵𝑖

𝑃𝐵𝐿𝐽, is the cost of bulk loading the bindings, 𝐶𝐵𝑢𝑙𝑘𝑙𝑜𝑎𝑑𝑖
. 

 𝐶𝐵𝑖

𝑃𝐵𝐿𝐽 = 𝐶𝐵𝑢𝑙𝑘𝑙𝑜𝑎𝑑𝑖
  (9) 

Obviously, the cost of bulk-loading in PBLJ 𝐶𝐵𝑢𝑙𝑘𝑙𝑜𝑎𝑑𝑖
 is insignificant compared to 

sending large numbers of bindings to prepared SQL statements in PBJ: 

  𝐶𝐵𝑢𝑙𝑘𝑙𝑜𝑎𝑑𝑖
  <<  |𝐵𝑖| ×  𝐶𝑁𝑒𝑡 ,  where |𝐵𝑖| ≥ 1; therefore,  

  𝐶𝐵𝑖

𝑃𝐵𝐿𝐽 ≤  𝐶𝐵𝑖

𝑃𝐵𝐽
 (10) 

On the other hand, the selection cost of PBLJ is also low compared to PBJ since the 

cost of selection performed by RDBi is lower than the combined cost of selection and 

JDBC overhead for each binding 𝛽 of a binding stream 𝐵𝑖: 

  𝐶𝜎𝑖

𝐿𝑜𝑔𝐷𝐵
≤  |𝐵𝑖| × ( 𝐶𝜎𝛽

+ 𝐶𝐽𝐷𝐵𝐶  ), where 𝛽 𝜖 𝐵𝑖  and |𝐵𝑖|  ≥ 1; therefore: (11) 

  𝐶𝜎𝑖

𝐿𝑜𝑔𝐷𝐵
≤ 𝐶𝜎𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
    (12) 

Similarly, a local join in the relational DBMS is efficient compared to the join per-

formed in a FLOQ wrapper since query optimization techniques can be applied inside 

a relational DBMS where the overhead JDBC calls are eliminated. Thus, 

    𝐶⋈𝑖

𝐿𝑜𝑔𝐷𝐵
≤   𝐶⋈𝑖

𝑊𝑟𝑎𝑝𝑝𝑒𝑟
    (13) 

From equation (10), (12), and (13), the total cost at site i for the three components, 

transferring bindings (𝐶𝐵𝑖
), selection (𝐶𝜎𝑖

), and join (𝐶⋈𝑖
) are lower for PBLJ than for 

PBJ. The cost 𝐶𝑅𝑖
 of transferring the result streams 𝑅𝑖 to the FLOQ server is equal for 

both PBLJ and PBJ, therefore, comparing (6) and (7): 

  𝐶𝑖
𝑃𝐵𝐿𝐽 ≤ 𝐶𝑖

𝑃𝐵𝐽    (14) 

From equation (1), as the cost of the execution at the FLOQ server 𝐶𝐹𝐿𝑂𝑄  is equal for 

both PBJ and PBLJ, by combing equation (1) and (14) it can be stated that the overall 

cost of join in PBLJ is lower than PBJ: 

 𝐶𝑃𝐵𝐿𝐽 ≤  𝐶𝑃𝐵𝐽 (15) 

3.2 Discussion 

According to equation (15), PBLJ should always outperform PBJ in every experiment 

when |𝐵𝑖| ≥ 1. Equation (8) and (11) suggest that PBLJ will perform increasingly bet-

ter than PBJ when scaling the number of bindings |𝐵𝑖|. It is evident from equation (4) 

that, independent the chosen join strategy, when the size of the result stream |𝑅𝑖| is 

large, the tuple transfer cost (𝐶𝑅𝑖
) will be a major dominating component in the cost 

model. Therefore, the performance trade-offs between respective join strategies, are 

more significant when the number of tuples returned from the log database is small. 



To conclude, according to the cost model, the performance evaluation should be in-

vestigated by (i) varying the number of tuples returned from the sites, (ii) scaling the 

number of sites, and (iii) scaling the number of bindings from the meta-database. 

4 Performance Evaluation 

We compared the performance of the join strategies PBJ and PBLJ based on the queries 

Q1, Q2, Q3, and Q4. In our real-world application each log database had more than 250 

million measurements from sensor readings, occupying 10GB of raw data. The follow-

ing scalability experiments were performed on six PCs (with 4 processors and 8GB 

main memory) running Windows 7 while: (i) scaling the number of result tuples |Ri|; 

(ii) scaling the number of sites, n; and (iii) scaling the number of bindings |Bi|. 

 

Scaling the number of result tuples 

Fig. 9(a) shows the execution times of Q1 for the two join strategies over a single log 

database, while scaling the number of result tuples |R| by adjusting th. As expected 

from equation (12), PBLJ performs better than PBJ. Since there is only one site, PBJ is 

equivalent to BJ. 

 
(a)     (b) 

         Fig. 9.  Q1 (a) with one log database and (b) with six log databases 

Fig. 9(b) compares the performance of Q1 for six log databases while scaling |R|. As 

expected PBLJ scales better than PBJ. However, as more tuples are returned from the 

log databases the network overhead is becoming a major dominating factor, making the 

performance difference of the join strategies insignificant. Notice that the number of 

returned tuples remains the same for both strategies; thus the network overhead is equal. 

However, PBLJ will always perform better (even with a small fraction) than PBJ since 

other overhead is larger for PBJ. 

 
                          (a)                                                                      (b) 

Fig. 10. Execution time for Q3 and Q4 with six log databases 



Fig. 10 compares PBJ and PBLJ for Q3 and Q4 for six log databases. Q3 is an example 

of a slow numerical query requiring a full scan of Measures, whereas Q4 is faster since 

it exposes the index on Measures.mv for query Q3. It is evident from Fig. 10 that PBLJ 

performs better than PBJ for both query Q3 and Q4. Fig. 10(b) shows the performance 

improvement due to index utilization compared to sequential scan in Q3. 

To conclude, PBLJ performs better than PBJ when the number of returned tuples is 

increased, as also indicated by equation (15) of the cost model. 

 

Scaling the number of log databases 

Fig. 11 compares PBJ and PBLJ for Q1 when scaling the number of log databases. In 

Fig. 11(a) and Fig. 11(b) the total number of tuples returned from a single log database 

|Ri| is 1K and 295K, respectively. Notice that the total number of tuples returned |R| in 

each figure is multiplied with the fixed |Ri| from each log database. 

In Fig. 11(a) |R| is small, so the performance difference between PBJ and PBLJ is 

dominating over the network cost, while in Fig. 11(b) the higher network cost makes 

the difference less significant. 

 
         (a) 1k tuples from each database                    (b) 295k tuples from each database 

Fig. 11. Execution time for Q1 varying number of log databases and selectivity 

In summary, the overall performance of PBLJ is always better while scaling number of 

log databases compared to PBJ. 

 

Scaling the number of bindings 

This experiment investigates the performance of PBJ and PBLJ while varying the num-

ber of bindings |Bi| from the meta-database. Fig. 12 shows the execution times for Q1 

and Q2 for PBJ and PBLJ for a single log database. 

 
                          (a)                                                                               (b) 

Fig. 12. Execution time for Q1 and Q2 



From Fig. 12(a) it is evident that PBLJ performs significantly better while scaling |Bi|. 

The reason is that in PBJ, the FLOQ wrapper is performing |Bi| bind-joins, so the over-

head of the JDBC calls is multiplied with |Bi|. In all experiments the extra time for the 

bulk loading was less than 50ms irrespective of number of bindings |Bi|. This makes it 

insignificant for this small number of bindings relative to the size of the log databases. 

This confirms equation (8) and (11) of the cost model that PBJ will not scale compared 

to PBLJ when increasing the number of bindings. The experimental results of query Q2 

that returns a single tuple per site are shown in Fig. 12(b). The reason of the better 

scalability of PBLJ than for Q1 is because the network communication overhead 𝐶𝑅𝑖
 in 

equation (4) is negligible since only one tuple is returned from each site. 

In all experiments, the PBLJ join strategy performs better than PBJ, in particular 

while scaling the number of bindings |Bi|. This confirms equation (15) in the cost 

model. The performance improvement is more significant when the number of tuples 

returned from each log database is low. 

5 Related work 

Bind-join was presented in [4] as a method to join data from external databases [7]. We 

generalized bind-join to process in parallel parameterized queries to dynamic collec-

tions of autonomous log databases. Furthermore we showed that our bulk-load join 

method scales better in our setting.  

In Google Fusion Tables [3] left outer joins are used to combine relational views of 

web pages, while [6] uses adaptive methods to join data from external data sources. In 

[9] the selection of autonomous data sources to join is based on market mechanisms. 

Our case is different because we investigate strategies to join meta-data with data from 

dynamic collections of log databases without joining the data sources themselves.  

Vertical partitioning and indexing of fact tables in monolithic data warehouses is 

investigated in [1]. One can regard our VMeasures view as a horizontally partitioned 

fact table. A major difference to data warehouse techniques is that we are integrating 

data from dynamic collections of autonomous log databases, rather than scalable pro-

cessing of queries to data uploaded to a central data warehouse. 

In [2] the problem of making views of many autonomous data warehouses is inves-

tigated. The databases are joined using very large SQL queries joining many external 

databases. Rather than integrating external databases by huge SQL queries, our strate-

gies are based on simple queries over a view (VMeasures) of dynamic collections of 

external databases, i.e. the local-as-view approach [5].  

A classical optimization strategy used in distributed databases [8] is to cost different 

shipping alternatives of data between non-autonomous data servers before joining 

them. By contrast, we investigate using standard DBMS APIs (JDBC and bulk load) to 

make multi-database joins of meta-data with dynamic sets of autonomous log databases 

using local-as-view. 



6 Conclusions 

Two join strategies were proposed for parallel execution of queries joining meta-data 

with data from autonomous log databases using standard DBMS APIs: parallel bind-

join (PBJ) and parallel bulk-load join (PBLJ). For the performance evaluation we de-

fined typical fundamental queries and investigated the impact of our join strategies. A 

cost model was used to guide and evaluate the efficiency of the strategies. The experi-

mental results validated the cost model. In general, PBLJ performs better than PBJ 

when the number of bindings from the meta-database is increased.  

In the experiments a rather small set of autonomous log databases were used. Further 

investigations should evaluate the impact of having very large number of log databases 

and different strategies to improve communication overheads, e.g. by compression. 
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