
Framework for Querying Distributed Objects

Managed by a Grid Infrastructure�

Ruslan Fomkin and Tore Risch

Department of Information Technology, Uppsala University,
P.O. Box 337, SE-751 05 Uppsala, Sweden
{Ruslan.Fomkin, Tore.Risch}@it.uu.se

Abstract. Queries over scientific data often imply expensive analyses of
data requiring a lot of computational resources available in Grids. We are
developing a customizable query processor built on top of an established
Grid infrastructure, the NorduGrid middleware, and have implemented a
framework for managing long running queries in Grid environment. With
the framework the user does not specify the detailed job and paralleliza-
tion descriptions required by NorduGrid. Instead s/he specifies queries
in terms of an application-oriented schema describing contents of files
managed by the Grid and accessed through wrappers. When a query is
received by the system it generates NorduGrid job descriptions submit-
ted to NorduGrid for execution. The framework considers limitations of
NorduGrid. It includes a submission mechanism, a job babysitter, and a
generic data exchange mechanism. The submission mechanism generates
a number of jobs for parallel execution of a user query over wrapped data
files. The task of the babysitter is to submit generated jobs to NorduGrid
for the execution, to monitor their execution status, and to download re-
sults from the execution. The generic exchange mechanism provides a
way to exchange objects through files between Grid execution nodes and
user applications.

1 Introduction

Nowadays a lot of scientific data are stored in Grids. Scientists need to access and
analyze them. Their analyses often imply expensive computations that need to
process a lot of data. Thus scientists need to use external computational resources
to process their analyses, and storage resources to store and share huge amounts
of data. For this many Grids are developed to provide computational resources
and storage facilities.

For example, the ATLAS collaboration [1] motivates many Grid projects such
as LCG [2], EGEE [3], and NorduGrid [4]. These projects provide storage facili-
ties to store and share data produced by ATLAS [1] and to be produced by the
Large Hadron Collider (LHC) [5], along with computational resources to analyze
the data.
� This work is funded by The Swedish Research Council (VR) under contract 343-

2003-955.

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 58–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Framework for Querying Distributed Objects 59

A typical analysis of data for the LHC projects is selections of subsets of
the input data. The selections, called cuts, consist of not only simple logical
predicates but also numerical computations. We show that such analyses can be
expressed in a declarative way using an extensible query language.

We are developing POQSEC [6] (Parallel Object Query System for Expensive
Computations) that processes scientific analyses specified as declarative SQL-like
queries over data distributed in the Grid. It utilizes computational resources of
Swegrid [7] and storage resources of Nordic countries through the middleware
Grid infrastructure NorduGrid [4]. The goal of the POQSEC project is to provide
a transparent and scalable way to specify and execute scientific queries. A user
should be able to specify his/her query transparently in a client database without
respect to where it will be executed and how data will be accessed.

Currently we have implemented a framework for submitting user queries for
execution in the Grid. The system then creates jobs executing the queries, sub-
mits the jobs to NorduGrid, monitors execution of the jobs by NorduGrid, down-
loads results of the jobs, and delivers results of the queries to the user. The user
states queries to POQSEC in terms of a database schema available in the client
database. The schema contains both an application-oriented part and Grid meta-
data. The application schema describes data stored inside files in Grid storage
resources, for example events produced by ATLAS. Wrappers are defined for
accessing the contents of these files, e.g. in our application we use a wrapper of
the ROOT library [8]. The Grid meta-data contains information about the files.
Thus user queries can restrict data both in terms of application data contents
and meta-data about files. The latter is very important since there is a huge
amount of Grid data files and queries are normally over a small percentage of
them. User queries are parallelized to a number of jobs for execution. The par-
allelization is done by partitioning data between jobs. Our preliminary results
show that the parallelization gives significant performance improvements.

The rest of the paper is organized as follows. Related work is discussed in
Sect. 2. Section 3 describes the POQSEC architecture. It is followed by a de-
scription of an application from High Energy Physics, which is our test case. The
implementation of the framework is discussed in Sect. 5, and Sect. 6 concludes
the paper.

2 Related Work

Another system that utilizes a Grid infrastructure and provides high-level declar-
ative query language for data access and analysis is Distributed Query Processing
system (DQP) [9] or its web service version OGSA-DQP [10]. The DQP is part
of the Grid infrastructure myGrid [11], which fully controls resources and where
resources can be allocated dynamically. The resources for the query execution
are allocated and provided by a user. Any of them can be utilized by DQP
dynamically. It is different from our system where NorduGrid is a middleware
above autonomous local batch systems that control computational resources.
Unlike the DQP, we need to consider the NorduGrid limitation that jobs are not

60 R. Fomkin and T. Risch

guaranteed to start immediately. Furthermore, as part of a job description Nor-
duGrid requires to specify descriptions of resources in advance. This includes,
for example, estimating execution time and number of computational nodes for
jobs.

STORM [12] is a distributed query processing environment for processing
selections over distributed large scientific datasets and transferring the selected
data to its clients. STORM does not leverage an existing Grid infrastructure for
data transportation, job scheduling, and batch query processing as POQSEC.

In [13,14] a batch database system is developed to support scientific queries.
It is there applied on astronomical data. The data are stored in back-end SQL
servers managed by a front-end batch query system. In POQSEC we use a mid-
dleware approach to access wrapped data stored in native format rather than
storing the data in SQL databases.

ATLAS Distributed Analysis (ADA) [15] project has goal to provide high-
level interface for scientists who analyze data produced by ATLAS and LHC.
The users specify jobs containing datasets for processing in terms of meta-data
and their analyses as snippets of programming code, for example in C++ or
Fortran. A typical analysis performs selections that include computations over
input datasets and aggregations over results of the selections. The jobs are sub-
mitted to Grid resources and their execution is monitored. In contrast, POQSEC
uses a declarative high-level query language to specify analyses and the goal of
POQSEC is transparent execution without considering whether the query will
be executed on Grid resources or locally.

3 POQSEC Architecture

The architecture presented in Fig. 1 illustrates the current implementation of
POQSEC. The POQSEC architecture considers limitations of the NorduGrid
(NG) middleware. NorduGrid and its limitations are briefly described in Sect. 3.1.
Section 3.2 describes POQSEC components and its interaction with NorduGrid.

3.1 NorduGrid Middleware

NorduGrid (also called Advance Resource Connector) [4,16] is a middleware
between Grid users and computational resources that are managed by local batch
systems. Thus NorduGrid does not control computational resources; instead it
submits user tasks to local batch systems on clusters and each local batch system
allocates cluster nodes according to its policy and current load of the cluster.

The Computing Elements (CE) are clusters where Grid jobs are executed
while Storage Elements (SE) are file servers where the data to be queried are
stored. The CEs and SEs are managed by NorduGrid and are accessible by
submitting Grid jobs to an NG Client. The NG client is a set of command line
tools to submit, monitor, and manage jobs on the Grid. It also has commands
to move data between storage elements and clients, and to query Grid resource
information such as loads on different CEs and job statistics. Users of NorduGrid
always first initiate communication with the NG client.

Framework for Querying Distributed Objects 61

Fig. 1. Architecture of current implementation of POQSEC

The NG client includes a resource brokering service [17] to find suitable re-
sources for jobs. Jobs are described in a resource specification language, xRSL
[18], which includes specification of, e.g.:

– A user executable and its arguments to be run on some suitable computing
element.

– Files to be transported to and from the chosen computing element before
and after the execution.

– Maximal CPU time for the execution.
– Runtime environments for the execution. A runtime environment is an addi-

tional software package required, e.g. an application library such as ROOT
[8].

– Standard input, output, and error files for the execution.
– Optional names of the computing elements where the executable can run.
– The number of parallel sub-jobs to be run on the computing element.

62 R. Fomkin and T. Risch

In summary NorduGrid requires a lot of user specifications to fully describe
computation tasks as xRSL scripts. An example of the script is shown in Fig. 4.
POQSEC simplifies this considerably by automatically generating NorduGrid
interactions and job scripts to execute a task specified as a declarative query
of contents of data. To manage jobs generated by POQSEC, to track their ex-
ecutions, and to download results we provide a babysitter integrated with the
POQSEC framework.

3.2 POQSEC Components and Their Interaction with NorduGrid

The Query Coordinator of POQSEC (Fig. 1) manages user queries submitted
to POQSEC for execution on the Grid. It communicates with an NG client
directly through a command line interface. Both the query coordinator and the
NG client are running on the same node, the Grid Client Node, which is a
user accessible computer node. On it the user must first initialize his/her Grid
credentials required for using NG client services according to the Grid Secure
Infrastructure (GSI) [19] mechanism.

The POQSEC Client component is a personal POQSEC database running on
the Grid client node and communicating with the query coordinator. It could
also run on a separate node from the Grid client node, e.g. on a user’s desktop
computer, if GSI is used for the communication with the query coordinator.
Queries are submitted through the POQSEC client to the query coordinator for
further execution on Grid resources.

The components of the query coordinator are the Coordinator Server and the
Babysitter. The coordinator server contains a Grid Meta-Database, a Submission
Database, and a Job Queue. The Grid meta-database stores information about
data files and computational elements accessible trough POQSEC. It is needed
since Grid resources are heterogeneous and require Grid users to know the com-
putational elements that are able to execute their jobs and properties of the
computational elements required for job executions, e.g. runtime environments.
POQSEC users need not specify this information when submitting queries since
it is stored in the Grid meta-database.

The submission database contains descriptions of queries submitted from the
POQSEC client and job descriptions generated by POQSEC to execute the
queries. The job queue contains jobs that are created but not yet submitted
to NorduGrid for execution.

The process of submitting and evaluating a query is presented in Fig. 2.
When a query is received (1) from the POQSEC client the coordinator server
first registers the query in the submission database and stores there a number of
job descriptions to parallelize the query execution. The number of jobs to create
is currently provided by the user as part of the query submission1. Information
about computational resources and data files from the Grid meta-database is
used to generate these job descriptions. xRSL scripts are generated from the job
descriptions and are stored (2) in the local storage. Then the jobs are registered

1 We are working on automating this.

Framework for Querying Distributed Objects 63

Fig. 2. Interactions between POQSEC components and NorduGrid

in the job queue. The babysitter picks (3) jobs from the job queue and submits
(4) them as xRSL scripts to the NG client for execution on Grid resources. Once
a job has been submitted the babysitter regularly polls (5) the NG client for
its job status and reports (6) the status to the coordinator server to update
the submission database. When a job is finished the babysitter downloads (11)
the result to the Local Storage, which is the file system of the Grid client node,
and notifies (12) the coordinator server. The result can be retrieved (13) to the
POQSEC client after the query is finished.

On each CE NorduGrid maintains an NG Grid Manager. It receives (7) job
descriptions from NG clients. In our case these jobs are executing POQSEC sub-
queries. The NG Grid manager uploads (8) input files from SEs to the local CE
Storage before each job is submitted to the local batch system. The local batch
system allocates CE nodes for each job according its policies and current load,
and then starts the job executions. For POQSEC these jobs contain Executors
that evaluate (9) subqueries over uploaded data and store (10) the results in lo-
cal CE storage files. The babysitter polls (5) the NG client regularly for finished
executions. After a job has finished the babysitter requests (11) the NG client to
download (11) the result to the local storage of the Grid client node and notifies
(12) the coordinator server that the job is ready. Since a given POQSEC query
often generates many jobs a query is ready only when all its jobs are finished.
However, partial results can be obtained once some jobs are finished.

4 User Application

Our current test application is an application for analyzing data produced by
LHC projects for containing charged Higgs bosons [20].

Input data for the analyses are events, which describe collision events between
elementary particles. Each event comprises sets of particles of various types such
as electrons, muons, sets of other particles called jets, and sets of event param-
eters such as missing momentum in x and y directions (PxMiss and PyMiss).
Each particle is described by its own set of parameters, e.g., the ID-number of
the type of a particle (Kf), momentum in x, y, and z directions (Px, Py, and
Pz), and amount of energy (Ee). The data are stored in files managed by an
object-oriented data analysis framework, ROOT [8].

64 R. Fomkin and T. Risch

Fig. 3. The schema of the application data

Analysis of events consists of selecting those events that can potentially con-
tain the charged Higgs bosons. A number of predicates, called cuts, are applied to
each event and if the event satisfies all of them it is selected. A cut is a selection
of events of interest for further analysis according to a scientist’s theory.

The application is implemented as an extension of a functional and object-
oriented mediator system Amos II [21]. It is called ALEH (Analysis LHC Events
for containing charged Higgs bosons). ALEH has a ROOT wrapper to access
data from files managed by ROOT. An object-relational schema of the event
data is defined in Fig. 3. It is a view of relevant parts of ROOT files.

A number of analysis queries implementing cuts are defined as derived func-
tions expressed in a query language, AmosQL [22]. Often a researcher selects
events satisfying several cuts. For example, such query in AmosQL is:

SELECT ev
FROM Event ev
WHERE jetvetocut(ev) AND zvetocut(ev) AND

topcut(ev) AND misseecuts(ev) AND
leptoncuts(ev) AND threeleptoncut(ev);

The query is expressed in terms of derived functions, which define the cuts.
The definition of one of the cuts in AmosQL is:

CREATE FUNCTION zvetocut (Event ev) -> Event AS
SELECT ev
WHERE NOTANY(oppositeleptons(ev)) OR

(abs(invMass(oppositeLeptons(ev)) - zMass) >= minZMass)

where invMass calculates the invariant mass of a pair of two given leptons, zMass
is the mass of a Z particle, minZMass is range of closeness, and oppositeLeptons
is a derived function defined as another query:

CREATE FUNCTION oppositeLeptons (Event ev) -> <Lepton, Lepton> AS
SELECT l1, l2
FROM Lepton l1, Lepton l2

Framework for Querying Distributed Objects 65

WHERE l1 = particles(ev) AND l2 = particles(ev) AND
Kf(l1) = -Kf(l2);

5 Implementation

A POQSEC client running our test application ALEH has an interface to a
coordinator server through which a user can submit queries for execution in the
Grid. It can monitor the status of submitted queries, and can retrieve results of
finished queries. To submit a query the user invokes a system interface function
named submit and specifies there the query defined in terms of the application
schema, set of file names which should be processed by the query, number of
jobs for parallelization the query, CPU time required for processing one job, and
optionally a computing element where the query’s jobs should be executed. If no
computing element is specified the jobs will be submitted to an NG client along
with a list of possible computing elements for execution. The result of the submit
function is an object used to monitor the status and to retrieve the result.

The test data, which are events, are produced by ATLAS simulation software
and stored on storage recourses accessible through NorduGrid. Paths to the data
files are stored in the Grid meta-database of the coordinator server in a format
according to xRSL specification [18]. Thus the user provides file names without
paths during submission.

For example, the user wants to execute the general analyzing query presented
in Sect. 4 over eight specific files containing equal number of events, with paral-
lelization in four jobs that each job will process two files, where the CPU time of
executing the query over the two files is 20 minutes, on any of available compu-
tational resources of Swegrid. The user submits the query and assigns the result
of the submission to a variable :s:

SET :s = submit("SELECT ev FROM Event ev WHERE jetvetocut(ev) AND
zvetocut(ev) AND topcut(ev) AND misseecuts(ev) AND leptoncuts(ev)
AND threeleptoncut(ev)",{"bkg2Events_ruslan_000.root",
"bkg2Events_ruslan_001.root","bkg2Events_ruslan_002.root",
"bkg2Events_ruslan_003.root","bkg2Events_ruslan_004.root",
"bkg2Events_ruslan_005.root","bkg2Events_ruslan_006.root",
"bkg2Events_ruslan_007.root"},4,20);

The submission is then translated into four xRSL scripts, which are submitted
to aNGclient for execution.One of the scripts is presented inFig. 4.The executable
there is the ALEH application, which contains the wrapper of ROOT files.

It is necessary for the user to specify which files to analyze to restrict amount of
data for processing. In the example the user specifies file names explicitly. Alterna-
tively the user can define a query over the meta-database of the coordinator server
to retrieve the file names. The local batch systems of all computational elements
available through NorduGrid require specification of CPU time and thus the user
needs to provide this2.
2 We are working to estimate this automatically.

66 R. Fomkin and T. Risch

& (executable=aleh)

(arguments="aleh.dmp")

(inputfiles= (aleh "/home/udbl/ruslan/Amox/bin/aleh")

(aleh.dmp "/home/udbl/ruslan/Amox/bin/aleh.dmp")

(query2005420103329443.osql "query2005420103329443.osql")

(bkg2Events_ruslan_001.root "gsiftp://se1.hpc2n.umu.se:2811/

se3/ruslan_poqsec/bkg2Events_ruslan_001.root")

(bkg2Events_ruslan_000.root "gsiftp://se1.hpc2n.umu.se:2811/

se3/ruslan_poqsec/bkg2Events_ruslan_000.root"))

(outputfiles=(result.out ""))

(cputime=20)

(| (runtimeenvironment=ROOT-3.10.02)

(runtimeenvironment=APPS/HEP/ATLAS-8.0.8)

(runtimeenvironment=APPS/PHYSICS/HEP/ROOT-3.10.02)

(runtimeenvironment=ATLAS-8.0.8)

(runtimeenvironment=APPS/HEP/ATLAS-9.0.3))

(stdin="query2005420103329443.osql")

(stdout="outGen.out")

(stderr="errGen.err")

(gmlog="grid.debug")

(middleware>="nordugrid")

(| (cluster=sg-access.pdc.kth.se) (cluster=bluesmoke.nsc.liu.se)

(cluster=hagrid.it.uu.se) (cluster=hive.unicc.chalmers.se)

(cluster=ingrid.hpc2n.umu.se) (cluster=sigrid.lunarc.lu.se))

(jobName="POQSEC: swegrid2005420103329444.xrsl")

Fig. 4. Example of the xRSL file with name swegrid2005420103329444.xrsl

The performance of many queries can be significantly improved by paralleliza-
tion into several jobs. Our experience shows that parallelization of executing a
query gives dramatic improvements. For example, the above submission took 24
minutes. The time was calculated as the elapsed time between when the query was
submitted until all job results were downloaded from the Grid. A submission of the
same query without parallelization as one job took 3 hours and 45 minutes, where
3 hours and 10 minutes were spent for the query evaluation. It is much longer re-
sponse time compared with the parallelized Grid execution.

During execution of a query submitted to POQSEC the user can monitor its
status by calling status(:s). The status of the query is computed from its batch
jobs statuses. The status ”DOWNLOADED” will be returned only if results of all
jobs of the query were downloaded. Then the user can retrieve the result data by
executing retrieve(:s). The result of the query can be retrieved also by using
the function wait(:s). The difference is that if wait is invoked before the result of
the jobs is available the system waits until the coordinator server notifies it that all
jobs are downloaded. Then it retrieves the result while retrieve will just print a
message if the query is not finished3. The user can cancel his/her query submission
by executing cancel(:s).

3 We are implementing functions to retrieve partial results.

Framework for Querying Distributed Objects 67

Fig. 5. Schema of the Grid meta-database and the submission database

The coordinator server, the babysitter, and the NG client are running on the
same Grid client node as the POQSEC client. The coordinator server contains the
Grid meta-database and the submission database. The user is able to query the
coordinator server for data from the Grid meta-database and to request updates
of the Grid meta-database through the POQSEC client. The babysitter polls the
coordinator server to pick up jobs from the job queue and to request updates of the
submission database.

A schema of the Grid meta-database and the submission database is presented
in Fig. 5. The types Cluster and DataFile and its subtype EventData are parts
of the Grid meta-database. The submission database is presented by the types
Submission and Job.

When the coordinator server receives query submissions from the POQSEC
client it generates job descriptions and creates xRSL files for NorduGrid and script
files for POQSEC executors. For example, for the submission given above the co-
ordinator server generates four xRSL files and four script files. Example of one of
the xRSL file is given in Fig. 4. The POQSEC script files contain commands for
executors to load the input data from the data files through the ROOT wrapper
and to execute the user query. In our example one of the script files contains:

load_root_file("bkg2Events_ruslan_001.root");
load_root_file("bkg2Events_ruslan_000.root");
save("result.out",SELECT ev FROM Event ev WHERE jetvetocut(ev)
AND zvetocut(ev) AND topcut(ev) AND misseecuts(ev) AND
leptoncuts(ev) AND threeleptoncut(ev));

68 R. Fomkin and T. Risch

The results of the query executions are saved by the executors in files (here in
result.out) in a way that they can be read by the POQSEC client. Objects, in
our case events, which originally were the same, will be treated by the POQSEC
client as the same object regardless of that they came from different sources.

The other three xRSL files and three script files are similar except that they have
different input data files. Automatic generation of the files by POQSEC exempts
the user from manually creating such files for each job.

The main purposes of the babysitter is to interact with the NG client to submit
jobs, to monitor status of executing jobs, and to download finished jobs. Each in-
teraction with the NG client can take from several seconds to a minute; thus the
coordinator server does not contact the babysitter immediately when a job is cre-
ated. Instead the babysitter polls the coordinator server regularly when it is not
interacting with the NG client.

6 Conclusion and Future Work

We have implemented a framework which provides basic tools for executing long
running batch queries on Grid resources overwrapped scientific data distributed in
the Grid. The framework is a part of our development of POQSEC(ParallelObject
Query System for Expensive Computations), the goal of which is to provide a fully
transparent query execution system for scientific applications.

Our on-going work is to automate estimates of maximal CPU time required for
the execution of an arbitrary query on a partition of input data. The estimates will
be based on probing the query on a number of small samples. We also investigate
strategies for suspending those jobs for which the maximal CPU time were under-
estimated, and then resuming them on other resources.

Another on-going work considers automatic parallelization of a user query sub-
mitted for execution on the Grid resources. To decide automatically how many
jobs to parallelize the query into depends on the current load of computational
resources of the Grid and which computational elements would be chosen for the
execution of the generated jobs. We combine this together with development of our
own resource brokering algorithm. The resource brokering algorithm will not just
decide where to execute the query but also to how many jobs parallelize the query.
It should take in account that different computing elements of the Grid have differ-
ent policies. We will base our resource broker algorithm on job statistics available
from the NorduGrid middleware [23].

Job execution on computational resources accessible through NorduGrid can
fail and users of NorduGrid need to deal with failures. We are investigating various
strategies to deal with failures of job executions.

References

1. ATLAS collaboration. http://atlas.web.cern.ch/Atlas/internal/Welcome.html
2. LHC Computing Grid. http://lcg.web.cern.ch/lcg/
3. EGEE: Enabling Grids for E-sciencE.

http://egee-intranet.web.cern.ch/egee-intranet/gateway.html

Framework for Querying Distributed Objects 69

4. Eerola, P., Ekelöf, T., Ellert, M., Hansen, J.R., Konstantinov, A., Kónya, B., Nielsen,
J.L., Ould-Saada, F., Smirnova, O., Wäänänen, A.: Science on NorduGrid. In Neit-
taanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., Knörzer, D., eds.: EC-
COMAS 2004. (2004) See also http://www.nordugrid.org.

5. LHC - the Large Hadron Collider.
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/

6. Fomkin, R., Risch, T.: Managing long running queries in Grid environment. In
Meersman, R., Tari, Z., Corsaro, A., eds.: OTM Workshops. LNCS 3292, Springer
(2004) 99–110

7. Swegrid. http://www.swegrid.se
8. Brun, R., Rademakers, F.: ROOT - an object oriented data analysis framework. In:

AIHENP’96 Workshop. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86 See
also http://root.cern.ch.

9. Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou,
R.: Distributed query processing on the Grid. In Parashar, M., ed.: GRID. LNCS
2536, Springer (2002) 279–290

10. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Watson, P., Fernan-
des, A.A.A., Fitzgerald, D.J.: OGSA-DQP: A service for distributed querying on
the Grid. In Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E., eds.: EDBT. LNCS 2992, Springer (2004)
858–861

11. myGrid. http://www.mygrid.org.uk
12. Narayanan, S., Kurç, T.M., Çatalyürek, Ü.V., Saltz, J.H.: Database support for

data-driven scientific applications in the grid. Parallel Processing Letters 13 (2003)
245–271. See also http://storm.bmi.ohio-state.edu.

13. Nieto-Santisteban, M.A., Gray, J., Szalay, A.S., Annis, J., Thakar, A.R., O’Mullane,
W.: When database systems meet the Grid. In: CIDR. (2005) 154–161

14. O’Mullane, W., Li, N., Nieto-Santisteban, M.A., Szalay, A.S., Thakar, A.R., Gray,
J.: Batch is back: CasJobs, serving multi-TB data on the Web. Technical Report
MSR-TR-2005-19, Microsoft Research (2005)

15. Adams, D., Deng, W., Chetan, N., Kannan, C., Sambamurthy, V., Harrison, K.,
Tan, C., Soroko, A., Liko, D., Orellana, F., Branco, M., Haeberli, C., Albrand, S.,
Fulachier, J., Lozano, J., Fassi, F., Rybkine, G.: ATLAS distributed analysis. In:
CHEP04. (2004)

16. The NorduGrid/ARC User Guide. (2005) Available at
http://www.nordugrid.org/documents/userguide.pdf.

17. Ellert, M.: The NorduGrid brokering algorithm (2004) Available at
http://www.nordugrid.org/documents/brokering.pdf.

18. Smirnova, O.: Extended Resource Specification Language Reference Manual. (2005)
Available at http://www.nordugrid.org/documents/xrsl.pdf.

19. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J.,
Kesselman, C., Meder, S., Pearlman, L., Tuecke, S.: Security for Grid ser-
vices. In: HPDC’03, IEEE Computer Society (2003) 48–57. See also http://www-
unix.globus.org/toolkit/docs/3.2/gsi/.

20. Hansen, C., Gollub, N., Assmagan, K., Ekelöf, T.: Discovery potential for a charged
Higgs boson decaying in the chargino-neutralino channel of the ATLAS detector at
the LHC. SN-ATLAS-2005-050 (2005)

21. Risch, T., Josifovski, V., Katchaounov, T.: Functional data integration in a dis-
tributed mediator system. In: The Functional Approach to Data Management: Mod-
eling, Analyzing, and Integrating Heterogeneous Data. SpringerVerlag (2003)

70 R. Fomkin and T. Risch

22. Flodin, S., Hansson, M., Josifovski, V., Katchaounov, T., Risch, T., Skold, M.: Amos
II Release 7 User’s Manual. Uppsala Database Laboratory. (2005) Available at
http://user.it.uu.se/~udbl/amos/doc/amos users guide.html.

23. Konstantinov, A.: The Logger Service, Functionality Description and Installation
Manual. (2005) Available at http://www.nordugrid.org/documents/Logger.pdf.

	Introduction
	Related Work
	POQSEC Architecture
	NorduGrid Middleware
	POQSEC Components and Their Interaction with NorduGrid

	User Application
	Implementation
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

