
Adaptive Parallelization of Queries over Dependent
Web Service Calls

Manivasakan Sabesan and Tore Risch
 Department of Information Technology, Uppsala University

Sweden
msabesan@it.uu.se

Tore.Risch@it.uu.se

Abstract— We have developed a system to process database
queries over composed data providing web services. The queries
are transformed into execution plans containing an operator that
invokes any web service for given arguments. A common pattern
in these query execution plans is that the output of one web
service call is the input for another, etc. The challenge addressed
in this paper is to develop methods to speed up such dependent
calls in queries by parallelization. Since web service calls incur
high-latency and message set-up costs, a naïve approach making
the calls sequentially is time consuming and parallel invocations
of the web service calls should improve the speed. Our approach
automatically parallelizes the web service calls by starting
separate query processes, each managing a parameterized sub-
query, a plan function, for different parameter tuples. For a
given query, the query processes are automatically arranged in a
multi-level process tree where plan functions are called in
parallel. The parallel plan is defined in terms of an algebra
operator, FF_APPLYP, to ship in parallel to other query
processes the same plan function for different parameters. By
using FF_APPLYP we first investigated ways to set up different
process trees manually. We concluded from our experiments that
the best performing query execution plan is an almost balanced
bushy tree. To automatically achieve the optimal process tree we
modified FF_APPLYP to an operator AFF_APPLYP that adapts
a parallel plan locally in each query process until an optimized
performance is achieved. AFF_APPLYP starts with a binary
process tree. During execution each query process in the tree
makes local decisions to expand or shrink its process sub-tree by
comparing the average time to process each incoming tuple. The
query execution time obtained with AFF_APPLYP is shown to be
close to the best time achieved by manually built query process
trees.

I. INTRODUCTION
There is a common need to search information supplied by

data providing web services that return a set of objects for a
given set of parameters without any side effects. For example,
consider a query to find USAF Academy’s Zip code and the
State where it is located. The three different data providing
web service calls in this query are GetAllStates [3] to retrieve
all the states, GetInfoByState [19] to get all the Zip codes
within a given state, and GetPlacesInside [4] to provide all the
places having a given Zip code. A naïve implementation of
the example query makes 5000 calls sequentially and takes
nearly 2400 seconds to execute. The reason is that each web
service call incurs high latency and message set-up costs.

Queries calling data providing web services often have a
similar pattern where the output (e.g. state) of one web service
call is the input for another web service call (e.g.
GetInfoByState), i.e. the second call is dependent on the first
one, etc. A challenge here is to develop methods to speed up
queries requiring such dependent web service calls.

In our approach a web service call is considered as an
expensive function call where the result is a collection. It is
likely that making parallel invocations of such calls will speed
up the performance of queries with several dependent web
service calls. To improve the response time, we present an
approach to parallelize the web service calls while keeping the
dependencies among them. With the approach separate query
processes are started in parallel, each calling a parameterized
sub query, called a plan function, for a stream of parameter
tuples. Each plan function encapsulates a web service call.

The approach is implemented in the Web Service MEDiator
(WSMED) system [15] that extends a main memory functional
DBMS [14] with primitives to call web services. WSMED
enables general query capabilities over data accessible
through any data providing web service by reading the WSDL
meta-data description. Queries are expressed in SQL. To
enable simple queries to complex collections returned by web
services, WSMED automatically generates flattened views of
the result collections as tables.

For a given query the WSMED optimizer first produces a
non-parallel plan where web service operations are called as
functions. The query processor then automatically
reformulates the non-parallel plan into a parallel one where
web service operations are called in parallel while keeping the
required dependency among the calls. The algebra operator,
FF_APPLYP (First Finished Apply in Parallel), ships a plan
function in parallel to other query processes and then calls the
shipped plan function in parallel for a stream of parameter
tuples.

Multi-level execution plans are generated with several
layers of parallelism in different query processes. This forms
the process tree for the query. Each child query process
delivers back the result data from the shipped plan function to
its parent process asynchronously. The number of children
processes below a parent query process is called its fanout.
During execution a coordinator query process first initiates the
communication with its child query processes and then ships

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.148

1725

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.148

1725

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.148

1725

in parallel to the children their plan functions. Then a stream
of different parameter tuples for the plan functions is shipped
in parallel to the children. At any point in time every process
in the tree executes one plan function for a specific parameter
tuple. The results from the children are delivered to the parent
in parallel as streams.

The performance is often improved by setting up several
web service calls to the same operation in parallel rather than
to call the operation in sequence for different parameters.
Normally there is an optimal number of parallel calls for a
given web service operation. It is therefore important to
figure out an optimized process tree for an execution plan by
automatically arranging the available query processes for best
performance. We first evaluated FF_APPLYP for different
process trees by setting different fanouts manually. We tested
flat and bushy process trees over existing real web services.
Based on the experiments we concluded that a process tree
rather close to a balanced tree performed best.

The exact properties of the composed web service
operations and the computing environments involved in the
calls are usually unknown. Therefore an optimal process tree
is very difficult to produce using traditional query
optimization assuming a cost-model describing these
properties. WSMED therefore adaptively achieves an
optimized process tree by run-time monitoring of the plan
function calls. For the adaptation we modified FF_APPLYP to
an operator AFF_APPLYP that dynamically modifies a
parallel plan locally and greedily in each query process. We
compared the operator AFF_APPLYP to the process tree with
best effort manual process arrangement.

In summary the contributions of our work are:
• We define an algebra operator FF_APPLYP to distribute a plan

function among child query processes for parallel calls with
different parameter tuples.

• An algorithm is implemented to transform a central plan into a
parallel plan by introducing FF_APPLYP operators calling
plan functions encapsulating each web service call.

• Experiments with using FF_APPLYP showed that the best
execution time for queries with dependent joins is achieved
with a bushy tree rather close to a balanced one.

• To automatically optimize the parallel plan, we developed
another algebra operator AFF_APPLYP that locally adjusts an
initial balanced binary process tree adaptively until best
performance is obtained.

The rest of this paper is organized as follows. In Section 2,
we provide a motivating scenario used in experiments in terms
of existing web services. Query process arrangements using
FF_APPLYP are presented in Section 3. The query processing
details are explained in Section 4. Experimental results and
the AFF_APPLYP operator are presented in Section 5. Related
work is analyzed in Section 6, and Section 7 summarizes and
indicates future directions.

II. MOTIVATING SCENARIO
The class of queries we consider here is dependent-join [7]

queries, which in their simplest form can be expressed as:
)z,g(y)y,f(x +−∧+−

The predicate f binds y for some input value x and passes
each y to the predicate g that returns the bindings of z as result.

Thus, g depends on the output of f. The predicates f and g
represent calls to parameterized sub queries, which in our case
are execution plans encapsulating data providing web service
operations. Inputs parameters are annotated with ‘-‘ and
outputs with ‘+’.

We made experiments with two different queries calling
different web service operations provided by different
publicly available service providers.

A. Query1
In the first test case we used the SQL Query1 in Fig. 1 that

finds information about places located within 15 km from
each city whose name starts with ’Atlanta‘ in all US states. In
the query we utilize the web service operations GetAllStates
[3], GetPlacesWithin [3], and GetPlaceList [17]. For a given
web service WSMED automatically generates operation
wrapper functions (OWFs) based on the WSDL definitions of
the web service operations. Each OWFs encapsulates a data
providing web service operation for given parameters and
emits the result as a flattened stream of tuples. Each OWF
defines an SQL view of a web service operation. SQL queries
can be made over these views with the restriction that the
input values of the OWFs must be known in the query. In Fig.
1 the three OWFs GetAllStates, GetPlacesWithin, and
GetPlaceList define views encapsulating web service
operations with the same names. The query returns a stream of
360 result tuples. A naïve central sequential execution plan
invokes more than 300 web service calls.
Select gl.placename,gl.state
From GetAllStates gs, GetPlacesWithin gp,

GetPlaceList gl
Where gs.State=gp.state and gp.distance=15.0

and gp.placeTypeToFind='City' and
gp.place='Atlanta' and
gl.placeName=gp.ToPlace+' ,'+gp.ToState
and gl.MaxItems=100 and
gl.imagePresence='true'

Fig. 1 Query 1 defined in SQL

The OWF GetAllStates presents information of US states as
a set of tuples <name, type, state, latDegrees, lonDegrees,
latRadians, lonRadians>. However, we are only interested in
the values of the attribute State. The OWF GetPlacesWithin
returns a set of tuples <ToCity, ToState,
GeoPlaceDistance_Distance> for given place (‘Atlanta’),
state (gs.State), distance (15.0), and kind of place type to find
(’City’). The OWF GetPlaceList retrieves a set of places
<placename, state, country, placeLon, placeLat,
availableThemeMask, placeTypeId, population> given a
specification of a place (concatenate ToCity+’,’+ToState), the
maximum number result tuples (100), and a flag indicating
whether places having an associated map are returned.

Fig. 2 shows the automatically generated OWF
GetAllStates, which flattens the result from the web service
operation named GetAllStates. An OWF is generated based on
the WSDL definition of a web service operation. Any web
service operation can be invoked by the built-in function cwo
(line 14). Its parameters are the URI of the WSDL document
that describes the service, the name of the service, the

172617261726

operation name, and the input parameter list for the operation.
The web service operation GetAllStates has no input
parameters ({}).

1. create function GetAllStates()-> Bag of

 <Charstring name, Charstring type,
 Charstring state, Real latDegrees,
 Real lonDegrees, Real latRadians,
 Real lonRadians> as

2. select GeoPlaceDetails['Name'],

3. GeoPlaceDetails['Type'],

4. GeoPlaceDetails['State'],

5. GeoPlaceDetails['LatDegrees'],

6. GeoPlaceDetails['LonDegrees'],

7. GeoPlaceDetails['LatRadians'],

8. GeoPlaceDetails['LonRadians']

9. from Sequence out,
10. Record GetAllStatesResult ,

11. Record GetAllStatesResult1,

12. Sequence GetAllStateResult2,

13. Record GeoPlaceDetails
14. where out=cwo('http://codebump.com/services

/PlaceLookup.wsdl’, 'GeoPlaces',
'GetAllStates', {})and

15. GetAllStatesResult1 in out and

16. GetAllStatesResult2 =
GetAllStatesResult1
['GetAllStatesResult']and

17. GetAllStateResult in
GetAllStatesResult2 and

18. GeoPlaceDetails=GetAllStatesResult['G
eoPlaceDetails'];

Fig. 2 Automatically generated OWF GetAllStates

The result from cwo is bound to the query variable out (line
14). It holds an object representing the output from the web
service operation temporarily materialized in WSMED’s local
store. The OWF converts the output XML structure from the
web service operation call into records and sequences. The
result out is here a sequence from which elements are
extracted (line 15) into the GetAllStatesResult1 record
structure using the in operator. The records have only one
attribute named GetAllStatesResult whose values are assigned
to another sequence structure GetAllStatesResult2 (line 16).
An attribute a of a record r is accessed using the notation r[a].
Each element record from the sequence GetAllStatesResult2 is
bound to the variable GetAllStateResult (line 17). The values
of the attribute GeoPlaceDetails are assigned to the
GeoPlaceDetails record with attributes Name, Type, State,
LatDegrees, LonDegrees, LatRadians, and LonRadians (line
18). The OWFs GetPlacesWithin and GetPlaceList are
automatically generated analogously.

B. Query2
The second case, Query2 in Fig. 3, finds the zip code and

state of the place ‘USAF Academy’. A naïve sequential plan
invokes more than 5000 web service calls. Here also three
different dependent web services are involved. GetAllStates is
the same as in Query1. GetInfoByState is provided by the
USZip [19] web service to retrieve all zip codes for a given
state as a single comma separated string
(gi.GetInfoByStateResult). getzipcode is an helping function
defined in WSMED that extracts the set of zip codes

(gc.zipcode) given a string of zip codes (gc.zipstr). The OWF
GetPlacesInside is supported by the Zipcodes [4] web service
provider and returns for a given zip code a set of tuples
<ToPlace, ToState, Distance> where ToPlace is a place
located within the zip code area, ToState is the state of the
place, and Distance is the distance from the place to the origin
of the given zip code area.

select gp.ToState, gp.zip
From GetAllStates gs, GetInfoByState gi,

getzipcode gc, GetPlacesInside gp
Where gs.State=gi.USState and

gi.GetInfoByStateResult=gc.zipstr and
gc.zipcode=gp.zip and
gp.ToPlace='USAFAcademy'

Fig. 3 Query2 defined in SQL

III. WSMED PROCESS ARRANGEMENT
The web service metadata in a WSDL document is first

imported and stored in the WSMED local database [15]. A
query is processed by a coordinator process q0. Fig. 4 gives
an example of a process tree generated by the WSMED query
optimizer. Every query process on each level can be
connected with a number of child processes and all the
processes on the same level execute the same plan function
but with different parameters.

In Fig. 4, q1 is connected with q3, q4, and q5. The plan
function in the coordinator q0 encapsulates the OWF
GetAllStates, while the plan functions of the processes in level
one encapsulate the OWF GetPlacesWithin for different states.
On level two the plan function calls the OWF GetPlaceList for
different place specifications.

Fig. 4 Process tree

The coordinator q0 first generates a central plan containing
calls to the OWFs. It then automatically reformulates the
central plan to incorporate parallel web service calls by
inserting algebra operators FF_APPLYP in the execution plan
whenever an OWF is encountered. For each OWF a plan
function is generated that encapsulates a fragment of the
central execution plan embodying the OWF call. When the
algebra operator FF_APPLYP is executed in process q0, it
first ships in parallel to its children in level one (q1,q2) the
same plan function definition that encapsulates
GetPlacesWithin. Then it ships in parallel different parameter
tuples to the shipped plan function installed in the children
processes ready for execution. Analogously, the FF_APPLYP

q- query processes

Level 2

q0

q1

q3 q4

q2
GetPlacesWithin

GetAllStates

GetPlaceList

q5 q8q7 q6

Coordinator

Level 1

Query1

172717271727

operators executing in the level one processes send another
plan function definition to the level two processes
(q3,q4,q5,q6,q7,q8). Each query process initially receives its
own plan function definition once before execution. When the
level two processes receive data from the wrapped web
service operation GetPlaceList, the results will be returned
asynchronously as streams to the processes in level one, and
finally the results are streamed to the coordinator process.

A. FF_APPLYP
The operator FF_APPLYP enables parallel invocation of a

plan function for different parameter tuples delivered as an
input stream to FF_APPLYP. FF_APPLYP has the signature:
FF_APPLYP(Function pf, Integer fo, Stream pstream) → Stream result

It ships in parallel to fo number of child query processes the
definition of the same plan function pf. Then it ships one by
one parameter tuples from pstream to each of the children.
The result stream from a call to pf for a given parameter tuple
is sent back to FF_APPLYP asynchronously as a stream of
tuples, result.

In our first experiments the fanout fo is set manually for
each level. This allows us to analyze different process trees. In
Fig. 4 the fanout on level one is fo1=2 and on level two fo2=3.
The coordinator q0 at level zero first initializes the two child
processes q1 and q2. Then q0 ships the plan function
encapsulating the web service operation GetPlacesWithin to
the children (q1, q2). When all plan functions are shipped it
starts picking parameter tuples one by one from pstream, to
send down to the plan function started in the children. In q0
the stream pstream is a stream of state names produced as the
result of the plan function that encapsulates the web service
operation GetAllStates. When the first round of parameter
tuples are shipped to all children, FF_APPLYP will broadcast
that it is ready to receive results. Whenever a result tuple is
received from some child it is directly emitted as a result of
FF_APPLYP. When a child completed the processing of a
plan function for a given parameter tuple it sends an end-of-
call message to FF_APPLYP. When the parent receives an
end-of-call message from a child it will ship the next pending
parameter tuple from pstream to the idle child process. When
there are no pending parameter tuples in pstream and no
pending results from the child processes, FF_APPLYP is
finished.

IV. QUERY PARALLELIZATION IN WSMED
Fig. 5 illustrates the query processor in WSMED [15]. The

calculus generator produces from a given user query defined
in SQL an internal calculus expression in a Datalog dialect
[13]. The symbol ’_’ represents an anonymous result variable.

Query1 is transformed into the following calculus
expression:
Query1(pl,st) :-
 GetAllStates() AND
 GetPlacesWithin(‘Atlanta’,_,
 15.0,’City’) AND
 GetPlaceList(_, 100,’true’)

With naïve query optimization the calculus expression is
translated by the central plan creator into the algebra

expression in Fig. 6. The central plan creator uses a simple
heuristic web service cost model based on the signatures of
web service operations assuming that web service operations
are expensive. The algebra expressions contains calls to the
apply operator γ [6], which applies a plan function for a given
parameter tuple. The naïve central query execution plan with γ
can be directly interpreted but with very bad performance
since many web service operations are applied in sequence.

The plan first executes the OWF GetAllStates returning a
stream of tuples <st1>. Each of these tuples are fed to the
next OWF GetPlacesWithin called by the apply operator with
the given argument tuple (‘Atlanta’, st1, 15.0, ‘City’)
returning a stream of tuples <city, st2>. The built in function
concat is then applied on each argument tuple (city,’,’,st2)
producing a stream of strings str. Finally the OWF
GetPlaceList is applied on each argument tuple (str,100,’true’)
returning a stream of tuples <pl,st>.

Fig. 5 Query Processor

Fig. 6 Central query plan - Query1

The parallelizer in Fig. 5 takes as input a central plan (e.g.
the one in Fig. 6) and identifies there the parallelizable OWFs.
Since the parallelization is based on parameter streams, OWFs
not having input parameters are not considered. For example,
the plan in Fig. 6 can be parallelized for the OWFs
GetPlacesWithin and GetPlaceList, but not for GetAllStates.
The parallelizer splits the plan into one section for each
parallelizable OWF starting from the bottom. The first section,

γGetPlacesWithin(‘Atlanta’, st1, 15.0, ‘City’)

<pl, st>

γGetPlaceList (str, 100, ‘true’)

γGetAllStates()
<st1 >

<city , st2 >

γconcat(city,’, ‘, st2)
<str >

parallel
query plan

User query

Calculus Generator

Central plan creator

Plan rewriter

Parallelizer Plan function
generator

172817281728

flattening the result from the call to the web service operation
GetAllStates, is executed in the coordinator. The next section
contains the calls to GetPlacesWithin and concat. The final
section contains only the call to GetPlaceList.

Fig. 7.Plan function PF1 wrapping GetPlacesWithin

For each parallelizable section the plan function generator

creates a plan function that encapsulates a parallelizable call
to an OWF. For example, the plan function PF1 in Fig. 7
encapsulates the OWF GetPlacesWithin. It has the signature
PF1(Charstring st1) → Stream of Charstring str.
Analogously PF2 in Fig. 8 flattens the web service operation
GetPlaceList to return a stream of tuples <pl, st> and has the
signature PF2(Charstring str) → Stream of <Charstring pl,
Charstring st>.

Fig. 8 Plan function PF2 wrapping GetPlaceList

Finally, the plan rewriter transforms the central query by
inserting the algebra operator FF_APPLYP for each generated
plan function. Fig. 9 shows the final parallelized execution
plan with two calls to FF_APPLYP (FF_γ).

Fig. 9.Parallel execution plan-Query1

Analogously Query2 is initially compiled into the central
plan in Fig. 10. The central plan first executes the OWF
GetAllStates to return a stream of tuples <st1>. These outputs
are fed to the next OWF GetInfoByState returning a stream of
single comma separated strings zstr. For each zstr the γ
operator applies the user defined helping function getzipcode
to produce a stream of extracted zip codes zc. Then the OWF
GetPlacesInside is applied for each zc returning a stream of
tuples <st, pl, zc>. Finally the equal function is applied to

check if pl is equal to ‘USAF Academy’ and returns stream of
valid tuples <st ,zc>.

Fig. 10 Central query plan- Query2

The parallelizer splits the first parallelizable section (call to
OWF GetAllStates) to execute in the coordinator. The next
parallelizable section contains the calls to GetInfoByState and
getzipcode. The final section contains only the call to
GetPlacesInside and equal. Then the plan function generator
creates plan functions to encapsulate the parallelizable OWFs.
The plan function PF3 in Fig. 11 encapsulates GetInfoByState.
It has the signature:

PF3(Charstring st1) → Stream of Charstring zc.

 Fig. 11 Plan function PF3 wrapping GetInfoByState

PF4 in Fig. 12 wraps the OWF GetPlacesInside and returns
<st,zc>. It has the signature:

PF4(Charstring zc) → <Charstring st, Charstring zc>.

 Fig. 12 Plan function PF4 wrapping GetPlacesInside

Finally, the plan rewriter transforms the central query by
inserting FF_γ for each generated plan function as illustrated
in Fig. 13.

γGetPlacesInside(zc)

<st, zc>

γ equal(’USAF Academy’,pl)
<st, pl , zc >

<zstr>

γ GetInfoByState(st1)

γ getzipcode(zstr)
<zc >

γ GetInfoByState(st1)

< st, zc >

γ GetPlacesInside(zc)

γGetAllStates()
<st1 >

γ getzipcode(zstr)
<zc >

<zstr >

γ equal(’USAF Academy’,pl)
<st, pl , zc >

γGetPlaceList(str,100,’true’)

<pl, st>

<city, state2>

γGetPlacesWithin(Atlanta’, st1, 15.0, ‘City’)

γconcat(city,’, ‘, state2)
<str >

<str>

<st1>

FF_γ (PF2, 3,str)

<pl, st>

γGetAllStates()

FF_ γ (PF1, 2, st1)

172917291729

Fig. 13 Parallel execution plan-Query2

V. EXPERIMENTS
We compared the query execution times for Query1 using

the central execution plan in Fig. 6 with the parallel plan in
Fig. 9 (for Query2 we compare the plans in Fig. 10 and Fig.
13). To analyze different process trees, we set manually a
fanout vector with fanouts for the different process tree levels
to evaluate the query execution times. The tests were run on a
computer with a 3 GHz single processor Intel Pentium 4 with
2.5GB RAM. We evaluated the following process trees:

• Flat tree (Fig. 14): The fanout vector has fo2=0 ({fo1,0}) in
which case both OWFs are combined into the same plan
function executed at the same level.

• Unbalanced tree (Fig. 15): Fanout vector {fo1,fo2}, fo1≠fo2
• Balanced tree: the fanouts are equal, i.e. fo1 = fo2

Fig. 14 Flat tree Fig. 15 Unbalanced tree

The total number of query processes N needed to execute
the parallel queries is N= fo1 + fo1 * fo2.

In general, there should be an optimum shape of the process
tree based on properties of the web service calls, which are not
known. The experiments investigate the optimum tree
topology for up to 60 query processes.

Fig. 16 illustrates the execution times in seconds for
Query1 by varying the values of fo1 and fo2. It shows the
lowest execution time region is achieved within the range 50 -
60 sec. The fastest execution time 56.4 sec for fanout vector
{5,4} outperformed with speedup 4.3 the central plan (244.8
sec). Fig. 17 shows that the best execution time for Query2 is
achieved within the range of 1200-1400 sec. The best
execution time 1243.89 sec for fanout vector {4,3}
outperformed with speed up of nearly 2 the central plan
(2412.95 sec).

We notice from the experiments that the best execution
time for both queries is achieved close to, but not exactly for,
balanced trees, (Query1: fo1=5, fo2=4 , Query2: fo1=4, fo2=3).

A. Adaptive apply, AFF_APPLYP
To automatically achieve an optimized process tree, we

developed another algebra operator AFF_APPLYP (Adaptive
First Finished Apply in Parallel) to replace FF_APPLYP, but
requires no explicit fanout argument.

1 4 5 6 10 15 20 25 30 40
0

3

5

11

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

Execution
time(sec)

fo1

fo2

Query1

50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130
130-140 140-150 150-160 160-170 170-180 180-190 190-200 200-210
210-220 220-230 230-240 240-250

Fig. 16 Execution time for Query1

1 2 4 6 20 30 40
0

2

3
4

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

Execution
time(sec)

f01

fo2

Query2

2400-2600
2200-2400
2000-2200
1800-2000
1600-1800
1400-1600
1200-1400

Fig. 17 Execution time for Query2

Based on the observation that the best parallelization is
close to a balanced tree, AFF_APPLYP adapts the process
plan at run time starting with a binary tree. Each node locally
monitors the execution times of its children to dynamically
modify its subtrees AFF_APPLYP does the following:

1. AFF_APPLYP initially forms a binary process tree (Fig.
18) by always setting fanout to 2, the init stage.

2. A monitoring cycle for a non-leaf query process is defined
as when it has received the same number of end-of-call
messages as its number of children. After the first
monitoring cycle AFF_APPLYP adds p new child
processes. Adding new processes is called an add stage. In
Fig. 19, p=1 and therefore query process q0 adds one new
process q7 at level 1, while q1 and q2 add q10 and q11 at
level 2, respectively.

<zc>

FF_ γ (PF3, 2, st1)

<st1>

FF_γ (PF4, 3, zc)

<st, zc>

γGetAllStates()

fo1=2
fo2=4

fo1=5

173017301730

3. When an added node has several levels of children the init
stages of the children’s AFF_APPLYs will produce
balanced binary sub–trees. That is, q7 adds q8 and q9.

4. AFF_APPLYP records per monitoring cycle i the average
time ti to produce an incoming tuple from the children. If ti
decreases more than a threshold (set to 25%) the add stage
is rerun. If ti increases we either stop or run a drop stage
that drops one child and its children. In Fig. 20, q2 adds
q12, while q0 drops q7, and q7 drops q8 and q9.

We experimented with different values of p and different

change thresholds, with and without the drop stage. The
results for 25% change are shown in Fig. 21. The fanout
values are exact for FF_APPLYP while fo1 and fo2 for
AFF_APPLYP are average fanouts. The measurements
include the adaptation times.

Fig. 18 Binary process tree

We notice that for Query1 the execution time with p=4 and
no drop stage comes close to the execution time of the best
manually specified process tree, while for Query2 the
execution with p=2 and no drop stage is the closest one.

We concluded in both cases that execution time with p=2
and no drop stage is close to the execution time of the best
manually specified process tree (Query1 80%, Query2 96 %)
and further dropping processes make insignificant changes in
the execution time.

Fig. 19 Adding processes

Fig. 20 Adding and removing processes

Query1

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

Process selection
E

xe
cu

tio
n

tim
e(

se
c)

Best FF_APPLYP fo1=5 fo2=4 p=1, no drop stage, fo1=3 fo2=3
p=1, drop stage, fo1=2 fo2=3 p=2, no drop stage, fo1=4 fo2=5
p=2, drop stage, fo1=3 fo2=3 p=3, no drop stage, fo1=5 fo2=3.4
p=3, drop stage, fo1=4 fo2=3.25 p=4, no drop stage, fo1=6 fo2=8.7
p=4, drop stage, fo1=5 fo2=4.2 p=5, no drop stage, fo1=7 fo2=7.5
p=4, drop stage, fo1=6 fo2=7.8

Query2

0

500

1000

1500

Process selection

Ex
ec

ut
io

n
tim

e
(s

ec
)

Best FF_APPLYP fo1=4 fo2=3

p=1, no drop stage, fo1=3 fo2=2.25

p=1, drop stage, fo1=3 fo2=2.25

p=2, no drop stage, fo1=4 fo2=2.5

p=2, drop stage, fo1=4 fo2=2.25

Fig. 21 Execution time with AFF_APPLYP

VI. RELATED WORK
BPEL [2] proposes workflow primitives to manually

invoke parallel web service calls. It requires a lot of effort on
the part of the programmer to manually identify sections of
the code to run in parallel, and to specify dependencies among
the calls. In contrast, WSMED automatically compiles a given

q0

q1

q3 q4

q2

q5

Coordinator

Level 1

q10

Level 2

q6 q11
q12

q0

q1

q3 q4

q2

q5

Coordinator

Level 1

q7

q9q8
q10

Level 2

q6
q11

q0

q1

q3 q4

q2

q6 q5

Coordinator

Level 1

Level 2

q- query processes

173117311731

query over composed data providing web services by
generating an adaptive, parallel, and optimized workflow.

In [1] an approach is described for optimizing web service
compositions by procedurally traversing ActiveXML
documents to select embedded web service calls. It
demonstrates the gain obtained by maximizing parallelism
achieved by invoking calls to independent web services in a
query. Conversely, WSMED adaptively parallelizes
dependent web service calls.

WSQ/DSQ [9] handles high-latency calls to web search
engines by launching asynchronous materialized dependent
joins later joined in the execution plan using a special operator.
In contrast, WSMED produces non-blocking multi-level
parallel plans based on streams of parameter tuples passed to
parallel sub plans without any materialization.

WSMS [16] proposed an approach for pipelined parallelism
among dependent web services to minimize the query
execution time. By contrast, we parallelize by partitioning
parameter tuple streams. Furthermore, WSMS didn’t propose
any adaptive parallelization, lacked support for code shipping,
and couldn’t make parallel calls to the same web service. In
contrast we propose a strategy to adaptively produce a
parallelized plan where AFF_APPLYP invokes parameterized
plans calling web services in parallel.

Like two-phase parallel query optimization [11] WSMED
also generates a parallelized query execution plan from an
initial central query plan. However, WSMED adaptively
parallelizes dependent joins by generating plan functions that
are called in parallel using the adaptive operator
AFF_APPLYP, while [11] focused on static inter-operator
parallelism in distributed databases based on a static cost
model.

The plan function and parameter tuple shipping phase of
FF_APPLYP is similar to the map phase of MAPREDUCE [5].
However, MAPREDUCE is more of a programming model
than a query operator and is not dynamically rearranging
query execution plans as AFF_APPLYP.

In [10] run time adaptation of buffer sizes in web service
calls is investigated, not dealing with adaptive parallelism on
web service calls at the client side.

The formal basis for using views to query heterogeneous
data sources is reviewed in [8][18]. Chocolate [12] extends
the federated database capabilities of DB2/UDB by
automatically creating views of web services from WSDL
descriptions, similar to the OWF generation in WSMED.
However, Chocolate does not deal with adaptive
parallelization of the web service calls in a query as WSMED.

VII. CONCLUSIONS AND FUTURE WORK
We presented an approach to automatically parallelize

queries with dependent web service calls. The algebra
operator FF_APPLYP was first defined in order to parallelize
calls to parameterized sub plans partitioned for different
parameter tuples. We did experiments by manually arranging
different process trees with different fanouts. From the
experiments we concluded that the optimum process fanout is
close to, but not exactly, a balanced tree. To adaptively find

the best process tree we devised an algebra operator
AFF_APPLYP that starts with a balanced binary process tree
and then each non-leaf process locally adapts the process sub-
trees by adding and removing children until an optimum is
reached, based on monitoring the flow of result tuples from
the children. The adaptive method obtained performance close
to the best manually specified process tree.

Our algebra operators FF_APPLYP and AFF_APPLYP can
handle parallel query plans for a query with any number of
dependent joins. We would like to generalize the strategy for
queries mixing both dependent and independent web service
calls, as well bushy trees. Further we need to investigate
different process arrangement strategies with the algebra
operators.

ACKNOWLEDGMENTS
This work is supported by Sida and the Swedish

Foundation for Strategic Research under contract RIT08-0041.

REFERENCES
[1] S. Abiteboul et al., Lazy query evaluation for active XML, Proc. of the

2004 ACM SIGMOD, 227–238, 2004.
[2] T. Andrews et al., Business Process Execution Language for Web

Services version 1.1., http://ifr.sap.com/bpel4ws/, 2003
[3] codeBump, GeoPlaces web service, http://codebump. com /services

/PlaceLookup.asmx
[4] codeBump, Zipcodes web service, http://codebump.com/services

/ZipCodeLookup.asmx
[5] J.Dean, and S.Ghemawat, MAPREDUCE: Simplified Data Processing

on Large Clusters, Communications of the ACM, 51(1), 107-113, 2008
[6] G. Fahl, and T. Risch, Query Processing over Object Views of

Relational Data, The VLDB Journal , 6(4), 261-281, 1997
[7] D.Florescu, A.Levy, I.Manolescu and D.Suciu, Query Optimization in

the Presence of Limited Access Patterns, Proc. of ACM SIGMOD ’99,
311-322, 1999

[8] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y.
Sagiv, J.D. Ullman, V. Vassalos, and J.Widom, The TSIMMIS
Approach to Mediation: Data Models and Languages, Journal of
Intelligent Information Systems, 8(2): 117-132, 1997

[9] R.Goldman, and J.Widom, WSQ/DSQ: a practical approach for
combined querying of databases and the Web, Proc. of 2000 ACM
SIGMOD Intl. Conf. on Management of Data, 285-296, 2000.

[10] A. Gounaris, et al., Robust runtime optimization of data transfer in
queries over Web Services, Proc. of ICDE 2008, 2008

[11] W.Hasan, D.Florescu, and P.Valduriez, Open Issues in Parallel Query
Optimization, SIGMOD Record, 25(3), 1996

[12] V.Josifovski, S.Massmann, and F.Naumann, Super-Fast XML Wrapper
Generation in DB2: A Demonstration, Proc. International Conference
of Data Engineering, (ICDE’03), 756-758, 2003

[13] W. Litwin, and T. Risch, Main Memory Oriented Optimization of OO
Queries using Typed Datalog with Foreign Predicates, Proc. IEEE
Trans. on Knowledge and Data Engineering, 4(6), 517-528, 1992

[14] T.Risch, V.Josifovski, and T.Katchaounov, Functional Data Integration
in a Distributed Mediator System, Functional Approach to Data
Management - Modeling, Analyzing and Integrating Heterogeneous
Data, Springer, 211-238, 2003

[15] M.Sabesan and T.Risch, Web Service Mediation Through Multi-level
Views, Proc. International Workshop on Web Information Systems
Modeling (WISM 2007), 755-766, 2007

[16] U.Srivastava, J.Widom, K.Munagala, and R.Motwani, Query
Optimization over Web Services, Proc. Very Large Database
Conference (VLDB 2006), 2006

[17] TerraServer, TerraService, http://terraservice.net/webservices.aspx
[18] J.D.Ullman, Information Integration Using Logical Views, Proc. 6th

International Conference on Database Theory (ICDT ’97), 19-40, 1997
[19] USZip, http://www.webservicex.net/uszip.asmx

173217321732

