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Abstract— We have developed a system to process database 
queries over composed data providing web services. The queries 
are transformed into execution plans containing an operator that 
invokes any web service for given arguments. A common pattern 
in these query execution plans is that the output of one web 
service call is the input for another, etc. The challenge addressed 
in this paper is to develop methods to speed up such dependent 
calls in queries by parallelization. Since web service calls incur 
high-latency and message set-up costs, a naïve approach making 
the calls sequentially is time consuming and parallel invocations 
of the web service calls should improve the speed. Our approach 
automatically parallelizes the web service calls by starting 
separate query processes, each managing a parameterized sub-
query, a plan function, for different parameter tuples. For a 
given query, the query processes are automatically arranged in a 
multi-level process tree where plan functions are called in 
parallel. The parallel plan is defined in terms of an algebra 
operator, FF_APPLYP, to ship in parallel to other query 
processes the same plan function for different parameters. By 
using FF_APPLYP we first investigated ways to set up different 
process trees manually. We concluded from our experiments that 
the best performing query execution plan is an almost balanced 
bushy tree. To automatically achieve the optimal process tree we 
modified FF_APPLYP to an operator AFF_APPLYP that adapts 
a parallel plan locally in each query process until an optimized 
performance is achieved. AFF_APPLYP starts with a binary 
process tree. During execution each query process in the tree 
makes local decisions to expand or shrink its process sub-tree by 
comparing the average time to process each incoming tuple. The 
query execution time obtained with AFF_APPLYP is shown to be 
close to the best time achieved by manually built query process 
trees.  

I. INTRODUCTION 
There is a common need to search information supplied by 

data providing web services that return a set of objects for a 
given set of parameters without any side effects. For example, 
consider a query to find USAF Academy’s Zip code and the 
State where it is located. The three different data providing 
web service calls in this query are GetAllStates [3] to retrieve 
all the states, GetInfoByState [19] to get all the Zip codes 
within a given state, and GetPlacesInside [4] to provide all the 
places having a given Zip code. A naïve implementation of 
the example query makes 5000 calls sequentially and takes 
nearly 2400 seconds to execute. The reason is that each web 
service call incurs high latency and message set-up costs.  

Queries calling data providing web services often have a 
similar pattern where the output (e.g. state) of one web service 
call is the input for another web service call (e.g. 
GetInfoByState), i.e. the second call is dependent on the first 
one, etc. A challenge here is to develop methods to speed up 
queries requiring such dependent web service calls. 

In our approach a web service call is considered as an 
expensive function call where the result is a collection. It is 
likely that making parallel invocations of such calls will speed 
up the performance of queries with several dependent web 
service calls. To improve the response time, we present an 
approach to parallelize the web service calls while keeping the 
dependencies among them. With the approach separate query 
processes are started in parallel, each calling a parameterized 
sub query, called a plan function, for a stream of parameter 
tuples. Each plan function encapsulates a web service call. 

The approach is implemented in the Web Service MEDiator 
(WSMED) system [15] that extends a main memory functional 
DBMS [14] with primitives to call web services. WSMED 
enables general query capabilities over data accessible 
through any data providing web service by reading the WSDL 
meta-data description. Queries are expressed in SQL. To 
enable simple queries to complex collections returned by web 
services, WSMED automatically generates flattened views of 
the result collections as tables.  

For a given query the WSMED optimizer first produces a 
non-parallel plan where web service operations are called as 
functions. The query processor then automatically 
reformulates the non-parallel plan into a parallel one where 
web service operations are called in parallel while keeping the 
required dependency among the calls. The algebra operator, 
FF_APPLYP (First Finished Apply in Parallel), ships a plan 
function in parallel to other query processes and then calls the 
shipped plan function in parallel for a stream of parameter 
tuples. 

Multi-level execution plans are generated with several 
layers of parallelism in different query processes. This forms 
the process tree for the query. Each child query process 
delivers back the result data from the shipped plan function to 
its parent process asynchronously. The number of children 
processes below a parent query process is called its fanout. 
During execution a coordinator query process first initiates the 
communication with its child query processes and then ships 
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in parallel to the children their plan functions. Then a stream 
of different parameter tuples for the plan functions is shipped 
in parallel to the children. At any point in time every process 
in the tree executes one plan function for a specific parameter 
tuple. The results from the children are delivered to the parent 
in parallel as streams. 

The performance is often improved by setting up several 
web service calls to the same operation in parallel rather than 
to call the operation in sequence for different parameters. 
Normally there is an optimal number of parallel calls for a 
given web service operation.  It is therefore important to 
figure out an optimized process tree for an execution plan by 
automatically arranging the available query processes for best 
performance. We first evaluated FF_APPLYP for different 
process trees by setting different fanouts manually. We tested 
flat and bushy process trees over existing real web services. 
Based on the experiments we concluded that a process tree 
rather close to a balanced tree performed best.  

The exact properties of the composed web service 
operations and the computing environments involved in the 
calls are usually unknown. Therefore an optimal process tree 
is very difficult to produce using traditional query 
optimization assuming a cost-model describing these 
properties. WSMED therefore adaptively achieves an 
optimized process tree by run-time monitoring of the plan 
function calls. For the adaptation we modified FF_APPLYP to 
an operator AFF_APPLYP that dynamically modifies a 
parallel plan locally and greedily in each query process.  We 
compared the operator AFF_APPLYP to the process tree with 
best effort manual process arrangement. 

In summary the contributions of our work are: 
• We define an algebra operator FF_APPLYP to distribute a plan 

function among child query processes for parallel calls with 
different parameter tuples.  

• An algorithm is implemented to transform a central plan into a 
parallel plan by introducing FF_APPLYP operators calling 
plan functions encapsulating each web service call. 

• Experiments with using FF_APPLYP showed that the best 
execution time for queries with dependent joins is achieved 
with a bushy tree rather close to a balanced one.   

• To automatically optimize the parallel plan, we developed 
another algebra operator AFF_APPLYP that locally adjusts an 
initial balanced binary process tree adaptively until best 
performance is obtained. 

The rest of this paper is organized as follows. In Section 2, 
we provide a motivating scenario used in experiments in terms 
of existing web services. Query process arrangements using 
FF_APPLYP are presented in Section 3. The query processing 
details are explained in Section 4. Experimental results and 
the AFF_APPLYP operator are presented in Section 5. Related 
work is analyzed in Section 6, and Section 7 summarizes and 
indicates future directions. 

II. MOTIVATING SCENARIO 
The class of queries we consider here is dependent-join [7] 

queries, which in their simplest form can be expressed as: 
)z,g(y)y,f(x +−∧+−  

The predicate f  binds y for some input value x and passes 
each y to the predicate g that returns the bindings of z as result. 

Thus, g depends on the output of f. The predicates f and g 
represent calls to parameterized sub queries, which in our case 
are execution plans encapsulating data providing web service 
operations. Inputs parameters are annotated with ‘-‘ and 
outputs with ‘+’.  

We made experiments with two different queries calling 
different web service operations provided by different 
publicly available service providers.  

A. Query1 
In the first test case we used the SQL Query1 in Fig. 1 that 

finds information about places located within 15 km from 
each city whose name starts with ’Atlanta‘ in all US states. In 
the query we utilize the web service operations GetAllStates 
[3], GetPlacesWithin [3], and GetPlaceList  [17]. For a given 
web service WSMED automatically generates   operation 
wrapper functions (OWFs) based on the WSDL definitions of 
the web service operations. Each OWFs encapsulates a data 
providing web service operation for given parameters and 
emits the result as a flattened stream of tuples. Each OWF 
defines an SQL view of a web service operation. SQL queries 
can be made over these views with the restriction that the 
input values of the OWFs must be known in the query. In Fig. 
1 the three OWFs GetAllStates, GetPlacesWithin, and 
GetPlaceList define views encapsulating web service 
operations with the same names. The query returns a stream of 
360 result tuples. A naïve central sequential execution plan 
invokes more than 300 web service calls.  
Select gl.placename,gl.state 
From GetAllStates gs, GetPlacesWithin gp, 

GetPlaceList gl 
Where gs.State=gp.state and gp.distance=15.0 

and gp.placeTypeToFind='City' and 
gp.place='Atlanta' and 
gl.placeName=gp.ToPlace+' ,'+gp.ToState 
and gl.MaxItems=100 and 
gl.imagePresence='true' 
 

Fig. 1 Query 1 defined in SQL 

The OWF GetAllStates presents information of US states as 
a set of tuples <name, type, state, latDegrees, lonDegrees, 
latRadians, lonRadians>. However, we are only interested in 
the values of the attribute State. The OWF GetPlacesWithin 
returns a set of tuples <ToCity, ToState, 
GeoPlaceDistance_Distance> for given place  (‘Atlanta’), 
state (gs.State), distance (15.0), and kind of place type to find 
(’City’). The OWF GetPlaceList retrieves a set of places 
<placename, state, country, placeLon,  placeLat, 
availableThemeMask, placeTypeId, population> given a 
specification of a place (concatenate ToCity+’,’+ToState), the 
maximum number result tuples (100), and a flag indicating 
whether places having an associated map are returned.  

Fig. 2 shows the automatically generated OWF 
GetAllStates, which flattens the result from the web service 
operation named GetAllStates. An OWF is generated based on 
the WSDL definition of a web service operation. Any web 
service operation can be invoked by the built-in function cwo 
(line 14). Its parameters are the URI of the WSDL document 
that describes the service, the name of the service, the 
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operation name, and the input parameter list for the operation. 
The web service operation GetAllStates has no input 
parameters ({}). 

 
1. create function GetAllStates()-> Bag of 

       <Charstring name, Charstring type, 
        Charstring state, Real latDegrees, 
        Real lonDegrees, Real latRadians, 
        Real lonRadians> as 

2. select GeoPlaceDetails['Name'], 

3.  GeoPlaceDetails['Type'], 

4.  GeoPlaceDetails['State'], 

5.  GeoPlaceDetails['LatDegrees'], 

6.  GeoPlaceDetails['LonDegrees'], 

7.  GeoPlaceDetails['LatRadians'], 

8.  GeoPlaceDetails['LonRadians']

9. from Sequence out, 
10.  Record GetAllStatesResult ,

11.  Record GetAllStatesResult1,

12.  Sequence GetAllStateResult2,

13.  Record GeoPlaceDetails 
14. where out=cwo('http://codebump.com/services

/PlaceLookup.wsdl’, 'GeoPlaces', 
'GetAllStates', {})and 

15.  GetAllStatesResult1 in out and

16.  GetAllStatesResult2 = 
GetAllStatesResult1 
['GetAllStatesResult']and 

17.  GetAllStateResult in 
GetAllStatesResult2 and 

18.  GeoPlaceDetails=GetAllStatesResult['G
eoPlaceDetails']; 

Fig. 2 Automatically generated OWF GetAllStates 

The result from cwo is bound to the query variable out (line 
14). It holds an object representing the output from the web 
service operation temporarily materialized in WSMED’s local 
store. The OWF converts the output XML structure from the 
web service operation call into records and sequences. The 
result out is here a sequence from which elements are 
extracted (line 15) into the GetAllStatesResult1 record 
structure using the in operator. The records have only one 
attribute named GetAllStatesResult whose values are assigned 
to another sequence structure GetAllStatesResult2 (line 16). 
An attribute a of a record r is accessed using the notation r[a]. 
Each element record from the sequence GetAllStatesResult2 is 
bound to the variable GetAllStateResult (line 17). The values 
of the attribute GeoPlaceDetails are assigned to the 
GeoPlaceDetails record with attributes Name, Type, State, 
LatDegrees, LonDegrees, LatRadians, and LonRadians (line 
18). The OWFs GetPlacesWithin and GetPlaceList are 
automatically generated analogously. 

B. Query2 
The second case, Query2 in Fig. 3, finds the zip code and 

state of the place ‘USAF Academy’. A naïve sequential plan 
invokes more than 5000 web service calls. Here also three 
different dependent web services are involved. GetAllStates is 
the same as in Query1. GetInfoByState is provided by the 
USZip [19] web service to retrieve all zip codes for a given 
state as a single comma separated string 
(gi.GetInfoByStateResult). getzipcode is an helping function 
defined in WSMED that extracts the set of zip codes 

(gc.zipcode) given a string of zip codes (gc.zipstr). The OWF 
GetPlacesInside is supported by the Zipcodes [4] web service 
provider and returns for a given zip code a set of tuples 
<ToPlace, ToState, Distance> where ToPlace is a place 
located within the zip code area, ToState is the state of the 
place, and Distance is the distance from the place to the origin 
of the given zip code area. 

select gp.ToState, gp.zip 
From GetAllStates gs, GetInfoByState gi, 

getzipcode gc, GetPlacesInside gp 
Where gs.State=gi.USState and 

gi.GetInfoByStateResult=gc.zipstr and 
gc.zipcode=gp.zip and 
gp.ToPlace='USAFAcademy' 

Fig. 3 Query2 defined in SQL 

 

III. WSMED PROCESS ARRANGEMENT 
The web service metadata in a WSDL document is first 

imported and stored in the WSMED local database [15]. A 
query is processed by a coordinator process q0.  Fig. 4 gives 
an example of a process tree generated by the WSMED query 
optimizer. Every query process on each level can be 
connected with a number of child processes and all the 
processes on the same level execute the same plan function 
but with different parameters.  

In Fig. 4, q1 is connected with q3, q4, and q5. The plan 
function in the coordinator q0 encapsulates the OWF 
GetAllStates, while the plan functions of the processes in level 
one encapsulate the OWF GetPlacesWithin for different states. 
On level two the plan function calls the OWF GetPlaceList for 
different place specifications.  

Fig. 4 Process tree 

The coordinator q0 first generates a central plan containing 
calls to the OWFs. It then automatically reformulates the 
central plan to incorporate parallel web service calls by 
inserting algebra operators FF_APPLYP in the execution plan 
whenever an OWF is encountered. For each OWF a plan 
function is generated that encapsulates a fragment of the 
central execution plan embodying the OWF call.  When the 
algebra operator FF_APPLYP is executed in process q0, it 
first ships in parallel to its children in level one (q1,q2) the 
same plan function definition that encapsulates 
GetPlacesWithin. Then it ships in parallel different parameter 
tuples to the shipped plan function installed in the children 
processes ready for execution. Analogously, the FF_APPLYP 

q- query processes 

Level 2 

q0 

q1 

q3 q4

q2 
GetPlacesWithin 

GetAllStates 

GetPlaceList 

q5 q8q7 q6 

Coordinator 

Level 1 

Query1 
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operators executing in the level one processes send another 
plan function definition to the level two processes 
(q3,q4,q5,q6,q7,q8). Each query process initially receives its 
own plan function definition once before execution. When the 
level two processes receive data from the wrapped web 
service operation GetPlaceList, the results will be returned 
asynchronously as streams to the processes in level one, and 
finally the results are streamed to the coordinator process. 

A. FF_APPLYP 
The operator FF_APPLYP enables parallel invocation of a 

plan function for different parameter tuples delivered as an 
input stream to FF_APPLYP. FF_APPLYP has the signature: 
FF_APPLYP(Function pf, Integer fo, Stream pstream) → Stream result 

It ships in parallel to fo number of child query processes the 
definition of the same plan function pf. Then it ships one by 
one parameter tuples from pstream to each of the children. 
The result stream from a call to pf for a given parameter tuple 
is sent back to FF_APPLYP asynchronously as a stream of 
tuples, result.  

In our first experiments the fanout fo is set manually for 
each level. This allows us to analyze different process trees. In 
Fig. 4 the fanout on level one is fo1=2 and on level two fo2=3. 
The coordinator q0 at level zero first initializes the two child 
processes q1 and q2. Then q0 ships the plan function 
encapsulating the web service operation GetPlacesWithin to 
the children (q1, q2). When all plan functions are shipped it 
starts picking parameter tuples one by one from pstream, to 
send down to the plan function started in the children. In q0 
the stream pstream is a stream of state names produced as the 
result of the plan function that encapsulates the web service 
operation GetAllStates. When the first round of parameter 
tuples are shipped to all children, FF_APPLYP will broadcast 
that it is ready to receive results. Whenever a result tuple is 
received from some child it is directly emitted as a result of 
FF_APPLYP. When a child completed the processing of a 
plan function for a given parameter tuple it sends an end-of-
call message to FF_APPLYP. When the parent receives an 
end-of-call message from a child it will ship the next pending 
parameter tuple from pstream to the idle child process. When 
there are no pending parameter tuples in pstream and no 
pending results from the child processes, FF_APPLYP is 
finished. 

IV. QUERY PARALLELIZATION IN WSMED 
Fig. 5 illustrates the query processor in WSMED [15]. The 

calculus generator produces from a given user query defined 
in SQL an internal calculus expression in a Datalog dialect 
[13]. The symbol ’_’ represents an anonymous result variable. 

Query1 is transformed into the following calculus 
expression: 
Query1(pl,st) :- 
       GetAllStates() AND 
       GetPlacesWithin(‘Atlanta’,_, 
                       15.0,’City’) AND 
       GetPlaceList(_, 100,’true’) 

With naïve query optimization the calculus expression is 
translated by the central plan creator into the algebra 

expression in Fig. 6. The central plan creator uses a simple 
heuristic web service cost model based on the signatures of 
web service operations assuming that web service operations 
are expensive. The algebra expressions contains calls to the 
apply operator γ [6], which applies a plan function for a given 
parameter tuple. The naïve central query execution plan with γ 
can be directly interpreted but with very bad performance 
since many web service operations are applied in sequence. 

The plan first executes the OWF GetAllStates returning a 
stream of tuples <st1>. Each of these tuples are fed to the 
next OWF GetPlacesWithin called by the apply operator with 
the given argument tuple (‘Atlanta’, st1, 15.0, ‘City’) 
returning a stream of tuples <city, st2>. The built in function 
concat is then applied on each argument tuple (city,’,’,st2) 
producing a stream of strings str. Finally the OWF 
GetPlaceList is applied on each argument tuple (str,100,’true’) 
returning a stream of tuples <pl,st>. 

Fig. 5 Query Processor 

 

Fig. 6 Central query plan - Query1 

The parallelizer in Fig. 5 takes as input a central plan (e.g. 
the one in Fig. 6) and identifies there the parallelizable OWFs. 
Since the parallelization is based on parameter streams, OWFs 
not having input parameters are not considered. For example, 
the plan in Fig. 6 can be parallelized for the OWFs 
GetPlacesWithin and GetPlaceList, but not for GetAllStates. 
The parallelizer splits the plan into one section for each 
parallelizable OWF starting from the bottom. The first section, 

γGetPlacesWithin(‘Atlanta’, st1, 15.0, ‘City’) 

<pl, st> 

γGetPlaceList (str, 100, ‘true’) 

γGetAllStates() 
<st1 > 

<city , st2 > 

γconcat(city,’, ‘, st2) 
<str > 

parallel 
query plan 

User query 

Calculus Generator 

Central plan creator 

Plan rewriter

Parallelizer Plan function 
generator 
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flattening the result from the call to the web service operation 
GetAllStates, is executed in the coordinator. The next section 
contains the calls to GetPlacesWithin and concat. The final 
section contains only the call to GetPlaceList.  

 
Fig. 7.Plan function PF1 wrapping GetPlacesWithin 

 
For each parallelizable section the plan function generator 

creates a plan function that encapsulates a parallelizable call 
to an OWF. For example, the plan function PF1 in Fig. 7 
encapsulates the OWF GetPlacesWithin. It has the signature 
PF1(Charstring st1) → Stream of Charstring str. 
Analogously PF2 in Fig. 8 flattens the web service operation 
GetPlaceList to return a stream of tuples <pl, st> and has the 
signature PF2(Charstring str) → Stream of <Charstring pl, 
Charstring st>. 

Fig. 8 Plan function PF2 wrapping GetPlaceList 

Finally, the plan rewriter transforms the central query by 
inserting the algebra operator FF_APPLYP for each generated 
plan function. Fig. 9 shows the final parallelized execution 
plan with two calls to FF_APPLYP (FF_γ). 

Fig. 9.Parallel execution plan-Query1 

Analogously Query2 is initially compiled into the central 
plan in Fig. 10. The central plan first executes the OWF 
GetAllStates to return a stream of tuples <st1>. These outputs 
are fed to the next OWF GetInfoByState returning a stream of 
single comma separated strings zstr. For each zstr the γ 
operator applies the user defined helping function getzipcode 
to produce a stream of extracted zip codes zc. Then the OWF 
GetPlacesInside is applied for each zc returning a stream of 
tuples <st, pl, zc>. Finally the equal function is applied to 

check if pl is equal to ‘USAF Academy’ and returns stream of 
valid tuples <st  ,zc>.  

Fig. 10 Central query plan- Query2 

The parallelizer splits the first parallelizable section (call to 
OWF GetAllStates) to execute in the coordinator. The next 
parallelizable section contains the calls to GetInfoByState and 
getzipcode. The final section contains only the call to 
GetPlacesInside and equal. Then the plan function generator 
creates plan functions to encapsulate the parallelizable OWFs. 
The plan function PF3 in Fig. 11 encapsulates GetInfoByState. 
It has the signature: 

PF3(Charstring st1) → Stream of Charstring zc.  

 Fig. 11 Plan function PF3 wrapping GetInfoByState 

PF4 in Fig. 12 wraps the OWF GetPlacesInside and returns 
<st,zc>. It has the signature: 

PF4(Charstring zc) → <Charstring st, Charstring zc>.  

 Fig. 12 Plan function PF4 wrapping GetPlacesInside 

Finally, the plan rewriter transforms the central query by 
inserting FF_γ for each generated plan function as illustrated 
in Fig. 13.  

γGetPlacesInside(zc) 

<st, zc> 

γ equal(’USAF Academy’,pl) 
<st, pl , zc > 

<zstr> 

γ GetInfoByState(st1) 

γ getzipcode(zstr) 
<zc > 

γ GetInfoByState(st1) 

< st, zc > 

γ GetPlacesInside(zc) 

γGetAllStates() 
<st1 >

γ getzipcode(zstr) 
<zc > 

<zstr > 

γ equal(’USAF Academy’,pl) 
<st, pl , zc > 

γGetPlaceList(str,100,’true’) 

<pl, st> 

<city, state2> 

γGetPlacesWithin(Atlanta’, st1, 15.0, ‘City’) 

γconcat(city,’, ‘, state2) 
<str > 

<str> 

<st1> 

FF_γ (PF2, 3,str) 

<pl, st>

γGetAllStates() 

FF_ γ (PF1, 2, st1) 
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Fig. 13 Parallel execution plan-Query2 

 

V. EXPERIMENTS 
We compared the query execution times for Query1 using 

the central execution plan in Fig. 6 with the parallel plan in 
Fig. 9 (for Query2 we compare the plans in Fig. 10 and Fig. 
13 ). To analyze different process trees, we set manually a 
fanout vector with fanouts for the different process tree levels 
to evaluate the query execution times. The tests were run on a 
computer with a 3 GHz single processor Intel Pentium 4 with 
2.5GB RAM. We evaluated the following process trees: 

• Flat tree (Fig. 14): The fanout vector has fo2=0 ({fo1,0}) in 
which case both OWFs are combined into the same plan 
function executed at the same level.  

• Unbalanced tree (Fig. 15):  Fanout vector {fo1,fo2}, fo1≠fo2  
• Balanced tree: the fanouts are equal, i.e. fo1 = fo2  
 

 

 

Fig. 14 Flat tree Fig. 15 Unbalanced tree 

The total number of query processes N needed to execute 
the parallel queries is N= fo1 + fo1 * fo2.  

In general, there should be an optimum shape of the process 
tree based on properties of the web service calls, which are not 
known. The experiments investigate the optimum tree 
topology for up to 60 query processes. 

Fig. 16 illustrates the execution times in seconds for 
Query1 by varying the values of fo1 and fo2. It shows the 
lowest execution time region is achieved within the range 50 - 
60 sec. The fastest execution time 56.4 sec for fanout vector 
{5,4} outperformed with speedup 4.3 the central plan (244.8 
sec).  Fig. 17 shows that the best execution time for Query2 is 
achieved within the range of 1200-1400 sec. The best 
execution time 1243.89 sec for fanout vector {4,3} 
outperformed with speed up of nearly 2 the central plan 
(2412.95 sec). 

We notice from the experiments that the best execution 
time for both queries is achieved close to, but not exactly for, 
balanced trees, (Query1: fo1=5, fo2=4 , Query2: fo1=4, fo2=3). 
 

A. Adaptive apply, AFF_APPLYP 
To automatically achieve an optimized process tree, we 

developed another algebra operator AFF_APPLYP (Adaptive 
First Finished Apply in Parallel) to replace FF_APPLYP, but 
requires no explicit fanout argument. 
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Fig. 16 Execution time for Query1 

  

1 2 4 6 20 30 40
0
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Fig. 17 Execution time for Query2 

Based on the observation that the best parallelization is 
close to a balanced tree, AFF_APPLYP adapts the process 
plan at run time starting with a binary tree. Each node locally 
monitors the execution times of its children to dynamically 
modify its subtrees AFF_APPLYP does the following: 

1. AFF_APPLYP initially forms a binary process tree (Fig. 
18) by always setting fanout to 2, the init stage. 

2. A monitoring cycle for a non-leaf query process is defined 
as when it has received the same number of end-of-call 
messages as its number of children. After the first 
monitoring cycle AFF_APPLYP adds p new child 
processes. Adding new processes is called an add stage. In 
Fig. 19, p=1 and therefore query process q0 adds one new 
process q7 at level 1, while q1 and q2 add q10 and q11 at 
level 2, respectively. 

<zc> 

FF_ γ (PF3, 2, st1) 

<st1> 

FF_γ (PF4, 3, zc) 

<st, zc> 

γGetAllStates() 

fo1=2 
fo2=4 

fo1=5 
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3. When an added node has several levels of children the init 
stages of the children’s AFF_APPLYs will produce 
balanced binary sub–trees. That is, q7 adds q8 and q9.  

4. AFF_APPLYP records per monitoring cycle i the average 
time ti to produce an incoming tuple from the children. If ti 
decreases more than a threshold (set to 25%) the add stage 
is rerun. If ti increases we either stop or run a drop stage 
that drops one child and its children. In Fig. 20, q2 adds 
q12, while q0 drops q7, and q7 drops q8 and q9. 

 
We experimented with different values of p and different 

change thresholds, with and without the drop stage. The 
results for 25% change are shown in Fig. 21. The fanout 
values are exact for FF_APPLYP while fo1 and fo2 for 
AFF_APPLYP are average fanouts. The measurements 
include the adaptation times. 

 
Fig. 18 Binary process tree 

We notice that for Query1 the execution time with p=4 and 
no drop stage comes close to the execution time of the best 
manually specified process tree, while for Query2 the 
execution with p=2 and no drop stage is the closest one. 

We concluded in both cases that execution time with p=2 
and no drop stage is close to the execution time of the best 
manually specified process tree (Query1 80%, Query2 96 %) 
and further dropping processes make insignificant changes in 
the execution time. 

Fig. 19 Adding processes 

 

Fig. 20 Adding and removing  processes 
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VI. RELATED WORK 
BPEL [2] proposes workflow primitives to manually 

invoke parallel web service calls. It requires a lot of effort on 
the part of the programmer to manually identify sections of 
the code to run in parallel, and to specify dependencies among 
the calls. In contrast, WSMED automatically compiles a given 
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query over composed data providing web services by 
generating an adaptive, parallel, and optimized workflow. 

In [1] an approach is described for optimizing web service 
compositions by procedurally traversing ActiveXML 
documents to select embedded web service calls. It 
demonstrates the gain obtained by maximizing parallelism 
achieved by invoking calls to independent web services in a 
query. Conversely, WSMED adaptively parallelizes 
dependent web service calls. 

WSQ/DSQ [9] handles high-latency calls to web search 
engines by launching asynchronous materialized dependent 
joins later joined in the execution plan using a special operator. 
In contrast, WSMED produces non-blocking multi-level 
parallel plans based on streams of parameter tuples passed to 
parallel sub plans without any materialization.  

WSMS [16] proposed an approach for pipelined parallelism 
among dependent web services to minimize the query 
execution time. By contrast, we parallelize by partitioning 
parameter tuple streams. Furthermore, WSMS didn’t propose 
any adaptive parallelization, lacked support for code shipping, 
and couldn’t make parallel calls to the same web service. In 
contrast we propose a strategy to adaptively produce a 
parallelized plan where AFF_APPLYP invokes parameterized 
plans calling web services in parallel.  

Like two-phase parallel query optimization [11] WSMED 
also generates a parallelized query execution plan from an 
initial central query plan. However, WSMED adaptively 
parallelizes dependent joins by generating plan functions that 
are called in parallel using the adaptive operator 
AFF_APPLYP, while [11] focused on static inter-operator 
parallelism in distributed databases based on a static cost 
model. 

The plan function and parameter tuple shipping phase of 
FF_APPLYP is similar to the map phase of MAPREDUCE [5]. 
However, MAPREDUCE is more of a programming model 
than a query operator and is not dynamically rearranging 
query execution plans as AFF_APPLYP.  

In [10] run time adaptation of buffer sizes in web service 
calls is investigated, not dealing with adaptive parallelism on 
web service calls at the client side. 

The formal basis for using views to query heterogeneous 
data sources is reviewed in [8][18]. Chocolate [12] extends 
the federated database capabilities of DB2/UDB by 
automatically creating views of web services from WSDL 
descriptions, similar to the OWF generation in WSMED. 
However, Chocolate does not deal with adaptive 
parallelization of the web service calls in a query as WSMED. 

VII. CONCLUSIONS AND FUTURE WORK 
We presented an approach to automatically parallelize 

queries with dependent web service calls. The algebra 
operator FF_APPLYP was first defined in order to parallelize 
calls to parameterized sub plans partitioned for different 
parameter tuples. We did experiments by manually arranging 
different process trees with different fanouts. From the 
experiments we concluded that the optimum process fanout is 
close to, but not exactly, a balanced tree. To adaptively find 

the best process tree we devised an algebra operator 
AFF_APPLYP that starts with a balanced binary process tree 
and then each non-leaf process locally adapts the process sub-
trees by adding and removing children until an optimum is 
reached, based on monitoring the flow of result tuples from 
the children. The adaptive method obtained performance close 
to the best manually specified process tree. 

Our algebra operators FF_APPLYP and AFF_APPLYP can 
handle parallel query plans for a query with any number of 
dependent joins. We would like to generalize the strategy for 
queries mixing both dependent and independent web service 
calls, as well bushy trees. Further we need to investigate 
different process arrangement strategies with the algebra 
operators. 
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