
Scalable Numerical SPARQL Queries over

Relational Databases

Minpeng Zhu, Silvia Stefanova, Thanh Truong, Tore Risch
Department of Information Technology, Uppsala University

Box 337, SE-75105 Uppsala, Sweden

{Minpeng.Zhu, Silvia.Stefanova, Thanh.Truong, Tore.Risch}@it.uu.se

ABSTRACT

We present an approach for scalable processing of SPARQL

queries to RDF views of numerical data stored in relational

databases (RDBs). Such queries include numerical expressions,

inequalities, comparisons, etc. inside FILTERs. We call such

FILTERs numerical expressions and the queries - numerical

SPARQL queries. For scalable execution of numerical SPARQL

queries over RDBs, numerical operators should be pushed into

SQL rather than executing the filters as post-processing outside

the RDB; otherwise the query execution is slowed down, since a

lot of data is transported from the RDB server and furthermore

indexes on the server are not utilized. The NUMTranslator

algorithm converts numerical expressions in numerical

SPARQL queries into corresponding SQL expressions. We

show that NUMTranslator improves substantially the scalability

of SPARQL queries based on a benchmark that analyses

numerical logs stored in an RDB. We compared the performance

of our approach with the performance of other systems

processing SPARQL queries to RDF views of RDBs and show

that NUMTranslator improves substantially the scalability of

numerical queries compared to the other systems’ approaches.

Keywords

SPARQL queries; RDF views of relational databases; numerical

expressions; query rewrites; query optimization

1. INTRODUCTION
The Semantic Web provides uniform data representation for

integrating data from different data sources by using established

well-known formats like RDF, RDFS, OWL, and the standard

query language SPARQL. Semantic Web seems promising to

integrate and search industrial data [2].

Our application scenario is from the industrial domain, where

sensors on machines such as trucks, pumps, kilns, etc., produce

large volumes of log data. Such log data describes measured

values of certain components at different times and can be used

for analyzing machine behavior. Furthermore, the geographic

locations of machines are often widely distributed and

maintained locally in autonomous RDBs called log databases.

We are developing the FLOQ (Federated LOg database Query)

system, which is a system for historical analyses over

federations of autonomous log databases using SPARQL

queries. To discover abnormal machine behaviors, a user of

FLOQ defines SPARQL queries to these log databases. FLOQ

processes a SPARQL query by first finding the relevant log

databases containing the desired data, then sending local

SPARQL queries to them, and finally collecting the local query

results to obtain the final result.

In this paper we concentrate on scalable historical analyses by

SPARQL queries of log data stored in a single relational

database. Suspected abnormal machine behaviors are discovered

and analyzed by specifying numerical SPARQL queries to an

RDF view of the RDB. The queries analyze log data through

numerical FILTERs containing numerical operators [11]. For

example, query Q1 retrieves the machine identifiers m for which

a sensor has measured values mv of measurement class A higher

than the expected values ev by a threshold value @thA during

the time from bt to time et. Here <prod> denotes the URI for

the RDF view of the RDB.

In FLOQ, SPARQL queries to RDBs are processed by

generating a local execution plan containing calls to one or

several SQL queries sent to a back-end RDBMS for evaluation.

SPARQL queries that cannot be completely processed by SQL

are instead partially processed by an execution plan interpreter

in FLOQ. However, in order for the SQL queries to return the

minimal required data, it is desirable that as much as possible of

the SPARQL query is translated to SQL [8].

In FLOQ numerical SPARQL queries are defined over an

automatically generated RDF view over an RDB expressed in

ObjectLog [6], which is a Datalog dialect that supports objects

for representing URIs and typed literals [9], disjunctive queries

for UNION expressions, and foreign predicates to represent

numerical operators in queries. The SPARQL queries are parsed

into ObjectLog queries to the RDF view. Internally representing

queries in ObjectLog permits domain calculus query

transformations and optimizations before generating the

execution plan. Calls to tuple calculus SQL query strings are

made as foreign predicates. Foreign predicates are also used for

accessing URIs in the execution plan. Doing all processing in

(c) 2014, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2014 Joint Conference (March 28,

2014, Athens, Greece) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0.

Q1:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresA log:mA_BySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.

 ?measuresA log:mA/m ?m.

 ?measuresA log:mA/mv ?mv.
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + @thA)) }

the RDB is complicated, and requires implementing SPARQL

operators not supported by SQL as RDB-specific UDFs. We

show that ObjectLog query transformations enable scalable

execution by the RDBMS.

Numerical SPARQL queries contain variables bound to numbers

and calls to numerical functions and operators. For scalable

execution, it is important that such numerical expressions are

pushed into corresponding SQL expressions and executed on the

RDBMS server, which is the subject of this paper. The

NUMTranslator algorithm converts numerical SPARQL queries

into SQL queries where numerical expressions are pushed into

SQL. For example, Q1 is converted into SQL query SQL1,

where the numerical expression in the SPARQL FILTER is

translated into a corresponding SQL expression.

A particular problem is that SPARQL and ObjectLog are

domain calculus languages where variables can be bound to

numbers, while SQL is a tuple calculus language where

variables have to be bound to tuples in relations. The

NUMTranslator algorithm translates domain calculus

expressions into corresponding SQL tuple calculus expressions

after having applied domain calculus transformation on the

ObjectLog representation.

We show that NUMTranslator improves substantially the query

performance for numerical SPARQL queries compared to other

approaches used by other systems.

In summary the contributions are:

 We propose a table driven approach to translate

numerical domain calculus operators into numerical

SQL tuple calculus operators.

 We present the NUMTranslator algorithm that extracts

numerical ObjectLog expressions and translates them

into corresponding numerical SQL expressions.

 We compare the performance of numerical SPARQL

queries to RDF views of RDBs with and without

applying NUMTranslator, and show that the algorithm

substantially improves the query performance.

 We compare the performance of our approach with the

performance of other systems processing SPARQL

queries over RDF views of RDBs and show

substantially better performance.

The rest of this paper is organized as follows: Section 2 presents

a scenario where the approach is applicable. Section 3 overviews

the system architecture. Section 4 describes the NUMTranslator

algorithm. Section 5 discusses performance experiments.

Section 6 describes related work. Conclusions and future work

are described in section 7.

2. MOTIVATING SCENARIO
We present a common scenario from an industrial setting where

it is desirable to analyze historical log data in order to find

abnormal machine behavior. Log data from embedded sensors is

stored in a relational log database.

Figure 1 shows the schema of the RDB storing log data

measured by sensors embedded in machine installations. Table

Machine(m, mm) stores meta-data about each machine

installation, i.e. machine identifier and model name. The table

Sensor(m, s, sm, mc, ev, ad, rd) stores information about each

sensor installation, i.e. the machine installation m where a sensor

s is embedded, sensor model name sm, the kind of measurement

(measurement class) mc, expected sensor value ev, absolute

error ad and relative error rd. The attribute mc, measurement

class is used to identify different kind of measurements, e.g. oil

pressure, temperature, etc. The tables MeasuresA(m, s, bt, et,

mv) and MeasuresB(m, s, bt, et, mv) store log data of kind A and

B read from sensors s embedded in machine installations m. The

begin time bt and the ending time et for a sensor reading are also

stored, while the measured value for a certain time stamp is

denoted by mv. The columns m, (m, s), and (m, s, bt) are primary

keys in the tables Machine, Sensor, and MeasuresA and

MeasuresB, respectively. The column m in tables MeasuresA,

MeasuresB, and Sensor references the column m in the table

Machine as foreign key. Furthermore, columns (m, s) in tables

MeasuresA and MeasuresB reference columns (m, s) in table

Sensor as a composite foreign key.

The RDF view of the RDB is illustrated by the RDF graph in

Figure 2.

SQL1:

SELECT m.m, bt, et
FROM MeasuresA m, SENSOR s
WHERE m.m=s.m AND
 m.s=s.s AND
 m.mv > s.ev + @thA

Machine(m, mm)

Sensor(m, s, sm, mc, ev, ad, rd)

MeasuresA(m, s, bt, et, mv)

MeasuresB(m, s, bt, et, mv)

Figure 1. RDB schema for log data

 mA/mv

 mA/bt

 mA/et

Figure 1

 mA/m mA/s

mB/m
mB/s

mB/bt

mB/et

 mB/mv

sensor/ev

sensor/s

sensor/m

machine/m

machine/mm

mB_atMachine

mA_atMachine

mA_bySensor
sensor_ofMachine

mB_bySensor
Sensor

MeasuresB

MeasuresA

Machine

xsd:string xsd:int

xsd:float xsd:int

xsd:int

....

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

Figure 2. RDF graph of the RDF view for

the example RDB

Next we define two more typical numerical SPARQL queries to

the log database, Q2 and Q3, that discover abnormal machine

behaviors. Query Q2 identifies a potential failure by retrieving

for machine models M_1, M_2, and M_3 those machineid

where, during the time interval (bt, et), the measured value mv

was above 75% of the allowed deviation @thA from the

expected value ev.

Query Q3 identifies abnormal behaviors of machines of a

measurement class based on absolute deviations: when and for

which machine identifiers did the pressure reading of class B

deviate more than @thB from its expected value ev?

3. FLOQ OVERVIEW AND QUERY

PROCESSING
Figure 3 illustrates processing of numerical SPARQL queries by

FLOQ.

The RDF view over the RDB is automatically generated based

on the database schema and ontology mapping tables in FLOQ.

The used mappings conform to the direct mapping

recommended by W3C [10].

We define a unique RDFS class for each relational table, except

for link tables [10] representing set-valued properties as many-

to-many relationships. In addition, RDF properties are defined

for each column in a table. For example, the RDFS class with

the URI <log:mA> represents the table MeasuresA, while

<log:mA/bt> and <log:mA/et> represent the columns bt and et

in MeasuresA, respectively.

The RDF view is defined in terms of:

 Source predicates R(a1, a2, …, an) that represent the

content of each referenced relational database table R

where the tuple (a1, …, an) represents a row in R.

 URI-constructor predicates that construct URIs to

identify rows in tables.

 Mapping tables that map relational schema elements

to RDF concepts.

The complete RDF view definitions can be found in [9]. The

query processing steps in FLOQ are shown in Figure 4.

The SPARQL parser first transforms the SPARQL query into an

ObjectLog expression where each triple pattern in the query

becomes a reference to the RDF view of the RDB. Then the

ObjectLog transformer generates a simplified disjunctive normal

form (DNF) predicate. The NUMTranslator algorithm performs

the extractor and finalizer steps. The extractor collects from

conjunctions predicates that can be translated to SQL, called

access filters. The query decomposer then optimizes the query,

producing a query execution plan where access filters are called.

The finalizer traverses the execution plan to translate the

extracted predicates in the access filters into SQL expressions.

When the execution plan is interpreted, the generated SQL

statements are sent to the RDB for execution. The non-extracted

predicates are not translated to SQL and have to be processed

outside the RDB by post-processing operators. For example,

Q2:
SELECT ?machineid ?bt ?et
FROM <prod>
WHERE{?measuresA log:mA_bySensor ?sensor.
 ?measuresA log:mA/bt ?bt.
 ?measuresA log:mA/et ?et.
 ?measuresA log:mA/mv ?mv.
 ?measuresA log:mA_atMachine ?machineid.

 ?machineid log:machine/mm ?mm.
 FILTER (?mm in ('M_1','M_2','M_3')).
 ?sensor log:sensor/ev ?ev.
 FILTER (?mv > (?ev + 0.75*@thA)) }

Q3:
SELECT ?m ?bt ?et
FROM <prod>
WHERE {?measuresB log:mB/bt ?bt.
 ?measuresB log:mB/et ?et.
 ?measuresB log:mB/mv ?mv.
 ?measuresB log:mB_bySensor ?sensor.
 ?sensor log:sensor/m ?m.
 ?sensor log:sensor/ev ?ev.
 BIND ((?mv-?ev) as ?temp).
 FILTER (abs(?temp) > @thB) }

SQL

SPARQL query

SPARQL parser

RDB

Query Decomposer

Finalizer

Extractor

ObjectLog transformer

Post-processing

Figure 4. Query processing steps

SPARQL query

SQL

FLOQ

RDF view

Query processor

NUMTranslator

RDB

Figure 3. FLOQ query processor

such operators are URI-constructors and numerical expressions

not supported by the SQL engine.

4. THE NUMTRANSLATOR

ALGORITHM
The NUMTranslator uses a table-driven approach to define

which SPARQL operators to extract and translate into

corresponding SQL operators and functions. Table 1 defines the

SPARQL to SQL operator translations:

Table 1. SPARQL to SQL operators to translate

SPARQL SQL INFIX FUNCTION

> > True False

< < True False

= = True False

!= <> True False

+ + True True

- - True True

ABS ABS False True

UCASE UPPER False True

etc.

In Table 1 there is one row for each SPARQL operator or

function (column SPARQL) that can be translated into SQL. The

column SQL defines the corresponding SQL operator or

function. A value in the column INFIX is true when the

corresponding SQL operator is an infix operator op on operands

x and y, i.e. x op y (e.g. x+y); otherwise it is an SQL function on

format f(x,y,..). The column FUNCTION is true when the

operator is a non-Boolean function returning a value.

4.1 The NUMTranslator extractor
The extractor is applied on each ObjectLog conjunction in the

simplified predicate received by the ObjectLog transformer. The

extractor collects predicates that can be translated to SQL. Such

predicates are i) source predicates SPs representing RDB tables,

and ii) non-source predicates (NSPs) that are defined in Table 1

as translatable to SQL.

Figure 5 shows the ObjectLog representation of Q1 after it has

been transformed by the ObjectLog transformer.

In this case all predicates in Q1 are translatable to SQL since

MeasuresA and Sensor are SPs, and > and + are NSPs defined

in Table 1.

The steps of the extractor are the following:

1. Initialize a variable Xpreds for the first found SP,

denoted R1, in the conjunction and bind a variable

Rest to the other predicates.

2. Iteratively extract from Rest the predicates that have

some common variable with some extracted predicate

in Xpreds, which are either SPs or NSPs defined in

Table 1.

3. Construct an access filter of all extracted predicates in

Xpreds since those can be fully translated to SQL.

4. While there are some remaining SP, R2, in Rest, re-

initialize Xpreds by R2 and Rest by the remaining

predicates, and repeat steps 2-3.

5. Finally, construct a conjunction of the access filters

and Rest.

For example, for Q1 the predicates in Xpreds are extracted in the

following order:

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.

2. >(mv, v36) (line 2) since > is defined in Table 1 and

the variable mv is common with the extracted

MeasuresA.

3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP

having common variables (m and s) with MeasuresA().

4. V36 = ev + @thA (line 3) since + is defined in Table

1 and the variable ev is common with the extracted

Sensor predicate.

Then the following conjunctive access filter F1 is formed by the

predicates in Xpreds:

 F1(m,s,bt,et,mv,ev):-

1 MeasuresA(m, s, bt, et, mv) and

2 Sensor(m, s, _, _, ev, _, _) and

3 v36= ev + @thA and

4 mv > v36

No non-translatable predicates remain in Rest.

4.2 Query decomposition
To optimize the query produced by the extractor, the query

decomposer uses cost-based optimization [6] to produce an

optimized execution plan. Based on heuristics and statistic of the

queried RDB, execution cost and selectivities of access filter are

estimated. Default cost parameters are used by the optimizer to

estimate the execution cost and selectivities of predicates if no

statistic is available. The decomposer will then reorder the

access filters and the post processed predicates to generate an

optimized execution plan. We do not further elaborate the query

decomposer here.

4.3 The NUMTranslator finalizer
The finalizer translates access filters in the decomposed

execution plan into calls to an SQL interface operator, sql that

sends generated SQL strings to the back-end RDB for execution.

ObjectLog numerical expressions are translated into SQL

numerical expressions by recursively replacing all ObjectLog

domain variables that represent numerical expressions with their

bound expressions. For example, the variable v36 in line 4 in F1

doesn’t represent a relational column and is replaced by its

bound expression in line 3, and then the obtained expressions is

mv > ev + @thA. Thus for Q1 the execution plan P1 becomes

the following:

The execution plan contains an algebra expression where the

apply operator γ fn(..) calls the foreign predicate sql(ds, q,

result) implemented in Java. The foreign predicate sql sends an

Figure 5. ObjectLog of query Q1

Q1(m, bt, et):-

1 MeasuresA(m, s, bt, et, mv) and

2 mv > v36 and

3 v36 = ev + @thA and

4 Sensor(m, s, _, _, ev, _, _)

(m, bt, et)

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA
m, SENSOR s WHERE m.mv > s.ev + @thA AND

m.m=s.m AND m.s=s.s", (m, bt, et))

Figure 6. Execution plan P1 with NUMTranslator

SQL query q to the RDBMS data source ds for execution and

iteratively returns bindings of tuples, result.

If NUMTranslator had not been applied, all numerical operators

would have to be post-processed, which would slow down the

query execution since filtering cannot be made in the database

server.

For example, if NUMTranslator is turned off, for Q1 the

following execution plan P2 is produced that doesn’t contain

any numerical SQL operators corresponding to numerical

SPARQL operators, which are instead post-processed:

Comparing the two execution plans P1 and P2 it can be seen

that the sql operator in P2 retrieves much more data than P1, so

if NUMTranslator is turned off lots of data needs to be filtered

out outside the RDB server. Furthermore, the utilization of

indexes on the SQL numerical expression by the back-end

database server makes significant performance difference. We

show in the next section that applying NUMTranslator

substantially improves the query performance of numerical

SPARQL queries.

5. PERFORMANCE MEASUREMENTS
We compared the performance for executing the numerical

queries Q1, Q2, and Q3 in FLOQ with and without applying

NUMTranslator. Furthermore, we compared the query

performance of FLOQ with the query performance of D2RQ [1]

for Q1, Q2, and Q3, for the same back-end relational database.

We tried to run the queries with both ontop [7] and Virtuoso [3]

as well, but none of our numerical SPARQL queries could be

run, indicating that those systems do not provide full support for

processing numerical SPARQL queries.

All experiments are carried out on a MS SQL Server 2008 R2

installed on a server machine with 8 AMD OpteronTM 6128

processors, 2.00 GHz CPU and 16GB RAM. The RDB is

populated by loading sensor data into the MS SQL server. B-tree

indexes are created on the columns mm, mv, bt, et, ev, ad, and rd

to speed up the queries.

All measurements were taken both for cold and warm runs. The

cold runs were made immediately after the RDBMS server was

started, which implied that there were no data cached in the

buffer pool and the executed query wasn’t optimized by the

RDBMS. Thus a measured query execution time for a cold run

includes the time for i) reading data from disk, ii) SQL query

optimization on the RDBMS server, iii) communication, and iv)

post-processing of data on the client. The warm runs were made

after a query was executed once. Since the back-end RDBMS

has a statement cache a same SQL query executed twice will be

optimized the first time it is run. Therefore, warm executions do

not include RDBMS query optimization time.

The plotted values are mean values of three measurements. The

standard deviation is less than 10% in all cases. To investigate

the SQL query produced by all the other systems we use the

system profiling tool of MS SQL server when running a query.

The following notations are used in the performance diagrams:

 NUMTranslator: FLOQ with NUMTranslator turned

on, i.e. the SPARQL numerical expressions are

translated into corresponding SQL expressions.

 Naive: FLOQ with NUMTranslator turned off, i.e. the

SPARQL numerical expressions are not translated into

corresponding SQL numerical expressions.

 D2RQ: D2RQ version [0.8.1] configured with the

system’s default mappings.

Figure 8, 9 and 10 show the execution times for both cold and

warm runs for Q1, Q3, and Q2 while scaling the databases size

from 1 GB to 15 GB.

Figure 9. Execution times for Q3

Figure 8 and 9 show that NUMTranslator substantially improves

the query execution scalability compared to Naïve for numerical

SPARQL queries like Q1 and Q3 with highly selective

numerical FILTERs: 0.04% for Q1 and 3% for Q3. In these

cases pushing the numerical FILTERs to SQL is more profitable

than filtering large data amounts on the client. The performance

of D2RQ is worse than Naïve since D2RQ sends to the RDBMS

an SQL query that doesn’t contain numerical expressions, and is

a much more complex query with more joins. Furthermore, Q3

had to be manually changed for D2RQ to remove the BIND

operator, since otherwise D2RQ wouldn’t return correct result.

Measurement results for Q2 are shown in Figure 10. For Q2 the

results for NUMTranslator and Naïve are presented in a separate

diagram, since they are very close. It can be seen on Figure 10

that NUMTranslator doesn’t improve the query performance for

non-selective queries like Q2 where the FILTER selects 43% of

the data. In this case pushing the numerical SPARQL filters to

be executed to the RDBMS server doesn’t make a significant

difference compared to post-filtering data on the client.

D2RQ performs worse for Q2 since it doesn’t translate any of

the FILTERs and it furthermore generates a very complex SQL

query with many joins.

(v36)

(mv)

(m, bt, et)

(ev)

γ >(mv, v36)

γ +(ev, @thA)

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND

m.s=s.s", (m, s, bt, et, mv, ev))

Figure 7. Execution plan P2 without NUMTranslator

Figure 8. Execution times for Q1

Figure 10. Execution times for Q2

In general, the experiments show that NUMTranslator

substantially improves the query performance of numerical

SPARQL queries where the numerical FILTERs have high

selectivity.

6. RELATED WORK
Virtuoso RDF Views [3] and D2RQ [1] are other systems that

process SPARQL queries to RDF views of RDBs. These

systems implement compilers that translate SPARQL directly to

SQL. By contrast, FLOQ first generates ObjectLog queries to a

declarative RDF view of the RDB, and then transforms the

SPARQL queries to SQL by logical transformations.

We didn’t find any publication of how D2RQ compiles

numerical SPARQL queries into SQL and the documentation for

Virtuoso’s SQL generation is very limited [3]. However, by

using the profiling tool of the RDBMS and the debug logging of

Virtuoso we were able to analyze what queries were actually

sent to the RDBMS, showing that neither of those systems

translates numerical SPARQL expressions into corresponding

SQL expressions.

The ontop system [7] also enables SPARQL queries to RDF

views of RDBs by translating SPARQL to Datalog programs,

which are rewritten and translated to SQL. A difference to ontop

is the table driven NUMTranslator algorithm, which makes it

very easy to extend for new operators. Furthermore, FLOQ

generates execution plans containing calls to SQL intermixed

with expressions interpreted in the client. This enables FLOQ to

interpret in the client SPARQL operators not available in SQL.

In addition NUMTranslator translates the domain calculus

SPARQL queries into tuple calculus SQL queries by substituting

variables with their bound expressions.

7. CONCLUSIONS AND FUTURE WORK
We presented the FLOQ system where the NUMTranslator

algorithm uses a table driven approach to translate numerical

domain calculus SPARQL expressions into corresponding

numerical SQL expressions. This enables scalable processing of

numerical SPARQL queries to RDF views over RDBs.

The approach was evaluated on a benchmark scenario in an

industrial setting where logged data stored in an RDB was

analyzed using numerical SPARQL queries. We compared the

performance of the SPARQL queries with and without applying

NUMTranslator. The experiments show that NUMTranslator

substantially improves the query performance of numerical

SPARQL queries in particular when the numerical expressions

inside FILTERs are highly selective.

We also compared our approach with other systems that

translate SPARQL queries to SQL. Only D2RQ could execute

our queries, but substantially slower since D2RQ does not

employ an approach similar to NUMTranslator.

As our next step, we will investigate numerical SPARQL

queries searching large numbers of distributed log databases

combined through an ontology. Another issue is creating

benchmarks based on randomly generating SPARQL queries

[5]. Furthermore, query processing and mediation strategies over

other back-ends than RDBs [4] in our setting should be

investigated.

8. ACKNOWLEDGMENTS
This work is supported by EU FP7 project Smart Vortex and the

Swedish Foundation for Strategic Research under contract

RIT08-0041.

9. REFERENCES
[1] Bizer, C., Cyganiak, R., Garbers, G., Maresch, O., and

Becker, C. 2009. The D2RQ Platform v0.7 - Treating Non-

RDF Relational Databases as Virtual RDF Graph,

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/

[2] Björkelund, A., Edström, L., etc. 2011. On the integration

of skilled robot motions for productivity in manufacturing,

In Proc. of IEEE International Symposium on Assembly

and Manufacturing, Tampere, Finland.

[3] Erling, O. and Mikhailov, I. 2009. RDF Support in the

Virtuoso DBMS, Studies in Computational Intelligence,

Vol. 221

[4] Langegger, A., Wöß, W., and Blöchl, M. 2008. A Semantic

Web Middleware for Virtual Data Integration on the Web,

5th European Semantic Web Conference ESWC 2008.

[5] Langegger, A. and Wöß, W. 2009. RDFStats – The

Extensible RDF Statistics Generator and Library, 8th

International Workshop on Web Semantics, DEXA 2009,

Linz, Austria, August 31-September 40.

[6] Litwin, W. and Risch, T. 1992. Main Memory Oriented

Optimization of OO Queries using Typed Datalog with

Foreign Predicates, IEEE Transactions on Knowledge and

Data Engineering, Vol. 4, No. 6.

[7] Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M.,

Bagosi, T., and Calvanese, D. 2013. Evaluating SPARQL-

to-SQL Translation in Ontop, ORE 2013

[8] Sequeda, J. F., and Miranker, D. P. 2013. Ultrawrap:

SPARQL Execution on Relational Data, Tech. Report,

Univ. of Texas at Austin.

http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-

2078.pdf

[9] Stefanova, S., and Risch, T. 2011. Optimizing Unbound-

property Queries to RDF Views of Relational Databases. 7t

International workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2011), Bonn, Germany.

[10] Arenas, M., Bertails, A., Prud’hommeaux, E., and Sequeda,

J. 2012. A Direct Mapping of Relational Data to RDF,

http://www.w3.org/TR/rdb-direct-mapping/

[11] Harris, S., and Seaborne, A. 2013. SPARQL 1.1 Query

Language, http://www.w3.org/TR/sparql11-query/

http://www4.wiwiss.fu-/
http://berlin.de/bizer/d2rq/spec/
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2078.pdf
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2078.pdf
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/sparql11-query/

