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ABSTRACT 

We present an approach for scalable processing of SPARQL 

queries to RDF views of numerical data stored in relational 

databases (RDBs). Such queries include numerical expressions, 

inequalities, comparisons, etc. inside FILTERs. We call such 

FILTERs numerical expressions and the queries - numerical 

SPARQL queries. For scalable execution of numerical SPARQL 

queries over RDBs, numerical operators should be pushed into 

SQL rather than executing the filters as post-processing outside 

the RDB; otherwise the query execution is slowed down, since a 

lot of data is transported from the RDB server and furthermore 

indexes on the server are not utilized. The NUMTranslator 

algorithm converts numerical expressions in numerical 

SPARQL queries into corresponding SQL expressions. We 

show that NUMTranslator improves substantially the scalability 

of SPARQL queries based on a benchmark that analyses 

numerical logs stored in an RDB. We compared the performance 

of our approach with the performance of other systems 

processing SPARQL queries to RDF views of RDBs and show 

that NUMTranslator improves substantially the scalability of 

numerical queries compared to the other systems’ approaches.   
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1. INTRODUCTION 
The Semantic Web provides uniform data representation for 

integrating data from different data sources by using established 

well-known formats like RDF, RDFS, OWL, and the standard 

query language SPARQL. Semantic Web seems promising to 

integrate and search industrial data [2]. 

Our application scenario is from the industrial domain, where 

sensors on machines such as trucks, pumps, kilns, etc., produce 

large volumes of log data. Such log data describes measured 

values of certain components at different times and can be used 

for analyzing machine behavior. Furthermore, the geographic 

locations of machines are often widely distributed and 

maintained locally in autonomous RDBs called log databases. 

We are developing the FLOQ (Federated LOg database Query) 

system, which is a system for historical analyses over 

federations of autonomous log databases using SPARQL 

queries. To discover abnormal machine behaviors, a user of 

FLOQ defines SPARQL queries to these log databases. FLOQ 

processes a SPARQL query by first finding the relevant log 

databases containing the desired data, then sending local 

SPARQL queries to them, and finally collecting the local query 

results to obtain the final result. 

In this paper we concentrate on scalable historical analyses by 

SPARQL queries of log data stored in a single relational 

database. Suspected abnormal machine behaviors are discovered 

and analyzed by specifying numerical SPARQL queries to an 

RDF view of the RDB. The queries analyze log data through 

numerical FILTERs containing numerical operators [11]. For 

example, query Q1 retrieves the machine identifiers m for which 

a sensor has measured values mv of measurement class A higher 

than the expected values ev by a threshold value @thA during 

the time from bt to time et. Here <prod> denotes the URI for 

the RDF view of the RDB.   

 

In FLOQ, SPARQL queries to RDBs are processed by 

generating a local execution plan containing calls to one or 

several SQL queries sent to a back-end RDBMS for evaluation. 

SPARQL queries that cannot be completely processed by SQL 

are instead partially processed by an execution plan interpreter 

in FLOQ. However, in order for the SQL queries to return the 

minimal required data, it is desirable that as much as possible of 

the SPARQL query is translated to SQL [8].  

In FLOQ numerical SPARQL queries are defined over an 

automatically generated RDF view over an RDB expressed in 

ObjectLog [6], which is a Datalog dialect that supports objects 

for representing URIs and typed literals [9], disjunctive queries 

for UNION expressions, and foreign predicates to represent 

numerical operators in queries. The SPARQL queries are parsed 

into ObjectLog queries to the RDF view. Internally representing 

queries in ObjectLog permits domain calculus query 

transformations and optimizations before generating the 

execution plan. Calls to tuple calculus SQL query strings are 

made as foreign predicates. Foreign predicates are also used for 

accessing URIs in the execution plan. Doing all processing in 
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Q1: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresA  log:mA_BySensor  ?sensor. 
       ?measuresA  log:mA/bt        ?bt. 
       ?measuresA  log:mA/et        ?et. 

       ?measuresA  log:mA/m         ?m. 

       ?measuresA  log:mA/mv        ?mv. 
       ?sensor     log:sensor/ev    ?ev. 
       FILTER (?mv > (?ev + @thA))         }  
 

 



the RDB is complicated, and requires implementing SPARQL 

operators not supported by SQL as RDB-specific UDFs. We 

show that ObjectLog query transformations enable scalable 

execution by the RDBMS. 

Numerical SPARQL queries contain variables bound to numbers 

and calls to numerical functions and operators. For scalable 

execution, it is important that such numerical expressions are 

pushed into corresponding SQL expressions and executed on the 

RDBMS server, which is the subject of this paper. The 

NUMTranslator algorithm converts numerical SPARQL queries 

into SQL queries where numerical expressions are pushed into 

SQL. For example, Q1 is converted into SQL query SQL1, 

where the numerical expression in the SPARQL FILTER is 

translated into a corresponding SQL expression. 

 

A particular problem is that SPARQL and ObjectLog are 

domain calculus languages where variables can be bound to 

numbers, while SQL is a tuple calculus language where 

variables have to be bound to tuples in relations.  The 

NUMTranslator algorithm translates domain calculus 

expressions into corresponding SQL tuple calculus expressions 

after having applied domain calculus transformation on the 

ObjectLog representation.  

We show that NUMTranslator improves substantially the query 

performance for numerical SPARQL queries compared to other 

approaches used by other systems. 

In summary the contributions are: 

 We propose a table driven approach to translate 

numerical domain calculus operators into numerical 

SQL tuple calculus operators.   

 We present the NUMTranslator algorithm that extracts 

numerical ObjectLog expressions and translates them 

into corresponding numerical SQL expressions. 

 We compare the performance of numerical SPARQL 

queries to RDF views of RDBs with and without 

applying NUMTranslator, and show that the algorithm 

substantially improves the query performance.  

 We compare the performance of our approach with the 

performance of other systems processing SPARQL 

queries over RDF views of RDBs and show 

substantially better performance. 

The rest of this paper is organized as follows: Section 2 presents 

a scenario where the approach is applicable. Section 3 overviews 

the system architecture. Section 4 describes the NUMTranslator 

algorithm. Section 5 discusses performance experiments. 

Section 6 describes related work. Conclusions and future work 

are described in section 7. 

2. MOTIVATING SCENARIO 
We present a common scenario from an industrial setting where 

it is desirable to analyze historical log data in order to find 

abnormal machine behavior. Log data from embedded sensors is 

stored in a relational log database.  

Figure 1 shows the schema of the RDB storing log data 

measured by sensors embedded in machine installations. Table 

Machine(m, mm) stores meta-data about each machine 

installation, i.e. machine identifier and model name. The table 

Sensor(m, s, sm, mc, ev, ad, rd) stores information about each 

sensor installation, i.e. the machine installation m where a sensor 

s is embedded, sensor model name sm, the kind of measurement 

(measurement class) mc, expected sensor value ev, absolute 

error ad and relative error rd. The attribute mc, measurement 

class is used to identify different kind of measurements, e.g. oil 

pressure, temperature, etc. The tables MeasuresA(m, s, bt, et, 

mv) and MeasuresB(m, s, bt, et, mv)  store log data of kind A and 

B read from sensors s embedded in machine installations m. The 

begin time bt and the ending time et for a sensor reading are also 

stored, while the measured value for a certain time stamp is 

denoted by mv. The columns m, (m, s), and (m, s, bt) are primary 

keys in the tables Machine, Sensor, and MeasuresA and 

MeasuresB, respectively. The column m in tables MeasuresA, 

MeasuresB, and Sensor references the column m in the table 

Machine as foreign key. Furthermore, columns (m, s) in tables 

MeasuresA and MeasuresB reference columns (m, s) in table 

Sensor as a composite foreign key.  

The RDF view of the RDB is illustrated by the RDF graph in 

Figure 2. 

SQL1: 

SELECT m.m, bt, et  
FROM MeasuresA m, SENSOR s  
WHERE m.m=s.m AND  
      m.s=s.s AND  
      m.mv > s.ev + @thA                                           

 

Machine(m, mm) 

Sensor(m, s, sm, mc, ev, ad, rd) 

MeasuresA(m, s, bt, et, mv) 

MeasuresB(m, s, bt, et, mv) 

 
Figure 1. RDB schema for log data 
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Figure 2. RDF graph of the RDF view for  

the example RDB  



Next we define two more typical numerical SPARQL queries to 

the log database, Q2 and Q3, that discover abnormal machine 

behaviors. Query Q2 identifies a potential failure by retrieving 

for machine models M_1, M_2, and M_3 those machineid 

where, during the time interval (bt, et), the measured value mv 

was above 75% of the allowed deviation @thA from the 

expected value ev. 

 

Query Q3 identifies abnormal behaviors of machines of a 

measurement class based on absolute deviations: when and for 

which machine identifiers did the pressure reading of class B 

deviate more than @thB from its expected value ev? 

 

3. FLOQ OVERVIEW AND QUERY 

PROCESSING 
Figure 3 illustrates processing of numerical SPARQL queries by 

FLOQ. 

 

The RDF view over the RDB is automatically generated based 

on the database schema and ontology mapping tables in FLOQ. 

The used mappings conform to the direct mapping 

recommended by W3C [10]. 

We define a unique RDFS class for each relational table, except 

for link tables [10] representing set-valued properties as many-

to-many relationships. In addition, RDF properties are defined 

for each column in a table. For example, the RDFS class with 

the URI <log:mA> represents the table MeasuresA, while 

<log:mA/bt> and <log:mA/et> represent the columns bt and et 

in MeasuresA, respectively. 

The RDF view is defined in terms of: 

 Source predicates R(a1, a2, …, an) that represent the 

content of each referenced relational database table R 

where the tuple (a1, …, an) represents a row in R. 

 URI-constructor predicates that construct URIs to 

identify rows in tables.  

 Mapping tables that map relational schema elements 

to RDF concepts. 

The complete RDF view definitions can be found in [9]. The 

query processing steps in FLOQ are shown in Figure 4. 

 

The SPARQL parser first transforms the SPARQL query into an 

ObjectLog expression where each triple pattern in the query 

becomes a reference to the RDF view of the RDB. Then the 

ObjectLog transformer generates a simplified disjunctive normal 

form (DNF) predicate. The NUMTranslator algorithm performs 

the extractor and finalizer steps. The extractor collects from 

conjunctions predicates that can be translated to SQL, called 

access filters. The query decomposer then optimizes the query, 

producing a query execution plan where access filters are called. 

The finalizer traverses the execution plan to translate the 

extracted predicates in the access filters into SQL expressions. 

When the execution plan is interpreted, the generated SQL 

statements are sent to the RDB for execution. The non-extracted 

predicates are not translated to SQL and have to be processed 

outside the RDB by post-processing operators. For example, 

Q2: 
SELECT ?machineid ?bt ?et 
FROM <prod> 
WHERE{?measuresA log:mA_bySensor  ?sensor. 
      ?measuresA log:mA/bt        ?bt. 
      ?measuresA log:mA/et        ?et. 
      ?measuresA log:mA/mv        ?mv. 
      ?measuresA log:mA_atMachine ?machineid. 

      ?machineid log:machine/mm   ?mm. 
      FILTER (?mm in ('M_1','M_2','M_3')).  
      ?sensor    log:sensor/ev    ?ev. 
      FILTER (?mv > (?ev + 0.75*@thA))    } 
 

Q3: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresB  log:mB/bt       ?bt. 
       ?measuresB  log:mB/et       ?et. 
       ?measuresB  log:mB/mv       ?mv. 
       ?measuresB  log:mB_bySensor ?sensor. 
       ?sensor     log:sensor/m    ?m. 
       ?sensor     log:sensor/ev   ?ev. 
       BIND ((?mv-?ev) as ?temp). 
       FILTER (abs(?temp) > @thB)       }  
 

SQL 

SPARQL query 

SPARQL parser 

RDB 

Query Decomposer 

Finalizer 

 

Extractor 

ObjectLog transformer 

Post-processing 

Figure 4. Query processing steps 
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Figure 3. FLOQ query processor 



such operators are URI-constructors and numerical expressions 

not supported by the SQL engine. 

4. THE NUMTRANSLATOR 

ALGORITHM 
The NUMTranslator uses a table-driven approach to define 

which SPARQL operators to extract and translate into 

corresponding SQL operators and functions. Table 1 defines the 

SPARQL to SQL operator translations: 

Table 1. SPARQL to SQL operators to translate 

SPARQL SQL INFIX FUNCTION 

> > True False 

< < True False 

= = True False 

!= <> True False 

+ + True True 

- - True True 

ABS ABS False True 

UCASE UPPER False True 

etc. 

In Table 1 there is one row for each SPARQL operator or 

function (column SPARQL) that can be translated into SQL. The 

column SQL defines the corresponding SQL operator or 

function. A value in the column INFIX is true when the 

corresponding SQL operator is an infix operator op on operands 

x and y, i.e. x op y (e.g. x+y); otherwise it is an SQL function on 

format f(x,y,..). The column FUNCTION is true when the 

operator is a non-Boolean function returning a value.  

4.1 The NUMTranslator extractor 
The extractor is applied on each ObjectLog conjunction in the 

simplified predicate received by the ObjectLog transformer. The 

extractor collects predicates that can be translated to SQL. Such 

predicates are i) source predicates SPs representing RDB tables, 

and ii) non-source predicates (NSPs) that are defined in Table 1 

as translatable to SQL.   

Figure 5 shows the ObjectLog representation of Q1 after it has 

been transformed by the ObjectLog transformer. 

     
In this case all predicates in Q1 are translatable to SQL since 

MeasuresA and Sensor are SPs, and  > and + are NSPs defined 

in Table 1. 

The steps of the extractor are the following:  

1. Initialize a variable Xpreds for the first found SP, 

denoted R1, in the conjunction and bind a variable 

Rest to the other predicates.  

2. Iteratively extract from Rest the predicates that have 

some common variable with some extracted predicate 

in Xpreds, which are either SPs or NSPs defined in 

Table 1. 

3. Construct an access filter of all extracted predicates in 

Xpreds since those can be fully translated to SQL. 

4. While there are some remaining SP, R2, in Rest, re-

initialize Xpreds by R2 and Rest by the remaining 

predicates, and repeat steps 2-3. 

5. Finally, construct a conjunction of the access filters 

and Rest.   

For example, for Q1 the predicates in Xpreds are extracted in the 

following order:  

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.  

2. >(mv, v36) (line 2) since > is defined in Table 1 and 

the variable mv is common with the extracted 

MeasuresA. 

3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP 

having common variables (m and s) with MeasuresA(). 

4. V36 = ev + @thA (line 3) since + is defined in Table 

1 and the variable ev is common with the extracted 

Sensor predicate. 

Then the following conjunctive access filter F1 is formed by the 

predicates in Xpreds:   

 F1(m,s,bt,et,mv,ev):- 

1  MeasuresA(m, s, bt, et, mv)      and 

2  Sensor(m, s, _, _, ev, _, _)     and 

3  v36= ev + @thA                   and 

4  mv > v36  

No non-translatable predicates remain in Rest.  

4.2 Query decomposition 
To optimize the query produced by the extractor, the query 

decomposer uses cost-based optimization [6] to produce an 

optimized execution plan. Based on heuristics and statistic of the 

queried RDB, execution cost and selectivities of access filter are 

estimated. Default cost parameters are used by the optimizer to 

estimate the execution cost and selectivities of predicates if no 

statistic is available. The decomposer will then reorder the 

access filters and the post processed predicates to generate an 

optimized execution plan. We do not further elaborate the query 

decomposer here. 

4.3 The NUMTranslator finalizer 
The finalizer translates access filters in the decomposed 

execution plan into calls to an SQL interface operator, sql that 

sends generated SQL strings to the back-end RDB for execution. 

ObjectLog numerical expressions are translated into SQL 

numerical expressions by recursively replacing all ObjectLog 

domain variables that represent numerical expressions with their 

bound expressions. For example, the variable v36 in line 4 in F1 

doesn’t represent a relational column and is replaced by its 

bound expression in line 3, and then the obtained expressions is 

mv > ev + @thA. Thus for Q1 the execution plan P1 becomes 

the following: 

 
The execution plan contains an algebra expression where the 

apply operator γ fn(..) calls the foreign predicate sql(ds, q, 

result) implemented in Java. The foreign predicate sql sends an 

Figure 5. ObjectLog of query Q1 

Q1(m, bt, et):- 

1  MeasuresA(m, s, bt, et, mv)         and        

2  mv > v36                            and     

3  v36 = ev + @thA                     and 

4  Sensor(m, s, _, _, ev, _, _)         

 

 

 

 

(m, bt, et) 

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA 
m, SENSOR s WHERE m.mv > s.ev + @thA AND 

m.m=s.m AND m.s=s.s", (m, bt, et)) 

Figure 6. Execution plan P1 with NUMTranslator 



SQL query q to the RDBMS data source ds for execution and 

iteratively returns bindings of tuples, result.  

If NUMTranslator had not been applied, all numerical operators 

would have to be post-processed, which would slow down the 

query execution since filtering cannot be made in the database 

server. 

For example, if NUMTranslator is turned off, for Q1 the 

following execution plan P2 is produced that doesn’t contain 

any numerical SQL operators corresponding to numerical 

SPARQL operators, which are instead post-processed:    

 
 

Comparing the two execution plans P1 and P2 it can be seen 

that the sql operator in P2 retrieves much more data than P1, so 

if NUMTranslator is turned off lots of data needs to be filtered 

out outside the RDB server. Furthermore, the utilization of 

indexes on the SQL numerical expression by the back-end 

database server makes significant performance difference. We 

show in the next section that applying NUMTranslator  

substantially improves the query performance of numerical 

SPARQL queries. 

5. PERFORMANCE MEASUREMENTS 
We compared the performance for executing the numerical 

queries Q1, Q2, and Q3 in FLOQ with and without applying 

NUMTranslator. Furthermore, we compared the query 

performance of FLOQ with the query performance of D2RQ [1] 

for Q1, Q2, and Q3, for the same back-end relational database. 

We tried to run the queries with both ontop [7] and Virtuoso [3] 

as well, but none of our numerical SPARQL queries could be 

run, indicating that those systems do not provide full support for 

processing numerical SPARQL queries. 

All experiments are carried out on a MS SQL Server 2008 R2 

installed on a server machine with 8 AMD OpteronTM 6128 

processors, 2.00 GHz CPU and 16GB RAM. The RDB is 

populated by loading sensor data into the MS SQL server. B-tree 

indexes are created on the columns mm, mv, bt, et, ev, ad, and rd 

to speed up the queries.  

All measurements were taken both for cold and warm runs. The 

cold runs were made immediately after the RDBMS server was 

started, which implied that there were no data cached in the 

buffer pool and the executed query wasn’t optimized by the 

RDBMS. Thus a measured query execution time for a cold run 

includes the time for i) reading data from disk, ii) SQL query 

optimization on the RDBMS server, iii) communication, and iv) 

post-processing of data on the client. The warm runs were made 

after a query was executed once. Since the back-end RDBMS 

has a statement cache a same SQL query executed twice will be 

optimized the first time it is run. Therefore, warm executions do 

not include RDBMS query optimization time. 

The plotted values are mean values of three measurements. The 

standard deviation is less than 10% in all cases. To investigate 

the SQL query produced by all the other systems we use the 

system profiling tool of MS SQL server when running a query.  

The following notations are used in the performance diagrams:   

 NUMTranslator: FLOQ with NUMTranslator turned 

on, i.e. the SPARQL numerical expressions are 

translated into corresponding SQL expressions. 

 Naive: FLOQ with NUMTranslator turned off, i.e. the 

SPARQL numerical expressions are not translated into 

corresponding SQL numerical expressions.  

 D2RQ: D2RQ version [0.8.1] configured with the 

system’s default mappings. 

Figure 8, 9 and 10 show the execution times for both cold and 

warm runs for Q1, Q3, and Q2 while scaling the databases size 

from 1 GB to 15 GB.  

 

 

 
Figure 9.  Execution times for Q3 

Figure 8 and 9 show that NUMTranslator substantially improves 

the query execution scalability compared to Naïve for numerical 

SPARQL queries like Q1 and Q3 with highly selective 

numerical FILTERs: 0.04% for Q1 and 3% for Q3. In these 

cases pushing the numerical FILTERs to SQL is more profitable 

than filtering large data amounts on the client. The performance 

of D2RQ is worse than Naïve since D2RQ sends to the RDBMS 

an SQL query that doesn’t contain numerical expressions, and is 

a much more complex query with more joins. Furthermore, Q3 

had to be manually changed for D2RQ to remove the BIND 

operator, since otherwise D2RQ wouldn’t return correct result.  

Measurement results for Q2 are shown in Figure 10. For Q2 the 

results for NUMTranslator and Naïve are presented in a separate 

diagram, since they are very close. It can be seen on Figure 10 

that NUMTranslator doesn’t improve the query performance for 

non-selective queries like Q2 where the FILTER selects 43% of 

the data. In this case pushing the numerical SPARQL filters to 

be executed to the RDBMS server doesn’t make a significant 

difference compared to post-filtering data on the client.  

D2RQ performs worse for Q2 since it doesn’t translate any of 

the FILTERs and it furthermore generates a very complex SQL 

query with many joins.     

(v36) 

(mv) 

(m, bt, et) 

(ev) 

γ >(mv, v36) 

γ +(ev, @thA) 

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev 
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND 

m.s=s.s", (m, s, bt, et, mv, ev)) 

Figure 7. Execution plan P2 without NUMTranslator 

Figure 8. Execution times for Q1  



 
Figure 10.  Execution times for Q2 

In general, the experiments show that NUMTranslator 

substantially improves the query performance of numerical 

SPARQL queries where the numerical FILTERs have high 

selectivity.  

6. RELATED WORK 
Virtuoso RDF Views [3] and D2RQ [1] are other systems that 

process SPARQL queries to RDF views of RDBs. These 

systems implement compilers that translate SPARQL directly to 

SQL. By contrast, FLOQ first generates ObjectLog queries to a 

declarative RDF view of the RDB, and then transforms the 

SPARQL queries to SQL by logical transformations.   

We didn’t find any publication of how D2RQ compiles 

numerical SPARQL queries into SQL and the documentation for 

Virtuoso’s SQL generation is very limited [3]. However, by 

using the profiling tool of the RDBMS and the debug logging of 

Virtuoso we were able to analyze what queries were actually 

sent to the RDBMS, showing that neither of those systems 

translates numerical SPARQL expressions into corresponding 

SQL expressions.  

The ontop system [7] also enables SPARQL queries to RDF 

views of RDBs by translating SPARQL to Datalog programs, 

which are rewritten and translated to SQL. A difference to ontop 

is the table driven NUMTranslator algorithm, which makes it 

very easy to extend for new operators. Furthermore, FLOQ 

generates execution plans containing calls to SQL intermixed 

with expressions interpreted in the client. This enables FLOQ to 

interpret in the client SPARQL operators not available in SQL. 

In addition NUMTranslator translates the domain calculus 

SPARQL queries into tuple calculus SQL queries by substituting 

variables with their bound expressions. 

7. CONCLUSIONS AND FUTURE WORK 
We presented the FLOQ system where the NUMTranslator 

algorithm uses a table driven approach to translate numerical 

domain calculus SPARQL expressions into corresponding 

numerical SQL expressions. This enables scalable processing of 

numerical SPARQL queries to RDF views over RDBs.  

The approach was evaluated on a benchmark scenario in an 

industrial setting where logged data stored in an RDB was 

analyzed using numerical SPARQL queries. We compared the 

performance of the SPARQL queries with and without applying 

NUMTranslator. The experiments show that NUMTranslator 

substantially improves the query performance of numerical 

SPARQL queries in particular when the numerical expressions 

inside FILTERs are highly selective.  

We also compared our approach with other systems that 

translate SPARQL queries to SQL. Only D2RQ could execute 

our queries, but substantially slower since D2RQ does not 

employ an approach similar to NUMTranslator.  

As our next step, we will investigate numerical SPARQL 

queries searching large numbers of distributed log databases 

combined through an ontology. Another issue is creating 

benchmarks based on randomly generating SPARQL queries 

[5]. Furthermore, query processing and mediation strategies over 

other back-ends than RDBs [4] in our setting should be 

investigated. 
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