
Transparent inclusion, validation,

and utilization of main memory

domain indexes

Thanh Truong C., Tore Risch
Uppsala University

Sweden

SSDBM, San Diego, USA, 2015

“Many scientific applications involving,
e.g., data mining, temporal queries, and
spatial analyses, require customized
indexing to improve performance”

How many index structures are there ?
Volker Gaede and Oliver Günther. 1998. Multidimensional access methods.
ACM Comput. Surv. 30, 2 (June 1998), 170-231.
DOI=10.1145/280277.280279

19961966

How many index structures are used in
DBMSs ?

Index structure

Btree Y Y Y

Hash Y Y Y

R-tree Y Y -

Trie - Y -

Bit-map Y - -

Notes
• Versions

• Oracle 12c Release 1
• SQL Server 2014
• MySQL 5.6

• In MySQL, some storage engines permit some index types, but not all.
• The table does not count “Function based index”.
• In SQL Server, hash index is only available for in-memory tables.

In-memory
databases

Hao Zhang, Gang Chen, Kian-Lee Tan, Meihui Zhang
In-Memory Big Data Management and Processing: A
Survey,
Knowledge and Data Engineering, IEEE Transactions on
volumn 27, pages 1920 - 1948
DOI: 10.1109/TKDE.2015.2427795

How many index
structures

are used in In-
memory databases

?

Hao Zhang, Gang Chen, Kian-Lee Tan, Meihui Zhang
In-Memory Big Data Management and Processing: A
Survey,
Knowledge and Data Engineering, IEEE Transactions on
volumn 27, pages 1920 - 1948
DOI: 10.1109/TKDE.2015.2427795

Why ?

Because it is
very challenging

Here are some challenges C1,..,C5
• C1. Understanding the DB kernel

• C2. Re-implementing the
datastructure

• C3. Integrating with other DB
internal components

• C4. Extending query processor

• C5. Validating the index’s
functionalities

Only database
(kernel) expert

can do it!

Solution?

Some extensible indexing frameworks

• GiST
J Hellerstein. M.,J.F.Naughton, and A. Pfeffer: Generalized search trees for
database systems, Proc. VLDB Conf., pp 562–573, 1995.

• Extensible Indexing – Orcale 8i
J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S. DeFazio: Extensible

indexing: a framework for integrating domain-specific indexing schemes
into oracle8i. Proc. ICDE Conf., pp 91–100, 2000.

• SP-GisT
W. G. Aref and I. F. Ilyas: An extensible index for spatial databases, Proc.
SSDBM, pp 49–58, 2005.

Reviews

• These frameworks
specifies coding
conventions and
primitives.

• Solved C1 - Understanding
DB kernel -

• Solved C3 – Integrating
with other kernel
components

The remaining unsolved challenges

• C2 - Re-implementing the index implentation
It is not OK if the index implementation

• has ownership.
• Is available in binary.
• or being very complex to re-implement, i.e; Judy-tries

????
• C4 - Extending query processor

????
• C5 - Validating the index’s functionalities

????

Our motto

“It should not be necessary to be a
database kernel expert to introduce a
new domain index”

Only database (kernel) expert can do it!

Our solution
• The paper title:

“Transparent inclusion, utilization, and validation of main memory domain indexes”

• The paper itself

 Transparent inclusion – to solve C1, C2, C3

o no index implementation code changed .

 Transparent utilization – to solve C4

o automatically transforms queries to utilize the new added index.

 Transparent validation – to solve C5

o Automatically generates and executes queries to test the new added
index

• The result :

The generalized extensible indexing framework: Main-memory eXternal Index
Manager (Mexima).

• Website: http://www.it.uu.se/research/group/udbl/mexima/

http://www.it.uu.se/research/group/udbl/mexima/

How to introduce a new index ?

• Grab the index implementation (a)

• Study the public index API (b)

• Write the index driver (c)

(glue code) that interfaces Mexima and the
index API

 Compiled as dynamic library called as index
extension

ab

c

At the end of the day

/* Load main-memory BTREE index*/
load_extension(”bt”);

Query Execution
Plan Interpreter

Storage
manager

AMOS II

Mexima
query
rewriter

MEXIMA core

BAO table

Cost-based
optimizer

Calculus
generator

Calculus
rewriter

. . .

Parser

Exension loader

Index storage manager

Index
interface
dispatcher

Create

Put

Map

. . .

Windows: dynamic libaries
Unix/OSX: shared objects

Main-memory BTREE: bt

Linear Hashing: lh

Xtree : xt. . .

Mexima tester

Index
propert
y tables

MeximaMexima

At the end of the day (cont.)

/* Create a table to store salaries of people given social security numbers*/
create function salary(Number ssn)->Number sl as stored;

/*create BTREE on sl*/
create_index(”salary”, ”sl”, ”BTREE”, ”);

/*Add data*/
set salary(8301318971) = 2000;
set salary(8501332978) = 3000;
. . .
set salary(8001335978) = 4000;
/*Query*/
SELECT ssn, sl
FROM Number ssn, Number sl
WHERE salary(ssn) = sl AND sl >= 3000;

Mexima

Query

Query Processing

Operations

Mexima core

Extension driver

Index implementation

Mexima

Index extension

Amos II

BAOs + SSFs

Mexima interface = BAOs + SSFs

The index driver code contains
• Basic access operators (BAOs)

– create(), drop(), put(), delete(), get(),

– and map() that scans the index by applying a
specified mapper function on each index entry.

– implemented as C functions

(***details in the paper)

The index driver code contains

• Special search functions (SSFs)

– Examples:

• interval search on B-trees: bt_select_range()

• and proximity search on X-trees/R-trees:
xt_proximity_search()

• and KNN search on X-trees/R-trees:

xt_knn_search()

– Implemented as foreign functions (UDFs)

(*** details in the paper)

But it is not enough ...
• How new index is utilized in query?

• Option 1

End-user can manually call a SSF in query by reformulating the
query

• Option 2

End-user can express query naturally, but the query optimizer
should be able to utilize the index.

The query processor should transparently
transform the query to SSF if possible to utilize
the index SSF translation rules.

SSF translation rules

• An SSF translation rule describes how query
fragments are translated to a new format to
expose SSFs.

• Examples

Example - Table

• Table images(id, hist)

– Id, image’s identifier

– hist, histogram as image’s feature vector

Btree index Xtree index

Example - Query 1
”Query 1 finds images q whose identifiers are between 30 and 100”

Intermediate query
TQ1(q):-

(q,_) in

btree_select_range(#’images’, 0, 30,100)

Index type priority Index

sensitive

function

Relation

operators

SSF pf

1 B-tree 1 Nil >=, <= btree_select_range F

2 X-tree 1 distance <= xt_proximity_search T

3 X-tree 2 Knn nil xt_knn_search F

MAP

Input query

Q1(q):-

images(q, _) AND

q >= 30 AND

q <= 100

SSF Btree range search

With Mexima, it is done by the following SSF translation rule

Example - Query 1
”Query 1 finds images q whose identifiers are between 30 and 100”

Intermediate query
TQ1(q):-

(q,_) in

btree_select_range(#’images’, 0, 30,100)

Index type priority Index

sensitive

function

Relation

operators

SSF pf

1 B-tree 1 Nil >=, <= btree_select_range F

2 X-tree 1 distance <= xt_proximity_search T

3 X-tree 2 Knn nil xt_knn_search F

MAP

Input query

Q1(q):-

images(q, _) AND

q >= 30 AND

q <= 100

SSF Btree range search

With Mexima, it is done by the following SSF translation rule

Input query

Q1(q):-

images(q, _) AND

q >= 30 AND

q <= 100

Form (i):

P(…iv,..) AND (iv r1 expression) AND

(iv r2 expression) AND

. . .

(iv rn expression)

Here,

 iv is a variable bound to an indexed

column of table P(…). We say iv is an

indexed variable.

 ri are comparison operators in the set

relop, ri relop, where relop ={=, <,

>, >=, <=}.

Intermediate query
TQ1(q):-

(q,_) in

btree_select_range(#’images’, 0, 30,100)

Index

type

Index

sensitive

function

Relation

operators

SSF

B-tree Nil >=, <= btree_select_range

Example - Query 2
” For a given image x find the images q whose feature vectors are closer than
epsilon (eps = 0.11).”

Intermediate query
TQ2(x, q):-

image(x, hist_x) AND

(q,hist_q) in

xtree_proximity_search(#’images’,1, hist_x, 0.11) AND

distance (hist_x, hist_q) <= 0.11

MAP

Input query

Q2(x, q):-

images(x, hist_x) AND

images(q, hist_q) AND

distance (hist_x, hist_q) <= 0.11

SSF X-tree proximity search

With Mexima, it is done by the following SSF translation rule

Index type priority Index

sensitive

function

Relation

operators

SSF pf

1 B-tree 1 Nil >=, <= btree_select_range F

2 X-tree 1 distance <= xt_proximity_search T

3 X-tree 2 Knn nil xt_knn_search F

Example - Query 2
” For a given image x find the images q whose feature vectors are closer than
epsilon (eps = 0.11).”

Intermediate query
TQ2(x, q):-

image(x, hist_x) AND

(q,hist_q) in

xtree_proximity_search(#’images’,1, hist_x, 0.11) AND

distance (hist_x, hist_q) <= 0.11

MAP

Input query

Q2(x, q):-

images(x, hist_x) AND

images(q, hist_q) AND

distance (hist_x, hist_q) <= 0.11

SSF X-tree proximity search

With Mexima, it is done by the following SSF translation rule

Index type priority Index

sensitive

function

Relation

operators

SSF pf

1 B-tree 1 Nil >=, <= btree_select_range F

2 X-tree 1 distance <= xt_proximity_search T

3 X-tree 2 Knn nil xt_knn_search F

Input query

Q2(x, q):-

images(x, hist_x) AND

images(q, hist_q) AND

distance (hist_x, hist_q) <= 0.11

Intermediate query
TQ2(x, q):-

image(x, hist_x) AND

(q,hist_q) in

xtree_proximity_search(#’images’,1, hist_x, 0.11) AND

distance (hist_x, hist_q) <= 0.11

Index type Index

sensitive

function

Relation

operators

SSF

X-tree distance <= xt_proximity_search

Form (ii):

P(…iv,..) AND isf(…,iv, …) r1 expression AND

isf(…,iv, …) r2 expression AND

. . .

isf(…,iv, …) rn expression

Here, iv is an indexed variable occurring in
parameter position of an index sensitive function
isf().

Example - Query 3
” Find the k = 10 closest images compared to a given image x”

Intermediate query
TQ3(x, hist_x):-

image(x, hist_x) AND

(q,hist_q) in (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10)

MAP

Input query

Q3(x, hist_x):-

images(x, hist_x) AND

images(q, hist_q) AND

(q, hist_q) in knn(hist_x, 10, #’images’)

SSF X-tree KNN search

With Mexima, it is done by the following SSF translation rule

Index type priority Index

sensitive

function

Relation

operators

SSF pf

1 B-tree 1 Nil >=, <= btree_select_range F

2 X-tree 1 distance <= xt_proximity_search T

3 X-tree 2 Knn nil xt_knn_search F

Example - Query 3
” Find the k = 10 closest images compared to a given image x”

Intermediate query
TQ3(x, hist_x):-

image(x, hist_x) AND

(q,hist_q) in (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10)

MAP

Input query

Q3(x, hist_x):-

images(x, hist_x) AND

images(q, hist_q) AND

(q, hist_q) in knn(hist_x, 10, #’images’)

SSF X-tree KNN search

With Mexima, it is done by the following SSF translation rule

Index type priority Index

sensitive

function

Relation

operators

SSF pf

1 B-tree 1 Nil >=, <= btree_select_range F

2 X-tree 1 distance <= xt_proximity_search T

3 X-tree 2 Knn nil xt_knn_search F

Input query

Q3(x, hist_x):-

images(x, hist_x) AND

images(q, hist_q) AND

(q, hist_q) in knn(hist_x, 10, #’images’)

Intermediate query
TQ3(x, hist_x):-

image(x, hist_x) AND

(q,hist_q) in (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10)

Form (iii):

P(…,iv,…) AND (..,iv,..) in isf(…..,P,..)

Index type Index

sensitive

function

Relation

operators

SSF

X-tree Knn nil xt_knn_search

Reviews of query fragment forms

Form (i):

P(…iv,..) AND (iv r1 expression) AND

(iv r2 expression) AND

. . .

(iv rn expression)

Form (ii):

P(…iv,..) AND isf(…,iv, …) r1 expression AND

isf(…,iv, …) r2 expression AND

. . .

isf(…,iv, …) rn expression

Form (iii): P(…,iv,…) AND (..,iv,..) in isf(…..,P,..)

Form (iv): P(…iv,..) AND F(iv) relop expression

Form (v): P(…,iv,…) AND F(isf(…,iv, …)) relop expression

isf(…) relop expression

isf(…) LIKE expression

Mexima

Oracle
Advisor tools to suggest on
reformulating the query to utilize
indexing

• D. Benoit, D. Das, K. Dias, K. Yagoub, M. Zait, and M.
Ziauddin: Automatic SQL tuning in Oracle 10g, Proc.
VLDB Conf, pp 1098-1109, 2004.

• Oracle Inc: Query Optimization in Oracle Database 10g
Release 2.
http://www.oracle.com/technetwork/database/bi-
datawarehousing/twp-general-query-optimization-10gr-
130948.pdf , 2005

Transparently transformation to
utilize indexing

** T. Truong, T. Risch: Scalable Numerical Queries by Algebraic Inequality
Transformations, Proc. Database Systems for Advanced Applications (DASFAA), pp
95-109, 2014

Our solution
• The paper title:

“Transparent inclusion, utilization, and validation of main memory domain indexes”

• The paper itself

 Transparent inclusion

o no index implementation code changed .

 Transparent utilization

o automatically transforms queries to utilize the new added index.

 Transparent validation

o Automatically generates and executes queries to test the new added
index

What to test ?

• BAOs: correctness of BAOs

• SSFs

–Correctness of SSFs

–Correctness of SSF translation rules

BAO tester

• Automatically tests correctness of put(), get(),
delete(), map(), and drop().

• Index key generator as queries

BAO tester (cont.)

• Populate generated data into

– Table I_Table(k, v), having index to test at column k

– Table R_Table(k,v), having Hash index at k

• Execute BAO tester algorithms (***)

• Validate I_Table against R_Table

*** details in the paper

SSF tester - Ideas

• Create sample tables with and without the index

• Auto-generate validation queries

• Recall, SSF translation rules transform these
queries

 Same value returned if there is no index, or no
matching SSF translation rules

SSF tester – Ideas (cont.)

• SSF parameter generators

It is getting more complicated!

SSF tester – Ideas (cont.)
• Join three index property tables

– SSF translation rule table

– Index key generator table

– SSF parameter generator table

SSF tester – Validation queries
• Validation query matching Form (I)

select iv, v

from IT iv, Number v,

T1 p1, T2 p2,.., Tm pm

where I_Table(iv, v) and

(p1, p2, …,pm) in (SPG) and

(iv r1 p1) and

(iv r2 p2) and

. . .

(iv rm pm);

SSF tester – Validation queries
• Validation queries matching Form (II)

select iv, v

from IT iv, Number v,

T1 p1, T2 p2,.., Tm pm,,

Tj res

where I_table(iv, v) and

(p1, p2, …,pm) in (SPG) and

res = ISF (iv, p1,..,pj-1) and

(res r1 pj) and

. . .

(res rm pm);

SSF tester – Validation queries
• Validation queries matching Form (III)

select iv, v

from IT iv, Number v,

T1 p1, T2 p2,.., Tm pm,,

where I_table(iv,v) and

(p1, p2, …,pm) in (SPG) and

(iv,v) in ISF (p1,..,pm, I_Table)

Experiments

Experiment - Purposes
• Code size

– Compare coding size to introduce some indexes between
Mexima vs other extensible indexing frameworks

– To show Mexima requires no code change, driver code
(glue code) is small

• BAO overhead
– Time to run a stand-alone index implementation

– Time to run it when plugging into Mexima

– To investigate the overhead = Penalty of using Mexima

• Impact of SSF translation rules
– Time to run queries with/without SSF translation rules

– To show the importance of query rewrite to utilize indexes

Experiment - Settings
• All performance experiments were repeated

10 times, from which the average figures were
calculated after removing outlier results if any.

• The experiments were run under Windows 7
on an Intel (R) Core(TM) i5 760 @2.80GHz
2.93 GHz CPU with 8GB RAM, using the Visual
Studio 10 32 bits C compiler.

Experiment – Code size

• Count number of code C/C++ lines of glue code vs other extensible
indexing systems

o PostgreSQL version 9.3.5, http://www.postgresql.org/ftp/source/v9.3.5/
o SP-GiST version 0.0.1, https://www.cs.purdue.edu/spgist/
o Mexima http://www.it.uu.se/research/group/udbl/mexima

• Mexima requires
– no code change to the index implentation
– litle coding effort for the driver (interface)

GiST SP-GiST Mexima Factor

B-tree 5031 -- 116 43

KD-tree -- 572 118 5

R-tree 1133 -- 120 9.5

Trie -- 580 120 5

http://www.postgresql.org/ftp/source/v9.3.5/
https://www.cs.purdue.edu/spgist/
http://www.it.uu.se/research/group/udbl/mexima

Experiment – BAO overhead

• The total time

tot = op + mc + ed + st

• The Mexima overhead,

o= op + mc + ed

• Breaking down the overhead
– %op ?

– %mc?

– %ed?

Query Processing

Operations

Mexima core

Index extension driver

Stand-alone
implementation

op

mc

ed

St

Experiment – BAO overhead (cont.)
Query Processing

Operations

Mexima core

Index extension driver

Stand-alone
implementation

op

mc

ed

St

• Data size = 5 milion key/value pairs
• 1000 random inserts, lookups, deletes.
• The average overhead in microseconds per call
 Overhead < 0.6 microsecond

Experiment – Overhead w.r.t data size

Put() Get()

Delete ()
Map()

The stand-alone index implementations are always faster
The overhead is independent of the database size

Experiment – Impact of SSF translation
rules

B-trees and Judy-trie on Range search Xt-rees on Similarity search

Xt-trees on Proximity search X-trees and R*-trees on KNN search

With SSF translation rules, queries run faster.
It made indexes utilized

Experiment – Side notes

• Bugs found in the following used index
implementations using Mexima tester
– X-trees [1]
– R*-trees [2]
– B-trees [1]

• Comparisons
– Judy-trie [ref] outperformed B-trees in get(),

insert(),delete(), but not map()
– For 2D – 4D, X-trees is as good as R*-trees
– For higher dimension (9D), X-trees is applicable and scale

[1] http://www.it.uu.se/research/group/udbl/mexima
[2] http://www.ics.uci.edu/~salsubai/rstartree.html

Conclusions & Future work

• Conclusions
– The Mexima framework allows plugging-in of main-

memory domain index implementations with ease
• without code changes
• a simple Mexima driver for BAOs and SSFs
• declare index properties as queries
• transparently, Mexima makes new indexes utilized
• automatically generating and executing validation queries,

Mexima validates correctness of BAOs and SSFs

– Tool for testing and comparing indexes

• Future work
– More indexes will be plugged-in
– It might put additional requirement to Mexima

Thank you!

