
Scalable ordered indexing of streaming data

Sobhan Badiozamany
Department of Information Technology

Uppsala University
Box 337, SE-751 05,

Uppsala, Sweden
Sobhan.Badiozamany@it.uu.se

Tore Risch
 Department of Information Technology

 Uppsala University
 Box 337, SE-751 05,

 Uppsala, Sweden
 Tore.Risch@it.uu.se

ABSTRACT
In order to efficiently answer continuous queries requiring range
search in large stream windows, data stream management systems
(DSMSs) need ordered indexes. Conventional DBMS indexing
methods are not specifically designed for data streaming
applications with extremely high insert and delete rates for
windows over streams. This motivates a scalability investigation
for various ordered main memory indexing methods in a
streaming environment, through implementation and experiments.
Our experimental studies show that a state-of-the-art
implementation of cache-aware compact tries is a very suitable
indexing structure for data streaming applications allowing
constant time insert and access rates. However, in the best of the
investigated implementation the range search was slow. Since a
highly optimized implementation of compact tries is very complex
we developed a framework for scalable range search in an index
without any change to its source code. Another important issue is
that index maintenance in window based data stream
environments require a scalable way of deleting data, which is
addressed by an index independent window aware bulk deletion
technique, also without changing any source code.

1. INTRODUCTION
A Data Stream Management System (DSMS) usually has a local
main memory database against which high volume streaming data
is matched. This local database includes storage for windows of
data streams flowing through the system. The windows may
become large, so indexing data in stream windows is an
interesting problem. In many cases ordered indexing is needed,
which is investigated here.

The requirements of data stream indexing is not exactly the same
as conventional DBMS indexing, causing some traditional DBMS
indexing structures to fall behind the requirements of DSMS
applications. The following are important differences between
conventional DBMS indexing and DSMS window indexing:

• Because of very high stream rates DSMS indexes need
to be stored in main memory and the indexing data
structure should be main-memory oriented, i.e. be CPU
cache conscious and compact.

• Stream window indexes need to be able to handle very
high insert, update, and delete rates. By contrast, most

conventional DBMS applications behave based on a
high watermark. That is, once the database is filled up,
it does not rapidly grow or shrink in size. In other
words, DBMS applications have lower demand for
massive insertion and deletion than DSMS application
while fast search is desirable in both.

In this paper we investigate the performance of different kinds of
ordered indexing methods for main memory databases in context
of window based stream processing w.r.t. the three aspects of
ordered indexing for massive data streams: insertion, search, and
deletion. The goal is to find the best suitable ordered sliding
window indexing method for massive data streams.

To improve the performance of deletion from indexes over time
stamped stream windows, we propose a window aware indexing
maintenance method, partitioned temporal window index (PTWI),
and through experiments we show that it outperforms a naïve
incremental index deletion strategy. In addition PTWI can be used
together with any kind of underlying indexing structure.

We implemented and compared the performance of indexing
sliding windows over data streams of main memory B-trees, cache
sensitive B+ trees [12], burst tries [10], and the highly optimized
but complex compact trie implementation Judy [18]. For
empirical investigations we used randomly generated synthetic
data as well as data generated by the Linear Road Benchmark
(LRB) [1] for streaming data. Benchmark queries were used to
compare the scalability of insertion, deletion, and range search for
different indexing structures.

Judy is a highly optimized compact trie implementation that
focuses on both compactness and CPU cache utilization to
improve the performance. However, the current Judy
implementation lacks efficient range search iteration, as also
noted by [15] [16]. To improve memory and CPU cache
utilization, Judy dynamically changes between its around 50
different internal node structures based on the current key
distribution in each node, which makes the implementation of
Judy very complex and difficult to change. We therefore
developed a method to improve range search in a complex index
implementation such as Judy, without changing its source code.
The experimental results show that our extended version of Judy
scales the best among the other investigated main memory
indexing structures.

This paper is organized as follows. Section two makes an
overview of related main-memory ordered indexing methods.
Section three first defines the benchmark scenario and then
describes required extensions to the indexing methods for range
search and massive deletion. Section four evaluates the scalability
of the different indexing methods through experiments on
implementations. Section five summarizes the result and
proposes future work.

2. Background and related work
Sampling techniques like window aware load shedding [19] have
been proposed for processing approximate queries when the
stream rates are higher than the DSMS can handle. Load shedding
is not suitable when all stream elements in the window must be
maintained, such as in monitoring communication networks [2]
and urban traffic [1].
A complement to load shedding is indexing. Proper indexing
increases the performance of the DSMS and decreases the need
for sampling techniques. We have investigated the performance of
the most common main memory ordered indexing structure for
our setting. In particular we review different kinds of B-trees and
tries.

The compact trie implementation Judy was found to be
particularly interesting to investigate. However, Judy needs some
extensions for supporting efficient streaming range search and
massive deletion. Since the implementation of a highly optimized
compact index structure such as Judy is very complex, we have
devised methods to improve range search and deletion for an
index implementation without altering it.

The CSB+ variants of B-trees [

B-trees

12] [9] and the binary T-tree [14]
have been proposed to index main memory data in a cache
conscious way. A recent study [12] suggests that in the context of
in-main-memory indexing on modern processors T-trees do not
perform better than classical B-trees. Therefore classical B-trees
regained the research focus and there have been attempts to make
B-trees cache conscious. By exploiting the CPU cache more
effectively, the CSB+ tree improves the search time at the cost of
using more space and slightly slower insertion and updates than
regular B+ trees [12]. We show that the major problem with
CSB+ trees compared to B-trees is space inefficiency.

In the simplest form, a trie is a multi-way tree structure in which
each node is an array of pointers. The size of each array is equal
to the number of letters in the alphabet, e.g. 26, and each level in a
trie indexes a letter in a word. The main advantage of tries is
constant insertion and access time if the length of the key is fixed.
Thus tries should be very well suited for indexing data stream
windows with very high insert rates. Figure 1 shows a naïve trie.
Each node in the trie represents a sub-expanse [

Tries

18], which is a set
of keys that are accessed through it. In Figure 1, all keys in the
range [COAAA,COZZZ] are in the same sub-expanse accessed
through the node marked as “CO”.

Although tries were originally introduced to index character
strings, they can be easily modified to index any ordered domain.
An order preserving key transformation function can be defined
that returns a binary key representing the rank of the original key
in the domain. If prior knowledge about the domain exists, such a
transformation can be done on-the-fly as done by, e.g., [12]. A
binary key can then be indexed by breaking it down into bytes and
then introducing them to the trie like characters of a string. For
simplicity, here we consider the binary keys to be 32 bit integers
broken into 4 bytes. In a naïve implementation for integer keys,
the trie is then always 4 levels deep. Each node is a simple array
of 256 pointers to the nodes in the next level or, in case of nodes
in the 4th leaf level, pointers to values. Tries can be extended to
support longer integers and other forms of breaking integers [6].

The memory utilization problem with tries is that they are
sensitive to the distribution of keys. In the worst case, when the
keys are uniformly scattered across the whole domain, naïve tries
waste memory because there will be many null pointers in the
sparse pointer arrays representing trie nodes. Several compression
techniques have been introduced to overcome naïve tries’ weak
memory utilization [5] [10] [13] [18]. The main objective in most
of them is to achieve a compact representation that, despite its
compactness, can still support constant insertion/search time.

A burst trie [10] is based on the idea that as long as the population
is low, keys that share the same suffix can be stored in the same
container. Containers are sorted lists of partial keys together with
their associated values. During index lookup, once the right
container is found, the key is located using binary search.
Containers have a limited capacity and therefore, in an attempt to
insert more keys into a full container depending on the
implementation particulars, the container is transformed into a
larger internal node, and thus ‘bursts’ into several new containers.
The keys will thereby be redistributed to the new containers based
on deeper suffix calculations, and the pointers in the new internal
node will refer to new containers. This is an effective approach to
decrease memory consumption. However, since the container
capacity is fixed in all nodes, the internal nodes often still have
null pointers and the memory utilization can still be a problem.

Judy [

Judy compact trie implementation

18][3] can be categorized as a variation of burst tries, but
with an important distinction: the node (container) data structure
and its size is not fixed. To improve memory and CPU cache
utilization, Judy dynamically changes node structures according to
the current distribution of keys in each node choosing among

Figure 1. A naïve trie example that stores string keys
“cat”, ”car”, ”cone”, ”cold”, ”dell”, and “delta”.

around 50 different representations of internal nodes. Judy is a
highly tuned but very complex data structure. Judy’s approach
towards an efficient compression technique is to use a variety of
compact node structures that fit in a single cache block for
different kinds of local sub expanse populations. This allows the
contents of any kind of node to be moved to the CPU cache for
fast consecutive access. Furthermore, Judy maintains the most
interesting characteristic of tries. That is, the depth of Judy is
constant, e.g. for indexing integer keys Judy is always 4 levels
deep. This means constant time is guaranteed for all single
element operations.

Judy supports iteration based range search. However, in the
current Judy implementation the iterator always starts at the root,
which makes it perform worst among the investigated methods
w.r.t. range search. The J+ tree [16] and PJ+ tree [15] address this
problem by introducing a sorted linked list as an extra level of leaf
nodes. We were unable to obtain the source code for J+ or PJ+
trees for making an empirical evaluation. However, compared to
Judy, the J+ tree worsens the performance of single key
operations in Judy because it adds an extra level of search and
maintenance of the leaf node lists; it also consumes much more
memory since prefixes are stored uncompressed in the leaf node
lists. The prefetching variant of the J+tree, the PJ+ trees [15],
improves the range search performance by adding prefetching
pointers, but does not address any of the J+ tree deficiencies.

Implementations of indexing structures for highly tuned indexing
structures such as Judy might become very complicated. To
improve software reusability and eliminate unnecessary
modifications to highly optimized implementations, we use
mappers as a general method that simplifies traversal of data
structures. A mapper is a second order function that applies a
mapping function on a set of elements. In the ordered indexing
context a mapper is a function that traverses a range of keys
specified by low and high bounds, and applies a user provided
mapping function on the key-value pairs in the range.

Non intrusive range search

Using mappers we added range search to Judy without any
modification to it. We show that the mapper approach
substantially improves range search compared to the built-in
implementation. This makes Judy extended with mappers perform
better than other investigated approaches.

GIST [11] is a general framework for adding tree-based indexes to
an extensible DBMS for supporting range search. It is challenging
to make the code changes required by GIST for a complex trie
structure such as Judy, and we therefore instead used mappers.

If there is massive stream flow through a tumbling window,
deleting the expired stream elements from the window index
becomes an issue. Naive element by element deletion is slow.
Common methods to speed up bulk insertion and deletion are to
use partitioned indexes and create/delete entire partitions in bulk
[

Non intrusive bulk deletion for sliding windows

17] or prefixing keys in a B-tree with partition identifiers [7]. We
adapted partitioned bulk deletion to support non-intrusive bulk
deletion of indexes over sliding time stamped windows, called
partitioned temporal window index (PTWI). The main difference
to regular bulk deletion is that PTWI maintains a circular array of
pointers to time stamped sub-window indexes, which are
completely deleted as the main window slides.

3. Ordered indexing of data streams
We address three main challenges in indexing data in sliding
windows: scalable insert, fast range search, and scalable deletion.
The suitability of several indexing methods w.r.t. these aspects
have been investigated. For the investigation of the methods we
used own implementations, publically available implementations,
and publicly available versions extended with our improvements.

3.1 Scenario
To analyze the problems of maintaining proper ordered indexing
structures for window based stream processing and comparing
scalability of different indexing solutions, we use the Linear Road
Benchmark data generator. It generates for a predefined number
of expressways L an input data stream with the following tuples:
[T, X, D, S, VID, VEL]
Where

• T is a time stamp.

• X is the expressway on which a vehicle is traveling, 0 to
L-1.

• D is the direction in which the vehicle is traveling,
which is either east or west.

• S is the segment of the expressway, 0 to 99.

• VID is the vehicle’s identifier.

• VEL is the speed of the vehicle.
Our performance evaluation simulates index search for the
following index intensive queries:

• Q1: What is the velocity of a specific vehicle v on
expressway x traveling in direction d in segment s
during the last minute? This query selects a single tuple.
select VEL

from [last minute window]

where X=x and D=d and S=s and VID =v;

• Q2: What is the average velocity of all vehicles on
expressway x traveling in direction d in segment s
during the last 5 minutes? This query is selecting 1/L %
of the position reports in the window.
select average (VEL)

from [last 5 minutes window]

where X=x and D=d and S=s;

An ordered index on the compound key <X, D, S, VID> provides
scalable answers to both queries. The VID attribute needs to be
included in the ordered index since, at traffic peaks, LRB
generates a large number of vehicles per segment in a minute
(around 100,000).
Query Q1 accesses a single element in the index having the key
<x,d,s,v>.
Query Q2 is a range search where the lower limit of the
compound key is <x,d,s,0> and the upper <x,s,d,∞>.
Since the main window covers 5 minutes and tumbles every 1
minute, the older data on the index must be removed, which
requires massive deletion from the index.

3.2 Improving range search on Judy
The most common way to iterate over index ranges is to use a
Volcano style scan structure with a next method [8]. Such a
structure is indeed available in Judy, but it does not perform well
because the next method always starts from the root in the current
implementation, without using a scan data structure. For scalable
range search, Judy has to be modified. However, to implement a
scan data structure in a highly complex indexing structure such as
Judy, having over 50 different node types, is a challenging task
since all state information has to be continuously maintained in
the scan. The alternative to implement scans using linked leaf
nodes as in B+ trees would require substantial modifications of
Judy with unknown consequences.

To add efficient range iteration to Judy without the complexity of
implementing scans, we instead implemented a second order C
mapper function that applies another C function on every key-
value pair in a given key range. This approach requires no change
to Judy and no explicit code to maintain the complex state
information as in scans. Our implementation also supports generic
iteration over scans by using threads combined with a buffer of
recently mapped key-value pairs.

Listing 1 shows the general signatures for mapper and mapping
functions in C for range search operations in an ordered indexing
structure.

Based on the general mapper paradigm, we implemented a
mapper function for Judy that performs the range search. The
mapper recursively visits the nodes that cover sub expanses which
are within the specified range. For each leaf node, it applies the
mapping function to the key-value pairs in the leaf nodes that are
within the range. In Judy the bytes of the key are not always
implicitly stored in nodes, so the algorithm has to carry a prefix at
any call level. Listing 2 provides an outline of the algorithm (the
C code can be downloaded from [21]).

3.3 Window aware index deletion
We compare two different strategies for deleting time stamped
elements from indexes over sliding windows: naive incremental
deletion and the bulk window index deletion method PTWI.

3.3.1 Incremental deletion
In incremental deletion there is only one indexing structure for the
whole window. In order to identify the right set of keys to be
deleted, the time stamp has to be explicitly stored as a part of the
key. The index key thus takes the form of <t, k> where k is the
application key (i.e. <X, D, S, VID> in LRB) and t is the time
stamp associated with it. Notice that the order in the compound
key proposed here preserves the temporal order of keys.
Therefore, deletion is straight forward; after the time stamp t
expires, all keys of form <t, *> need to be removed. Since an
ordered indexing structure is used, all keys in this range are found
and then deleted from the index one by one.
Naive incremental deletion of keys one by one might take
considerable amount of time since the data structure is searched
from the root for each deleted key.

3.3.2 Bulk window index deletion
As an alternative to incremental deletion we also implemented a
special bulk deletion technique for sliding time stamped windows
called partitioned temporal window index (PTWI).
PTWI is applicable for sliding windows. Let N be the time span of
the window and S be the stride for the sliding in time units. At
each slide a sub-window of size M=N/S tumbles. In LRB N=300
seconds and S=60 seconds, thus M=5. With PTWI M non-

JudyMapper(Judypointer jp, key lower, key
upper, key prefix, mapping fn,void *xa)
{
 switch (type (jp))
 {
 case internal_nodes:/* many variants
 of linear,bitmap,uncompressed */
 for all Judy pointers p in each
 internal node that covers
 the range [lower, upper]do
 {
 Update the prefix;
 JudyMapper(p, lower, upper,
 prefix, fn, void *xa);
 }
 case leaf_nodes:/* linear, bitmap or
 immediate leafs */
 for all keys k inside range
 [lower, upper]do
 {
 Construct the key by extending
 prefix;
 Find value v associated with k;
 (*fn)(k,v,xa); /* apply mapping
 function */
 }
 }
}

Listing 2, Judy mapper

typedef int (*mapping) (key k, value v,
 void *xa);
Mapper(indexroot* tree, key lower, key,
 upper, mapping m,void *xa);
int SumMapping(key* k,value* v,void *xa)
{
 *(int *) xa += (int) *v;
 return TRUE;
}

The following code traverses the index structure pointed to
by tree in the range [100,200] and applies SumMapper to
all key-value pairs in the range. The sum of the values are
accumulated in the variable sum passed by reference to the
mapper.

key k1=100; k2=200;
int sum=0;
indexroot* tree=new_index();
Mapper(tree, k1, k2, SumMapping, &sum);

Listing 1, general mapper and mapping functions for
range search

overlapping partial indexes are maintained for the whole sliding
window. When the window slides, the partial index that stores the
oldest subwindow is dropped and a new empty partial index is
created. PTWI is implemented as a one dimensional circular index
array of size M of pointers to partial indexes, as illustrated by
Figure 2.

In the PTWI header the following information is maintained as the
window slides:
T0: Starting time for the indexed stream, initialized to the time for
the first arriving tuple.
M: Number of subwindows. In LRB M=5.
S: The stride of the subwindows as time units. In LRB S=60
seconds.
When a new tuple with time stamp t and data tuple tpl, <t, tpl>,
arrives in the stream, the system first determines whether
tumbling of a subwindow is needed or not. Tumbling is needed
when mod(t,S)=0.

a) If mod(t,S)≠0, i.e. no tumbling, the system computes the
position i in the subwindows array containing a pointer
to the subwindow index where tpl should be inserted,
accessed, or updated:

 i = mod(t-T0,W*S)
b) When mod(t,S)=0 the oldest window tumbles by

completely dropping it from the subwindow array and
replacing it with a new empty window index. The
position d in the subwindows array for the window
index to replace is computed by:

d = mod(t/S,W)
For example, Figure 3 illustrates the evolution of the subwindows
array for the LRB scenario. In the beginning of any minute T, the
oldest partial index associated to minute T-5 needs to be dropped
and a new empty one for minute T is created. Figure 3 shows the
content of the subwindows array during minutes 1 to 10. In each
minute T incoming data is inserted only to the index associated
with the current minute, tagged as @T in the figure.
Queries that access a single tuple at a given time point t, such as
Q1, can be directly answered by calculating i as in a) and then
accessing window index i in the PTWI array of subwindows.
To answer queries that cover the whole window, they have to be
divided into sub-queries – one for each minute – and their results
merged. For example, for query Q2 the time period is the last 5
minutes and therefore the range query [<x,d,s,0>, <x,s,d,∞>] for
given x, s, and d is issued over all 5 subwindow indexes in the
array.

Notice that bulk deletion can be done in a lazy manner in a
background process. In other words, deletion is no longer a
burden on the real time expectations of the system.

Furthermore, notice that any kind of indexing structure can be
used for storing the subwindow indexes.

The space overhead of PTWI compared to incremental deletion is
negligible, since it just adds one extra array of M pointers and the
PTWI header. The computational overhead is one extra simple
numerical computation per stream tuple to obtain i, while d is
computed only when the window tumbles.

Figure 3. Contents of the PTWI array of subwindows during
first 10 minutes, with 5 minutes window size and 1 minute

stride. @T represents the pointer to the subwindow index for
minute T.

The PTWI’s window index array minute

@1 nil nil nil nil 1
@1 @2 nil nil nil 2

@1 @2 @3 nil nil 3

@1 @2 @3 @4 nil 4

@1 @2 @3 @4 @5 5
@6 @2 @3 @4 @5 6

@6 @7 @3 @4 @5 7

@6 @7 @8 @4 @5 8

@6 @7 @8 @9 @5 9
@6 @7 @8 @9 @10 10

4. Experimental evaluation
We experimentally compared the scalability of insertion, single
element retrieval, incremental deletion, bulk deletion, and range
search in a B-tree, CSB+tree, Burst trie, Judy, and Judy extended
with efficient range search. We also compared the performance of
PTWI with incremental deletion for Judy and B-trees. The
outcome supports the initial hypothesis that Judy extended with
efficient range search and PTWI outperforms other investigated
in-main-memory indexing structures. The succeeding sections
describe how tests were performed and present experimental
results.

4.1 Experimental setup
The following ordered indexing methods were investigated:

• We implemented the classical B-tree algorithm as in [4].
Then we experimentally tuned the B-tree node size to
minimize cache misses, which on our hardware
happened when each B-tree node contained 750 bytes.

• The CSB+ tree implementation was downloaded from
[20]. We used the full CSB+ tree variant, which is the
best variant for high insertion and update rates
according to the authors.

• We implemented the burst trie index as specified in [10]
adapted for integer keys.

• Judy was downloaded from [3].
• To have fair comparisons, in all indexing structures both

keys and values are 32 bit integers.
The C code for indexing methods used in the experiments is
available at [21].

Figure 2. The PTWI structure

We performed two sets of experiments with different key
distributions. The first key distribution consists of uniformly
distributed random integers from the whole 32 bit integer range.
This is the worst case for tries since under this key distribution the
trie structure will have sparse pointer arrays with many null
pointers. In our second key distribution the keys are the position
reports from the more realistic LRB input stream.
Given that the intention was to compare the scalability of indexing
structures, the size of the indexes was gradually increased in a
number of steps, and then the required time to perform insertion,
single element retrieval, and range search operations were
measured. After the each step the amount of main memory so far
used by each index is noted. Moreover, to typify the
measurement, the operations were done in batch, i.e. instead of
measuring the time of inserting a single key in each step, which
could be affected by noise, we calculated the average time to
insert an element over 0.5 million keys. Since we measure pure
insertion, update, and retrieval time duplicated keys in the input
are omitted.
The performance of deletion is measured in a separate experiment.

4.1.1 Random key distribution
In this experiment first 16 million random keys from a flat
distribution of integers in range [0,232-1] were generated and
stored in a one dimensional array. The experiments were
performed by reading the keys from the flat array as follows:
In steps of size 0.5 million simulated incoming tuples, perform the
following actions and measure the time each one takes on all
indexing structures:

1. Insert into the index 0.5 million keys and measure
the average time to insert one key.

2. Measure the accumulated amount of main memory
used by each indexing structure after each 0.5
million inserts.

3. Retrieve in random order 50000 keys from all so
far inserted keys and measure the average time to
retrieve one key from the index.

4. Generate a random interval covering 10% of the
total domain and make one range search to
measure the time.

4.1.2 LRB key distribution
For a realistic data distribution, the indexing keys in the second
experiment were LRB position reports. To construct ordered
preserving integer keys k for LRB, they are computed as follows:
k= VID+SEG*220+D*227+X*229 i.e.:

• Expressway number X, the most significant 4 bits (28-
31).

• Direction D, bit 27.

• Segment SEG, bits 20-26.

• Vehicle identifier VID, bits 0-19.
First the whole LRB input file is scanned; the first appearance of
each key k is stored in a flat array. During this preprocessing,
duplicates are detected and discarded.
After forming the flat array containing unique keys, the test is
executed in a number of steps similar to the procedure for random
keys, but steps three and four are different:

• In step three, query Q1 is executed for 50000 randomly
chosen so far inserted position reports and the average
single element retrieval time is measured.

• In step four, for randomly chosen x, s, and d, query Q2
is executed 100 times and the average search time
measured.

4.1.3 Deletion
In order to compare the scalability of incremental window
deletion with PTWI, we performed two tests on the two indexing
structures Judy and B-trees.
The first test measures a naive incremental deletion strategy. In
this test the indexes were loaded with different populations of
keys as in 4.1.2. For each population all individual keys are
deleted one by one, until the index becomes completely empty.
The total time to empty an index with a given population is
measured.
To measure deletion with PTWI, indexes with the same sizes as in
the first test were populated, but this time, in contrast to deleting
individual keys as in the first test, the whole index structure is
dropped at once by traversing all nodes in it.
In both tests, to avoid memory fragmentation issues from biasing
the performance, the application is restarted before any new index
is created, i.e. before any new population is examined.
All experiments were run under Windows 7 on an Intel (R)
Core(TM) i5 760 @2.80GHz 2.93 GHz CPU with 4GB RAM,
single threaded using the Visual Studio 10 32 bits C compiler.

4.2 Experimental results
In this section the experimental results from comparing the
indexing structures w.r.t. insertion, single element retrieval,
memory utilization, range search, and deletion are analyzed.
Experimental results of each indexing operation are presented and
discussed under LRB key distribution alongside the random
distribution. In the deletion section only LRB key distribution is
presented since the results from random key distribution leads to
the same conclusions.

4.2.1 Insertion
Figure 4 illustrates the time required to insert a single key into
each indexing structure at a given index size when keys from LRB
are used. The time is averaged over 0.5 million insertions.
The most important observation is that, in this key distribution,
after around 4 million keys, Judy and burst tries reach their
maximum depth of 4. Recall that in our experiments the keys are
4 byte integers and therefore their overall structure stabilizes.
From this point on, it takes constant time to insert new elements
into Judy and burst tries. The reason burst tries are faster than
Judy is that their containers are not compressed, so insertion into
them is simpler and computationally cheaper compared to Judy,
where insertion into containers causes nodes to transform their
representations.
As expected, B-trees and CSB+ trees scale logarithmic. CBS+
trees outperform B-trees w.r.t. insertion because of two reasons:
First, all siblings of a node in a full CSB+ tree are allocated as
soon the node is created, which reduces the costs of future node
creation and potential structural balancing. Second, the CBS+ tree
representation is cache conscious. However, after 8 million keys
there is no more memory available in our 32 bit representation for
the full CSB+ tree to grow.

Figure 5 illustrates the time required to insert a single key into
each indexing structure at a given index size when keys are picked
from a random distribution. The time is averaged over 0.5 million
insertions.
As expected, B-trees and CSB+ trees scale logarithmic and show
no sensitivity to the key distribution.
Under the random key distribution, in particular burst tries and, to
a lower extent, Judy undergo an unstable period when the size is
around 3 and 2 million keys, respectively. The fluctuation is due
to the specific conditions under which bursting happens. That is,
since the keys are uniformly distributed within a very wide range,
they rarely share prefix at the next level, so during the burst, new
containers are created for most of the keys that are being re-
distributed. The high computation and memory management costs
involved results in poor performance during bursting.
It is worth to note that Judy stabilizes much earlier than the burst
trie. This is because Judy maintains dynamic container structures
depending on the population of each sub-expanse, which
decreases the bursting cost.

4.2.2 Single element retrieval
Figure 6 illustrates the time required to retrieve a single key from
each indexing structure at a given index size under the LRB key
distribution. B-trees and CSB+ trees scale logarithmic as
expected, with CSB+ trees being faster mainly because of cache
awareness. Retrieval of single elements from Judy and the burst
trie takes constant time after they reach their maximum depth at
four levels. Judy is fastest due to two reasons: first its efficient
compression techniques facilitate search in the nodes. For
example, bitmap nodes store only populated sub-expanses and
index them using a directly accessed bitmap. Second, it exploits
the CPU cache more efficiently.
Figure 7 illustrates the time required to retrieve a single key from
each indexing structure at a given index size under the random
key distribution. Again, since B-trees and CSB+ trees are not
sensitive to key distribution, they scale similar to the LRB key
distribution in Figure 6. The search time for burst tries increases
until a maximum at around 3 million keys, after which the
retrieval performance improves. The peak happens almost right
before the nodes burst. Before the bursting happens, most of the
containers are highly populated and therefore performing binary
search in them becomes costly. After the bursting happens, keys
are distributed among containers with lower populations and
therefore the cost for binary search decreases. In Judy, in contrast
to burst tries, due to the maintenance of dynamic population-based
node structures, the search time at each node is optimized and
therefore Judy is much more stable than burst tries.

4.2.3 Memory utilization
Figure 8 and 10 show the memory utilization with LRB and
random distributions, respectively. The inefficient memory
utilization of the CSB+ tree implementation is displayed
separately in Figure 9.
To illustrate the compactness of indexing structures the main
memory utilization is measured and displayed in terms of byte per
key-value-pair (B/KVP). As a theoretical base line we also plot
flat arrays in which KVPs are stored un-indexed in consecutive
memory cells. Since all investigated indexing structures use 32 bit
integers for both keys and value-pointers, storing KVPs in such a
flat array –independent from the number of KVPs- achieves 8

B/KVP, the minimum uncompressed memory area needed to store
key-value pairs.
Figure 8 shows the memory utilization when the LRB key
distribution is used. It is worth to note that after a certain
population, Judy becomes even more space efficient than flat
arrays. The reason is that as the LRB simulation proceeds, the
traffic increases. This means more vehicle ids per segments of
expressways and consequently a more dense key distribution.
Judy’s dynamic node structure utilizes this to minimize memory
consumption mainly through using bitmap nodes and leafs [18].
The burst trie on the other hand improves the memory utilization
up to a point where the number of keys in sub-expanses exceeds
the maximum container size and the containers burst. Each
bursting brings about an additional node, and many new
containers, which leads to bad memory utilization.
The memory utilization of B-trees is very stable but not as
compact as Judy.
Figure 9 shows the memory utilization for CSB+ tree compared to
the B-tree for the LRB distribution. The main reason for poor
memory utilization of the Full CSB+ tree is that, as described in
[12], it creates all sibling nodes for each node to improve insertion
and update time. As the total number of keys increases, the
memory utilization improves, but since creating new nodes is
essential, and all the sibling nodes are also allocated at the time of
creating any new node, the improvement is limited.
Figure 10 shows the memory utilization when random key
distribution is used. As expected, since B-trees are insensitive to
the key distribution, they make the same B/KVP as in Figure 8.
Under random key distribution, burst tries go through extreme
bursting and they have even worse memory utilization. This is due
to that most containers created by the burst for a random key
distribution contain a single element. As the experiment proceeds,
more keys with the same prefix are added to the newly created
containers, and therefore memory utilization of burst tries
improves.
Judy shows very little sensitivity to random key distributions,
because in Judy containers with very low populations are
implemented using a very specific compact structure - the
immediate pointers. In immediate pointers the contents of nodes
and leafs with one or two keys are stored in the pointer itself. The
immediate pointers make the memory utilization become stable
very soon. With random key distribution Judy’s memory
utilization is slightly worse than flat array and substantially better
than the other indexing structures.

4.2.4 Range search
Figure 11 illustrates for LRB key distribution the time required to
perform a range search at a given index size using B-trees, burst
tries, CSB+ trees, the original iterator based Judy implementation,
and Judy extended with the mapper for range search. As expected,
our Judy mapper outperforms the original range search provided
by Judy and it performs almost as efficient as a B-tree. The reason
for the slightly better performance of the B-tree range search over
Judy is that in B-trees a single node stores more keys compared to
Judy for two reasons. First, Judy utilizes the most compact
representation at each node which leads to nodes with lower
populations. Second, compared to the rather large nodes in our B-
tree, nodes in Judy are generally smaller since they need to fit in a
64 byte cache line.

Figure 12 illustrates for the random key distribution the time
required to perform a range search using original and extended
Judy, B-trees, CSB+ trees, and burst tries at a given index size.
The range search scales worse using Judy compared to B-trees
with random key distribution, because Judy creates huge number
of very small immediate nodes.
In both Figure 11 and Figure 12, the Judy mapper implementation
scales better than the burst trie mapper. The reason is that the
internal nodes in burst tries include many null pointers, which
increases the traversal time. That is, the internal nodes in burst
tries always contain 256 pointers, even though many of them
represent empty sub-expanses, and consequently, the burst trie
mapper needs to consider all sub-expanses within the [low-high]
range, including the empty ones. The more compact
representation of Judy avoids many unnecessary memory accesses
and cache misses. It should also be noted that the CSB+ trees in
both cases are not faster than B-trees for range search. The main
reason is the larger node size of B-trees, which utilizes the CPU
cache better since the leaf nodes are very short in CSB+ trees
compared to B-trees.

4.2.5 Deletion
Figure 13 measures PTWI performance using B-tree and Judy
subwindow indexes. As expected, removing an index structure by
deleting elements one by one, as in the incremental deletion,
requires much more time than dropping of the whole indexing
structure, as in PTWI. Notice that dropping a Judy index of a
given size takes more time than dropping a B-tree index of the
same size. This is due to the higher number of nodes in Judy,
which needs more time to be traversed and freed. However, since
in PTWI it is possible to perform the index drop operation at a
background thread in a lazy manner, slight performance
improvements in the index drop operation has insignificant
contribution to the overall performance of a DSMS.

4.2.6 Discussion on experimental results
The following main aspects are involved in selecting the suitable
ordered indexing structure for window based data streams: insert
time, retrieval time, range search time, deletion time, and memory
utilization.
Since in many DSMS applications, the input stream is massive,
supporting scalable insertion is the most important aspect of
indexing structures for sliding windows of data streams. From this
perspective, a combination of constant and stable insert time is
desired.
As important as insert scalability is scalability of deletions, which
was addressed by PTWI. With the PTWI the scalability of
deletion becomes non-critical.
The next important aspect is scalability of single element
retrievals. To meet the real time requirements of continuous query
processing, constant and stable retrieval time is essential.
Maintaining an index over a sliding window of massive streams
requires indexing structures with acceptable memory utilization.
An indexing structure with poor memory utilization restricts the
stream rate that can be handled by the DSMS.
Finally in many applications, e.g. computer network and urban
traffic monitoring applications, range search is needed for
answering ad hoc queries from the current window.
Table 1 summarizes the results of our experiments in a qualitative
manner. For memory utilization Judy is clearly the best because of

its extensive compression. Judy is also the best on insertion and
single key accesses. For range searches the tree based indexing
methods are the best, but the extended Judy is very close in
particular for non-random data. Burst tries are not stable in
general and therefore problematic for streaming applications. The
main disadvantage with Judy is its very complex implementation.
To conclude, in the context of indexing sliding windows of
streams, our extended version of Judy outperforms all other
indexing structures.

Table 1. Qualitative summary of the experimental results.

 B- tree CSB+ tree Burst trie Judy Extended Judy

memory
utilization

good worst bad best best

insertion good good best best best

key
access

good good good best best

range
search

best best bad worst good

stability best good worst best best

simplicity best bad best worst worst

5. Conclusions and future work
Window based ordered indexing of data streams has additional
requirements to traditional DBMS indexing. Other than scalable
range search and individual element retrieval, it is essential for
DSMS indexing structures to support scalable insertion and
deletion under high volume stream rates. We investigated a
number of data stream indexing methods by implementing them
or extending available implementations. We compared the
following index structures: B-trees, burst tries, CSB+ trees, and
the advanced Judy implementation of compact tries.

Through extensive experiments we showed that, in the context of
window based indexing of data streams, compact tries with
improved range search capabilities outperform other investigated
methods by consuming much less main memory, supporting
constant access time for insertion and retrieval, and being capable
of performing scalable range search. The combination of the
above characteristics makes extended compact tries the best
ordered indexing method for window based stream processing.
The performance of massive deletion is also very important when
indexing high volume data stream windows, which was addressed
by PTWI.
Highly tuned scalable indexing structures like Judy might become
extremely complex, making any modification very costly.
Therefore, we devised non-intrusive methods to add functionality
to an existing index structure. PTWI and mappers are two
examples of nonintrusive additions that enabled us to successfully
re-use, improve, and integrate industry strength software.

In particular, our extended version of Judy with mapper-based
range search and PTWI outperforms the other investigated
indexing structures, making it attractive for sliding stream
window indexing in general.
In addition to supporting range search, tries support more general
pattern matching operations that might be useful in pattern

recognition in data streams. Therefore, adding pattern matching
to tries will be a valuable future work.

6. ACKNOWLEDGEMENTS
This work was supported by the Swedish Foundation for Strategic
Research, grant RIT08-0041 and by the EU FP7 project Smart
Vortex.

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

by
te

 co
ns

um
ed

 p
er

 k
ey

 v
al

ue
 p

ai
r

Size of the index Millions

Judy flat array Burst trie B-tree

Figure 8. Memory utilization under LRB key distribution

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Millions

Judy B-tree Burst trie CSB+tree

Figure 7. Single element retrieval under random key
distribution

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Millions

Judy_next B-tree Burst trie CSB+tree

Figure 6. Single element retrieval under LRB key
distribution

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Millions

Judy B-tree Burst trie CSB+tree

Figure 5. Insertion under random key distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Av
er

ag
e

pe
r k

ey
 (m

ic
ro

se
co

nd
s)

Size of the index Millions

Judy B-tree Burst trie CSB+tree

Figure 4. Insertion under LRB key distribution

7. REFERENCES
1 Arasu, A., Cherniack, M., Galvez, E. et al. Linear road: a

stream data management benchmark. In VLDB '04
Proceedings of the Thirtieth international conference on
Very large data bases (2004).

2 Babu, S. and Widom, J. Continuous queries over data
streams. ACM SIGMOD Record, 30, 3 (2001), 109-120.

3 Baskins, D. Judy home page [http://judy.sourceforge.net/]
(2003).

4 Bayer, R. and McCreight, E. Organization and Maintenance
of Large Ordered Indexes. Acta Informatica, 1 (1972), 173–
189.

5 Bentley, J. L. and Sedgewick, R. Fast algorithms for sorting
and searching strings. In SODA '97 Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms (
1997).

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

re
m

ov
al

 ti
m

e
(s

ec
on

ds
)

size of the index Millions

Judy_incr

BT_incr

Judy_drp

BT_drp

Figure 13. Incremental deletion vs. PTWI

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

se
co

un
ds

Size of the index Millions

Judy

Judy mapper

B-tree

Burst trie

CSB+tree

Figure 12. Range search under random key distribution

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

se
co

nd
s

Size of the index Millions

Judy

Judy mapper

B-tree

Burst trie

CSB+tree

Figure 11. Range search under LRB key distribution

0
10
20
30
40
50
60
70
80
90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

by
te

 co
ns

um
ed

 p
er

 k
ey

 v
al

ue
 p

ai
r

Size of the index Millions

Judy flat array B-tree Burst trie

Figure 10. Memory utilization under random key
distribution

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

by
te

 co
ns

um
ed

 p
er

 k
ey

 v
al

ue
 p

ai
r

Size of the index Millions

CSB+tree

B-tree

Figure 9. Memory utilization of full CSB+trees

6 Boehm, M., Schlegel, B., Volk, P. B., Fischer, U., Habich,
D., and Lehner, W. Efficient In-Memory Indexing with
Generalized Prefix Trees. 2011.

7 Graefe, G. B-tree indexes for high update rates. ACM
SIGMOD Record, 35, 1 (2006), 39 - 44.

8 Graefe, G. Volcano-an extensible and parallel query
evaluation system. IEEE Transactions on Knowledge and
Data Engineering, 6, 1 (1994), 120-135.

9 Hankins, R. A. and Patel, J. M. Effect of node size on the
performance of cache-conscious B+-trees. In Proceedings of
the 2003 ACM SIGMETRICS (2003).

10 Heinz, S., Zobel, J., and Williams, H. E. Burst tries: a fast,
efficient data structure for string keys. ACM Transactions on
Information Systems, 20, 2 (2002), 192 - 223.

11 Hellerstein, J. M., Naughton, J. F., and Pfeffer, A.
Generalized Search Trees for Database Systems. In
Proceedings of the 21st VLDB Conference (Zurich,
Switzerland 1995).

12 Jun R., Kenneth A. R. Making B+- trees cache conscious in
main memory. In MOD (Dallas TX 2000), Proceedings of
the 2000 ACM SIGMOD international conference on
Management of data.

13 Kurtz, S. Reducing the Space Requirement of Suffix Trees.
Software – Practice and Experience, 29 (1999), 1149--1171.

 14 Lehman, T. J. and Carey, M. J. A Study of Index Structures
for Main Memory Database Management Systems. In
Proceedings of the 12th VLDB Conference (1986),
Proceedings of the Twelfth International Conference on Very
Large Data Bases.

15 Luan, H., Du, X., and Wang, S. Prefetching J+-Tree: A
Cache-Optimized Main Memory Database Index Structure.
Journal of Computer Science and Technology, 24, 4 (2009),
687-707.

16 Luan, H., Du, X., Wang, S., Ni, Y., and Chen, Q. J +  -Tree:
A New Index Structure in Main Memory. In Advances in
Databases: Concepts, Systems and Applications. Springer
Berlin, Heidelberg, 2007.

17 Oracle®. Oracle® Database VLDB and Partitioning Guide.
Available at
http://docs.oracle.com/cd/B28359_01/server.111/b32024/par
t_admin.htm.

18 Silverstein, A. Judy IV Shop Manual. Available at
http://judy.sourceforge.net/doc/shop_interm.pdf (2002).

19 Tatbul, N. and Zdonik, S. Window-aware load shedding for
aggregation queries over data streams. In VLDB '06
Proceedings of the 32nd international conference on Very
large data bases (2006).

20 http://www.cs.columbia.edu/~kar/software/csb+/

21 http://www.it.uu.se/research/group/udbl/DSMSOrderedIndexing/

	1. INTRODUCTION
	2. Background and related work
	3. Ordered indexing of data streams
	3.1 Scenario
	3.2 Improving range search on Judy
	3.3 Window aware index deletion
	3.3.1 Incremental deletion
	3.3.2 Bulk window index deletion

	4. Experimental evaluation
	4.1 Experimental setup
	4.1.1 Random key distribution
	4.1.2 LRB key distribution
	4.1.3 Deletion

	4.2 Experimental results
	4.2.1 Insertion
	4.2.2 Single element retrieval
	4.2.3 Memory utilization
	4.2.4 Range search
	4.2.5 Deletion
	4.2.6 Discussion on experimental results

	5. Conclusions and future work
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

