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ABSTRACT 
In order to efficiently answer continuous queries requiring range 
search in large stream windows, data stream management systems 
(DSMSs) need ordered indexes. Conventional DBMS indexing 
methods are not specifically designed for data streaming 
applications with extremely high insert and delete rates for 
windows over streams. This motivates a scalability investigation 
for various ordered main memory indexing methods in a 
streaming environment, through implementation and experiments. 
Our experimental studies show that a state-of-the-art 
implementation of cache-aware compact tries is a very suitable 
indexing structure for data streaming applications allowing 
constant time insert and access rates. However, in the best of the 
investigated implementation the range search was slow. Since a 
highly optimized implementation of compact tries is very complex 
we developed a framework for scalable range search in an index 
without any change to its source code. Another important issue is 
that index maintenance in window based data stream 
environments require a scalable way of deleting data, which is 
addressed by an index independent window aware bulk deletion 
technique, also without changing any source code. 

1. INTRODUCTION 
A Data Stream Management System (DSMS) usually has a local 
main memory database against which high volume streaming data 
is matched. This local database includes storage for windows of 
data streams flowing through the system. The windows may 
become large, so indexing data in stream windows is an 
interesting problem. In many cases ordered indexing is needed, 
which is investigated here.  

The requirements of data stream indexing is not exactly the same 
as conventional DBMS indexing, causing some traditional DBMS 
indexing structures to fall behind the requirements of DSMS 
applications. The following are important differences between 
conventional DBMS indexing and DSMS window indexing: 

• Because of very high stream rates DSMS indexes need 
to be stored in main memory and the indexing data 
structure should be main-memory oriented, i.e. be CPU 
cache conscious and compact.  

• Stream window indexes need to be able to handle very 
high insert, update, and delete rates. By contrast, most 

conventional DBMS applications behave based on a 
high watermark. That is, once the database is filled up, 
it does not rapidly grow or shrink in size. In other 
words, DBMS applications have lower demand for 
massive insertion and deletion than DSMS application 
while fast search is desirable in both. 

In this paper we investigate the performance of different kinds of 
ordered indexing methods for main memory databases in context 
of window based stream processing w.r.t. the three aspects of 
ordered indexing for massive data streams: insertion, search, and 
deletion. The goal is to find the best suitable ordered sliding 
window indexing method for massive data streams.  

To improve the performance of deletion from indexes over time 
stamped stream windows, we propose a window aware indexing 
maintenance method, partitioned temporal window index (PTWI), 
and through experiments we show that it outperforms a naïve 
incremental index deletion strategy. In addition PTWI can be used 
together with any kind of underlying indexing structure. 

We implemented and compared the performance of indexing 
sliding windows over data streams of main memory B-trees, cache 
sensitive B+ trees [12], burst tries [10], and the highly optimized 
but complex compact trie implementation Judy [18]. For 
empirical investigations we used randomly generated synthetic 
data as well as data generated by the Linear Road Benchmark 
(LRB) [1] for streaming data. Benchmark queries were used to 
compare the scalability of insertion, deletion, and range search for 
different indexing structures. 

Judy is a highly optimized compact trie implementation that 
focuses on both compactness and CPU cache utilization to 
improve the performance. However, the current Judy 
implementation lacks efficient range search iteration, as also 
noted by [15] [16]. To improve memory and CPU cache 
utilization, Judy dynamically changes between its around 50 
different internal node structures based on the current key 
distribution in each node, which makes the implementation of 
Judy very complex and difficult to change. We therefore 
developed a method to improve range search in a complex index 
implementation such as Judy, without changing its source code. 
The experimental results show that our extended version of Judy 
scales the best among the other investigated main memory 
indexing structures. 



This paper is organized as follows. Section two makes an 
overview of related main-memory ordered indexing methods. 
Section three first defines the benchmark scenario and then 
describes required extensions to the indexing methods for range 
search and massive deletion. Section four evaluates the scalability 
of the different indexing methods through experiments on 
implementations.  Section five summarizes the result and 
proposes future work. 

2. Background and related work 
Sampling techniques like window aware load shedding [19] have 
been proposed for processing approximate queries when the 
stream rates are higher than the DSMS can handle. Load shedding 
is not suitable when all stream elements in the window must be 
maintained, such as in monitoring communication networks [2] 
and urban traffic [1].  
A complement to load shedding is indexing. Proper indexing 
increases the performance of the DSMS and decreases the need 
for sampling techniques. We have investigated the performance of 
the most common main memory ordered indexing structure for 
our setting. In particular we review different kinds of B-trees and 
tries.  

The compact trie implementation Judy was found to be 
particularly interesting to investigate. However, Judy needs some 
extensions for supporting efficient streaming range search and 
massive deletion. Since the implementation of a highly optimized 
compact index structure such as Judy is very complex, we have 
devised methods to improve range search and deletion for an 
index implementation without altering it. 

The CSB+ variants of B-trees [

B-trees 

12] [9] and the binary T-tree [14] 
have been proposed to index main memory data in a cache 
conscious way. A recent study [12] suggests that in the context of 
in-main-memory indexing on modern processors T-trees do not 
perform better than classical B-trees. Therefore classical B-trees 
regained the research focus and there have been attempts to make 
B-trees cache conscious. By exploiting the CPU cache more 
effectively, the CSB+ tree improves the search time at the cost of 
using more space and slightly slower insertion and updates than 
regular B+ trees [12]. We show that the major problem with 
CSB+ trees compared to B-trees is space inefficiency.  

In the simplest form, a trie is a multi-way tree structure in which 
each node is an array of pointers. The size of each array is equal 
to the number of letters in the alphabet, e.g. 26, and each level in a 
trie indexes a letter in a word. The main advantage of tries is 
constant insertion and access time if the length of the key is fixed. 
Thus tries should be very well suited for indexing data stream 
windows with very high insert rates.  Figure 1 shows a naïve trie. 
Each node in the trie represents a sub-expanse [

Tries 

18], which is a set 
of keys that are accessed through it. In Figure 1, all keys in the 
range [COAAA,COZZZ] are in the same sub-expanse accessed 
through the node marked as “CO”. 

 
Although tries were originally introduced to index character 
strings, they can be easily modified to index any ordered domain. 
An order preserving key transformation function can be defined 
that returns a binary key representing the rank of the original key 
in the domain. If prior knowledge about the domain exists, such a 
transformation can be done on-the-fly as done by, e.g., [12]. A 
binary key can then be indexed by breaking it down into bytes and 
then introducing them to the trie like characters of a string. For 
simplicity, here we consider the binary keys to be 32 bit integers 
broken into 4 bytes. In a naïve implementation for integer keys, 
the trie is then always 4 levels deep. Each node is a simple array 
of 256 pointers to the nodes in the next level or, in case of nodes 
in the 4th leaf level, pointers to values. Tries can be extended to 
support longer integers and other forms of breaking integers [6]. 

The memory utilization problem with tries is that they are 
sensitive to the distribution of keys. In the worst case, when the 
keys are uniformly scattered across the whole domain, naïve tries 
waste memory because there will be many null pointers in the 
sparse pointer arrays representing trie nodes. Several compression 
techniques have been introduced to overcome naïve tries’ weak 
memory utilization [5]  [10] [13] [18]. The main objective in most 
of them is to achieve a compact representation that, despite its 
compactness, can still support constant insertion/search time.  

A burst trie [10] is based on the idea that as long as the population 
is low, keys that share the same suffix can be stored in the same 
container. Containers are sorted lists of partial keys together with 
their associated values. During index lookup, once the right 
container is found, the key is located using binary search. 
Containers have a limited capacity and therefore, in an attempt to 
insert more keys into a full container depending on the 
implementation particulars, the container is transformed into a 
larger internal node, and thus ‘bursts’ into several new containers. 
The keys will thereby be redistributed to the new containers based 
on deeper suffix calculations, and the pointers in the new internal 
node will refer to new containers. This is an effective approach to 
decrease memory consumption. However, since the container 
capacity is fixed in all nodes, the internal nodes often still have 
null pointers and the memory utilization can still be a problem.  

Judy [

Judy compact trie implementation 

18][3] can be categorized as a variation of burst tries, but 
with an important distinction: the node (container) data structure 
and its size is not fixed. To improve memory and CPU cache 
utilization, Judy dynamically changes node structures according to 
the current distribution of keys in each node choosing among 

 

Figure 1. A naïve trie example that stores string keys 
“cat”, ”car”, ”cone”, ”cold”, ”dell”, and “delta”. 

 
 

 
 



around 50 different representations of internal nodes. Judy is a 
highly tuned but very complex data structure. Judy’s approach 
towards an efficient compression technique is to use a variety of 
compact node structures that fit in a single cache block for 
different kinds of local sub expanse populations. This allows the 
contents of any kind of node to be moved to the CPU cache for 
fast consecutive access. Furthermore, Judy maintains the most 
interesting characteristic of tries. That is, the depth of Judy is 
constant, e.g. for indexing integer keys Judy is always 4 levels 
deep. This means constant time is guaranteed for all single 
element operations. 

Judy supports iteration based range search. However, in the 
current Judy implementation the iterator always starts at the root, 
which makes it perform worst among the investigated methods 
w.r.t. range search. The J+ tree [16] and PJ+ tree [15] address this 
problem by introducing a sorted linked list as an extra level of leaf 
nodes. We were unable to obtain the source code for J+ or PJ+ 
trees for making an empirical evaluation. However, compared to 
Judy, the J+ tree worsens the performance of single key 
operations in Judy because it adds an extra level of search and 
maintenance of the leaf node lists; it also consumes much more 
memory since prefixes are stored uncompressed in the leaf node 
lists. The prefetching variant of the J+tree, the PJ+ trees [15], 
improves the range search performance by adding prefetching 
pointers, but does not address any of the J+ tree deficiencies.  

Implementations of indexing structures for highly tuned indexing 
structures such as Judy might become very complicated. To 
improve software reusability and eliminate unnecessary 
modifications to highly optimized implementations, we use 
mappers as a general method that simplifies traversal of data 
structures. A mapper is a second order function that applies a 
mapping function on a set of elements. In the ordered indexing 
context a mapper is a function that traverses a range of keys 
specified by low and high bounds, and applies a user provided 
mapping function on the key-value pairs in the range.  

Non intrusive range search 

Using mappers we added range search to Judy without any 
modification to it.  We show that the mapper approach 
substantially improves range search compared to the built-in 
implementation. This makes Judy extended with mappers perform 
better than other investigated approaches. 

GIST [11] is a general framework for adding tree-based indexes to 
an extensible DBMS for supporting range search. It is challenging 
to make the code changes required by GIST for a complex trie 
structure such as Judy, and we therefore instead used mappers.  

If there is massive stream flow through a tumbling window, 
deleting the expired stream elements from the window index 
becomes an issue. Naive element by element deletion is slow. 
Common methods to speed up bulk insertion and deletion are to 
use partitioned indexes and create/delete entire partitions in bulk 
[

Non intrusive bulk deletion for sliding windows 

17] or prefixing keys in a B-tree with partition identifiers [7]. We 
adapted partitioned bulk deletion to support non-intrusive bulk 
deletion of indexes over sliding time stamped windows, called 
partitioned temporal window index (PTWI). The main difference 
to regular bulk deletion is that PTWI maintains a circular array of 
pointers to time stamped sub-window indexes, which are 
completely deleted as the main window slides. 

3. Ordered indexing of data streams 
We address three main challenges in indexing data in sliding 
windows: scalable insert, fast range search, and scalable deletion. 
The suitability of several indexing methods w.r.t. these aspects 
have been investigated. For the investigation of the methods we 
used own implementations, publically available implementations, 
and publicly available versions extended with our improvements. 

3.1 Scenario 
To analyze the problems of maintaining proper ordered indexing 
structures for window based stream processing and comparing 
scalability of different indexing solutions, we use the Linear Road 
Benchmark data generator. It generates for a predefined number 
of expressways L an input data stream with the following tuples: 
[T,  X,  D,  S,  VID,  VEL] 
Where 

• T is a time stamp. 

• X is the expressway on which a vehicle is traveling, 0 to 
L-1. 

• D is the direction in which the vehicle is traveling, 
which is either east or west. 

• S is the segment of the expressway, 0 to 99. 

• VID is the vehicle’s identifier. 

• VEL is the speed of the vehicle. 
Our performance evaluation simulates index search for the 
following index intensive queries: 

• Q1: What is the velocity of a specific vehicle v on 
expressway x traveling in direction d in segment s 
during the last minute? This query selects a single tuple. 
select VEL 

from [last minute window] 

where X=x and D=d and S=s and VID =v; 
 

• Q2: What is the average velocity of all vehicles on 
expressway x traveling in direction d in segment s 
during the last 5 minutes? This query is selecting 1/L % 
of the position reports in the window.  
select average (VEL) 

from [last 5 minutes window] 

where X=x and D=d and S=s; 

An ordered index on the compound key <X, D, S, VID> provides 
scalable answers to both queries. The VID attribute needs to be 
included in the ordered index since, at traffic peaks, LRB 
generates a large number of vehicles per segment in a minute 
(around 100,000).  
Query Q1 accesses a single element in the index having the key 
<x,d,s,v>. 
Query Q2 is a range search where the lower limit of the 
compound key is <x,d,s,0> and the upper <x,s,d,∞>.  
Since the main window covers 5 minutes and tumbles every 1 
minute, the older data on the index must be removed, which 
requires massive deletion from the index. 



3.2 Improving range search on Judy 
The most common way to iterate over index ranges is to use a 
Volcano style scan structure with a next method [8]. Such a 
structure is indeed available in Judy, but it does not perform well 
because the next method always starts from the root in the current 
implementation, without using a scan data structure. For scalable 
range search, Judy has to be modified. However, to implement a 
scan data structure in a highly complex indexing structure such as 
Judy, having over 50 different node types, is a challenging task 
since all state information has to be continuously maintained in 
the scan. The alternative to implement scans using linked leaf 
nodes as in B+ trees would require substantial modifications of 
Judy with unknown consequences.  

To add efficient range iteration to Judy without the complexity of 
implementing scans, we instead implemented a second order C 
mapper function that applies another C function on every key-
value pair in a given key range. This approach requires no change 
to Judy and no explicit code to maintain the complex state 
information as in scans. Our implementation also supports generic 
iteration over scans by using threads combined with a buffer of 
recently mapped key-value pairs.  

Listing 1 shows the general signatures for mapper and mapping 
functions in C for range search operations in an ordered indexing 
structure.  

 
Based on the general mapper paradigm, we implemented a 
mapper function for Judy that performs the range search. The 
mapper recursively visits the nodes that cover sub expanses which 
are within the specified range. For each leaf node, it applies the 
mapping function to the key-value pairs in the leaf nodes that are 
within the range. In Judy the bytes of the key are not always 
implicitly stored in nodes, so the algorithm has to carry a prefix at 
any call level. Listing 2 provides an outline of the algorithm (the   
C code can be downloaded from [21]). 

 

 

 
  

3.3 Window aware index deletion 
We compare two different strategies for deleting time stamped 
elements from indexes over sliding windows: naive incremental 
deletion and the bulk window index deletion method PTWI.  

3.3.1 Incremental deletion 
In incremental deletion there is only one indexing structure for the 
whole window. In order to identify the right set of keys to be 
deleted, the time stamp has to be explicitly stored as a part of the 
key. The index key thus takes the form of <t, k> where k is the 
application key (i.e. <X, D, S, VID> in LRB) and t is the time 
stamp associated with it. Notice that the order in the compound 
key proposed here preserves the temporal order of keys. 
Therefore, deletion is straight forward; after the time stamp t 
expires, all keys of form <t, *> need to be removed. Since an 
ordered indexing structure is used, all keys in this range are found 
and then deleted from the index one by one. 
Naive incremental deletion of keys one by one might take 
considerable amount of time since the data structure is searched 
from the root for each deleted key.  

3.3.2 Bulk window index deletion 
As an alternative to incremental deletion we also implemented a 
special bulk deletion technique for sliding time stamped windows 
called partitioned temporal window index (PTWI). 
PTWI is applicable for sliding windows. Let N be the time span of 
the window and S be the stride for the sliding in time units. At 
each slide a sub-window of size M=N/S tumbles. In LRB N=300 
seconds and S=60 seconds, thus M=5. With PTWI M non-

JudyMapper(Judypointer jp, key lower, key 
upper,  key prefix, mapping fn,void *xa) 
{ 
  switch (type (jp) ) 
  { 
    case internal_nodes:/* many variants 
         of linear,bitmap,uncompressed */ 
      for all Judy pointers p in each 
              internal node that covers 
              the range [lower, upper]do 
      { 
        Update the prefix; 
        JudyMapper(p, lower, upper, 
                   prefix, fn, void *xa); 
      } 
    case leaf_nodes:/* linear, bitmap or 
                       immediate leafs */ 
      for all keys k inside range  
              [lower, upper]do 
      { 
        Construct the key by extending 
           prefix; 
        Find value v associated with k; 
         (*fn)(k,v,xa); /* apply mapping 
                           function */ 
      } 
  } 
} 

Listing 2, Judy mapper 

typedef int (*mapping) (key k, value v, 
                         void *xa); 
Mapper(indexroot* tree, key lower, key, 
       upper, mapping m,void *xa); 
int SumMapping(key* k,value* v,void *xa) 
{ 
  *(int *) xa += (int) *v; 
  return TRUE;  
}  
 
The following code traverses the index structure pointed to 
by tree in the range [100,200] and applies SumMapper to 
all key-value pairs in the range. The sum of the values are 
accumulated in the variable sum passed by reference to the 
mapper. 
 
key k1=100; k2=200; 
int sum=0; 
indexroot* tree=new_index(); 
Mapper(tree, k1, k2, SumMapping, &sum); 

Listing 1, general mapper and mapping functions for 
range search  

 



overlapping partial indexes are maintained for the whole sliding 
window. When the window slides, the partial index that stores the 
oldest subwindow is dropped and a new empty partial index is 
created. PTWI is implemented as a one dimensional circular index 
array of size M of pointers to partial indexes, as illustrated by 
Figure 2. 

 
In the PTWI header the following information is maintained as the 
window slides: 
T0: Starting time for the indexed stream, initialized to the time for 
the first arriving tuple.  
M: Number of subwindows. In LRB M=5. 
S: The stride of the subwindows as time units. In LRB S=60 
seconds. 
When a new tuple with time stamp t and data tuple tpl, <t, tpl>, 
arrives in the stream, the system first determines whether 
tumbling of a subwindow is needed or not. Tumbling is needed 
when mod(t,S)=0.  

a) If mod(t,S)≠0, i.e. no tumbling, the system computes the 
position i in the subwindows array containing a pointer 
to the subwindow index where tpl should be inserted, 
accessed, or updated: 

 i = mod(t-T0,W*S) 
b) When mod(t,S)=0 the oldest window tumbles by 

completely dropping it from the subwindow array and 
replacing it with a new empty window index. The 
position d in the subwindows array for the window 
index to replace is computed by: 

d = mod(t/S,W) 
For example, Figure 3 illustrates the evolution of the subwindows 
array for the LRB scenario. In the beginning of any minute T, the 
oldest partial index associated to minute T-5 needs to be dropped 
and a new empty one for minute T is created. Figure 3 shows the 
content of the subwindows array during minutes 1 to 10. In each 
minute T incoming data is inserted only to the index associated 
with the current minute, tagged as @T in the figure.  
Queries that access a single tuple at a given time point t, such as 
Q1, can be directly answered by calculating i as in a) and then 
accessing window index i in the PTWI array of subwindows. 
To answer queries that cover the whole window, they have to be 
divided into sub-queries – one for each minute – and their results 
merged.  For example, for query Q2 the time period is the last 5 
minutes and therefore the range query [<x,d,s,0>, <x,s,d,∞>] for 
given x, s, and d is issued over all 5 subwindow indexes in the 
array. 

Notice that bulk deletion can be done in a lazy manner in a 
background process. In other words, deletion is no longer a 
burden on the real time expectations of the system. 

Furthermore, notice that any kind of indexing structure can be 
used for storing the subwindow indexes.  

The space overhead of PTWI compared to incremental deletion is 
negligible, since it just adds one extra array of M pointers and the 
PTWI header. The computational overhead is one extra simple 
numerical computation per stream tuple to obtain i, while d is 
computed only when the window tumbles. 

Figure 3. Contents of the PTWI array of subwindows during 
first 10 minutes, with 5 minutes window size and 1 minute 

stride. @T represents the pointer to the subwindow index for 
minute T.  

The PTWI’s window index array minute 

@1 nil nil nil nil 1 
@1 @2 nil nil nil 2 

@1 @2 @3 nil nil 3 

@1 @2 @3 @4 nil 4 

@1 @2 @3 @4 @5 5 
@6 @2 @3 @4 @5 6 

@6 @7 @3 @4 @5 7 

@6 @7 @8 @4 @5 8 

@6 @7 @8 @9 @5 9 
@6 @7 @8 @9 @10 10 

4. Experimental evaluation 
We experimentally compared the scalability of insertion, single 
element retrieval, incremental deletion, bulk deletion, and range 
search in a B-tree, CSB+tree, Burst trie, Judy, and Judy extended 
with efficient range search. We also compared the performance of 
PTWI with incremental deletion for Judy and B-trees. The 
outcome supports the initial hypothesis that Judy extended with 
efficient range search and PTWI outperforms other investigated 
in-main-memory indexing structures. The succeeding sections 
describe how tests were performed and present experimental 
results.  

4.1 Experimental setup 
The following ordered indexing methods were investigated: 

• We implemented the classical B-tree algorithm as in [4]. 
Then we experimentally tuned the B-tree node size to 
minimize cache misses, which on our hardware 
happened when each B-tree node contained 750 bytes. 

• The CSB+ tree implementation was downloaded from 
[20]. We used the full CSB+ tree variant, which is the 
best variant for high insertion and update rates 
according to the authors.  

• We implemented the burst trie index as specified in [10] 
adapted for integer keys.  

• Judy was downloaded from [3]. 
• To have fair comparisons, in all indexing structures both 

keys and values are 32 bit integers. 
The C code for indexing methods used in the experiments is 
available at [21]. 

 
Figure 2. The PTWI structure  



We performed two sets of experiments with different key 
distributions. The first key distribution consists of uniformly 
distributed random integers from the whole 32 bit integer range. 
This is the worst case for tries since under this key distribution the 
trie structure will have sparse pointer arrays with many null 
pointers. In our second key distribution the keys are the position 
reports from the more realistic LRB input stream.  
Given that the intention was to compare the scalability of indexing 
structures, the size of the indexes was gradually increased in a 
number of steps, and then the required time to perform insertion, 
single element retrieval, and range search operations were 
measured. After the each step the amount of main memory so far 
used by each index is noted. Moreover, to typify the 
measurement, the operations were done in batch, i.e. instead of 
measuring the time of inserting a single key in each step, which 
could be affected by noise, we calculated the average time to 
insert an element over 0.5 million keys. Since we measure pure 
insertion, update, and retrieval time duplicated keys in the input 
are omitted. 
The performance of deletion is measured in a separate experiment.  

4.1.1 Random key distribution 
In this experiment first 16 million random keys from a flat 
distribution of integers in range [0,232-1] were generated and 
stored in a one dimensional array. The experiments were 
performed by reading the keys from the flat array as follows: 
In steps of size 0.5 million simulated incoming tuples, perform the 
following actions and measure the time each one takes on all 
indexing structures: 

1. Insert into the index 0.5 million keys and measure 
the average time to insert one key. 

2. Measure the accumulated amount of main memory 
used by each indexing structure after each 0.5 
million inserts. 

3. Retrieve in random order 50000 keys from all so 
far inserted keys and measure the average time to 
retrieve one key from the index. 

4. Generate a random interval covering 10% of the 
total domain and make one range search to 
measure the time. 

4.1.2 LRB key distribution 
For a realistic data distribution, the indexing keys in the second 
experiment were LRB position reports. To construct ordered 
preserving integer keys k for LRB, they are computed as follows: 
k= VID+SEG*220+D*227+X*229 i.e.: 

• Expressway number X, the most significant 4 bits (28-
31). 

• Direction D, bit 27.  

• Segment SEG, bits 20-26. 

• Vehicle identifier VID, bits 0-19.  
First the whole LRB input file is scanned; the first appearance of 
each key k is stored in a flat array. During this preprocessing, 
duplicates are detected and discarded. 
After forming the flat array containing unique keys, the test is 
executed in a number of steps similar to the procedure for random 
keys, but steps three and four are different: 

• In step three, query Q1 is executed for 50000 randomly 
chosen so far inserted position reports and the average 
single element retrieval time is measured. 

• In step four, for randomly chosen x, s, and d, query Q2 
is executed 100 times and the average search time 
measured.  

4.1.3 Deletion 
In order to compare the scalability of incremental window 
deletion with PTWI, we performed two tests on the two indexing 
structures Judy and B-trees.  
The first test measures a naive incremental deletion strategy. In 
this test the indexes were loaded with different populations of 
keys as in 4.1.2. For each population all individual keys are 
deleted one by one, until the index becomes completely empty. 
The total time to empty an index with a given population is 
measured. 
To measure deletion with PTWI, indexes with the same sizes as in 
the first test were populated, but this time, in contrast to deleting 
individual keys as in the first test, the whole index structure is 
dropped at once by traversing all nodes in it. 
In both tests, to avoid memory fragmentation issues from biasing 
the performance, the application is restarted before any new index 
is created, i.e. before any new population is examined. 
All experiments were run under Windows 7 on an Intel (R) 
Core(TM) i5 760 @2.80GHz 2.93 GHz CPU with 4GB RAM, 
single threaded using the Visual Studio 10 32 bits C compiler. 

4.2 Experimental results 
In this section the experimental results from comparing the 
indexing structures w.r.t. insertion, single element retrieval, 
memory utilization, range search, and deletion are analyzed. 
Experimental results of each indexing operation are presented and 
discussed under LRB key distribution alongside the random 
distribution. In the deletion section only LRB key distribution is 
presented since the results from random key distribution leads to 
the same conclusions. 

4.2.1 Insertion 
Figure 4 illustrates the time required to insert a single key into 
each indexing structure at a given index size when keys from LRB 
are used. The time is averaged over 0.5 million insertions. 
The most important observation is that, in this key distribution, 
after around 4 million keys, Judy and burst tries reach their 
maximum depth of 4. Recall that in our experiments the keys are 
4 byte integers and therefore their overall structure stabilizes. 
From this point on, it takes constant time to insert new elements 
into Judy and burst tries. The reason burst tries are faster than 
Judy is that their containers are not compressed, so insertion into 
them is simpler and computationally cheaper compared to Judy, 
where insertion into containers causes nodes to transform their 
representations. 
As expected, B-trees and CSB+ trees scale logarithmic. CBS+ 
trees outperform B-trees w.r.t. insertion because of two reasons: 
First, all siblings of a node in a full CSB+ tree are allocated as 
soon the node is created, which reduces the costs  of future node 
creation and potential structural balancing. Second, the CBS+ tree 
representation is cache conscious. However, after 8 million keys 
there is no more memory available in our 32 bit representation for 
the full CSB+ tree to grow. 



Figure 5 illustrates the time required to insert a single key into 
each indexing structure at a given index size when keys are picked 
from a random distribution. The time is averaged over 0.5 million 
insertions. 
As expected, B-trees and CSB+ trees scale logarithmic and show 
no sensitivity to the key distribution.  
Under the random key distribution, in particular burst tries and, to 
a lower extent, Judy undergo an unstable period when the size is 
around 3 and 2 million keys, respectively. The fluctuation is due 
to the specific conditions under which bursting happens. That is, 
since the keys are uniformly distributed within a very wide range, 
they rarely share prefix at the next level, so during the burst, new 
containers are created for most of the keys that are being re-
distributed. The high computation and memory management costs 
involved results in poor performance during bursting. 
It is worth to note that Judy stabilizes much earlier than the burst 
trie. This is because Judy maintains dynamic container structures 
depending on the population of each sub-expanse, which 
decreases the bursting cost. 

4.2.2 Single element retrieval 
Figure 6 illustrates the time required to retrieve a single key from 
each indexing structure at a given index size under the LRB key 
distribution. B-trees and CSB+ trees scale logarithmic as 
expected, with CSB+ trees being faster mainly because of cache 
awareness. Retrieval of single elements from Judy and the burst 
trie takes constant time after they reach their maximum depth at 
four levels. Judy is fastest due to two reasons: first its efficient 
compression techniques facilitate search in the nodes. For 
example, bitmap nodes store only populated sub-expanses and 
index them using a directly accessed bitmap. Second, it exploits 
the CPU cache more efficiently. 
Figure 7 illustrates the time required to retrieve a single key from 
each indexing structure at a given index size under the random 
key distribution. Again, since B-trees and CSB+ trees are not 
sensitive to key distribution, they scale similar to the LRB key 
distribution in Figure 6. The search time for burst tries increases 
until a maximum at around 3 million keys, after which the 
retrieval performance improves. The peak happens almost right 
before the nodes burst. Before the bursting happens, most of the 
containers are highly populated and therefore performing binary 
search in them becomes costly. After the bursting happens, keys 
are distributed among containers with lower populations and 
therefore the cost for binary search decreases. In Judy, in contrast 
to burst tries, due to the maintenance of dynamic population-based 
node structures, the search time at each node is optimized and 
therefore Judy is much more stable than burst tries. 

4.2.3 Memory utilization 
Figure 8 and 10 show the memory utilization with LRB and 
random distributions, respectively. The inefficient memory 
utilization of the CSB+ tree implementation is displayed 
separately in Figure 9. 
To illustrate the compactness of indexing structures the main 
memory utilization is measured and displayed in terms of byte per 
key-value-pair (B/KVP). As a theoretical base line we also plot 
flat arrays in which KVPs are stored un-indexed in consecutive 
memory cells. Since all investigated indexing structures use 32 bit 
integers for both keys and value-pointers, storing KVPs in such a 
flat array –independent from the number of KVPs- achieves 8 

B/KVP, the minimum uncompressed memory area needed to store 
key-value pairs. 
Figure 8 shows the memory utilization when the LRB key 
distribution is used. It is worth to note that after a certain 
population, Judy becomes even more space efficient than flat 
arrays. The reason is that as the LRB simulation proceeds, the 
traffic increases. This means more vehicle ids per segments of 
expressways and consequently a more dense key distribution. 
Judy’s dynamic node structure utilizes this to minimize memory 
consumption mainly through using bitmap nodes and leafs [18].  
The burst trie on the other hand improves the memory utilization 
up to a point where the number of keys in sub-expanses exceeds 
the maximum container size and the containers burst. Each 
bursting brings about an additional node, and many new 
containers, which leads to bad memory utilization.  
The memory utilization of B-trees is very stable but not as 
compact as Judy. 
Figure 9 shows the memory utilization for CSB+ tree compared to 
the B-tree for the LRB distribution. The main reason for poor 
memory utilization of the Full CSB+ tree is that, as described in 
[12], it creates all sibling nodes for each node to improve insertion 
and update time. As the total number of keys increases, the 
memory utilization improves, but since creating new nodes is 
essential, and all the sibling nodes are also allocated at the time of 
creating any new node, the improvement is limited.  
Figure 10 shows the memory utilization when random key 
distribution is used. As expected, since B-trees are insensitive to 
the key distribution, they make the same B/KVP as in Figure 8. 
Under random key distribution, burst tries go through extreme 
bursting and they have even worse memory utilization. This is due 
to that most containers created by the burst for a random key 
distribution contain a single element. As the experiment proceeds, 
more keys with the same prefix are added to the newly created 
containers, and therefore memory utilization of burst tries 
improves. 
Judy shows very little sensitivity to random key distributions, 
because in Judy containers with very low populations are 
implemented using a very specific compact structure - the 
immediate pointers. In immediate pointers the contents of nodes 
and leafs with one or two keys are stored in the pointer itself. The 
immediate pointers make the memory utilization become stable 
very soon. With random key distribution Judy’s memory 
utilization is slightly worse than flat array and substantially better 
than the other indexing structures.  

4.2.4 Range search 
Figure 11 illustrates for LRB key distribution the time required to 
perform a range search at a given index size using B-trees, burst 
tries, CSB+ trees, the original iterator based Judy implementation, 
and Judy extended with the mapper for range search. As expected, 
our Judy mapper outperforms the original range search provided 
by Judy and it performs almost as efficient as a B-tree. The reason 
for the slightly better performance of the B-tree range search over 
Judy is that in B-trees a single node stores more keys compared to 
Judy for two reasons. First, Judy utilizes the most compact 
representation at each node which leads to nodes with lower 
populations. Second, compared to the rather large nodes in our B-
tree, nodes in Judy are generally smaller since they need to fit in a 
64 byte cache line.  



Figure 12 illustrates for the random key distribution the time 
required to perform a range search using original and extended 
Judy, B-trees, CSB+ trees, and burst tries at a given index size. 
The range search scales worse using Judy compared to B-trees 
with random key distribution, because Judy creates huge number 
of very small immediate nodes.  
In both Figure 11 and Figure 12, the Judy mapper implementation 
scales better than the burst trie mapper. The reason is that the 
internal nodes in burst tries include many null pointers, which 
increases the traversal time. That is, the internal nodes in burst 
tries always contain 256 pointers, even though many of them 
represent empty sub-expanses, and consequently, the burst trie 
mapper needs to consider all sub-expanses within the [low-high] 
range, including the empty ones. The more compact 
representation of Judy avoids many unnecessary memory accesses 
and cache misses. It should also be noted that the CSB+ trees in 
both cases are not faster than B-trees for range search. The main 
reason is the larger node size of B-trees, which utilizes the CPU 
cache better since the leaf nodes are very short in CSB+ trees 
compared to B-trees. 

4.2.5 Deletion 
Figure 13 measures PTWI performance using B-tree and Judy 
subwindow indexes. As expected, removing an index structure by 
deleting elements one by one, as in the incremental deletion, 
requires much more time than dropping of the whole indexing 
structure, as in PTWI. Notice that dropping a Judy index of a 
given size takes more time than dropping a B-tree index of the 
same size. This is due to the higher number of nodes in Judy, 
which needs more time to be traversed and freed. However, since 
in PTWI it is possible to perform the index drop operation at a 
background thread in a lazy manner, slight performance 
improvements in the index drop operation has insignificant 
contribution to the overall performance of a DSMS. 

4.2.6 Discussion on experimental results 
The following main aspects are involved in selecting the suitable 
ordered indexing structure for window based data streams: insert 
time, retrieval time, range search time, deletion time, and memory 
utilization.  
Since in many DSMS applications, the input stream is massive, 
supporting scalable insertion is the most important aspect of 
indexing structures for sliding windows of data streams. From this 
perspective, a combination of constant and stable insert time is 
desired. 
As important as insert scalability is scalability of deletions, which 
was addressed by PTWI. With the PTWI the scalability of 
deletion becomes non-critical. 
The next important aspect is scalability of single element 
retrievals. To meet the real time requirements of continuous query 
processing, constant and stable retrieval time is essential. 
Maintaining an index over a sliding window of massive streams 
requires indexing structures with acceptable memory utilization. 
An indexing structure with poor memory utilization restricts the 
stream rate that can be handled by the DSMS. 
Finally in many applications, e.g. computer network and urban 
traffic monitoring applications, range search is needed for 
answering ad hoc queries from the current window. 
Table 1 summarizes the results of our experiments in a qualitative 
manner. For memory utilization Judy is clearly the best because of 

its extensive compression. Judy is also the best on insertion and 
single key accesses. For range searches the tree based indexing 
methods are the best, but the extended Judy is very close in 
particular for non-random data. Burst tries are not stable in 
general and therefore problematic for streaming applications. The 
main disadvantage with Judy is its very complex implementation.  
To conclude, in the context of indexing sliding windows of 
streams, our extended version of Judy outperforms all other 
indexing structures. 

Table 1. Qualitative summary of the experimental results. 

 B- tree CSB+ tree Burst trie Judy Extended Judy 

memory 
utilization 

good worst bad best best 

insertion good good best best best 

key 
access 

good good good best best 

range 
search 

best best bad worst good 

stability best good worst best best 

simplicity best bad best worst worst 

5. Conclusions and future work 
Window based ordered indexing of data streams has additional 
requirements to traditional DBMS indexing. Other than scalable 
range search and individual element retrieval, it is essential for 
DSMS indexing structures to support scalable insertion and 
deletion under high volume stream rates. We investigated a 
number of data stream indexing methods by implementing them 
or extending available implementations. We compared the 
following index structures: B-trees, burst tries, CSB+ trees, and 
the advanced Judy implementation of compact tries. 

Through extensive experiments we showed that, in the context of 
window based indexing of data streams, compact tries with 
improved range search capabilities outperform other investigated 
methods by consuming much less main memory, supporting 
constant access time for insertion and retrieval, and being capable 
of performing scalable range search. The combination of the 
above characteristics makes extended compact tries the best 
ordered indexing method for window based stream processing.  
The performance of massive deletion is also very important when 
indexing high volume data stream windows, which was addressed 
by PTWI.  
Highly tuned scalable indexing structures like Judy might become 
extremely complex, making any modification very costly. 
Therefore, we devised non-intrusive methods to add functionality 
to an existing index structure. PTWI and mappers are two 
examples of nonintrusive additions that enabled us to successfully 
re-use, improve, and integrate industry strength software. 

In particular, our extended version of Judy with mapper-based 
range search and PTWI outperforms the other investigated 
indexing structures, making it attractive for sliding stream 
window indexing in general. 
In addition to supporting range search, tries support more general 
pattern matching operations that might be useful in pattern 



recognition in data streams.  Therefore, adding pattern matching 
to tries will be a valuable future work. 
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Figure 7. Single element retrieval under random key 
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Figure 6. Single element retrieval under LRB key 
distribution 
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Figure 5. Insertion under random key distribution 
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