
Cost-based Optimization of Complex Scientific Queries

Ruslan Fomkin and Tore Risch
Department of Information Technology, Uppsala University

Box 337, SE-751 05, Uppsala
{Ruslan.Fomkin, Tore.Risch}@it.uu.se

Abstract

High energy physics scientists analyze large
amounts of data looking for interesting events when
particles collide. These analyses are easily expressed
using complex queries that filter events. We developed
a cost model for aggregation operators and other
functions used in such queries and show that it
substantially improves performance. However, the
query optimizer still produces suboptimal plans
because of estimate errors. Furthermore, the
optimization is very slow because of the large query
size. We improved the optimization by a profiled
grouping strategy where the scientific query is first
automatically fragmented into subqueries based on
application knowledge. Each fragment is then
independently profiled on a sample of events to
measure real execution cost and cardinality. An
optimized fragmented query is shown to execute faster
than a query optimized with the cost model alone.
Furthermore, the total optimization time, including
fragmentation and profiling, is substantially improved.

1. Introduction

Modern databases can provide tools for efficient
processing of large amounts of scientific data involving
complex application-specific analyses [16]. Scientific
analyses can be specified as high-level queries calling
user defined functions (UDFs) in an extensible DBMS.
Query optimization provides scalability and high
performance without any need for the scientist to spend
time on low-level programming. Furthermore, as
queries are easily specified and changed, new theories,
e.g. implemented as filters, can be tested quickly.

Our application is High Energy Physics (HEP),
where lots of data to be analyzed are generated by
simulation software from the Large Hadron Collider
(LHC) experiment ATLAS [1]. The data describes
effects from collisions of pairs of particles. A
description of a collision is called an event. Thus our

application data are sets of independent events, where
each event has properties that describe sets of particles
of various types produced by the collision. Scientists
define the analysis queries in terms of these event
properties. As every collision is simulated independent
of other collisions, the queries contain no joins
between properties of different events. The scientist
searches for events satisfying certain conditions, called
cuts, and the query results are sets of interesting events.
A typical query is a conjunction of a number of cuts.
Queries over events are complex since the cuts are
complex containing many predicates applied on
properties of each event. The query conditions involve
selections, arithmetic operators, aggregates, UDFs, and
joins. The aggregates compute complex derived event
properties. For example, a complex query is to look for
the events producing Higgs bosons [18] by applying
scientific theories expressed as cuts.

These complex queries need to be optimized for
efficient and scalable execution. However, optimizing
such complex queries is challenging because:
• The queries contain many joins.
• The size of the queries makes optimization slow.
• The cut definitions contain many more or less

complex aggregates.
• The filters defining the cuts use many numerical

UDFs.
• There are dependencies between event properties

that are difficult to find or model.
• The UDFs cause dependencies between query

variables.
We first investigated whether cost-based

optimization improves query execution compared to no
optimization. We developed a static cost model for the
operations occurring in our kind of queries. As a
comparison we also manually optimized a reference
query by experimenting with different orders of cuts
and measuring the actual execution times. Since the
queries are very large, regular dynamic programming
[27] could not be used. Instead randomized
optimization [21,24,29] running for a long time and

greedy heuristic optimization [22,23] were used.
Performance measurements showed that cost-based
optimization produced a substantially faster execution
plan (1000 times) than an unoptimized one.

For some data sets, our manually optimized plan
was still somewhat faster. The main reason for this is
that the static cost model becomes unreliable for large
plans [20] because i) there are dependencies between
query variables and ii) the cost estimate errors are
compounded by the very large queries. It is difficult to
define a cost model dealing with the dependencies.
Another problem is that the time to optimize the query
to produce a good plan is substantial; it took around
half minute by randomized optimization to find a
sufficiently good plan for a test query.

To alleviate this, we developed a profiled grouping
method where the query is first split into query
fragments, called groups, where each group has no join
with other groups on event properties. Then each group
is optimized separately and profiled for real execution
time over a sample set of events in order to obtain
measurements of actual selectivities and costs per
group. Finally the join order of the groups representing
the query is optimized by the cost-based query
optimizer using the profiled group cost model.

Profiled grouping is based on measuring real
execution time of different query fragments rather than
static cost model estimates. In addition, the number of
groups is much smaller than the number of predicates
in the ungrouped query. Therefore the query
optimization time is improved substantially by the
grouping. Furthermore, profiled grouping turns out to
be less sensitive to optimization errors, so even a
greedy optimization method combined with profiled
grouping produces better plans than an ungrouped
approach.

An important problem is how to fragment the query.
The set of all possible groups is very large and
therefore a heuristic method for forming the groups is
used. The grouping heuristic uses knowledge that in
our application each event is analyzed independent of
other events when selecting the events satisfying
conjunctions of cuts. The grouping heuristic fragments
a conjunctive query into groups where joins between
groups are performed only on the event identifier; no
joins are made between event properties from different
groups.

We implemented the static cost model, profiled
grouping, and the application query in an object-
relational DBMS AMOS II [26] and evaluated the
effectiveness of both ungrouped strategies and profiled
grouping in combination with different optimization
strategies: dynamic programming [27], randomized
optimization [21,24,29], and greedy heuristic
optimization [22,23]. As references we also compared

with a best effort manual optimization. The
measurements were made with two data sets, one with
high selectivities of the cuts and one with low
selectivities. We show that for high selectivity data sets
profiled grouping combined with any optimization
method produces better plans than the ungrouped
strategies.

The rest of the paper is organized as follows.
Section 2 describes the application and a test query
used in the rest of the paper. The static cost model is
presented in Sec. 3. Profiled grouping is described in
Sec. 4. It is followed by performance measurements for
the query execution strategies in Sec. 5. Related work
is discussed in Sec. 6. Section 7 concludes and
discusses on-going and future work.

2. High energy physics queries

Our test application analyzes data files produced by
the ATLAS simulation software searching for events
producing charged Higgs bosons [5,18]. Event files are
associated with meta-data conditions for the file
production that describe, e.g., experiment settings and
what kinds of events were produced. A simulated
collision event produces a number of general
measurements about the collision and measurements
about particles generated by the collision.
Measurements about the collision include, e.g., missing
momentum in x and y directions (PxMiss and PyMiss).
Examples of generated particles are electrons, muons,
and jets, and measurements about them are the ID-
number of the type of a particle (Kf), momentum in x,
y, and z directions (Px, Py, and Pz), and the amount of
energy (Ee).

The analysis of the events consists of selecting
those events that can potentially contain charged Higgs
bosons. A number of predicates, called cuts, are
applied to each event and events that satisfy all cuts are
selected. Selectivities of cuts are similar for event sets
from files with the same meta-data condition.

The scientists experiment with combinations of
different cuts. An example of a cut, named the three
lepton cut, is to select an event if it has exactly three
isolated leptons and at least one isolated lepton has Pt
bigger than 20 GeV. An isolated lepton is a lepton,
which has absolute value of Eta smaller than 2.4 GeV
and Pt bigger than 7 GeV. Pt and Eta are
computational functions on event properties.

We implemented our application ALEH (Analysis
LHC Events for containing Higgs bosons) as an
extension of an object-relational main memory DBMS
AMOS II [26]. The events are delivered in binary files
managed by the ROOT library [7]. A ROOT wrapper
is implemented to load events from ROOT files into

main memory. An object-relational schema of the
collision events is implemented in the query language
AmosQL [13]1 and presented in Fig. 1. Events are
represented by Event entity with two attributes PxMiss
and PyMiss. Particles are represented by objects with
attributes Kf, Px, Py, Pz, and Ee and relationships to
Events. Particles of different types are represented by
different entity subtypes Muon, Electron, and Jet.
Muon and Electron are generalized by an abstract
entity Lepton, which is used in definitions of some
cuts.

A number of numerical UDFs, e.g. Pt and Eta, are
defined in the database in order to make the analyses.
The cuts are expressed as functions (parameterized
queries) in terms of these UDFs in the query language
AmosQL. The analysis is usually defined as
conjunctions of several different cuts, where each cut is
defined as a conjunction of many predicates. As each
event is always analyzed independently of other
events, the analysis queries have the important
property that no joins are performed between events. In
general the queries have the form

...})()()(|{ 21 ∧∧∧ ececede , where ci are cuts and d(e)
is a domain predicate to scan the events.

For example, a general query is:
SELECT ev
FROM Event ev
WHERE jetVetoCut(ev) AND
 zVetoCut(ev) AND

 topCut(ev) AND
 missEeCuts(ev) AND
 leptonCuts(ev) AND
 threeLeptonCut(ev); .

(1)

Here the functions jetVetoCut, zVetoCut, topCut,
missEeCuts, leptonCuts, and threeLeptonCut are
examples of cuts that provide necessary conditions for
the collision event ev to produce a Higgs boson

1 The source code of the schema in AmosQL can be found in
http://user.it.uu.se/~ruslan/ALEH/schema.amosql.txt.

according the theory in [5,18]2. The domain predicate
is generated by the FROM clause. This general query
is a reference query for the rest of the paper.

For example, the definition of the three lepton cut
is:
CREATE FUNCTION threeLeptonCut
 (Event ev) -> Boolean AS
SELECT TRUE
WHERE COUNT(isolatedLeptons(ev))=3
 AND SOME(SELECT r
 FROM Real r

 WHERE r=Pt(isolatedLeptons(ev))

 AND r>20.0);
The function isolatedLeptons has the definition:
CREATE FUNCTION isolatedLeptons

(Event ev) -> Lepton AS
SELECT l FROM Lepton l
WHERE l=leptons(ev) AND
 Abs(Eta(l))<2.4 AND Pt(l)>7.0;

The Pt and Eta functions call UDFs Pt and Eta over
momentum triple for the given particle l. The formulas
of Pt and Eta are:

22 yx + and (2)

−++

+++
⋅

zzyx

zzyx
222

222

ln5.0 respectively. (3)

Before query optimization, functions are expanded
as views and the query is represented in domain
calculus. The plan for the query (1) is a conjunction of
51 predicates. The predicates are comparisons,
numerical operations, aggregates, UDF calls, and joins.
The large size of the query makes it difficult to
optimize and dynamic programming [27] cannot be
used. We were able to optimize it using randomized
optimization [21,24,29], which, however, uses a lot of
time to produce a good plan.

Another problem is that there are many
dependencies between predicates. This makes it
difficult to estimate the cost. For example, a part of an
unoptimized predicate in the definition of function
isolatedLeptons is the conjunction:
Eta(m) = em
Abs(em) = aem
aem < 2.4
Pt(m) = pm
pm > 7.0

Here m is the momentum triple of a lepton of a
given event, and em, aem, and pm are query variables
containing results of the UDFs Eta, Abs, and Pt. It is

2 Definitions of the cuts in AmosQL can be found in
http://user.it.uu.se/~ruslan/ALEH/cuts.amosql.txt.

Figure 1. Schema of the application data.

difficult to estimate selectivities for such predicates
defined in terms of UDFs. For example, the estimate of
the selectivity of the comparison aem < 2.4 depends on
original data distribution of event properties and on the
distribution of results from the functions Eta and Abs
that are applied on the these properties to calculate
aem. Because of the data dependencies the selectivity
estimates contain large errors. The same holds for the
comparison pm > 7.0, etc. Furthermore, there is also a
dependency between the two comparisons, as they
operate on the same event properties. Such
dependencies influence cost and cardinality estimates
and suboptimal execution plans are chosen [20].

To alleviate the problems of slow optimization and
data dependencies, we investigated a profiled grouping
strategy based on measuring real costs of query
fragments. Each group is individually optimized using
the static cost model. Then the optimized groups are
profiled over event set samples. Finally, the so
obtained profiled group cost model is used to optimize
the fragmented query. In our measurements, we
compare this approach to a cost-based approach
without applying the profiled grouping method.

3. Static cost model

We developed a cost model for aggregates and
numerical operations used in our application, assuming
data independence between predicates. Tables 1 and 2
in the Appendix define the static cost model for the
operators. The static cost model is rather ad hoc, but, as
will be shown, it still produces good execution plans
for our test query, in particular in combination with
profiled grouping. It is defined so that the operators are
comparable. For example, SOME and NOTANY should
be complementary and SOME is a special case of
ATLEAST.

The costs of complex numerical operators are
approximated according their measured execution
time. The cost of basic numerical operators such as
plus, minus, and times is set to one. The costs for the
numerical operators that are used in the ALEH query
are presented in Table 1 in Appendix. The selectivities
of the numerical operators are always one.

The costs and cardinalities of aggregates are based
on the estimated costs and cardinalities of their
subqueries. The estimates of the cost and the
cardinality of a subquery assume independence
between predicates of the subquery.

The cost of an aggregate depends on the estimated
number of tuples produced by its subquery sq. For
aggregate SUM(sq) all tuples emitted by sq have to be
processed, while for other aggregates, such as SOME
and NOTANY, only a limited number of tuples emitted

by sq are processed. Therefore the cost of an aggregate
is the cost of producing the required tuples by sq plus
the cost of processing the emitted tuples by the
aggregation operator. The cost per produced tuple by
subquery sq is the estimated total cost of executing the
subquery, cost(sq), divided by its estimated cardinality,

card(sq), i.e.
)(
)(

sqcard
sqcost

. The cost for the aggregation

operator to process one received tuple from sq is set to
one. For example, SUM(sq) has the cost
cost(sq)+card(sq). The cost of SOME(sq) when
card(sq)<1 is cost(sq). If sq emits at least one tuple the

cost becomes 1
)(
)(+

sqcard
sqcost since only the first tuple is

processed by SOME. Analogous cost model formulas
are developed for other aggregation operators (Table
1).

The selectivity of SUM(sq) is always one. The
selectivities of SOME(sq) and NOTANY(sq) depend on
the estimated selectivity of sq. If sq emits fewer than
one result tuple the selectivity of SOME(sq) is set

proportional to card(sq),
2

)(sqcard . Otherwise it is set

to
)(2

11
sqcard⋅

− . Basically, the model converges to

one as card(sq) increases since it becomes more and
more likely that SOME is true. The factor two allows
NOTANY to have a complementary model (see Table
1).

 The selectivity of predicate COUNT(sq)=N, and
ATLEAST(sq)=N, where N is known, depends on the
relationship between N and card(sq). For example, for
COUNT(sq)=N if card(sq)<N the selectivity is
increasing until N tuples are emitted from sq, and it is

computed as
N
sqcard

⋅3
)(. After N tuples are emitted the

selectivity goes down and is therefore computed as

)(3 sqcard
N

⋅
. The selectivity is set to 1/3 when

card(sq) is estimated to be N.

4. Profiled grouping

The profiled grouping fragments the query into
groups where the groups are joined only on the event
variable e. The groups are minimal in the sense that
none of the groups can be split further into subgroups
joined only on the event variable e. Thus, a fragmented
query has the form ...})()()(|{ 21 ∧∧∧ egegede , where
d(e) is the domain predicate and gi(e) are groups and
gi(e) cannot be further fragmented, i.e.

)()()(:))(),((2121 egegegegeg iiiii ∧=¬∃ . Notice that the
original cuts do not fulfill the minimality as some of
the cuts can be split into further groups. For example,
the definition of threeLeptonCut forms two groups:
COUNT(isolatedLeptons(ev))=3

and
SOME(SELECT r
 FROM real r
 WHERE r=Pt(isolatedLeptons(ev))
 AND r>20.0)

The result of the grouping is a set of subqueries
where each predicate from the original query belongs
to exactly one group.

After the groups are formed each group is optimized
using the static cost model and assuming that e is
bound by the domain predicate d(e). Both randomized
and greedy optimization was used and compared, with
no significant impact on the final execution efficiency.
Therefore, in our measurements we show the time to
do the cheap greedy optimization only.

Since each group is a complex conjunctive query a
static cost model may not produce good estimates [20].
Therefore we wrap each group and profile it on a
sample of the set of events that are queried. This
requires that the queried data are already loaded to the
main memory by the ROOT wrapper. The profiler
executes each group on the same sample set and
calculates selectivity and real cost estimates for each
group and these estimates are then used for cost-based
reordering of the groups.

In the experiments we varied the number of events
used in the sample set. Based on this we estimated the
required sample size to obtain sufficiently efficient
optimization.

Finally, the join order of groups is optimized using
the profiled group cost model obtained by the profiling.

Figure 2 shows our grouping algorithm. The input is
a conjunctive query predicate S and an event variable
varE. The output is a conjunction of groups, Groups,
representing S. On lines (3-5) the algorithm forms a
new group by picking one predicate at a time from S.
The variable V will contain the set of variables to be
processed in order to form the group. On line (6) V is
initialized to the variables in p, except the event
variable. On lines (7-9) the algorithm processes one
variable at a time from V and on lines (10-11) it
searches for all predicates that use the processed
variable. Each predicate using the processed variable is
added to the new group on lines (12-13) and its other
variables are added to set of unprocessed variables V
on line (14). The group is formed on line (15) when no
more variables in the group need to be processed. The

algorithm stops forming groups when all predicates in
S have been moved to some group in Groups.

5. Performance measurements

To investigate the effectiveness of our approaches
we evaluated the following strategies both with respect
to execution time and time to do the optimization:

Unoptimized plan (UNOPT). The unoptimized plan is
obtained directly from our query (1) by using a very
simple cost model, where all aggregate operations have
the same cost and all UDFs also have the same cost.
Thus the query optimizer does not change the order of
aggregates and UDFs and their execution order is the
same as the order of the cuts in the query.

Best manual effort plan (MAN). We use the same
simple cost model as for UNOPT but we manually
reordered the plan, by extensive experimentation with
different cut orders, to get the plan that was fastest to
execute. The best effort query formulation is:
SELECT ev
FROM Event ev
WHERE threeLeptonCut(ev)
 AND leptonCuts(ev)
 AND missEeCuts(ev)
 AND zVetoCut(ev)
 AND topCut(ev)
 AND jetVetoCut(ev);

Ungrouped strategies (UR and UG). Query (1) was
optimized without grouping using the static cost model
after the database was populated. Because of the large
number of predicates in the query, the query optimizer
could not use dynamic programming. Instead

 1: Groups = {}
 2: while (S != {})
 3: pick a predicate p from S
 4: S = S \ p
 5: G = {p}
 6: V = variables(p) \ varE
 7: while (V !={})
 8: pick a variable v from V
 9: V = V \ v
10: for each q in S
11: if v variables(q) then
12: G = G∪ q
13: S = S \ q
14: V = V∪ variables(q)\{v,varE}
15: Groups = Groups ∪ {G}
16: return Groups
Figure 2. Pseudo-code of the grouping
algorithm.

randomized optimization (UR) [21,29] and greedy
optimization (UG) [22,23] were used. For randomized
optimization we used a mixture of iterative
improvement and sequence heuristics [24] to obtain a
likely optimal plan. We first made extensive
experiments to determine the minimal number of
iterations to get a converged plan. For comparing
optimization time of UR with other strategies we used
the time to find the converged plan. This can be
regarded as a best case for the time to do randomized
optimization.

Profiled group cost model (DCD, DCR, and DCG).
We evaluated our profiled grouping strategy. Because
the grouping decomposes a flat query with 51
predicates to a join of 8 groups, dynamic programming
optimization can be used to optimize the join order of
the groups (DCD). We also optimized the group join
order using randomized (DCR) and greedy (DCG)
optimization.

5.1 Experimental setup

The experiments were performed on a PC with an
Intel Pentium 4 CPU 2.40 GHz, 1 GB of RAM.

The same large query (1) was used in all the
performance studies. As test cases we used real data
sets produced by ATLAS. The evaluation was first
performed on data sets with high query selectivity,
where only 0.0013% of the events satisfy the query.
Each data set contains 25000 events. As comparison,
the performance was also measured for a data set with
low query selectivity where 10% of the events passed
the query. It contained 8623 events.

5.2 Experimental results

Figure 3 shows the execution times for three data

sets with high query selectivity. All optimization
strategies (MAN, UR, UG, DCD, DCR, or DCG)
produced plans being a factor 1000 faster than the
unoptimized plan (UNOPT), so optimization certainly
pays off. Profiled grouping strategies (DCD, DCR, and
DCG) perform best for all three data sets, independent
on what optimization method is used for joining the
groups. The best ungrouped strategy (UR) produces a
plan that performs 18% worse than any of the profiled
grouping strategies. Not surprisingly, randomized
optimization for ungrouped queries (UR) produced
much better plans than corresponding greedy
optimization (UG).

Figure 4 measures the time to do the query
optimization. All profiled grouping strategies (DCD,
DCR, and DCG) are significantly faster than
ungrouped randomized optimization (UR). With
profiled grouping both randomized (DCR) and greedy
(DCG) optimization methods find the same optimal
plan much faster than dynamic programming (DCD).
Ungrouped greedy optimization UG is rather fast but it
produces a bad execution plan (Fig. 3).

The effectiveness of DCD, DCR, and DCG also
depends on the profiling time. The profiling should be
done for every query so this adds to the optimization
time. The query execution performance for different
profiling sample sizes is presented in Figure 5. The
performance is independent of the optimization method
(DCD, DCR, or DCG) but is proportional to the sample
size. Different data sets require different sample sizes
for optimal query performance. Query plans that were
obtained with small samples are noticeably worse than
query plans with large samples. The smallest sizes of
the samples for which good plans are produced depend
on the data sets. For example, good plans for data set
one starts with a sample size of 40 events, taking
approximately 5.5 seconds to profile. Data set two

0

0.5

1

1.5

2

2.5

1 2 3
High selectivity data sets

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

UNOPT MAN UR UG DCD DCR DCG

1411 1421 1409

Figure 3. Comparing execution times
for three data sets with high selectivity.

36.266

0.172

7.047

0.047 0.047

0.01

0.1

1

10

100

High selectivity data set

O
pt

im
iz

at
io

n
tim

e
(s

ec
on

ds
)

UR

UG

DCD

DCR

DCG

Figure 4. Comparing optimization time
(logarithmic scale).

requires 70 events (9.5 seconds), and data set three
requires 15 events (2 seconds). Based on these
measurements the sample sizes are conservatively set
to 70 by default. The user can tune the system by
changing the sample size. Notice that, even with the
conservative sample setting ungrouped randomized
optimization (UR) is still much slower to optimize than
grouped optimization when adding the profiling time.

 In Figure 6 we investigate the execution times of
the optimization strategies when scaling the data size
with the high selectivity data sets. With profiled
grouping all three optimization methods find the same
optimal plan and therefore the three strategies are
presented as one curve (DC). The profiled group cost
model for the query was obtained by profiling only
data set one on the first 40 events. The measurements
were done for 25 000 events (data set one), 50 000
events (data sets one and two), 75 000 events (data sets
one, two, and three), and 100 000 events (data sets
one, two, three and one more). The reference query
was optimized using the static cost model (UR, UG)
for each size of the data set. The execution time
increases linearly with the data set size, since all events
of a data set are always processed. The query plan from
the profiled grouping strategies performs always better
than any query plan from an ungrouped strategy.

The profiled grouping strategies scaled well using
an execution plan obtained by profiling a single
sample. This indicates that the profiled group cost
model can be obtained once on a single sample data set
and then it can be used for all data sets having the same
query selectivity. We assume that data sets having the
same meta-data condition also have the same
selectivity.

Finally, Figure 7 shows the performance for a data
set with low query selectivity. Here the impact of
query optimization is less significant. The manual plan
turns out to be slower than any optimized plan since it
was obtained for high selectivity data sets. A new
manual plan would have to be developed here (with
great effort). This shows that automatic query
optimization can improve the effectiveness of the
scientists, in particular since they currently implement
the cuts in C++ manually [7] using manual
optimization. The profiled grouping strategies (DCD,
DCR, and DCG) performed 5% worse than the
ungrouped strategies (UR and UG), indicating that the
grouping here provides less good heuristics.

6. Related work

Most work on cost-based query optimization

concentrates on statistics for adequate cost estimates in
Select-Project-Join (SPJ) queries only, e.g.
[4,12,19,25,28]. A number of works present
optimization of queries with UDFs [6,9,17] not
including cost models for aggregates. [10,14,30]
describe optimizations of queries with aggregates
without defining cost model for aggregates. In [8] the
cost of GROUP BY in SQL is estimated solely by the
number of expected groups in order to push it down the
query plan, without considering the costs of executing

0

0.5

1

1.5

2

2.5

3

5 20 35 50 65 80 95
Sample size (events)

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set 1

Data set 2

Data set 3

Figure 5. Execution performance for different
sample sizes.

0

2

4

6

8

10

12

25000 50000 75000 100000
Size of data set w ith high selectivity (events)

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

UG

UR
DC
MAN

Figure 6. Scaling the data size with high
selectivity queries.

0
10
20
30
40
50
60
70
80
90

100

Low selectivity data set

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

UNOPT

MAN

UR

UG

DCD

DCR

DCG

Figure 7. Comparing optimization strategies
for low selectivity data.

predicates. By contrast, we developed a cost model for
aggregates used in scientific queries that takes into
account both the cardinality and costs of the subqueries
and the cost of executing the aggregation operator
itself.

Eddies [2,11] optimize queries at run time per tuple,
not taking expensive UDFs into account. This incurs a
run time overhead compared to preoptimized queries.

Recent work in [3,15] use statistics on views to
handle data dependencies during optimization of
simple SPJ queries, without collecting statistics for
large numerical queries or automatically fragmenting
the queries into views.

In our approach, to alleviate the data dependency
problem, we complement a simple static cost model for
scientific queries by fragmenting queries into groups.
Then we dynamically generate a profiled group cost
model by measuring real executions over data samples.
The profiled group cost model is used for join ordering
of the groups.

7. Conclusion and future work

We developed a static cost model for aggregation
operators and functions used in scientific queries from
the ATLAS project. We showed that optimization of
large scientific queries can reduce execution time by a
factor 1000. Automatic query optimization can
improve the effectiveness of the scientists, in contrast
to manually implementing the queries in C++ [7] as
they currently do. Furthermore, data sets from different
experiments will have different optimal execution
plans and it is very costly to manually construct them.

Scientific work in particle physics includes
experimenting with different cuts to implement new
theories [5,18]. The flexibility to specify the cuts using
non-procedural database queries could improve the
effectiveness of the scientific work.

Complex scientific queries are very large having
many predicates. This makes cost-based optimization
difficult and slow. Furthermore, the predicates contain
many dependent variables. It is difficult or even
impossible to define a reliable cost model dealing with
large predicates with many dependencies. Therefore, as
an alternative, we developed a new method, profiled
grouping, where the query is first fragmented into
groups and then the execution of each group is
measured on samples of real data. The profiled group
cost model is finally used in cost-based optimization of
the group join order.

We evaluated both the static cost model and the
profiled grouping method on real data. We investigated
the time to do the optimization for both approaches and
with different optimization strategies, i.e. dynamic

programming, randomized optimization, and greedy
optimization. Our results show that the profiled
grouping gives significant improvement in
optimization time compared with an ungrouped
strategy and produces better execution plans. A greedy
approach with the static cost model also has fast
optimization, but the plan is around twice slower than
the other plans. Still, it is shown to be much better than
no optimization at all.

There are several issues for future work. One issue
is how to dynamically adapt the group statistics during
query execution. Another one is to investigate the
impact of collecting more detailed statistics on groups.
It should also be investigated whether our grouping
heuristic can be improved further. The static cost
model can be evaluated more carefully. It should also
be evaluated how well query selectivities correlate with
meta-data conditions.

Currently our approach requires loading queried
data into main memory. This is insufficient if the
amount of data to analyze is bigger than the amount of
available main memory. We are investigating a stream
approach, where events are streamed one by one from
a file into the DBMS. Since events are queried
independently from each other only one event has to be
stored in the main memory at a time.

An open question how difficult it is to define a cost
model dealing with all the dependencies for large
scientific queries, or if it is even possible to define it.

8. References

[1] The ATLAS experiment, 2006,
http://atlas.ch/index.html.
[2] R. Avnur and J.M. Hellerstein, “Eddies: continuously
adaptive query processing”, SIGMOD, pp. 261-272, 2000.
[3] N. Bruno and S. Chaudhuri, “Conditional selectivity for
statistics on query expressions”, SIGMOD, pp. 311-322,
2004.
[4] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: a
multidimensional workload-aware histogram”, SIGMOD,
pp. 211-222, 2001.
[5] M. Bisset, F. Moortgat, and S. Moretti, “Trilepton + top
signal from chargino-neutralino decays of MSSM charged
Higgs bosons at the LHC”, Eur.Phys.J. C30, pp. 419-434,
2003.
[6] J. Boulos and K. Ono, “Cost estimation of user-defined
methods in object-relational database systems”, SIGMOD
Rec. 28(3), pp. 22-28, 1999.
[7] R. Brun and F. Rademakers, “ROOT - An object
oriented data analysis framework”, Proc. AIHENP'96
Workshop, Nucl. Inst. & Meth. In Phys. Res. A 389, pp. 81-
86, 1997. See also http://root.cern.ch/.
[8] S. Chaudhuri and K. Shim, “Optimizing queries with
aggregate views”, EDBT, pp. 167-182, 1996.

[9] S. Chaudhuri and K. Shim, “Optimization of queries
with user-defined predicates”, TODS 24(2), pp. 177-228,
1999.
[10] S. Cohen, “User-defined aggregate functions: bridging
theory and practice”, SIGMOD, pp. 49-60, 2006.
[11] A. Deshpande and J.M. Hellerstein, “Lifting the burden
of history from adaptive query processing”, VLDB, pp. 948-
959, 2004.
[12] C. Estan and J.F. Naughton, “End-biased samples for
join cardinality estimation”, ICDE, p. 20, 2006.
[13] S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov,
T. Risch, and M. Sköld, “Amos II Release 8 User's Manual”,
Uppsala DataBase Laboratory, 2006. Available at
http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html
[14] C. Galindo-Legaria, M. Joshi, “Orthogonal optimization
of subqueries and aggregation”, SIGMOD, pp. 571-581,
2001.
[15] C.A. Galindo-Legaria, M. Joshi, F. Waas, and M. Wu,
“Statistics on views”, VLDB, pp. 952-962, 2003.
[16] J. Gray, D.T. Liu, M.A. Nieto-Santisteban, A. Szalay,
D.J. DeWitt, and G. Heber, "Scientific data management in
the coming decade”, SIGMOD Record 34(4), pp. 34-41,
2005.
[17] J.M. Hellerstein, “Optimization techniques for queries
with expensive methods”, TODS 23(2), pp. 113-157, 1998.
[18] C. Hansen, N. Gollub, K.Assamagan, and T. Ekelöf,
“Discovery potential for a charged Higgs boson decaying in
the chargino-neutralino channel of the ATLAS detector at the
LHC”, Eur.Phys.J. C44S2, pp. 1-9, 2005.
[19] P.J. Haas and A.N. Swami, “Sequential sampling
procedures for query size estimation”, SIGMOD, pp. 341-
350, 1992.
[20] Y.E. Ioannidis and S. Christodoulakis, “On the
propagation of errors in the size of join results”, SIGMOD,
pp. 268-277, 1991.

[21] Y.E. Ioannidis, and Y. Kang, "Randomized algorithms
for optimizing large join queries”, SIGMOD, pp. 312-321,
1990.
[22] R. Krishnamurthy, H. Boral, and C. Zaniolo,
“Optimization of nonrecursive queries”, VLDB, pp. 128-137,
1986.
[23] W. Litwin, and T. Risch, “Main memory oriented
optimization of OO queries using typed datalog with foreign
predicates”, TKDE 4(6), pp. 517-528, 1992.
[24] J. Näs, “Randomized optimization of object oriented
queries in a main memory database management system”,
Master's Thesis No: LiTH-IDA-Ex-93/25, 1993. Available at
http://user.it.uu.se/~udbl/Theses/JoakimNasMSc.pdf
[25] V. Poosala and Y.E. Ioannidis, “Selectivity estimation
without the attribute value independence assumption”,
VLDB, pp. 486-495, 1997.
[26] T. Risch, V. Josifovski, and T. Katchaounov,
“Functional data integration in a distributed mediator
system”, In P. Gray, L. Kerschberg, P. King and A.
Poulovassilis (eds.), Functional Approach to Data
Management - Modeling, analyzing and integrating
heterogeneous data, Springer, 2003.
[27] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A.
Lorie, and T.G. Price, “Access path selection in a relational
database management system”, SIGMOD, pp. 23-34, 1979.
[28] U. Srivastava, P.J. Haas, V. Markl, M. Kutsch, and T.M.
Tran, “ISOMER: consistent histogram construction using
query feedback”, ICDE, p. 39, 2006.
[29] A. Swami and A. Gupta, “Optimization of large join
queries”, SIGMOD, pp. 8-17, 1988.
[30] W.P. Yan and P. Larson, “Eager aggregation and lazy
aggregation”, VLDB, pp. 345-357, 1995.

Appendix

Table 1. Costs of ALEH numerical operations, where x, y, and z are numbers (integers or reals), i is
integer, v, v1, v2, and v3 are vectors, and vs is bag of vectors.
Numerical
operation

Cost Formula

PLUS(x,y)=z 1 x+y=z
TIMES(x,y)=z 1 zyx =⋅
ABS(x)=y 1 y is absolute value of x
v[i]=x 1 x is element i of vector v
TIMES(v1,v2)=x 5 x is scalar product of two vectors v1 and v2
SQRT(x)=y 1 y is square root of x
PLUS(v1,v2)=v3 15 v3[i]=v1[i]+v2[i] for all i
LOG(x)=y 2 y is natural logarithm of x
ATAN2(x,y)=z 2 z is arctangent of x/y
CEILING(x)=y 1 y is ceiling of x
COS(x)=y 2 y is cosine of x
MAGNITUDE(v)=x 9 222]2[]1[]0[vvvx ++= , where v is a 3D vector
ETA(v)=x 16

−++

+++
⋅=

]2[]2[]1[]0[

]2[]2[]1[]0[
ln5.0

222

222

vvvv

vvvv
x , where v is a 3D vector

PT(v)=x 6 22]1[]0[vvx += , only first two dimensions of 3D vector v are used in the
calculation

SUM(vs)=v 36 v is sum of all vectors in bag of vector vs

Table 2. Cost model for aggregation operators over subquery sq, where cost(sq) is the estimated
total cost of executing sq, and card(sq) is the estimated cardinality of sq.
Aggregate Cost Selectivity
SOME(sq)

if 1)(<sqcard then)(sqcost else 1
)(
)(+

sqcard
sqcost if 1)(<sqcard then

2
)(sqcard else

)(2
11

sqcard⋅
−

NOTANY(sq)
if 1)(<sqcard then)(sqcost else 1

)(
)(+

sqcard
sqcost if 1)(<sqcard then

2
)(1 sqcard− else

)(2
1

sqcard⋅

COUNT(sq)=N if 1)(+< Nsqcard then)()(sqcardsqcost + else

1
)(
)()1(+++ N

sqcard
sqcostN

if Nsqcard <)(then
N
sqcard

⋅3
)(else

)(3 sqcard
N

⋅

ATLEAST(sq)=N if Nsqcard <)(then)()(sqcardsqcost + else

N
sqcard
sqcostN +

)(
)(

if Nsqcard <)(then
N
sqcard

⋅2
)(else

)(2
1

sqcard
N

⋅
−

SUM(sq))()(sqcardsqcost + 1

