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Abstract 
 

High energy physics scientists analyze large 
amounts of data looking for interesting events when 
particles collide. These analyses are easily expressed 
using complex queries that filter events. We developed 
a cost model for aggregation operators and other 
functions used in such queries and show that it 
substantially improves performance. However, the 
query optimizer still produces suboptimal plans 
because of estimate errors. Furthermore, the 
optimization is very slow because of the large query 
size. We improved the optimization by a profiled 
grouping strategy where the scientific query is first 
automatically fragmented into subqueries based on 
application knowledge. Each fragment is then 
independently profiled on a sample of events to 
measure real execution cost and cardinality. An 
optimized fragmented query is shown to execute faster 
than a query optimized with the cost model alone. 
Furthermore, the total optimization time, including 
fragmentation and profiling, is substantially improved.  
 
1. Introduction 
 

Modern databases can provide tools for efficient 
processing of large amounts of scientific data involving 
complex application-specific analyses [16]. Scientific 
analyses can be specified as high-level queries calling 
user defined functions (UDFs) in an extensible DBMS. 
Query optimization provides scalability and high 
performance without any need for the scientist to spend 
time on low-level programming. Furthermore, as 
queries are easily specified and changed, new theories, 
e.g. implemented as filters, can be tested quickly.  

Our application is High Energy Physics (HEP), 
where lots of data to be analyzed are generated by 
simulation software from the Large Hadron Collider 
(LHC) experiment ATLAS [1]. The data describes 
effects from collisions of pairs of particles. A 
description of a collision is called an event. Thus our 

application data are sets of independent events, where 
each event has properties that describe sets of particles 
of various types produced by the collision. Scientists 
define the analysis queries in terms of these event 
properties. As every collision is simulated independent 
of other collisions, the queries contain no joins 
between properties of different events. The scientist 
searches for events satisfying certain conditions, called 
cuts, and the query results are sets of interesting events. 
A typical query is a conjunction of a number of cuts. 
Queries over events are complex since the cuts are 
complex containing many predicates applied on 
properties of each event. The query conditions involve 
selections, arithmetic operators, aggregates, UDFs, and 
joins. The aggregates compute complex derived event 
properties. For example, a complex query is to look for 
the events producing Higgs bosons [18] by applying 
scientific theories expressed as cuts. 

These complex queries need to be optimized for 
efficient and scalable execution. However, optimizing 
such complex queries is challenging because: 
• The queries contain many joins. 
• The size of the queries makes optimization slow. 
• The cut definitions contain many more or less 

complex aggregates. 
• The filters defining the cuts use many numerical 

UDFs. 
• There are dependencies between event properties 

that are difficult to find or model. 
• The UDFs cause dependencies between query 

variables. 
We first investigated whether cost-based 

optimization improves query execution compared to no 
optimization. We developed a static cost model for the 
operations occurring in our kind of queries. As a 
comparison we also manually optimized a reference 
query by experimenting with different orders of cuts 
and measuring the actual execution times. Since the 
queries are very large, regular dynamic programming 
[27] could not be used. Instead randomized 
optimization [21,24,29] running for a long time and 



greedy heuristic optimization [22,23] were used.  
Performance measurements showed that cost-based 
optimization produced a substantially faster execution 
plan (1000 times) than an unoptimized one.  

For some data sets, our manually optimized plan 
was still somewhat faster. The main reason for this is 
that the static cost model becomes unreliable for large 
plans [20]  because i) there are dependencies between 
query variables and ii) the cost estimate errors are 
compounded by the very large queries. It is difficult to 
define a cost model dealing with the dependencies. 
Another problem is that the time to optimize the query 
to produce a good plan is substantial; it took around 
half minute by randomized optimization to find a 
sufficiently good plan for a test query. 

To alleviate this, we developed a profiled grouping 
method where the query is first split into query 
fragments, called groups, where each group has no join 
with other groups on event properties. Then each group 
is optimized separately and profiled for real execution 
time over a sample set of events in order to obtain 
measurements of actual selectivities and costs per 
group. Finally the join order of the groups representing 
the query is optimized by the cost-based query 
optimizer using the profiled group cost model.  

Profiled grouping is based on measuring real 
execution time of different query fragments rather than 
static cost model estimates. In addition, the number of 
groups is much smaller than the number of predicates 
in the ungrouped query. Therefore the query 
optimization time is improved substantially by the 
grouping. Furthermore, profiled grouping turns out to 
be less sensitive to optimization errors, so even a 
greedy optimization method combined with profiled 
grouping produces better plans than an ungrouped 
approach. 

An important problem is how to fragment the query. 
The set of all possible groups is very large and 
therefore a heuristic method for forming the groups is 
used. The grouping heuristic uses knowledge that in 
our application each event is analyzed independent of 
other events when selecting the events satisfying 
conjunctions of cuts. The grouping heuristic fragments 
a conjunctive query into groups where joins between 
groups are performed only on the event identifier; no 
joins are made between event properties from different 
groups.  

We implemented the static cost model, profiled 
grouping, and the application query in an object-
relational DBMS AMOS II [26] and evaluated the 
effectiveness of both ungrouped strategies and profiled 
grouping in combination with different optimization 
strategies: dynamic programming [27], randomized 
optimization [21,24,29], and greedy heuristic 
optimization [22,23]. As references we also compared 

with a best effort manual optimization. The 
measurements were made with two data sets, one with 
high selectivities of the cuts and one with low 
selectivities. We show that for high selectivity data sets 
profiled grouping combined with any optimization 
method produces better plans than the ungrouped 
strategies.  

The rest of the paper is organized as follows. 
Section 2 describes the application and a test query 
used in the rest of the paper. The static cost model is 
presented in Sec. 3. Profiled grouping is described in 
Sec. 4. It is followed by performance measurements for 
the query execution strategies in Sec. 5. Related work 
is discussed in Sec. 6. Section 7 concludes and 
discusses on-going and future work. 
 
2. High energy physics queries 
 

Our test application analyzes data files produced by 
the ATLAS simulation software searching for events 
producing charged Higgs bosons [5,18]. Event files are 
associated with meta-data conditions for the file 
production that describe, e.g., experiment settings and 
what kinds of events were produced. A simulated 
collision event produces a number of general 
measurements about the collision and measurements 
about particles generated by the collision. 
Measurements about the collision include, e.g., missing 
momentum in x and y directions (PxMiss and PyMiss). 
Examples of generated particles are electrons, muons, 
and jets, and measurements about them are the ID-
number of the type of a particle (Kf), momentum in x, 
y, and z directions (Px, Py, and Pz), and the amount of 
energy (Ee). 

The analysis of the events consists of selecting 
those events that can potentially contain charged Higgs 
bosons. A number of predicates, called cuts, are 
applied to each event and events that satisfy all cuts are 
selected. Selectivities of cuts are similar for event sets 
from files with the same meta-data condition.  

The scientists experiment with combinations of 
different cuts. An example of a cut, named the three 
lepton cut, is to select an event if it has exactly three 
isolated leptons and at least one isolated lepton has Pt 
bigger than 20 GeV. An isolated lepton is a lepton, 
which has absolute value of Eta smaller than 2.4 GeV 
and Pt bigger than 7 GeV. Pt and Eta are 
computational functions on event properties. 

We implemented our application ALEH (Analysis 
LHC Events for containing Higgs bosons) as an 
extension of an object-relational main memory DBMS 
AMOS II [26]. The events are delivered in binary files 
managed by the ROOT library [7]. A ROOT wrapper 
is implemented to load events from ROOT files into 



main memory. An object-relational schema of the 
collision events is implemented in the query language 
AmosQL [13]1 and presented in Fig. 1. Events are 
represented by Event entity with two attributes PxMiss 
and PyMiss. Particles are represented by objects with 
attributes Kf, Px, Py, Pz, and Ee and relationships to 
Events. Particles of different types are represented by 
different entity subtypes Muon, Electron, and Jet. 
Muon and Electron are generalized by an abstract 
entity Lepton, which is used in definitions of some 
cuts. 

A number of numerical UDFs, e.g. Pt and Eta, are 
defined in the database in order to make the analyses. 
The cuts are expressed as functions (parameterized 
queries) in terms of these UDFs in the query language 
AmosQL. The analysis is usually defined as 
conjunctions of several different cuts, where each cut is 
defined as a conjunction of many predicates. As each 
event is always analyzed independently of other 
events, the analysis queries have the important 
property that no joins are performed between events. In 
general the queries have the form 

...})()()(|{ 21 ∧∧∧ ececede  , where ci are cuts and d(e) 
is a domain predicate to scan the events. 

For example, a general query is: 
SELECT ev   
FROM Event ev 
WHERE jetVetoCut(ev) AND  
      zVetoCut(ev) AND  

    topCut(ev) AND   
    missEeCuts(ev) AND  
    leptonCuts(ev) AND  
    threeLeptonCut(ev); . 

(1) 

Here the functions jetVetoCut, zVetoCut, topCut, 
missEeCuts, leptonCuts, and threeLeptonCut are 
examples of cuts that provide necessary conditions for 
the collision event ev to produce a Higgs boson 

                                                        
1 The source code of the schema in AmosQL can be found in 
http://user.it.uu.se/~ruslan/ALEH/schema.amosql.txt. 

according the theory in [5,18]2. The domain predicate 
is generated by the FROM clause. This general query 
is a reference query for the rest of the paper. 

For example, the definition of the three lepton cut 
is: 
CREATE FUNCTION threeLeptonCut  
  (Event ev) -> Boolean AS 
SELECT TRUE  
WHERE COUNT(isolatedLeptons(ev))=3  
  AND SOME(SELECT r  
    FROM Real r  

  WHERE r=Pt(isolatedLeptons(ev))  

    AND r>20.0); 
The function isolatedLeptons has the definition: 
CREATE FUNCTION isolatedLeptons 

(Event ev) -> Lepton AS 
SELECT l FROM Lepton l 
WHERE  l=leptons(ev) AND  
       Abs(Eta(l))<2.4 AND Pt(l)>7.0; 

The Pt and Eta functions call UDFs Pt and Eta over 
momentum triple for the given particle l. The formulas 
of Pt and Eta are: 

22 yx +  and (2) 
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ln5.0  respectively. (3) 

Before query optimization, functions are expanded 
as views and the query is represented in domain 
calculus. The plan for the query (1) is a conjunction of 
51 predicates. The predicates are comparisons, 
numerical operations, aggregates, UDF calls, and joins. 
The large size of the query makes it difficult to 
optimize and dynamic programming [27] cannot be 
used. We were able to optimize it using randomized 
optimization [21,24,29], which, however, uses a lot of 
time to produce a good plan. 

Another problem is that there are many 
dependencies between predicates. This makes it 
difficult to estimate the cost. For example, a part of an 
unoptimized predicate in the definition of function 
isolatedLeptons is the conjunction: 
Eta(m) = em  
Abs(em) = aem 
aem < 2.4 
Pt(m) = pm 
pm > 7.0 

Here m is the momentum triple of a lepton of a 
given event, and em, aem, and pm are query variables 
containing results of the UDFs Eta, Abs, and Pt. It is 
                                                        
2 Definitions of the cuts in AmosQL can be found in 
http://user.it.uu.se/~ruslan/ALEH/cuts.amosql.txt. 

 
Figure 1. Schema of the application data. 



difficult to estimate selectivities for such predicates 
defined in terms of UDFs. For example, the estimate of 
the selectivity of the comparison aem < 2.4 depends on 
original data distribution of event properties and on the 
distribution of results from the functions Eta and Abs 
that are applied on the these properties to calculate 
aem. Because of the data dependencies the selectivity 
estimates contain large errors. The same holds for the 
comparison pm > 7.0, etc. Furthermore, there is also a 
dependency between the two comparisons, as they 
operate on the same event properties. Such 
dependencies influence cost and cardinality estimates 
and suboptimal execution plans are chosen [20]. 

To alleviate the problems of slow optimization and 
data dependencies, we investigated a profiled grouping 
strategy based on measuring real costs of query 
fragments.  Each group is individually optimized using 
the static cost model. Then the optimized groups are 
profiled over event set samples. Finally, the so 
obtained profiled group cost model is used to optimize 
the fragmented query. In our measurements, we 
compare this approach to a cost-based approach 
without applying the profiled grouping method. 

 
3. Static cost model 
 

We developed a cost model for aggregates and 
numerical operations used in our application, assuming 
data independence between predicates. Tables 1 and 2 
in the Appendix define the static cost model for the 
operators. The static cost model is rather ad hoc, but, as 
will be shown, it still produces good execution plans 
for our test query, in particular in combination with 
profiled grouping. It is defined so that the operators are 
comparable. For example, SOME and NOTANY should 
be complementary and SOME is a special case of 
ATLEAST. 

The costs of complex numerical operators are 
approximated according their measured execution 
time. The cost of basic numerical operators such as 
plus, minus, and times is set to one. The costs for the 
numerical operators that are used in the ALEH query 
are presented in Table 1 in Appendix. The selectivities 
of the numerical operators are always one. 

The costs and cardinalities of aggregates are based 
on the estimated costs and cardinalities of their 
subqueries. The estimates of the cost and the 
cardinality of a subquery assume independence 
between predicates of the subquery. 

The cost of an aggregate depends on the estimated 
number of tuples produced by its subquery sq. For 
aggregate SUM(sq) all tuples emitted by sq have to be 
processed, while for other aggregates, such as SOME 
and NOTANY, only a limited number of tuples emitted 

by sq are processed. Therefore the cost of an aggregate 
is the cost of producing the required tuples by sq plus 
the cost of processing the emitted tuples by the 
aggregation operator. The cost per produced tuple by 
subquery sq is the estimated total cost of executing the 
subquery, cost(sq), divided by its estimated cardinality, 

card(sq), i.e. 
)(
)(

sqcard
sqcost

. The cost for the aggregation 

operator to process one received tuple from sq is set to 
one. For example, SUM(sq) has the cost 
cost(sq)+card(sq). The cost of SOME(sq) when 
card(sq)<1 is cost(sq). If sq emits at least one tuple the 

cost becomes 1
)(
)( +

sqcard
sqcost  since only the first tuple is 

processed by SOME. Analogous cost model formulas 
are developed for other aggregation operators (Table 
1). 

The selectivity of SUM(sq) is always one. The 
selectivities of SOME(sq) and  NOTANY(sq) depend on 
the estimated selectivity of sq. If sq emits fewer than 
one result tuple the selectivity of SOME(sq) is set 

proportional to card(sq), 
2

)(sqcard . Otherwise it is set 

to 
)(2

11
sqcard⋅

− . Basically, the model converges to 

one as card(sq) increases since it becomes more and 
more likely that SOME is true. The factor two allows 
NOTANY to have a complementary model (see Table 
1). 

 The selectivity of predicate COUNT(sq)=N, and 
ATLEAST(sq)=N, where N is known, depends on the 
relationship between N and card(sq). For example, for 
COUNT(sq)=N if card(sq)<N the selectivity is 
increasing until N tuples are emitted from sq, and it is 

computed as 
N
sqcard

⋅3
)( . After N tuples are emitted the 

selectivity goes down and is therefore computed as 

)(3 sqcard
N

⋅
. The selectivity is set to 1/3 when 

card(sq) is estimated to be N. 
    

4. Profiled grouping 
 

The profiled grouping fragments the query into 
groups where the groups are joined only on the event 
variable e. The groups are minimal in the sense that 
none of the groups can be split further into subgroups 
joined only on the event variable e. Thus, a fragmented 
query has the form ...})()()(|{ 21 ∧∧∧ egegede , where 
d(e) is the domain predicate and gi(e) are groups and 
gi(e) cannot be further fragmented, i.e. 



)()()(:))(),(( 2121 egegegegeg iiiii ∧=¬∃ . Notice that the 
original cuts do not fulfill the minimality as some of 
the cuts can be split into further groups. For example, 
the definition of threeLeptonCut forms two groups: 
COUNT(isolatedLeptons(ev))=3  

and  
SOME(SELECT r  
     FROM real r  
     WHERE r=Pt(isolatedLeptons(ev)) 
       AND r>20.0) 

The result of the grouping is a set of subqueries 
where each predicate from the original query belongs 
to exactly one group.  

After the groups are formed each group is optimized 
using the static cost model and assuming that e is 
bound by the domain predicate d(e). Both randomized 
and greedy optimization was used and compared, with 
no significant impact on the final execution efficiency. 
Therefore, in our measurements we show the time to 
do the cheap greedy optimization only. 

Since each group is a complex conjunctive query a 
static cost model may not produce good estimates [20].  
Therefore we wrap each group and profile it on a 
sample of the set of events that are queried. This 
requires that the queried data are already loaded to the 
main memory by the ROOT wrapper. The profiler 
executes each group on the same sample set and 
calculates selectivity and real cost estimates for each 
group and these estimates are then used for cost-based 
reordering of the groups. 

In the experiments we varied the number of events 
used in the sample set. Based on this we estimated the 
required sample size to obtain sufficiently efficient 
optimization. 

Finally, the join order of groups is optimized using 
the profiled group cost model obtained by the profiling. 

Figure 2 shows our grouping algorithm. The input is 
a conjunctive query predicate S and an event variable 
varE. The output is a conjunction of groups, Groups, 
representing S. On lines (3-5) the algorithm forms a 
new group by picking one predicate at a time from S. 
The variable V will contain the set of variables to be 
processed in order to form the group. On line (6) V is 
initialized to the variables in p, except the event 
variable.  On lines (7-9) the algorithm processes one 
variable at a time from V and on lines (10-11) it 
searches for all predicates that use the processed 
variable. Each predicate using the processed variable is 
added to the new group on lines (12-13) and its other 
variables are added to set of unprocessed variables V 
on line (14). The group is formed on line (15) when no 
more variables in the group need to be processed.  The 

algorithm stops forming groups when all predicates in 
S have been moved to some group in Groups. 
 
5. Performance measurements 
 

To investigate the effectiveness of our approaches 
we evaluated the following strategies both with respect 
to execution time and time to do the optimization: 

 
Unoptimized plan (UNOPT). The unoptimized plan is 
obtained directly from our query (1) by using a very 
simple cost model, where all aggregate operations have 
the same cost and all UDFs also have the same cost. 
Thus the query optimizer does not change the order of 
aggregates and UDFs and their execution order is the 
same as the order of the cuts in the query. 
 
Best manual effort plan (MAN). We use the same 
simple cost model as for UNOPT but we manually 
reordered the plan, by extensive experimentation with 
different cut orders, to get the plan that was fastest to 
execute. The best effort query formulation is: 
SELECT ev  
FROM Event ev 
WHERE  threeLeptonCut(ev)  
  AND  leptonCuts(ev)  
  AND  missEeCuts(ev)  
  AND  zVetoCut(ev)  
  AND  topCut(ev) 
  AND  jetVetoCut(ev); 
 
Ungrouped strategies (UR and UG). Query (1) was 
optimized without grouping using the static cost model 
after the database was populated. Because of the large 
number of predicates in the query, the query optimizer 
could not use dynamic programming. Instead 

 1: Groups = {} 
 2: while (S != {}) 
 3:  pick a predicate p from S  
 4:  S = S \ p 
 5:  G = {p} 
 6:  V = variables(p) \ varE 
 7:  while (V !={}) 
 8:   pick a variable v from V  
 9:   V = V \ v 
10:   for each q in S 
11:    if v   variables(q) then 
12:     G = G∪ q  
13:     S = S \ q 
14:     V = V∪ variables(q)\{v,varE} 
15:  Groups = Groups ∪  {G} 
16: return Groups 
Figure 2. Pseudo-code of the grouping 
algorithm. 



randomized optimization (UR) [21,29] and greedy 
optimization (UG) [22,23] were used. For randomized 
optimization we used a mixture of iterative 
improvement and sequence heuristics [24] to obtain a 
likely optimal plan. We first made extensive 
experiments to determine the minimal number of 
iterations to get a converged plan. For comparing 
optimization time of UR with other strategies we used 
the time to find the converged plan. This can be 
regarded as a best case for the time to do randomized 
optimization. 
 
Profiled group cost model (DCD, DCR, and DCG). 
We evaluated our profiled grouping strategy. Because 
the grouping decomposes a flat query with 51 
predicates to a join of 8 groups, dynamic programming 
optimization can be used to optimize the join order of 
the groups (DCD).  We also optimized the group join 
order using randomized (DCR) and greedy (DCG) 
optimization. 

 

5.1 Experimental setup 
 

The experiments were performed on a PC with an 
Intel Pentium 4 CPU 2.40 GHz, 1 GB of RAM. 

The same large query (1) was used in all the 
performance studies. As test cases we used real data 
sets produced by ATLAS. The evaluation was first 
performed on data sets with high query selectivity, 
where only 0.0013% of the events satisfy the query. 
Each data set contains 25000 events. As comparison, 
the performance was also measured for a data set with 
low query selectivity where 10% of the events passed 
the query. It contained 8623 events. 

 
5.2 Experimental results 

 
Figure 3 shows the execution times for three data 

sets with high query selectivity. All optimization 
strategies (MAN, UR, UG, DCD, DCR, or DCG) 
produced plans being a factor 1000 faster than the 
unoptimized plan (UNOPT), so optimization certainly 
pays off. Profiled grouping strategies (DCD, DCR, and 
DCG) perform best for all three data sets, independent 
on what optimization method is used for joining the 
groups. The best ungrouped strategy (UR) produces a 
plan that performs 18% worse than any of the profiled 
grouping strategies. Not surprisingly, randomized 
optimization for ungrouped queries (UR) produced 
much better plans than corresponding greedy 
optimization (UG).  

Figure 4 measures the time to do the query 
optimization. All profiled grouping strategies (DCD, 
DCR, and DCG) are significantly faster than 
ungrouped randomized optimization (UR). With 
profiled grouping both randomized (DCR) and greedy 
(DCG) optimization methods find the same optimal 
plan much faster than dynamic programming (DCD). 
Ungrouped greedy optimization UG is rather fast but it 
produces a bad execution plan (Fig. 3).  

The effectiveness of DCD, DCR, and DCG also 
depends on the profiling time. The profiling should be 
done for every query so this adds to the optimization 
time. The query execution performance for different 
profiling sample sizes is presented in Figure 5. The 
performance is independent of the optimization method 
(DCD, DCR, or DCG) but is proportional to the sample 
size. Different data sets require different sample sizes 
for optimal query performance. Query plans that were 
obtained with small samples are noticeably worse than 
query plans with large samples. The smallest sizes of 
the samples for which good plans are produced depend 
on the data sets. For example, good plans for data set 
one starts with a sample size of 40 events, taking 
approximately 5.5 seconds to profile. Data set two 
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Figure 3.  Comparing execution times 
for three data sets with high selectivity. 
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Figure 4. Comparing optimization time 
(logarithmic scale). 



requires 70 events (9.5 seconds), and data set three 
requires 15 events (2 seconds). Based on these 
measurements the sample sizes are conservatively set 
to 70 by default. The user can tune the system by 
changing the sample size. Notice that, even with the 
conservative sample setting ungrouped randomized 
optimization (UR) is still much slower to optimize than 
grouped optimization when adding the profiling time.  

 In Figure 6 we investigate the execution times of 
the optimization strategies when scaling the data size 
with the high selectivity data sets. With profiled 
grouping all three optimization methods find the same 
optimal plan and therefore the three strategies are 
presented as one curve (DC). The profiled group cost 
model for the query was obtained by profiling only 
data set one on the first 40 events. The measurements 
were done for 25 000 events (data set one), 50 000 
events (data sets one and two), 75 000 events (data sets 
one, two, and three), and   100 000 events (data sets 
one, two, three and one more). The reference query 
was optimized using the static cost model (UR, UG) 
for each size of the data set. The execution time 
increases linearly with the data set size, since all events 
of a data set are always processed. The query plan from 
the profiled grouping strategies performs always better 
than any query plan from an ungrouped strategy.  

The profiled grouping strategies scaled well using 
an execution plan obtained by profiling a single 
sample. This indicates that the profiled group cost 
model can be obtained once on a single sample data set 
and then it can be used for all data sets having the same 
query selectivity. We assume that data sets having the 
same meta-data condition also have the same 
selectivity. 

Finally, Figure 7 shows the performance for a data 
set with low query selectivity. Here the impact of 
query optimization is less significant. The manual plan 
turns out to be slower than any optimized plan since it 
was obtained for high selectivity data sets. A new 
manual plan would have to be developed here (with 
great effort). This shows that automatic query 
optimization can improve the effectiveness of the 
scientists, in particular since they currently implement 
the cuts in C++ manually [7] using manual 
optimization. The profiled grouping strategies (DCD, 
DCR, and DCG) performed 5% worse than the 
ungrouped strategies (UR and UG), indicating that the 
grouping here provides less good heuristics. 

 
6. Related work 

 
Most work on cost-based query optimization 

concentrates on statistics for adequate cost estimates in 
Select-Project-Join (SPJ) queries only, e.g. 
[4,12,19,25,28]. A number of works present 
optimization of queries with UDFs [6,9,17] not 
including cost models for aggregates. [10,14,30] 
describe optimizations of queries with aggregates 
without defining cost model for aggregates. In [8] the 
cost of GROUP BY in SQL is estimated solely by the 
number of expected groups in order to push it down the 
query plan, without considering the costs of executing 
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Figure 5.  Execution performance for different 
sample sizes. 
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Figure 6. Scaling the data size with high 
selectivity queries. 
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for low selectivity data. 



predicates. By contrast, we developed a cost model for 
aggregates used in scientific queries that takes into 
account both the cardinality and costs of the subqueries 
and the cost of executing the aggregation operator 
itself. 

Eddies [2,11] optimize queries at run time per tuple, 
not taking expensive UDFs into account. This incurs a 
run time overhead compared to preoptimized queries.  

Recent work in [3,15] use statistics on views to 
handle data dependencies during optimization of 
simple SPJ queries, without collecting statistics for 
large numerical queries or automatically fragmenting 
the queries into views. 

In our approach, to alleviate the data dependency 
problem, we complement a simple static cost model for 
scientific queries by fragmenting queries into groups. 
Then we dynamically generate a profiled group cost 
model by measuring real executions over data samples. 
The profiled group cost model is used for join ordering 
of the groups.  

 
7. Conclusion and future work 

 
We developed a static cost model for aggregation 
operators and functions used in scientific queries from 
the ATLAS project. We showed that optimization of 
large scientific queries can reduce execution time by a 
factor 1000. Automatic query optimization can 
improve the effectiveness of the scientists, in contrast 
to manually implementing the queries in C++ [7] as 
they currently do. Furthermore, data sets from different 
experiments will have different optimal execution 
plans and it is very costly to manually construct them. 

Scientific work in particle physics includes 
experimenting with different cuts to implement new 
theories [5,18]. The flexibility to specify the cuts using 
non-procedural database queries could improve the 
effectiveness of the scientific work. 

Complex scientific queries are very large having 
many predicates. This makes cost-based optimization 
difficult and slow. Furthermore, the predicates contain 
many dependent variables. It is difficult or even 
impossible to define a reliable cost model dealing with 
large predicates with many dependencies. Therefore, as 
an alternative, we developed a new method, profiled 
grouping, where the query is first fragmented into 
groups and then the execution of each group is 
measured on samples of real data. The profiled group 
cost model is finally used in cost-based optimization of 
the group join order. 

We evaluated both the static cost model and the 
profiled grouping method on real data. We investigated 
the time to do the optimization for both approaches and 
with different optimization strategies, i.e. dynamic 

programming, randomized optimization, and greedy 
optimization. Our results show that the profiled 
grouping gives significant improvement in 
optimization time compared with an ungrouped 
strategy and produces better execution plans. A greedy 
approach with the static cost model also has fast 
optimization, but the plan is around twice slower than 
the other plans. Still, it is shown to be much better than 
no optimization at all. 

There are several issues for future work. One issue 
is how to dynamically adapt the group statistics during 
query execution. Another one is to investigate the 
impact of collecting more detailed statistics on groups. 
It should also be investigated whether our grouping 
heuristic can be improved further. The static cost 
model can be evaluated more carefully. It should also 
be evaluated how well query selectivities correlate with 
meta-data conditions.  

Currently our approach requires loading queried 
data into main memory. This is insufficient if the 
amount of data to analyze is bigger than the amount of 
available main memory. We are investigating a stream 
approach, where events are streamed one by one from 
a file into the DBMS. Since events are queried 
independently from each other only one event has to be 
stored in the main memory at a time. 

An open question how difficult it is to define a cost 
model dealing with all the dependencies for large 
scientific queries, or if it is even possible to define it. 
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Appendix 
 

Table 1. Costs of ALEH numerical operations, where x, y, and z are numbers (integers or reals), i is 
integer, v, v1, v2, and v3 are vectors, and vs is bag of vectors. 
Numerical 
operation 

Cost Formula 

PLUS(x,y)=z 1 x+y=z 
TIMES(x,y)=z 1 zyx =⋅  
ABS(x)=y 1 y is absolute value of x 
v[i]=x 1 x is element i of vector v 
TIMES(v1,v2)=x 5 x is scalar product of two vectors v1 and v2 
SQRT(x)=y 1 y is square root of x 
PLUS(v1,v2)=v3 15 v3[i]=v1[i]+v2[i] for all i 
LOG(x)=y 2 y is natural logarithm of x 
ATAN2(x,y)=z 2 z is arctangent of x/y 
CEILING(x)=y 1 y is ceiling of x 
COS(x)=y 2 y is cosine of x 
MAGNITUDE(v)=x 9 222 ]2[]1[]0[ vvvx ++= , where v is a 3D vector 
ETA(v)=x 16 















−++

+++
⋅=

]2[]2[]1[]0[

]2[]2[]1[]0[
ln5.0

222

222

vvvv

vvvv
x , where v is a 3D vector 

PT(v)=x 6 22 ]1[]0[ vvx += , only first two dimensions of 3D vector v are used in the 
calculation 

SUM(vs)=v 36 v is sum of all vectors in bag of vector vs 
 

Table 2. Cost model for aggregation operators over subquery sq, where cost(sq) is the estimated 
total cost of executing sq, and card(sq) is the estimated cardinality of sq. 
Aggregate Cost Selectivity 
SOME(sq) 

if 1)( <sqcard  then )(sqcost  else 1
)(
)( +

sqcard
sqcost  if 1)( <sqcard  then 

2
)(sqcard  else 

)(2
11

sqcard⋅
−  

NOTANY(sq) 
if 1)( <sqcard then )(sqcost  else 1

)(
)( +

sqcard
sqcost  if 1)( <sqcard  then 

2
)(1 sqcard−  else 

)(2
1

sqcard⋅
 

COUNT(sq)=N if 1)( +< Nsqcard then )()( sqcardsqcost +  else 

1
)(
)()1( +++ N

sqcard
sqcostN  

if Nsqcard <)(  then 
N
sqcard

⋅3
)(  else 

)(3 sqcard
N

⋅
 

ATLEAST(sq)=N if Nsqcard <)( then )()( sqcardsqcost +  else 

N
sqcard
sqcostN +

)(
)(  

if Nsqcard <)(  then 
N
sqcard

⋅2
)(  else 

)(2
1

sqcard
N

⋅
−  

SUM(sq) )()( sqcardsqcost +  1  

 
 


