
Scalable Reconstruction of RDF-archived
Relational Databases

Silvia Stefanova
Department of Information Technology

Uppsala University
Silvia.Stefanova@it.uu.se

Tore Risch
Department of Information Technology

Uppsala University
Tore.Risch@it.uu.se

ABSTRACT
We have investigated approaches for scalable reconstruction of
relational databases (RDBs) archived as RDF files. An archived
RDB is reconstructed from a data archive file and a schema
archive file, both in N-Triples formats. The archives contain RDF
triples representing the archived relational data content and the
relational schema describing the content, respectively. When an
archived RDB is to be reconstructed, the schema archive is first
read to automatically create the RDB schema using a schema
reconstruction algorithm which identifies RDB elements by
queries to the schema archive. The RDB thus created is then
populated by reading the data archive. To populate the RDB we
have developed two approaches, the naive Insert Attribute Value
(IAV) and Triple Bulk Load (TBL). With the IAV approach the
data is populated by stored procedures that execute SQL INSERT
or UPDATE statements to insert attribute values in the RDB
tables. In the more complex TBL approach the database is
populated by bulk loading CSV files generated by sorting the data
archive triples joined with schema information. Our experiments
show that the TBL approach is substantially faster than the IAV
approach.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems, H.3.4 [Systems and
Software]: Performance evaluation

General Terms
Algorithms, Measurement, Performance

Keywords
Preservation of relational databases, reconstruct relational
database from RDF, RDF-archive, schema archive, data archive

1. INTRODUCTION
The importance of digital preservation of scientific data and
databases has been increased for the past ten-fifteen years
[4][5]Errore. L'origine riferimento non è stata
trovata.[12][13]. By preserving selected subsets of both data and
publications within one digital object, future reuse, verification,

and heritage [3] of the published scientific results can be
guaranteed.

Semantic Web technologies and in particular RDF seems
promising for long-term preservation of databases since it
provides a neutral format for representation of data and
information. For selective long-term preservation and
reconstruction of relational databases (RDBs) in terms of RDF we
have developed the SAQ (Semantic Archive and Query) system
[9]. The approach is suitable for archiving scientific data used in
scientific publications where it is desirable to preserve only
selected parts of an RDB, e.g. only data about a specific set of
artifacts in the database related to some publications [5]. To select
the parts of an RDB to archive as RDF, a SAQ user defines an
archival query to an RDF view of the RDB called the RD-view.
An archival query is defined in an extended SPARQL query
language, A-SPARQL [9] where the selected parts of the RDB to
archive are specified using a general SPARQL-like query to the
RD-view. An archival query produces a data archive file in N-
Triples format representing the relational data content to be
preserved. It also generates a schema archive file in N-Triples
format, where sufficient meta-data is saved to be able to fully
reconstruct the archived database.

The focus of this paper is the reloader module of SAQ which
reconstructs an RDF-archived RDB in order to make it live again.
When the contents of an archived RDB is to be reconstructed, the
reloader first reads the schema archive and executes a schema
recreation algorithm to automatically construct the minimal RDB
schema required for the archived data. Since only selected parts of
the RDB are archived, a corresponding partial RDB, a
reconstructed RDB is created containing only the relevant parts of
the schema. The RDB thus created is then populated by reading
the data archive and converting the read data into relational
attribute values according to the schema.

To populate the reconstructed RDB we have developed two
approaches called Insert Attribute Value (IAV) and Triple Bulk
Load (TBL), respectively. With the naive IAV approach the
relational data is populated by the generated stored procedures
that execute SQL INSERT or UPDATE statements to
incrementally insert attribute values reading and converting the
triples in the data archive file. With the TBL approach the data is
instead populated by using the bulk load facility of the RDBMS
which requires one CSV file of rows for each reconstructed table.
Since RDF does not prescribe any specific triple order the
reloader needs to sort the triples in the data archive per table row
so that a CSV file per table can be generated in one pass with
limited memory. We compare the performance for the two
approaches to reconstruct an RDB and show that the TBL
approach is substantially faster than IAV despite the added sorting
and post-processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SWIM’13, June 23, 2013, New York, USA.
Copyright 2013 ACM 978-1-4503-2194-5/13/06 …$15.00.

The rest of this paper is organized as follows. Section 2 presents a
usage scenario, and Section 3 presents the reloader and the two
approaches. Section 4 evaluates the performance of the population
approaches. Section 5 describes related work, and Section 6
provides a summary.

2. USAGE SCENARIO
Fig. 1 shows a small RDB called bdb, which contains parts of the
relational Berlin benchmark dataset [2]. The database has four
tables product, productfeature, productfeatureproduct, and
producer, populated with some data. The columns pno, pfno, and
prodno are primary keys in the tables product, productfeature,
and producer. The column producer in the table product
references the column prodno in the table producer as foreign
key. The table productfeatureproduct is a many-to-many link
table between the tables product and productfeature.

A SAQ user has preserved data about products having pNum1 >
300 by executing the following A-SPARQL query to the RDF

view named <bdb> representing the RDB bdb:
ARCHIVE AS ‘data.nt’, ‘schema.nt’
FROM <bdb>
TRIPLES
{?product ?property ?value }
WHERE
{?product rdf:type bdb:product .
 ?product bdb:product_pNum1 ?pNum1 .
 FILTER (pNum1 > 300) }
The execution of the above archival query produces two NT-
triples files:

1. The data archive file, ‘data.nt’, shown in Fig. 2
containing the archived products’ date.

2. The schema archive file, ‘schema.nt’, containing the
schema information required for recreating the parts of
the RDB schema describing the archived data.

When the reloader reconstructs the archived RDB the schema
archive ‘schema.nt’ is first read and the RDB schema of the
reconstructed RDB, named r_bdb in Fig. 3 is created. It contains
only the parts of the tables of the RDB in Fig. 1 archived by the
archival query. Then the RDB is populated by reading the data
archive ‘data.nt’.

3. THE RELOADER
Fig. 4 illustrates the overall architecture of the reloader. When an
RDB is restored from an archive repository, the schema restorer
first imports the schema archive triples and stores them in a triple
table called the imported schema inside the reloader. The

imported schema represents relational concepts (tables, attributes,
foreign and primary keys) for the reconstructed RDB as
RDF/RDFS concepts (classes, properties, domains, ranges, and
sequences) into. The schema restorer executes a schema
reconstruction algorithm to convert the imported schema into a
relational schema of the reconstructed RDB in the destination
RDBMS by sending SQL CREATE TABLE statements through
the JDBC interface. Once the schema is created, the reconstructed
RDB is populated with the data in the data archive by the data
restorer using either IAV or TBL approaches. This involves
converting data archive triples into relational attribute values. The
conversion is based on the W3C recommendations [1] for direct
mapping of relational data to RDF.

3.1 Data restorer using IAV approach
With the naive IAV approach the data is populated by stored
procedures automatically generated for each reconstructed table
attribute. A system table maps an URI representing a table
attribute to its corresponding stored procedure. During the data
restoring the data archive is read and the reconstructed RDB is
populated triple-by-triple by looking up the system table and
calling the stored procedure.

3.2 Data restorer using TBL approach
The reconstructed RDB is populated by using the bulk load
facility of the destination RDBMS, which requires one CSV file

Table product Table productfeature

pno pNum1 producer pfno publishDate
1 100 2 3 2000-06-22
2 450 3 4 2000-07-08

Table productfeatureproduct Table producer

product productFeature prodno country label
2 3 2 DE NULL
2 4 3 SE Prod3

Figure 1. RDB bdb

Table product Table productfeature
pno pNum1 producer pfno
2 450 3 3
 4

Table productfeatureproduct

product productFeature
2 3
2 4

Figure 3. The reconstructed RDB r_bdb

1
2
3
4
5
6
7

<bdb:product/2>
<bdb:product/2>
<bdb:product/2>
<bdb:product/2>
<bdb:product/2>

<bdb:productfeature/_3>
<bdb:productfeature/_4>

<bdb:product_pNum1>
<bdb:product_pno>
<bdb:producer_of_product>
<bdb:product_Feature>
<bdb:product_Feature>
<bdb:productfeature_pfno>
<bdb:productfeature_pfno>

“450”^^<xsd:int>
“2”^^<xsd:int> .
<bdb:producer/3> .
<bdb:productfeature/_3>
<bdb:productfeature/_4>
“3”^^<xsd:int> .
“4”^^<xsd:int> .

Figure 2. Data archive ‘data.nt’

Figure 4. Reloader architecture

Reloader

Reconstructed RDB

Schema archive Data archive

Schema restorer

JDBC interface
Create table

Destination RDBMS

Imported Schema

Data restorer

Archive repository

Populate data

of rows per table to restore. Since RDF does not prescribe any
specific triple order, the triples in the data archive are sorted so
that the CSV files can be generated in one pass.

To do the sorting all the unsorted data archive triples are first bulk
loaded into an RDB table Triples(s, p, o). Another RDB table
Attributes(file, attributeURI, pos) is populated with meta-data
about the archived tables’ attributes and their positions, which is
needed to produce the sorted data archive. The table Attributes
has columns: file storing CSV file names for each reconstructed
table; attributeURI storing the URIs representing each
reconstructed tables’ attribute which is the primary key; and pos
storing the row position of an attribute represented by
attributeURI, enumerated 0 and up. Given these two tables, the
sorting is done by running the sorting query:
SELECT a.file, t.s, a.pos, t.o
FROM Triples t, Attributes a
WHERE t.p = a.attributeURI
ORDER BY a.file, t.s, a.pos .

The query sorts the data archive triples per CSV file for each table
to populate, per triple subject, and per attribute order in the table.
Since the subject URI is prefixed by the table name, ordering data
triples by their subjects implies grouping them by table rows. This
is because the URIs encode both the table name and primary key
value(s) of the rows in the archived RDB as a concatenation of the
name of the table with a string of key values, as Fig. 2
exemplifies.

The result of the query is converted to one CSV file per table by
running a CSV generation algorithm applied on each result tuple
(file, s, pos, o) from the result scan of the sorting query. The
algorithm produces the CSV files in one pass with limited
memory.

The details of the two approaches can be found in
http://www.it.uu.se/research/group/udbl/software/sard/TReport_R
eloader_Stefanova_Risch.pdf.

4. PERFORMANCE
The performance of the reloader to populate a reconstructed RDB
was compared for the two approaches IAV and TBL.

The experiment configuration was the following:

1) The measurements were made on a PC with Intel(R)
Core(TM), i5 CPU with 2.67 GHz and 8 GB RAM
running 64-bits Windows 7 Professional.

2) MS SQL server 2008 R2 configured with 6 GB buffer
pool was used for the reconstruction.

3) The schema and data file archives were produced by
archiving as RDF the entire relational databases
generated by the Berlin benchmark data generator. The
size of the archived database was scaled from 94 MB to
10 GB. The number of RDF triples in the data archived
varied from 2 009 722 to 195 528 165.

The following notation is used in the performance diagrams. TBL:
the complete time spent for the TBL approach; IAV: the complete
time spent for the IAV approach; Load data: time spent to load
data by reading the data archive and executing the stored
procedures with TBL; Create FK constraints: time spent to create
foreign key constraints for both IAV and TBL; Triple bulk load:
time spent to bulk load data archive triples before sorting in the
TBL approach; Sort: time spent in TBL to sort the date archive
triples by the ORDER BY query; Create CSV: time spent on CSV

file generation with TBL; Table bulk load: time spent to bulk load
the generated CSV files with TBL.

The results from the experiments are presented in Fig. 5, 6, and 7.
It can be seen on Fig. 5 that the TBL approach substantially
outperforms the IAV approach. Using TBL is 18-25 times faster

than the IAV approach.

Fig. 6 and 7 show how much time is spent on the different phases
of the reloading. For IAV (Fig. 6) 99.9 % of the time is spent on
inserting attribute values into the RDB and 0.1 % on constructing
foreign keys. Fig. 7 shows that for TBL around 25-37 % of the
time is spent on bulk loading triples to be sorted, and the sorting
itself takes 20-30 % of the time. Converting the sorted triples to
CSV takes 33-43 % of the time. Finally, only 1-4 % is spent on
constructing foreign keys, and 3-4% on the final bulk loading of
the reconstructed RDB.

 Figure 7. TBL approach

0

4000

8000

12000

16000

20000

0 50 100 150 200

tim
e,

 s

number triples x 10E6

TBL
Create FK constraints
Table bulk load
Create CSV
Sort
Triple bulk load

0

40000

80000

120000

160000

200000

240000

280000

320000

360000

0 50 100 150 200

tim
e,

 s

number triples x 10E6

IAV

Load data

Create FK constraints

Figure 6. IAV approach

 Figure 5. IAV and TBL approach

0

40000

80000

120000

160000

200000

240000

280000

320000

360000

0 50 100 150 200

tim
e,

 s

number triples x 10E6

TBL

IAV

5. RELATED WORK
To the best of our knowledge there is no other paper investigating
the performance of algorithms for restoring relational databases
archived in RDF.

RDF2RDB [11] also constructs and populates relational databases
from RDF data files, but do not present details on how the RDB is
populated and there are no performance investigations. In
contrast, we have investigated two different approaches to
populate an RDB with relational data converted from RDF triples.
Our experiments show that the TBL approach is substantially
faster than IAV.

The R2D system [6][7] generates a relational view over an RDF
store. The purpose is to process SQL over RDF data. R2D does
not reconstruct archived relational databases.

[14][15] convert XML Schema to relational tables, which are then
populated by reading XML documents. XML is different from
RDF in that it is based on tree structures while RDF represents
meta-data graphs as unordered triples, which requires the special
handling presented here.

6. SUMMARY
We have investigated approaches for scalable recreation of
relational databases archived as RDF files. An RDF-archived
relational database is reconstructed from a schema archive file and
a data archive file, both in N-Triples formats. The archives
contain RDF triples representing the relational schema for the
archived content, and relational data content, respectively. When
an archived RDB is to be reconstructed, the schema archive is
read to automatically reconstruct the RDB schema in another
RDBMS. The schema reconstruction algorithm is based on
identifying relational database schema elements by queries to the
schema archive. The reconstructed RDB is then populated by
reading the data archive triples and converting them into relational
attribute values according to the schema. We have investigated
two approaches to populate data into the reconstructed RDB: the
IAV approach and the TBL approach.

With the naive IAV approach the database is populated by
automatically generated stored procedures which execute an SQL
INSERT or UPDATE statement for each attribute value read from
the data archive file.

With the TBL approach the database is populated by bulk loading
CSV files generated from the data archive. The bulk loader
requires one CSV file of rows for each reconstructed table and
therefore the data archive needs to be regrouped per table and row
in order to create the CSV files. The regrouping is made by first
bulk-loading the archived triples into an RDB and then issuing an
ORDER BY query in the RDBMS to group the data archive
triples per CSV file to generate. Finally, a CSV generation
algorithm is applied on each query result tuple to produce the
CSV files in one pass with limited memory.

Our experiments show that the TBL approach is substantially
faster than the IAV approach, despite the added sorting and post-
processing.

REFERENCES
[1] Arenas, M., Bertails, A., Prud'hommeaux E. and J. Sequeda.

2012. A Direct Mapping of Relational Data to RDF, W3C,
Recommendation 27 September 2012,
http://www.w3.org/TR/rdb-direct-mapping/

[2] Bizer, C. and Schultz, A, Berlin SPARQL Benchmark
(BSBM) Specification, Data Generator and Test Driver,
http://www4.wiwiss.fuberlin.de/bizer/BerlinSPARQLBench
mark/spec/20080912/index.html#datagenerator

[3] Borghoff, U. et al. 2010. Long-Term Preservation of Digital
Documents, Springer

[4] Buneman, P., Khanna, S., Tajima, K. and Tan, W. 2004.
Archiving Scientific Data, ACM Transactions on Database
Systems, Vol. 29, No. 1, pp. 2-42, 2004

[5] Hunter, J. 2006. Scientific Publication Packages – A
Selective Approach to the Communication and Archival of
Scientific Output, The International Journal of Digital
Curation, iss. 1 vol. 1, pp. 33-52, 2006

[6] Ramanujam, S., Gupta, A., Khan, L., Seida, S., and
Thuraisingham, B., 2009. R2D: Extracting Relational
Structure from RDF Stores, 2009 IEEE/WIC/ACM Int.
Conference on Web Intelligent Technology-Workshop, 2009

[7] Ramanujam, S., Gupta, A., Khan, L., Seida, S. and
Thuraisingham, B. 2009. R2D: A Bridge between the
Semantic Web and Relational Visualization Tools, 2009 IEE
Int. Conference on Semantic Computing

[8] Sequeda, J. F. and Miranker, D. Ultrawrap: SPARQL
Execution on Relational Data, Technical Report
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2078.pdf

[9] Stefanova S. and Risch, T. 2012. Scalable Long-term
Preservation of Relational Data through SPARQL queries,
Semantic Web journal, Submitted for publication, October,
2012

[10] Stuckenschmidt H. and Harmelen, F. 2005. Information
Sharing on the Semantic Web,Springer,ISBN 3-540-20594-2

[11] Teswanich, W. and Chittayasothorn S. 2007. A
Transformation from RDF Documents and Schemas to
Relational Databases, IEEE PacificRim Conferences on
Communications, Computers and Signal Processing, 2007,
pp. 38-41

[12] Ad hoc Strategic Committee on Information and Data, Final
Report to the ICSU Committee on Scientific Planning and
Review, http://www.icsu.org/publications/reports-and-
reviews/scid-report/scid-report.pdf, 2008

[13] National Science Board: Long-Lived Digital Data
Collections: Enabling Research and Education in the 21st
Century, NSB 05-40,
http://www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf, 2005

[14] Oracle® XML DB Developer's Guide, 11g Release 2 (11.2),
http://docs.oracle.com/cd/E11882_01/appdev.112/e23094/toc
.htm

[15] XML Data (SQL Server), http://msdn.microsoft.com/en-
us/library/bb522446.aspx

ACKNOWLEDGEMENTS
This project is supported by the eSSENCE Collaboration Project.

