Processing Queries over RDF Views of Wrapped
Relational Databases

Johan Petrini and Tore Risch

Department of Information Technology, Uppsala University, 75195 Uppsala, Sweden
{Johan.Petrini, Tore.Risch} @it.uu.se

Abstract. The semantic web standard RDF enables web resources to be anno-
tated with properties describing structure and contents. However, there is a vast
amount of additional high quality information in the hidden web stored in data-
bases accessible from the web but not as web pages. In particular, most organi-
zations use relational database technology and such databases should also be
accessible from semantic web tools. We are developing a system to transpar-
ently wrap relational databases as virfual RDF resource descriptions. The wrap-
per provides relational database access to the Edutella infrastructure for search-
ing educational resources. Semantic web queries are expressed using a Datalog-
based RDF query language that through the wrapper transparently retrieves in-
formation from relational database servers. Since the data volume in these data-
bases is huge, the data cannot be downloaded but instead virtual RDF resource
descriptions are returned as query results. Query optimization techniques permit
transparent and efficient mapping from RDF queries to relational database que-
ries. Semantic web queries are more dynamic than relational database queries
and they may freely mix access to data and schema. This makes it necessary to
optimize not only data access time but also the time to perform the query opti-
mization itself.

1 Introduction

Modern information systems often need to access many different kinds of data, in-
cluding Internet-based web resources, relational databases, or files containing experi-
mental results. It is getting increasingly difficult to get the correct information when
retrieving information from web resources using traditional unstructured free-text
based search methods as provided by, e.g., GOOGLE.

Normally the useful information is hidden inside huge amounts of irrelevant in-
formation. This data retrieval problem gets even worse if one wants to combine web
resources with other kinds of data stored outside the web, for example in enterprise
databases, often referred to as the hidden web. Either one has to manually browse-cut-
and-paste between web search tools and database tools, or one has to develop hard-
wired programs accessing data from relational databases and web sources for combin-
ing and filtering the retrieved resources.

The semantic web initiative [3] aims at providing Internet-wide standards for se-
mantically enriching and describing web data. Using the standards RDF [7][14] and

16

RDF-Schema [4], abbreviated as RDFS, any web resource can be annotated with
properties describing its structure and contents. This facilitates guided search of web
resources in terms of these properties. The properties are represented as sets of RDF
statements, which are triples containing a web resource (the subject), a property (the
predicate), and a value (the object). RDFS [4] adds semantics to basic RDF with
schema definition capabilities providing, e.g. classes, inheritance, and restrictions on
the kinds of properties a given class of web resources can have. RDF is used, e.g. by
the Dublin Core standard [8] for meta-data markup of library data and the Edutella in-
frastructure [18] uses it for searching educational web resources.

Queries to semantic web data are specified using some of the query languages pro-
posed for this, e.g. RDQL [23], RQL [13], and QEL [21].

We are developing a system SWARD (Semantic Web Abridged Relational Data-
bases) for scalable RDF based wrapping of existing relational databases in the hidden
web. Instead of downloading the relational database tables into RDF repositories we
map an existing relational database schema into a corresponding virtual RDF state-
ment set of the wrapped relational database. When semantic web queries reference
this virtual statement set the system automatically translates fragments of the queries
into one or several SQL queries to the relational database. The result of a query is not
explicitly stored as RDF statements in a repository, but statements are instead dy-
namically generated as data is retrieved from the relational database. Query filters in
RDF queries are moved into SQL selections when possible. Filters not expressible in
SQL are applied on the results from the SQL queries. A particular problem is that
queries to RDF statement sets do not need to distinguish between what is schema and
what is data as in relational databases. In RDF both schema and data are mixed in the
statement sets and, unlike SQL, queries to RDF sources do not need to be expressed
in terms of a database schema. This prohibits pre-compilation of queries as in SQL.

The approach is evaluated initially in the context of the Edutella framework [18],
which is a peer-to-peer infrastructure for semantic web searches of educational re-
sources. Edutella uses the query language QEL [21], a Datalog [27] based query lan-
guage for RDF. Each educational source made available to Edutella is called an
Edutella provider. A provider receives dynamic QEL queries from Edutella to a spe-
cific source. It evaluates the query and returns the result as a set of RDF statements.
Our provider permits QEL queries to any wrapped relational database. As test case we
provide RDF query access to a relational database storing information about Swedish
museums, Museifonstret'[17]. Since, unlike SQL, Edutella queries are always dy-
namic and cannot be precompiled, we optimize not only the query execution time as
relational databases but also the query compilation time as is the focus of this paper.

Our approach enables efficient semantic web peer-to-peer queries to the combina-
tion of resources on the web and in the Aidden web. It allows Edutella peers to access
existing relational databases as well as other sources, even though the relational data-
bases have totally different data representations than RDF-statements. The system
manages mappings between meta-data descriptions based on Dublin Core used in the
Edutella ontology and the wrapped relational databases. The system furthermore al-
lows user functions implementing algorithms for data filtration, indexing, and fusion,
and it enables transparent use of these user-defined functions in queries and views.

! English:’The Window to Museums’.

17

2 Related Work

Usually, RDF statements are stored as web documents or in internal relational data-
bases designed for RDF [2][26]. The schema of the relational database is internal to
the repository system. One problem with storing all data as triples is that the reposi-
tory does not have any knowledge about the most efficient representation for each ap-
plication, which makes relational query optimization less effective. To alleviate this,
Jena2 [26] uses property tables for non-triple representation of RDF statements.

However, if one wants to access existing large relational databases through seman-
tic web queries using an RDF repository one needs to download the relational data-
base tables into the RDF repository before querying them. This can be very costly if
the relational database is large. By contrast regular relational databases are designed
and tuned for maximal efficiency of the applications using the database. To limit data
transmission they are designed for keeping all data in the database and only export a
minimal amount of data for answering queries. The database schema provides appli-
cation-oriented meta-data descriptions, efficient data representation, and efficient
query processing.

Rather than storing RDF data in dedicated RDF-repositories our work wraps exist-
ing relational databases to be used in the semantic web queries without downloading
database tables to a repository. Instead the statements necessary for answering a par-
ticular query are represented as virtual statements streamed through the wrapper. The
closest works are D2R MAP [5], and RDF Gateway [20], which provides conversion
methods from relational databases to RDF. The typed RDFS-based view specification
language RVL [16] is proposed for semantic web integration [6]. However, none of
the works deal with how to actually optimize semantic web queries over wrapped re-
lational databases, the main topic of this work.

Several mediator projects [10][11][12][15][19][22][25] wrap external data sources
from virtual databases. However, none of these projects deal with wrapping relational
databases under semantic web infrastructures.

There are a few proposals for query languages for RDF e.g. RDQL [23], RQL [13],
and QEL [21]. These query languages are based on declarative queries to the space of
triples constituting an RDF database. In this project we primarily use QEL but the
technique can be applied on the other query languages as well.

SWARD generalizes the Edutella peer-to-peer infrastructure [18] for searching
learning materials on the web to permit providers to execute QEL queries over the
hidden web.

3 Example

The relational database Museifonstret [17], abbreviated as WM, stores data about arti-
facts in Swedish museums. For example, a relation Resource in WM contains in-
formation about artifacts such as for example their name, description, URI and ID ac-
cording to the schema:

Resource (RID,MID, Name, URI, ShortDesc, Desc)

18

RID is a numeric resource identifier and MID is a numeric museum identifier. Our
Edutella provider SWARD wraps WM to appear as a set of RDF statements.

An example QEL query, ¢/, submitted to SWARD from Edutella is to find all mu-
seum artifacts with a name that contains the string ‘Matter’. It is expressed in QEL
as’:

@prefix gel:http://www.edutella.org/gel#

@prefix dc:http://purl.org/dc/elements/1.1/

?(x,t):-gel:s(x, 'dc:title’ , t),

gel:like(t, 'Matter’)

Here we use a Datalog-like syntax for the QEL query [21]. In practice it is sent from
Edutella to the provider using a less readable equivalent XML syntax.

gel:s(x,p,t) is true if there is an RDF statement matching the triple
<x,p, t> where x, p, and t are variables bound to resources. t may also be a literal.
gel:1like(t,’Matter’) is true if either t is a literal and the string value of t
contains the string ‘Matter’, or t is a resource and the URI of t contains the string
‘Matter’.

g1 is intentionally chosen to be very simple to enable, for the reader, a perceivable
step-by-step translation of the query to SQL in later sections. However, in an experi-
ment measuring processing time of a QEL query in SWARD, described in section 6, a
more complicated query containing a join is used.

4 System Architecture

Fig. 1 describes the architecture of SWARD. A QEL query arrives at the SWARD
Edutella provider. There is a query statement generator building on Jena2 that parses
incoming RDF data serialized as XML and extracts existing RDF statements express-
ing QEL queries. The dotted arrow in Fig. 1 from the query statement generator to the
calculus generator indicates logical flow of execution. Actually, the parsed RDF
statements are first stored in the local statement repository. The calculus generator
then translates the materialized RDF statements corresponding to a specific QEL
query into a domain calculus expression. It includes a fix-point rewrite algorithm to
minimize the domain calculus expression, before it is translated by the cost-based
query optimizer into an algebraic expression. This algebraic expression is then inter-
preted by the algebra interpreter over the combination of materialized RDF(S) state-
ments, explicitly imported and stored by the statement importer in the statement re-
pository, and virtual RDF statements generated by the relational statement wrapper.

2 @prefix notation used to abbreviate namespaces.

19

SWARD Edutella provider

Materialized RDF statements = MS Result builder
Virtual RDF statements = VS
RDF statements = S RDF resources

Algebra interpreter

\ Outgoing result

1
1
1
1
1
1
1
1
1
1
i
1
! ‘lgebraic Vof OEL queries
i Vs MS expression Yin XML o=~
' Cost-based query H Ve N
! optimizer : / Edutella \
! A Statement ‘Domain. calculusi N infrastructure /’
H repository MS expression ! S
1
H Calculus generator i
! 1
1
! S A 1
: S v MS !
1 1
i Relational statement | Statement | Query statement H
| wrapper importer generator !
elational data RDF(S) data

Incoming QFL queries in
XML

RDB Museifonstret

Local / remote
RDF(S) files

Fig. 1. Architecture of SWARD

Thus materialized statements form a local database in SWARD while virtual state-
ments are views of data in external sources. Instances of virtual statements are dy-
namically created and streamed through the system. A garbage collector automatically
removes no longer needed virtual statement instances. Finally, the result of executing
the algebraic expression is sent back over Edutella as variable-resource or variable-
literal bindings serialized as XML by the result builder.

Examples of materialized statements are statements imported from files containing
RDF(S) data such as the W3C definition of RDF(S) as meta-data statements. Hence,
as illustrated in Fig. 1, data in SWARD statement repository can originate from local
or remote RDF(S) files or the Edutella infrastructure.

Fig. 2 illustrates the modeling of wrapper data sources in SWARD. SWARD ex-
tends the basic RDFS model with RDFS classes representing different statement
sources?, and the possibility to define a hierarchy of such sources.

An RDFS class acting as a statement source is instantiated only once by the system
upon initialization. Each statement source has an associated property, stmts, main-
tained by the system that generates the statement set of RDF statements in the source.
Notice that statement sets belong to a source while the resources referenced by the
statements are universal.

3 A statement source is a data source with its content translated into RDF statements. Observe
that a RDFS class representing a statement source is modeling a data source and not the se-
mantics of data in that data source.

20

Resource

—————

-

Fig. 2. Hierarchy of wrapper data sources in SWARD

There is a hierarchy of statement sources to handle that some sources are specializa-
tions of other, e.g. WMuseum is a specialization of general relational database state-
ment sources. Statements in a statement source, s, are seen as a union of statements in
statement sources subclassing s. The root class Source represents all RDF state-
ments. Each other RDF statement source is a subclass of Source. There is a subclass
to Source called Relational representing all relational database statement
sources. As illustrated by statement source CourseFile we also allow other kinds
of sources than relational databases. CourseFile represents RDF files containing
courses read by computer science students at Uppsala University. This paper focuses
on relational data sources which are subclasses to class Relational. For example,
class WMuseum represents the specific relational statement source WM. This separa-
tion between Relational and its subclasses enables us to generate and compute
tailor made statement sets for different databases. For example, often, for scalability
reasons, SWARD should treat statements in a statement source representing a rela-
tional database as virtual statements. Therefore RDFS classes representing statement
sources have a Boolean valued property virtual indicating if the statements be-
longing to a source are virtual or not. For the RDFS class to be virtual all its sub-
classes have to be virtual. The statement hierarchy can easily be extended with addi-
tional statement sources.

5 RDF Views over Relational Data

As illustrated in Fig. 1 a QEL query is translated from XML to an intermediate do-
main calculus representation. For each table 7(Cy,...C,) in relational database R where
column named C; is key for simplicity, SWARD generates a set of views denoted
CSS(R, T, C;) with definitions:

21

CSS(R,T,C)):)]
{s,p,o|s=uriKey(R,T,c;) A
p=uriCol(R,T,C;) AT(cy,...,c,) A 0=C;} .

where uriKey(R, T, ¢;) computes a unique URI for the key ¢; and uriCol(R, T, C;) de-
notes a unique URI for the column named C;. Notice that CSS(R,T,C;) describes a col-
umn C;, i.e. it is not materialized. The name of the view is generated by concatena-
tion, e.g. CSS(‘WM’ , 'Resource’,’Name’) = WMResourceName. Table I
shows how URIs representing data from a relational database are auto-generated by
the system, given a user defined namespace, ns*.

Table 1. Schema for autogenerating URIs representing data from a table 7(C,,...,C,) in a
relational database R using namespace ns

Function Generated URI
uriCol ns:databasename.relationname.columnname
. ns:databasename.relationname.columnname
uriKey
keyvalue
ns:databasename.relationname.
compUriKey columnname ...columnname;,.

keyvalue, ...keyvalue,

There are cases when URIs should be user specified rather than automatically gener-
ated. For this SWARD allows the user to explicitly specify uriKey for a CSS. For ex-
ample, the table Resource in WM already includes a field, URI, containing unique
URIs for each row (a secondary key) and this column is therefore chosen by the user
to represent the uriKey in the definition of WMResourceName as illustrated in Ex-
ample 1. Notice that the term Resource represents the wrapped relational table:

WMResourceName (s, p,0) :

{s,p.o]
S=uria /*uriKey*/
p='ns:wm.resource.name’A /*uriCol*/

Resource (rid, mid, name, uri, shortdesc,desc) A
o=name }

Example 1. Definition of WMResourceName

The algebra generator will combine CSSs appearing in a QEL query and generate
SQL strings for accessing the wrapped database. Values from column named C; are
treated as literals if the column is not a foreign key. If C; were a foreign key from an-
other table in R, 7, the system would replace ‘o=name’ in Example 1 with
‘o=uriKey (R, T’ ,name) ’. (Compound keys are treated as tuples and handled by
the function compUriKey).

4 Namespace: ‘http://www.museifonstret.se/’

22

The statement set, stmts, of a statement source that represents a relational data-
base is defined as the union of all column statement sets for the source.

Fig. 3 illustrates how the statement set of WMResourceName is defined from col-
umn Name in table Resource in WM.

<sTbject, prﬁdicate, objﬂct>

- -

Resource| RID MID | Name |i URI SDesc Desc

+
e d—q - -~
L

Fig. 3. Producing the statement set of WMResourceName

SWARD allows for different terminologies in received QEL queries and in URIs
from the CSSs. In our example Edutella uses a terminology based on Dublin Core,
which is different from the terminology of statement source WMuseum. The relations
between two URIs from different terminologies having the same meaning are called
source mappings. They are represented by a user defined table SM (U1, U2) in the
wrapper taking two URIs Ul and U2 as arguments and evaluating to true if there is a
source mapping between them.

For example, the RDF predicate produced by WMRe sourceName in Example 1 is
mapped to the URI ‘dc:title’ in Dublin Core.

6 Translation of QEL to Optimized SQL

QEL queries are specified against an RDF view containing both materialized state-
ments from SWARD statement repository and virtual statements mapped from the
wrapped relational database. In our example, ¢/ is represented by the following do-
main calculus expression:

{s,p,o|stmt (s,p,0)Alike (0, 'Matter’)Ap='dc:title’}

stmt and 1ike implements the built-in QEL predicates gel:s and gel: 1ike, re-
spectively. stmt is evaluated over the statement set w of statement source Source.
stmt (s, p, o) evaluates to true if there is an RDF statement <s, p, 0> in stmts of
Source.

In the rest of this section, for simplicity, w is assumed to be equal only to RDF
statements in WMuseum. Furthermore, WM is restricted to contain only one table,

23

Resource. Hence w can be seen as the disjunction of all CSSs in WMuseum and ¢/
is expanded to the following expression:

{s,p,o]
(WMResourceRID(s,q,0)ASM(g,p))V
(WMResourceMID(s,q,0)ASM(g,p))V
(WMResourceName (s, g, 0) ASM (g, p)) VvV
(WMResourceURI (s,q,0)ASM(g,p))V
(WMResourceShortDesc (s,q,0) ASM(g,p))V
(WMResourceDesc (s,d,0)ASM(d,p)) A
p='dc:title’Alike (o, ‘Matter’) }

The resulting calculus expression is transformed into a simpler one by a fix point al-
gorithm using rewrite rules [9]. Thus the above expression is first translated to dis-
Jjunctive normal form:

{s,’dc:title’, 0]

(WMResourceRID(s,q,0)ASM(qg, ‘dc:title’) A

like (o, "Matter’))v

(WMResourceMID(s,q,0)ASM(qg, ‘dc:title’) A

like (o, 'Matter’))v

(WMResourceName (s,g,0) ASM(q, ‘dc:title’) A

like (o, "Matter’))v

(WMResourceURI (s,q,0)ASM(qg, ‘dc:title’) A

like (o, "Matter’))v

(WMResourceShortDesc(s,q,0)ASM(q, ‘dc:title’) A

like (o, 'Matter’))v

(WMResourceDesc (s,q,0)ASM(q, ‘dec:title’) A
like (o, 'Matter’)) }

Example 2. Expression of ¢/ on disjunctive normal form

Each CSS is substituted for its definition and simplified. For the CSS WMResource-
Name, according to Example 1, this produces the following term in the disjunction
above:

Resource (rid,mid, o, s, shortdesc,desc) A

SM(‘ns:wm.resource.name’,'dc:title’)A
like (o, 'Matter’)

Example 3. Substitution of WMResourceName for its definition

With compile time evaluation the SM table is then evaluated by the calculus generator
and replaced with TRUE since SM maps ‘dc:title’ to
‘ns:wm.resource.name’. For the other terms in the disjunction (shown in Ex-
ample 2) SM will be evaluated to FALSE and they will be removed. The only remain-
ing calculus term is then translated into an algebraic expression, or query plan, by the
cost-based query optimizer that contains calls to a foreign function executing SQL ac-

24

cording to Fig. 4. This shows that compile time evaluation substantially reduces the
size of the calculus expression that is sent to the cost-based query optimizer and there-
fore reduces the query optimization time.

T<s,’dc:title’,o>

TU<s, dc:title’,0>

T<S’°>

select URI, Name
from Resource
'qul_exezyhere Name LIKE ‘%Matter%’

To

Fig. 4. An execution plan for the QEL example query

An algebra operator is one of {m, G, X, N, U, X, v}9]. The &, o, x, N, U, and X,
operators have the same semantics as their relational counterparts. The y (generate)
operator performs function application. It can thereby introduce objects other than
those produced by the leaf nodes into the query plan. In this way, the y operator is
similar to the generate operator in [24]. The function sql exec sends an SQL query
to a relational database.

An essential technique for improving the efficiency is to push down filter operators
such as 1ike to SQL when possible as in Fig. 4. The system has special rewrite rules
for generating SQL strings from the calculus and it knows what functions can be exe-
cuted in the sources, e.g. 1ike, and generates SQL strings with calls to such func-
tions. Furthermore, SWARD uses the heuristics to generate from a term as few SQL
queries as possible but never a Cartesian product or a union.

In g/ the variable p in the built-in predicate gel:s (x,p, t) is known to be
equal to ‘dc:title’. This enables SWARD to drastically reduce the number of
clauses in the disjunction shown in Example 2 using compile time evaluation of the
SM table. Once SM is evaluated there is only a single clause left (see Example 3) from
the original disjunction which is translated to a single SQL expression. An interesting
situation arises when p is unknown. In SQL the column names of a query must be ex-
plicitly specified. This is critical for relational database query optimization. By con-
trast RDF queries can have dynamic properties, i.e. RDF queries can contain variables
bound to RDF predicates. This would correspond to variables bound to table columns
in SQL, which is not allowed. For QEL this means that the calculus predicates such as
gel: s may be constructed out of variables rather than of known RDF resources.

A statement cache is used in SWARD to recycle already compiled QEL queries
meaning that the query can be executed directly without relational query optimization.

25

Table 2. Measuring execution time of g2 over variable sized table Resource without compile
time evaluation

Tuples Proc SProc Exec SExex
700 8.667 0.013 0.005 0.008
2000 8.802 0.015 0.010 0.009
5000 8.786 0.027 0.020 0.009
10000 8.776 0.023 0.016 0.007

To see how compile time evaluation can improve performance an experiment was
conducted on a PC with a Pentium 3 2.2 GHz processor with 512 RAM running Mi-
crosoft SOL server. A QEL query was executed repeatedly over the relational data-
base WM with one table, Resource. The table was scaled up in each test with 700,
2000, 5000, and 10000 tuples. For every table size the test was made first without, see
Table 11, and then with compile time evaluation, see Table III. The query used in the
experiment, g2, is an extension of the query in our running example and is expressed
in QEL as:

@prefix gel:http://www.edutella.org/gel#
@prefix dc:http://purl.org/dc/elements/1.1/
?(x,t,d):-gel:s(x, 'dc:title’,t),

gel:s(x, 'dc:description’,d),

gel:like(t, 'Matter’),

gel:1like(d, 'Fysik’)

In natural language that would be: Find all museum artifacts that have a name that
contains the string ‘Matter’ and a description that contains the string ‘Fysik’s.

The time for each test was measured as the time taken to process the query; Proc
and the time taken to execute the query; Exec as part of Proc. For the purpose of our
experiment and for simplicity, Exec was defined as the time spent calling SQL. All
tests were measured in seconds. Table II and Table III respectively show the results of
the experiment with or without compile time evaluation. For each test the mean value
was calculated and chosen as the result of the test. Standard deviations for Proc (Sproc)
and Exec (Sgxec) Were also calculated.

Table 3. Measuring execution time of g2 over variable sized table Resource with compile
time evaluation

Tuples Proc SProc Exec SExec

700 0.953 0.017 0.010 0.009
2000 1.130 0.032 0.020 0.005
5000 1.140 0.027 0.020 0.006
10000 1.115 0.025 0.020 0.006

When analyzing the result of the experiment we see that there is a noticeable
reduction in time spent processing ¢2, Proc, when using compile time evaluation

5 English: ‘Physics’.

26

compared to when not. However, the execution time, Exec, is more or less constant.
The experiment shows that query processing time is improved substantially by com-
pile time evaluation of the SM table. However, the query execution time Exec is not
affected by compile time evaluation. The reason is that the query optimizer in
SWARD knows that SM is local to the wrapper. Therefore it is evaluated before
accessing the more expensive relational back-end and this makes query execution
efficient.

7 Summary

The SWARD system provides RDF views over relational databases in terms of virtual
statements. Transformations according to some general translation rules yield
optimized RDF queries in terms of domain calculus expressions. An algebra generator
then produces a query plan out of these expressions that contains calls to functions
executing SQL queries.

Various techniques are used to optimize the expressions such as rewrites and push
down of filter operators (e.g. 1ike) to the relational database. This allows for the
creation of RDF views over relational databases in a highly scalable way.

When translating semantic web queries to SQL there is a problem that, unlike
SQL, semantic web queries are dynamic and they are not necessarily expressed in
terms of a schema. However, SWARDs abstraction of relational database columns
into CSSs makes the translation of QEL queries into SQL natural. To execute a QEL
query, g, over an RDF view w means evaluating w A ¢ as illustrated in Example 2. To
retrieve the entire view means executing all these expressions and appending their
results. Thus RDF predicates become large disjunctions of clauses where each clause
is a conjunction of constraints in the QEL query and calls to the relational database.
Since the disjunctions are large it is important to reduce their size before generating
the query algebra expression. We have shown that compile time evaluation of the
source mappings between URIs of different terminologies allows for substantial
reduction of the calculus expression and improved query compilation time. However,
in our example the query execution time is not effected since the regular cost-based
query optimization produces an efficient execution plan in any case.

We are currently generalizing our approach to include more complex queries and
other optimization strategies.

SWARD provides views over relational databases only in terms of basic RDF data.
Future work will offer a semantically enriched RDFS form. This requires creating for
each statement source some additional virtual statements providing information about
class-subclass relationship, instance-of etc.

References

1. Barrett et al.: RDF Representation of Metadata for Semantic Integration of Corporate
Information Resources, Proc. WWW2002, 2002.

27

2. D.Beckett and J.Grant: SWAD-Europe: Mapping Semantic Web Data with RDBMSes,
http.://www.w3.0rg/2001/sw/Europe/reports/scalable_rdbms_mapping report/, 2001.

3. T.Berners-Lee, J.Hendler, and O.Lassila: The Semantic Web, Scientific American, May
2001.

4. D.Brickley and R.V.Guha: RDF Vocabulary Description Language 1.0: RDF-Schema,
http://www.w3.0rg/TR/2004/REC-rdf-schema-20040210/, 2004.

5. C.Bizer: D2R MAP - A Database to RDF Mapping Language, The 12th International World
Wide Web Conference (WWW2003), Budapest, Hungary, 2003.

6. V.Christophides, G.Karvounarakis, A.Magkanaraki, D.Plexousakis, and V.Tannen: The
ICS-FORTH Semantic Web Integration Middleware (SWIM), Data Engineering Bulletine,
IEEE, 26(4), Dec. 2003.

7. S.Decker et al.: The Semantic Web - on the Roles of XML and RDF, [EEE Internet
Computing, Sept./Oct. 2000.

8. Dublin Core Meta-data Initiative, Dublin Core Metadata Element Set, V 1.1
http://dublincore.org/documents/dces/

9. G. Fahl and T. Risch: Query Processing over Object Views of Relational Data, The VLDB
Journal, Springer, Vol. 6, No. 4, 261-281, 1997.

10.H. Garcia-Molina et al.: The TSIMMIS Approach to Mediation: Data Models and
Languages, Intelligent Information Systems (JIIS), Kluwer, 8(2), 117-132, 1997.

11.L. Haas, D. Kossmann, E.L. Wimmers, and J. Yang: Optimizing Queries across Diverse
Data Sources, Proc. 23rd Intl. Conf. on Very Large Databases (VLDB'97), 276-285, 1997.
12.V. Josifovski and T. Risch: Integrating Heterogeneous Overlapping Databases through
Object-Oriented Transformations, Proc. 25th Conference on Very Large Databases

(VLDB'99), 435-446, 1999.

13.G.Karvounarakis el al.: Querying the Semantic Web with RQL, Computer Networks and
ISDN Systems Journal, 42(5), 617-640, August 2003.

14.G.Klyne and J.J.Carroll: Resource Description Framework (RDF): Concepts and Abstract
Syntax, http://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210/, 2003.

15.L.Liu and C.Pu: An Adaptive Object-Oriented Approach to Integration and Access of
Heterogeneous Information Sources, Distributed and Parallel Databases, Kluwer, 5(2),
167-205, 1997.

16.A.Magkanaraki, V.Tannen, V.Christophides, and D.Plexousakis: Viewing the Semantic
Web Through RVL Lenses, 2nd International Semantic Web Conference (ISWC'03),
Sanibel Island, Florida, USA, 2003.

17.http.://www.museifonstret.se/

18.W.Neidl et al.: EDUTELLA: A P2P Networking Infrastructure Based on RDF. Proc. 11th
International World Wide Web Conference, Honolulu, Hawaii, USA, 2002.

19.D. Quass, A. Rajaraman, Y. Sagiv, J.Ullman, and J. Widom: Querying Semistructured
Heterogeneous Information in Deductive and Object-Oriented Databases, Proc. of the
DOOD'95 conference, LNCS Vol. 1013, 319-344, Springer 1995.

20.RDF Gateway - a platform for the semantic web, Intellidimension,
http://www.intellidimension.com/.

21.RDF Query Exchange Language (QEL) - concepts, semantics and RDF syntax,
http.//edutella.jxta.org/spec/qel html

22.T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed
Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional
Approach to Computing with Data, Springer, 2003.

23.A.Seaborne: RDQL - A Query Language for RDF, W3C Member Submission,
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/, 2004.

24.DD.Straube, and MT.Ozsu: Queries and query processing in object oriented database
systems, ACM Transaction Information Syst, 8(4), 1990.

s

28

25.A. Tomasic, L. Raschid, and P. Valduriez: Scaling Access to Heterogeneous Data Sources
with DISCO, [EEE Transactions on Knowledge and Date Engineering, 10(5), 808-823,
1998.

26.K.Wilkinson, C.Sayers, H.A.Kuno, and D.Reynolds: Efficient RDF storage and retrieval in
Jena 2, Ist Intl. Workshop on Semantic Web and Databases (SWDB'03), Berlin,
http://hplabs.hp.com/techreports/2003/HPL-2003-266.html, 2003.

27.J. Ullman: Database and Knowledge Base Systems, Vols 1 & 2, Computer Press, 1988.

29

