CAELAB Memo 94-01 March 1994

AMOS.v1 User's Guide

Jonas S. Karlsson, Staffan Larsson, Kjell Orsborn, Tore Risch,
Martin Skold, Magnus Werner

Dept. of Computer Science, Linkdping University,
581 83Linkoping, Sweden

Abstract

AMOS (Active Mediating Object System) is an Object-Relational database system.
AMOS differs from the first generation Object-Oriented (OO) databases in that a re-
lationally complete query language, AMOSQL, is available which is more general
than relational query languages, such as SQL. Furthermore, AMOS is a main-mem-
ory database system, since the design of AMOS is optimized for efficient execution
assuming that the entire database fits in main memory. For persistence, the system
provides primitives for logging and for saving and restoring the database from disk.
AMOS is implemented in C and runs on HP and SUN Unix platforms.

This manual describes how to use the AMOSQL query language. For interfaces to C,
Lisp, and description of some internals, 8840S System Manual

R 1 0 To [[1o] [P T PP PPRPPRP 4
2 AMOSQL INtrOAUCTIONuuiii e e e e e e e et e e e eaa e e e eaaeeeens 5
3 RUNNING AMOS ...ttt e et e e e e e e e e e e e e e e e e s e e e ennanes 6
3.1 Running AMOS as World-Wide-Web Server..........ccccccceiiiiiiiiiiiiiiccciieee e 8
4 General SYNtacCtiC CONSIIUCESciiiiiiiiii e e e e e e e eaaaas 9
o R [=T 01T £ PP PPUPPPPRRR 9
4.2 VANADIES ... ————————————— 9
e B 0] 0151 = | £ T TP PP PPTRPTUPPPPTIN 10
O 0] 101 0 0 T= o | KPS PPN 10
Lo T Y/ 01 ST 10.........
5.1 System type herarChy........cooouuiiiiiiiiiii e 11
5.2 DEIBUNG LYPES ...ttt e e e e e e e 12
G ©] o] 1= ! £ OURRESP NN 1
0 R @ o= Tox f e (=117 1] o PR 14
7 FUNCHONS AN QUETIES. ...uuuuiiie i e e e e e e ettt s e e e e e e e e e e e e e e e et e e e e e e e eeaeeeeeees 14
7.1 FUNCHON CallS ... e 16
7.2 Cardinality CONSLIAINTSouuiiiiiiiiiiiie e eeeaae 17
7.3 Deleting fUNCHIONSuiiiiiiiiiiii e e e e e e 17
7.4 The SeleCt StatemMEeNt.......coooi i 18
7.5 PrediCate @XPrEeSSIONS it e e e et e e e e e e e e e e e aaaae 19
7.6 Overloaded Functions and Late BiNdingcooooiiiiiiiiiiiiiiiiiiieeeeeeee 19
7.7 DISJUNCLVE QUEIIES. .. .t i i ee e e e et e e e e e e e e e e e e e s e e e e e e e aaaeeeees 21
7.8 Subqueries and Aggregation OPEratorsSccovvuviiiieeeeeeiiiiieeee e e e eeanaann 21
7.9 Negated subqueries and quantificationcoooiiiiiiiiiiiiiiii e 22
7.10 TranSitive ClOSUIESccooiiiiiiiiiiiii bttt e e 22
0 N R O =0 £ TP 23
7.12 RECUISIVE TUNCHIONS.uiiiiiiiieiee e e e ettt e e e e e e e e e e e e e e e eeeeeaeennnn s 24
8 Database UPAAES..........cooiiiiiieiiei e —————— 24
8.1 FUNCHON UPAALES ... ettt e e e e e e e eeeeeenennes 25
8.2 Updating type memberships ... 25
9 DaAtabase PrOCEAUIESuueiiii i e e e e e e e e e e e e e et e e e e e eaaaeaees 26
10 DAtahASE FUIEScceeeeieiieiiieee e e e e e et e e ettt bbb a e e e e e e e e aaeaas 27
IO A o L= o0] =) 4 S 30
11 Sagas for long-running tranNSaCIONS.ciiiiiii e e e e e e e e e e e 30
12 Physical database deSIgN........ccooooi i 31
0 R 1 (0 1= (1 T PP TTTPPPPPP 31
D2 O 11 (=T [Vo 32
13 SYSIEM FUNCHONSceiiiiiiiiiiiee e e e e e e e e e e e e e e e aaaaeas 33
13.1 COMPATISON OPEIALOISvvveeiiiiiiiitiieeeeeeeee e e e s aaseibbbbb b e e e e e e eeeaeaeeeaaaaasaaaanna 33
13.2 ArithmMetiC FUNCLIONSuuiiiiiiiiiiiiiiiie e 33
13.3 AQQregation fUNCHONS........couiiiiie et 33
13.4 AcCCeSSING the tYyPe SYSTEIMuuiiiiiiiiiiiiieieiee et 34
13.5 Query OPtIMIZEr tUNINGuoiii e e e e e 35
13.6 Temporal support iN AMOS ... 36
13.7 Miscellan@ous fUNCHIONS.ccoiiiiii e 36
14 ReCOVEry—SIOrage SYSIEIM ...t e e e e e s 37
I R @ o {0 U = PSSR 37
L14.2 RECOVEIY ..ottt e e e e et ettt et a e e e e e e e e e e e e e eeeeennnnne 37
15 MISCEIIANEOUSottt e e e e e e e e aaeeaeaaaaaaans 38

1 Introduction

AMOS (Active Mediating Object System) is an Object-Relational database system with roots in the IRIS data
model and its query language, 0SQIThe AMOS implementation is an extension and modification of the WS-

IRIS system[1]. AMOS is optimized for databases where the entire database fits in main fdergrchitec-

ture gives AMOS excellent performance (as shown for AMOS’ predecessor, WS-IRIS, in [1]) while retaining a
relationally complete declarative query interface to the database. For persistence, the system provides primitives
to save and restore the database from disk. A transactional logging system is optionally available which logs com-
mitted database transactions on disk and thus makes all transactions recoverable after main-memory crashes.

The system can either be run in single user mode, or as a multi-user single-threaded server with restricted concur-
rency. The system includes client communication primitives whereby a client process can communicate with
AMOS over a network. The client interface is documented in[7].

A graphical interface for AMOS also exists. However, this is only a prototype and will be redesigned and reim-
plemented in the future.

AMOS’ query language, called AMOSQL, is an extension of the OO declarative query language of IRIS, termed
OSQL. The main new features of AMOSQL are generalized foreign functions, a limited form of recursion, reso-
lution of late binding of overloaded functions[9], an efficient execution strategy for late bound functions and their

inverses[10], 2nd order functions [1], active rules[11]. AMOSQL furthermore has aggregation operators, nested
subqueries, disjunctive queries, quantifiers, and is more than relationally complete.

AMOSQL provides a declarative access language to object databases. This declarativeness requires AMOSQL
gueries to be optimized before execution. The query optimizer in AMOS is cost-based and is optionally supporting
three kinds of optimization methods:

» Optimization based on heuristics as in [1], called RANKSORT. This is the default optimization method which
is very fast and normally works reasonably. However, occationally it will produce suboptimal plans.

* Optimization based on classical relational optimization as in [5], called EXHAUSTIVE, where exhaustive
search is performed over all possible search plans to obtain the search plan with the lowest estimated execution
cost. This gives an optimal execution plan but the method is NP-complete over the size of the query and can
therefore only be used for small queries.

» Optimization based randomized sampling of favorable search plans from the space of possible search plans[4],
called RANDOMOPT, developed from techniques devised by [3]. This method is slower than RANKSORT
but not NP-complete as EXHAUSTIVE. It produces very good execution plans for both small and large que-
ries, even though it does not always produce the optimal plan.

The optimizer is extensible whereby the user can provide cost formulae as AMOSQL functions to the optimizer
for all three optimization methods. A generalized foreign function mechamisfisway foreign functionfgl] is

used to give transparent access to special purpose data structures such as the internal of the type system. By the
foreign function mechanism the programmer can define AMOSQL functions in an external language (usually Lisp
or C). The architecture relies on extensible optimization of such foreign function calls[1]. The use of the foreign
function mechanism is described in the documOS System Manual

The query compiler translates AMOSQL statements into an internal logic based language we call ObjectLog [1],
which is an object-oriented dialect of Datalog [6]. As part of the translation into ObjectLog programs, some opti-
mizations are applied on AMOSQL expressions relying on object-oriented properties of AMOSQL. In a second
optimization step, the generated ObjectLog rules are transformed into an equivalent set of more efficient Object-
Log rules. The optimizer takes special care to optimize common object-oriented OSQL query patterns.

1.[See [2] for an overview of Iris and OSQL.
2.[In case the database is larger than the available main memory, the system still works but swapping may
occur.

AMOS runs on several Unix platforms. The system includes a Lisp interpreter (subset of CommonLisp) which
interprets a part of the system written in Lisp. The system has its own storage manager for the database, and a
guery language interpreter/compiler to process and optimize AMOSQL statements. To achieve good performance
we have carefully optimized the representation of critical system data structures, e.g. the storage manager, object
representation, type information, and the representation of function definitions. When advantageous, we use tai-
lored main memory data structure representations, rather than using relations. For example, our object identifiers
are represented as variable length records where one field points to the object’s type information, and another
points to its function definition. It is critical that this information is represented efficiently, since it is extensively
looked up both during compilation and during interpretation of AMOSQL functions. The system uses around
800KB! of code and 800KB of meta data.

AMOSQL can call programs in regular programming languages, such as C and Lisp, and AMOSQL is also call-
able from these languages. The documentation of external programming language interfaces is documented in
AMOS System Manual

The remainder of this document describes the AMOSQL language. The features of AMOSQL are illustrated
through a running example.

2 AMOSQL introduction

The basic concepts of the AMOS data modeltgpes objects andfunctions Objects are represented through

typed atomic object identifiers (OIDs), and functions associate properties (attributes) with objects or define rela-
tionships between objects. Functions model object attributes and relationships between objects through four basic
function types

» Stored functionare updatable tables that are stored in the database.

» Derived functionsare side-effect free functions defined in terms of other AMOSQL functions. Derived func-
tions are query optimized when they are defined.

» Foreign functionsare defined using an external programming language (Lisp or C).
» Database procedureare programs in a procedural sublanguage of AMOSQL that may have side effects.

create type person;
create type student subtype of person;
create function Name(Person p) -> Charstring as stored,;
create function Income(Person p) -> Integer as stored;
create function Bonus(Person p) -> Integer as stored;
create function Parent(Person c) -> bag of Person p as stored;
create function Grossincome(Person p) -> Integer as

select Income(p) + Bonus(p);

/* Derived where '+’ is foreign */

create function SParent(Person c) -> bag of Student s as
select Parent(c); /* Parent if parent is student */

create function GrandSParentGrossincome(Person c) -> bag of Integer gi as
select gi /* Gross income of grandparent
if grandparent is student */
for each Person gp, Person p
where GrossIincome(gp) = gi and
SParent(p) = gp and
Parent(c) = p;

1. On HP7xx workstations.

create function Income(Charstring nm) -> Integer as
select Income(p) /* Derived overloaded */
for each Person p
where Name(p) = nm;

Figure 1 Examples of AMOSQL function definitions

Figure 1 shows examples of AMOSQL functions and types. Objects oPsys®n have the attributeln-
come, Bonus, Parent, Grossincome , andGrandSParentGrossincome . These are AMOSQL
functions of a single argument bound to objects of §peson . Local variables are declared using tfar “
each” clause.

The operatoi+’ s internally represented by the AMOS functils . It is an example of oreignfunction,
implemented in C outside AMOSQL.

AMOSQL has a SQL-likeselect statement both for ad hoc queries to the database and for defining derived
functions. The derived functic@rossincome , as any derived function, is defined through a sieglect
statement that follow theas” keyword.

The stored functionBarent , and the derived functiol®Parent andGrandSparentGrossincome return
sets (actually bags) of values.

In general, the arguments and results of a function together with their types are callguatueeof the function.
We denote signatures by

fr Pp..T PJ)-><U Q..U _Q>*!

Pl,...,P ,are theargumentoff whose values are of typ§§,...,T . A function can have as the result a set
of tuples of valuexQ,...,Q - with typesUl,...,U -
Overloadedunctions are AMOSQL functions sharing a name for different definitions. In Figure 1there are two
variants, oresolventsof the overloadethcome function. Both resolvents provide a person’s income, the first
one is given an OID of an object of tyPerson , while the other is given a person’s name as a string. Resolvents

can be any of the four basic function types. AMOS chooses then the resolvent according to the argument type.

AMOSQL also provideslatabase ruleshat are forward chaining rules that can monitor logical conditions and
perform actions when these conditions become true.

3 Running AMOS

It is recommended that each user creates a private directory for A&p@i&dir> . You should then dod
<privdir> and make the following two symbolic links fromprivdir> to<amosdir> , the directory where
the AMOS executables are stored:

In -s <amosdir>/amos .
In -s <amosdir>/amos.dmp .

AMOS is then ready to run kprivdir> by the command:

Jamos [-W3] [<db> [<name>]]

where[-W3] is an option that enables a built in World-Wide-Web servef<dlis>] is an optional name of

an AMOS database image (defaulhimos.dmp) and[<name>] is an optional name given to the AMOS. If no
<name>is given then the user name is used as default. The name is used when communicating with other AMOS
servers. If a different name than the default name should be useddtireinas to be supplied and must preceed
<name>,

1.[The brackets around the result are optional for functions returning a single result.

The system then enters AMOS top loopn which it reads AMOSQL statements, executes them, and prints their
results. You need not connect to any particular database, but insteta; ifs omitted, the system enters an emp-
ty database, where only the system objects are defined.

When the AMOS database is defined and populated, it can be saved on disk with the AMOSQL statement

save "filename";

NOTICE: Do not save using the name 'amos.dmp’ since it will overwrite the system database.
In a later session you can connect to the saved database by starting AMOS with

Jamos filename

The AMOSQL statement

connect "filename";

connects to a saved database from the AMOS top loop.
The prompter in the AMOS top loop is
AMOS n>

wheren is ageneration number
The generation number is increased every time an AMOSQL database update statement is executed. For example:

AMOS 1> create type person;
AMOS 2> create type student subtype of person;

Changes can be undone by usingrdibback statement with a generation number as argument. For example,
the statement:

AMOS 3> rollback 2;

will restore the database to the state it had at generation n@mbénus undoes the effect of the statement

create type student subtype of person;

After the rollback above, the tymtudent is removed from the database, but not fyeeson .

The statementommit makes changes non-undoable, i.e all updates so far cannot be rolled back any more and
the generation numbering starts over frbnif the recovery system (“Recovery—Storage System” on page 37) is
turned on the changes will also be saved on the disk.

If recovery is turned on the changes will be saved in a log file and be restored in case of a system crash.
For example:

AMOS 2> commit;
AMOS 1> ...

If persistency is turned off tmommit does NOT write any data to disk; th&ve statement is used for that. A
rollback; without arguments rolls everything back to the previous commit point. It is thus equivalent to
rollback 1;

To quit AMOS orderly first save the database and then type
AMOS 1> quit;

3.1 Running AMOS as World-Wide-Web server

Integrated within AMOS is a W3 server. This server is enabled by starting AMOS using the -W3 option, see “Run-
ning AMOS” on page 6. By enabling the internal W3 server it is possible to use a web browser (e.g. Netscape,
Mosaic, etc.) as user interface. The browser must be able to handle the HTML tag <FRAME>, e.g. Netscape V2.
Whenever this W3 server is enabled any netscape client may connect to it. Thus, while this server is enabled the
data in the database is open for public access.

When AMOS is started with the -W3 option it displays the port it is using to serve world wide web clients as:

mir31 <69> amos -W3

This is AMOS version unreleased

Copyright (c) EDSLAB, University of Linkoping, 1994

Based on WS-Iris, Copyright (c) HP, 1992

Listening to W3 socket AMOS W3 Server initialized, Using port 2000
AMOS 1>

In above example AMOS is using port 2000 for world wide web clients. The URL (Uniform Resource Locator)

to use by the web browser is:’HTTP://<machine-name>:2000/' where <machine-name> is the name or IP-address
of the machine where AMOS is running. It is also possible to use the TCP/IP loopback address, e.g. 127.0.0.1 in-
stead of the machine name if AMOS and the web browser is running on the same machine.

In the example above AMOS is started from the machine mir31, thus the URL is HTTP://mir31:2000/ and the re-
sult is pictured below.

- FMulrHpe: Sl MTes AR Inl erlie
Ak EIE Mew G Hodbrorbn Opfomn Brecolary Wiedkea HAdp |
o e e e - TR T
AMOS identification | Lanatem: [Bmbaiie = == e
TS S
. s PR s
- - e
e T e e Y AT
Database input ALY o Drallrase AXIKS Lralilrase 1eaquun
frame >
Pkl Londnard Inpuk I ;:;t:r’r'?,':;.-:"::ﬁf:f ZLEE EcHaL #d eLrr C=ELcc
Command buffer____ | 1
T
Execute button\
N
Database Reponse - \ -
frame owa|
\
 \>
L L1l] J S
-1 1 =
=2 ; k4T

The interface consists of three fram&BjOS identification frame, Database input fandDatabase response

frame To issue a command to AMOS type the AMOSQL command into the Command buffer in the database input
frame and press the execute button. The response will then appear in the database response frame.

The database response frame is limited in size. The latest command will always appear in its full size but previous
results may disappear after a while.

There are a few lisp functions defined which faciliate interactive control of the W3 server. These are:

(start-www) Starts the www server if not already running
(close-www) Closes the www server if it is running
(status-www) Displays information about the current status of the wwwserver, i.e. if

it is running or not and which port it uses.

NOTICE: The 'system() 'AMOSQL function is disabled when the www-server is running. This necessary in
order to prevent unauthorized access to the host system. However.

4 General syntactic constructs

This next sections describe the statements available in AMOSQL. For the syntax we use BNF notation with the
following special constructs:

A:=BC :Aconsists of B followed by C.

A:=B]|C , alternatively (B | C): A consists of B or C.

A= [B] . A consists of B or nothing.

A .= B-list : A consists of one or more Bs.

A ::= B-commalist : A consists of one or more Bs separated by commas.

‘X’ : The character 'x'. Useful for clarity or when syntax use reserved charactefs](i.e. and|).

AMOSQL statements are always terminated by a semicplo@l|l symbols are raised to upper case in AMOSQL
statements, except within strings; i.e. AMOS ignores type cases in function and type definitions.

4.1 Identifiers
Identifiershave the syntax:

identifier ::=

(_" | letter) [identifier-character-list]
identifier-character ::=

alphanumeric | "’

Identifiers are NOT case sensitive; they are always translated to upper case ifternally

4.2 Variables
Variables are of two kinds:

 AMOSQL variablesare identifiers for data values in AMOSQL queries and functions. AMOSQL variables
must be locally declared in function signatures (“Functions and Queries” on page ft)edgh clauses
(“The select statement” on page 18), or bydbelare construct (“Database procedures” on page 26).
Syntax:
variable-name ::= identifier

» Interface variablefiold query results temporarily during a session and is also used to share values with foreign
languages (C or Lisp) (séeMOS System Manua). Interface variables are global and cannot be referenced
in function bodies.
Syntax:

1.AMOS supports international language settings by checking the shell environment variable LANG (see
local documentation for the library function setlocale).

interface-variable-name ::= "’ identifier
gen-variable-name ::= variable-name | interface-variable-name

4.3 Constants

Constants can be integers, reals, strings, booleans, or OIDs.
Syntax:

constant ::=
integer-constant | real-constant | boolean-constant |
string-constant | oid-constant
integer-constant ::=
[-] digit-list
real-constant ::=
[-] digit-list *." [digit-list]
boolean-constant ::=
TRUE | FALSE
string-constant ::=
string-separator character-list string-separator
string-separator ::=

1 I Iy

oid-constant ::=
OID [0x0, digit-list ']’

In string-constant s the surrounding string separators must be the same. If the string contains the separator
used, it must be preceded with the escape character backslash.
oid-constant s denote references to objects with a specified OID number. For example:

OID[0x0,1234]

OID constants allows you to get hold of any object in the system, but they should be avoided in AMOSQL pro-
grams!
4.4 Comments

The comment statement is a separator, i.e. it can be placed anywhere outside identifiers and constants.
Syntax:

comment ;=
/* character-list */

5 Types

Typesare represented as identifiers.
Syntax:

type-name ::= identifier

Thecreate type statement creates a new user type. It also provides the option tcattdadée functions
Attribute functions are represented as regular AMOSQL functions of a single argument. They can also be defined
separately witltreate function statements (“Functions and Queries” on page 14).

10

Syntax:

create-type-stmt ::=
CREATE TYPE type-name [SUBTYPE OF type-name-commalist]
['C attr-function-commalist *)’]

attr-function ::=
function-name type-name [KEY]

For example:

create type namedobject (name charstring key);
create type person subtype of namedobject(age integer,

parents bag of person);
create type student subtype of person (score integer);

Type names must be unique across all types.

The new type will be an immediate subtype of all the supertypes named&idBieY PEclause. The names in the
SUBTYPEclause must be names of existing user types. If no supertypes are specified the new type becomes an
immediate subtype of the system tyyeerTypeObject

Theattr-function-commalist clause is optional, and provides a way to crattéute functionn the
new type. The attribute functions always have a single argument and a single result and are initstyeatily
. The argument type is implicitly the type being created and the result type is specifiedyipethame . The
specified result types must denote existing types.

If KEYis specified for an attribute, it indicates that each value of the attribute is unique. (“Functions and Queries”
on page 14).

5.1 System type hierarchy
The following types are predefined in AMOS:

AMOS
BAG OF x
BOOLEAN
CHARSTRING
CONTEXT
CURSOR
DATE
FUNCTION
INDEX
INTEGER
LIST
LITERAL
NUMBER
OBJECT
REAL
RULE
SAGA
TIME
TIMEVAL

1.[However, they can later be redefined as non-stored functions by sepaastdunction state-
ments.

11

TYPE

USERTYPE
USERTYPEOBJECT
VECTOR

“AMOS type hierarchy” on page 12 shows the upper levels of the type hierarchy of AMOS.

object
' L |
) | user | | |
monitor gamoes index typedsagacontextrule cursor literal function type
object | |
monitor tinleval t!me cJate multiset tulple charlstringbol)Iean number relation USEr
instnace type
manitor bag vector list integer real
activation
_bag ba
integer rea

Figure 2 AMOS type hierarchy

The root type is calle@bject .

All user types are placed in the type hierarchy bdliserTypeObject . The user is responsible for the
structure of the type hierarchy beltgerTypeObject

The type definitions are objects themselves and are instances of either thgpgpéor system types, or
UserType for user types.

A literal is a built-in type without explicit OID representation, usually representing basic programming
language data types.

The typenumber is a supertype covering batiteger andreal numbers.

Multisets are literals holding collections of other values.

Functions definitions are instances of the tifpection

Cursors are instances ot the typarsor .

Rule definitions are instances of the typae .

Rule contexts are used for dynamically grouping rules and are instances Gbtytpst .

Sagas are used for defining long-running transactions and are instancesS#Hggpe

The typebag is a special data type that holds the result of queries as sets of objects with duplicates retained.
Amosis a type used for handling distribution.

Timeval is a type for absolute timestamfisje anddate are types for relative points in time

5.2 Deleting types

Thedelete type statement deletes a type and all its subtypes.
Syntax:

delete-type-stmt ::=
DELETE TYPE type-name

12

For example:

delete type person; /* Delete types person and student */

Functions using the deleted type will be deleted as well (“Functions and Queries” on page 14).

Objects that were instances of the deleted type will no longer be instances of that type, but they remain instances
of other types they may have. All user objects are instandgsenfypeobject |, so it is never the case that
deleting a type causes objects to be left without any type.

6 Objects

Thecreate statement creates one or more objects and makes the new object(s) instance(s) of a given user type
and all its supertypes.
Syntax:

create-object-stmt ::=

CREATE type-name

['C function-name-commalist)] new-instances
new-instances ::=

INSTANCES initializer-commalist
initializer ::=

gen-variable-name |

[gen-variable-name] '(’ value-list-item-commalist *)’
value-list-item ::=

simple-init-value | multiple-init-value | NIL
simple-init-value ::=

single-value | multiset-value
single-value ::=

gen-variable-name | constant
multiset-value ::=

bag-value | vector-value
bag-value ::=

'BAG(’ single-value-commalist *)’
vector-value ::=

'VECTOR(' single-value-commalist)" |

{’ single-value-commalist '}
multiple-init-value :;:=

'<’ simple-value-commalist ">’

Example:

create person (hame,age) instances
:adam ('Adam’,26),:eve ('Eve’,32);

create person instances :olof;

create person (parents) instances
‘tore (bag(:adam,:eve));

The new objects are assigned initial values for the specified attribute functions. The attribute functions are any
updatable AMOSQL functions.

One object will be created for eaititializer . Each initializer can have an optional variable name which
will be bound to the new object. The variable name can subsequently be used as a reference to the object.

The initializer also contains a comma-separated list of initial values for the specified functions. Initial values are
specified as constants or variables.

The types of the initial values must match the declared result types of the corresponding functions.

13

Multiple result functions are initialized with a comma-separated list of values enclosed in angle brackets (syntax
multiple-value).

Bag valued functions are initialized using the keywBAIG (syntaxbag-value).

Vector result functions are initialized with a comma-separated list of values enclosed in curly brackets (syntax
vector-value).

It is possible to specifi)lIL for a value when no initialization is desired for the corresponding function.

6.1 Object deletion

Objects are deleted with tielete statement.
Syntax:

delete-object-stmt ::=
DELETE gen-variable-name

Example:

delete :adam;

Thedelete statement deletes a specified object from the database. Referential integrity is maintained by deleting
references to the deleted object. It is thus also removed from all stored functions where it is referenced.

Deleted objects are printed as

OID[*DELETED*,1234]

The objects may be undeleted by rollback. The system garbage collects the OIDs from the database only when
their creation has been rolled back or their deletion committed.

7 Functions and Queries

Thecreate function statement creates a new user function that maps arguments of the specified argument
types to results of the specified result types.
Syntax:

create-function-stmt ::=
CREATE FUNCTION function-name argl-spec

-> resl-spec [fn-implementation]

function-name ::=specific-function-name |
type-name-list .’ specific-function-name ’->’ type-name-
list
type-name-list ::= type-name | type-name .’ type-name-list
specific-function-name ::= identifier
argl-spec ::='(’ [arg-spec-commalist] ')’
arg-spec ::=simple-arg-spec | BAG OF simple-arg-spec
simple-arg-spec ::=type-name [variable-name] (KEY | NONKEY)
resl-spec ::=arg-spec | multiple-result-spec
multiple-result-spec ::='<’ simple-arg-spec-commalist ">’
fn-implementation ::=AS (derived-body | procedure-body |
foreign-body | STORED)

derived-body ::= simple-select-stmt
foreign-body ::=FOREIGN [string-constant]

Thefn-implementation specifies what the function does when it is invoked. The following kinds of function
implementations are supported:

» A stored functior{syntaxSTOREDrepresents data stored as facts in the database. The corresponding mapping

14

between arguments and results are internally stored in a table. Stored functions can always be updated using
the update statements (“Function Updates” on page 25). The set of mappings are initially empty.

* A derived functionsyntaxderived-body) is defined by a single AMOSQL quersiriple-select-
stmt) in the body. The query specifies how to map argument values to results. Queries are described below
in “The select statement” on page 18 . The query optimizer is invoked when a derived function is defined so
that optimization is not required when derived function are called (“Function Calls” on page 16). Some simple
derived functions can be updated (“Function Updates” on page 25).

» A foreign function(syntaxforeign-body) is defined by a program written in a foreign language (C or
Lisp). The definition of foreign functions is documented separately in the docAlkE® System Manual
Foreign functions can currently not be updated.

* A database procedurgsyntaxprocedure-body) is a program written in a procedural subset of AMOSQL
that may have side effects (i.e. database updates). Database procedures should not be used in queries. Database
procedures are described in “Database procedures” on page 26 .

» Anoverloaded functioiis a function defined on different types with identical names. When a function call is
made to an overloaded function, the appropriate implementation is selected based on the actual argument
types. Overloaded functions are described in Sec. “Overloaded Functions and Late Binding” on page 19 .

Theargl-spec and thaesl-spec constrain thargumentand theresulttypes of AMOSQL functions. Ex-
amples:

create function age(person)->integer as stored;
create function income(person)->integer as stored;
create function richlimit()->integer as stored;

As the function richlimit illustrates, an AMOSQL function may have zero arguments.
Semantics:

» The types used in the declarations must be previously defined. The name of an argument or result parameter
can be left unspecified if it is never referenced in the function implementation. The names of the argument and
result parameters for a given function definition must be unique.

» bag of specifications on a single result parameter declares it tdobg @ bag is a collection of objects,
possibly with duplicates. For example:
create function parents(person) -> bag of person;
permits each person to have more than one pardagléf had been omitted each person could have only
one parent (or nonk)This is a special case otardinality constrainwhich are described more in detail be-
low.

» Derive functions can also have arguments declaagabf . Such functions are callegdjgregation operators
They are described in “Subqueries and Aggregation Operators” on page 21 .
NOTICE: Stored functions cannot be aggregation operators.

AMOSQL functions may also havaultiple resultsindicating that a logical tuple of values is returned. This
is indicated by bracketing the result declarations (see syntamuitiple-result-spec and example
below).

Derived AMOSQL functiorare defined by a single query @alect statement). The syntax and semantics of
gueries is explained in “The select statement” on page 18). Some examples of derived functions:

create function double_income (person p)->integer
as select income(p) + income(p);
create function rich(person p)->boolean
as select where income(p) > richlimit();
create function Married(Person h,Person w) -> Boolean as stored;
create function Wife(Person h)->Person w

1.However, in the current implementation bag-valued stored functions can not return duplicates, i.e.
stored functions are always set valued. Derived functions can however be bag-valued.

15

as select w where Married(h,w);
create function family_incomes(person p) -> <integer h,integer w>
as select income(p),income(wife(p));
create function family_totalincome(person p)->integer t
as select hi + wi
for each integer hi,integer wi
where <hi,wi> = family_incomes(p);

The functionwife is an example of a derived function calling a boolean function.
The functionfamily_incomes is an example of a multiple result derived function.
The functionfamily_totalincome is an example of a derived function calling a multiple result function.

7.1 Function Calls
The simplest form of a query is to mak&uaction call Syntax:

function-call ::=

function-name (' [parameter-value-commalist] *)’
parameter-value ::=

function-call | single-value | '(’ simple-select-stmt’)’
simple-select-stmt ::=

SELECT expr-commalist

[for-each-clause] [where-clause]
expr =

function-call | single-value

For example:

age(:eve);

The above function call is equivalent to the ad hoc query
select age(:eve);
The query optimizer is not invoked for such simple unnested calls to AMOS functions and the invocation is very

fast. The reason is that the query optimizer is instead applied when a derived function is defined, and the function
is optimized for unnested calls to the function.

Function calls can also be nested, for example:

age(parents(:eve));

or equivalently

select age(parents(:eve));

For nested function calls the query optimizer will be applied to produce an execution plan for the call, which is
then immediately executed. Thus nested function calls are significantly slower than unnested ones, and the user is
recommended to avoid nested function calls by defining suitable derived functions. In the example above, define

create function parage(person p) -> integer
as select age(parents(p)); /* Optimizer invoked here
execution plan saved in db */
parage(:eve); /* Optimizer NOT invoked here */

Daplex semantics used for nested function calls. This means that if a function is applied on an inner function
which is bag valued (such parents) the outer functiongge above) is applied on each elements of the bag.
In the example above, the result of the quesage(:adam); is a bag of the ages of all parentsaafam .

16

The Daplex semantics is NOT useddggregation operators (See “Subqueries and Aggregation Oper-
ators” on page 21) which are functions that aggregate over the bag. For example, to count how maagi-parent
amhas, the aggregation operatount can be used which counts the elements of its argument bag:

count(parents(:eve));

The built-in functionst,-,*,/ have equivalent infix syntax with the usual priorities. For example:

(income(:eve) + income(:ulla)) * 0.5;

is equivalent to

times(plus(income(:eve),income(:ulla)),0.5);

7.2 Cardinality Constraints

A cardinality constrainiis a system maintained restriction on the number of occurrences of a function parameter.
For example, a cardinality constraint could be that there is at most one salary and name per person, while a person
may have any number of parents. The only cardinality constraint that is currently supported in AMOSQL is to
make a given parameter of a stored function unique, i.e. a given object can participate at most once as actual ar-
gument or result of the function. This is done by attaching the keyieydimmediately after a parameter dec-
laration. For example:

create function name(person key) -> charstring key as stored,;

Indicates that there is only one name for each person and that the names of persons are unique.
If the KEY cardinality constraint is violated by a database update the following error message is printed:

Update would violate upper object participation (updating function ...)

The keywordNONKE ¥pecifies that the parameter has no cardinality constraint.
The default cardinality constraintkEY for the first argument of a stored function aMANKEYor all others.
This implies that stored functions are by default single valued.

Thename function could thus also have been written:

create function name(person) -> charstring key as stored;

For foreign functions it is up to the implementor to guarantee that specified cardinality constraints hold.
Cardinality constraint declarations are ignored for derived functions.

For example:

create function Married(Person husband,Person wife key)->Boolean as
stored;

Polygamous marriages are refused to be stored by the fuMaioied , since the first argument has the default
cardinality constrainkKEY.

Thebag of declaration on the result of a stored function actually just overrides the déExdieclaration of
its argument wittNONKEYThus the functioparents above could also have been written:

create function parents(person nonkey) -> person as stored,;

7.3 Deleting functions

Functions are deleted with thdelete function statement.

17

Syntax:

delete-function-stmt ::=
DELETE FUNCTION function-name

For example:

delete function married;

Deleting a type also deletes all subtypes and all functions using the deleted types.
For example:

delete type namedobject; /* Wipes out all functions and
types defined so far */

7.4 Theselect statement
Queries retrieve objects having specified properties. They are specified usetptiie statement.
Syntax:

query-stmt ::=
select-stmt | function-call
select-stmt ::=
SELECT[DISTINCT] expr-commalist
[into-clause]
[for-each-clause]
[where-clause]
into-clause ::=
INTO gen-variable-name-commalist
for-each-clause ::=
FOR EACH variable-declaration-commalist
variable-declaration ::=
type-name variable-name |
BAG OF type-name variable-name
where-clause ::=
WHERE predicate-expression

For example,

select age(p) for each person p where name(p) = 'Eve’;

Selects the age of the person named Eve.

select name(q) for each person p, person q
where name(p) = 'Eve’ and age(q) > age(p);

selects the names of all persons older than Eve.
Function calls (“Function Calls” on page 16) is the simplest form of queries.

Theexpr-commalist defines the object(s) to be retrieved. See “Predicate expressions” on page 19 for defini-
tion of function-call

Thefor-each-clause declares types of local variables used in the query.

Thewhere-clause gives a selection criteria for the search. The details of the where clause is described below
in “Predicate expressions” on page 19 .

The result of a select statement &ragle result tuplef objects or doag of single result tuples. Duplicates may
occur, unless suppressed using the DISTINCT keyword.

18

An into-clause is available for specifying variables to be bound to the result. In case more than one result
tuple is returned, the variables will be bound only to the elements of the first encountered tuple. For example:

select p into :eve2 for each person p where name(p) = 'Eve’;
name(.eve2);

This query retrieves into the environment variable2 the person whose name is 'Eve’.

7.5 Predicate expressions
The general syntax of predicate expressions is:

predicate-expression ::=
predicate-expression AND predicate-expression |
predicate-expression OR predicate-expression |
'(" predicate-expression ’)’ |
simple-predicate
simple-predicate ::=
function-call |
relterm relop relterm
relterm ::=
function-call | res-values
res-values ::=
single-value | '<’ single-value-commalist >’
relop ::=
=|<|>|<=|>=|!=

In a function call, the types of the actual parameters and results must be the same as, or subtypes of, the types of
the corresponding formal parameters or results.
Resolution of overloaded functions is described in“Overloaded Functions and Late Binding” on page 19.

Query variables can be bound to bags. The treatment of bag variables and aggregation operators is described in
“Subqueries and Aggregation Operators” on page 21 .

The comparison operators, (=, <,<=,> and>=) are treated as binary boolean functions. They are defined
for any object type.
7.6 Overloaded Functions and Late Binding

Function names may lmverloadedi.e., functions having the same name may be defined differently on different
argument types. This allows generic functions to apply to several different object types. Each specific implemen-
tation of an overloaded function is calledeaolvent

For example, assume the two following AMOS function definitions:

create function less(number i, number j)->boolean
as select where i < j;

create function less(charstring s,charstring t)->boolean
as select where s <ft;

Its resolvents will have the signatures:

less(number,number) -> boolean
less(charstring,charstring) -> boolean

Internally the system stores the resolvents under different function names. The name of a resolvent is obtained by
concatenating the type of its arguments with the name of the overloaded function followed by the-symbol ’
and the type of the result.(syntax in “Functions and Queries” on page 14). The two resolvents above will be given

19

the namesiumber.number.less->boolean andcharstring.charstring.less->boolean

Overloaded function resolvents are allowed to differ on their argument types and the result types. The query
compiler resolves the correct resolvent to apply. If there is an ambiguity, i.e. several resolvents qualify, or if no
resolvent qualify an error will be generated by the query compiler.

When overloaded function names are encountered in AMOSQL function bodies, the system will use local variable
declarations to choose the correct resolvent (early binding). For example,

create function younger(person p,person g)->boolean
as select less(age(p),age(q));

will choose the resolvermiumber.number.less ->boolean , sinceage returns integers and the resolvent
number.number.less ->boolean s applicable tantegers by inheritance. The other function resol-
ventcharstring.charstring.less->boolean does not qualify since it is not legal to apply to argu-
ments of typeénteger

On the other hand,

create function nameordered(person p,person q)->boolean
as select less(name(p),name(q));

will choose the resolverharstring.charstring.less->boolean . In both cases the resolution will be
done at compile time.

Dynamic type resolution is also done for top level function call to choose the correct resolvent. For example,

less(1,2);

will choosenumber.number.less->boolean
NOTICE: To avoid the overhead of dynamic type resolution one may use the 'dot notation’:

number.number.less->boolean(1,2);

AMOS supports alskate bindingof overloaded functions where the overload resolution is done at run time instead
of at compile time. For example, suppose that managers are employees whose incomes are the sum of the income
as a regular employee plus some manager bonus:

create type employee subtype of person;
create type manager subtype of employee;
create function mgrbonus(manager)->integer as stored,;
create function income(employee)->integer as stored;
create function income(manager m)->integer i

as select employee.income(m) + mgrbonus(m);

Now, suppose that we need a function that returns the gross incomes of all persons in the database, i.e. we use
manager.income for managers anemployee.income for non-manager. In AMOS such a function is de-
fined as

create function grossincomes()-> integer i
as select income(p)
for each employee p; /* income(p) late bound */

Since income is overloaded with resolvesttgployee.income->integer andmanager.income->in-
teger and both qualify to apply to employégethe resolution dhcome(p) will be done at run time. If income
of employees are sought the desired resolvent has to be explicitly specémglagee.income->inte-

1.Due to inclusion polymorphism, Objects of type manager are also of type employee

20

ger .

We currently have the restriction on late bound functions that they can only be usefbiw#énd direction,
i.e. queries where their arguments are known but not their results.

Since the detection of the necessity of dynamic resolution is done at compile time, overloading a function name
may lead to a cascading recompilation of functions defined in terms of that function name. This can take some
time. For a more detailed and extensive presentation of the managemant of late bound functions see [9][10].

7.7 Disjunctive Queries

The OR operator works like a union operator, i.e. the union of the objects satisfying its operands (without dupli-
cates removed) is returned. Queries and function definitions can have arbitrary nesting of ANDs and ORs.

Example:

create function father(person) -> person as stored;
create function mother(person) -> person as stored,;
create function parent(person p) -> person q

as select g where g=father(p) or g=mother(p);

The function body oparent is adisjunctive querysince it contains an ORarent would generate the bag of
all fathers and mothers for a given person.
7.8 Subqueries and Aggregation Operators

Normally when an AMOSQL function is applied on a bag-valued function it is applied on each element of the bag.
For example,

age(parents(:eve));
will return the ages of all parents:afdam , i.e. the functiorage is applied on each element of the result from
the function calparents(:adam)

By contrast, an aggregation operator is a function that treats some bag valued argument(s) as a single unit. Thus
the complete bag is passed at once to the outer function, rather than applying the outer function on each result of
the bag. For examplepunt(bag of object) is an example of an aggregation operator:

count(parents(.eve));

In this case the number of parentsaafam is returned.
Aggregation operators are defined as functions where one or several arguments are declared as bags:

bag of type x

The following system aggregation operators are defined:

sum(bag of integer x) -> number r
sum(bag of real x) -> number r
count(bag of object x) -> integer r
maxagg(bag of object x) -> object r
minagg(bag of object x) -> object r

NOTICE: Aggregation operators can be overloaded (asu’om). Also notice thatount, maxagg andmi-
nagg can be applied to any bag, whilem must be applied only to 'uniform’ bags of integers or reals.

NOTICE: AMOS supports nested subqueries as arguments to aggregation functions. For ¢xtaiiple,

21

comes could also be written:

create function totalincomes()->integer
as select sum((select i
for each person p,integer i
where income(p)=i));
/* income will be bound at runtime */

Subqueries always return bags as their result; thus the result of a subquery must be passed to only aggregation op-
erators.

NOTICE: Nested subqueries must syntactically be enclosed in parenthesestalinicomes above.
Local variables in queries may be declared as bags. For exatglilecomes could also have been written:

create function totalincomes()->integer
as select sum(b) for each bag of integer b
where b = (select i for each person p,integer i
where income(p)=i);
/* Late binding on income*/

7.9 Negated subqueries and quantification
There are two aggregation operators in AMOSQL to test if a bag is emopdyry , or not emptysome:

notany(bag of object x) -> Boolean
some(bag of object x)-> Boolean

For example, the functidoutlowestincomes(d) returns all incomes that is more ththhigher than the low-
est income:

create function butlowestincomes(integer d)->integer i
as select i for each integer i,person p
where some((select for each person q
where (income(q) + d) <i))/* Late */
and i = person.income(p);

some corresponds to the logical quantifetists

Contrast this to the complementary functiowestincomes that computes all incomes within the distadce
from the lowest of all incomes:

create function lowestincomes(integer d)->integer i
as select i for each integer i,person p
where notany((select for each person q
where (income(q) + d)<i))/* Late */
and i = person.income(p);

notany corresponds to the logical quantifiest exists , .e. it negates subqueries, wtsteme corresponds
to exists
7.10 Transitive Closures

A transitive closure is all objects, o, reached directly or indirectly from an object, s, by applying some function, f.
The classical example is to find all ancestors of a given person followipgriet function (or finding all sub-
parts of a given part).

The recommended way to compute transitive closures in AMOS is to use the built-in ftriogen :

tclose(function f,object o,integer maxdepth)-> <object r,integer depth>

22

Starting with objecb it constructs the transitive closure by successively appf{ingf(f(o)) etc. down
to levelmaxdepth . tclose returns the objects, in the closure and their distandefromo.f must be func-
tion with a single argument and result.

tclose is overloaded so that, as an alternative, the name of the traversal function can be specified as a string.
Example:

create function ancestors(person 0)-> bag of person a
as select a for each integer d
where tclose("person.parents->person”,0,200) = <a,d>
and a !=o;

Thetclose function is invertible if the traversal function is invertible. This means that the direction of the tran-
sitive closure can be inverted. Thus both these queries are legal:

ancestors(:kain);
select p for each person p where ancestors(p) = :eve;

The first query (function call) returns all ancestorskain while the other query returns all descendants of

eve 1.

An alternative definition chncestor is as a recursive function (see next section). However, it is recommended
to usetclose as an alternative to recursion whenever possible, since this is more efficient. Studies have shown

that transitive closures account for a large majority of the needs for recursive queriel&mace is invertible
in our case, it will be almost as powerful as the recursive definition.

7.11 Cursors

For queries and function calls returning bag valued resultspée-cursor-stmt and thefetch-cur-
sor-stmt , statements are available to iterate over the result.
Syntax:

open-cursor-stmt ::=

OPEN cursor-name FOR query-stmt
cursor-name ::=

gen-variable-name
fetch-cursor-stmt ::=

FETCH cursor-name (into-clause | next-clause)
next-clause ::=

NEXT integer-constant
close-cursor-stmt ::=

CLOSE cursor-name

For example:

create person (hame,age) instances :Viola ('Viola’,38);

open :cl for select p for each person p where name(p) = 'Viola’;
fetch :cl into :Violal,

close :c1;

name(:Violal);

<"Viola">

A cursor is created by tlepen-cursor-stmt and is represented by a cursor objecestilt tuplesontaining
objects with unknown types.

The result of the query is materialized if it doesn’t exceed 1000 tuples. Should the number of tuples be greater then

1.[l.e. the set of all humans that ever lived(except two).

23

the result isn’t fully materialized but will be created as it is retrieved.

Construction of cursor contents when the result is greater than 1000 tuples is handled by cursor processes. Should
a cursor process die unexpectedly an error message is issued and the interface variable holding the cursor becomes
unbound. However, this check is made only when cursors are opened or closed for efficiency reasons. Therefore,

it might be possible to retrieve a partial result, vigtich , from a cursor whose cursor process died unexpectedly.

Also, should the system be unable to create a cursor process, an error message saying so will be issued.

Thefetch-cursor-stmt fetches the first result tuple(s) from the cursor; i.e. the tuple(s) is removed from the
front of the cursor bag. NIL is returned if there are no more result tuples left in the cursor.

If present in detch-cursor-stmt , theinto clause will bind elements of the first result tuple to AMOSQL
interface variables. There must be one interface variable for each element in the result tuple.

If present in detch-cursor-stmt , thenext clause will display the specified number of result tuples and
remove them from the cursor bag.

If neither anext nor aninto clause is present infatch-cursor-stmt , a single result tuple is fetched and
displayed.
Theclose-cursor-stmt removes the cursor.

When acommit is done all open cursors are closed.
It is sometimes useful to count the number of result tuples in a cursor bag:

create function ageofpersonnamed(charstring nm)-> integer a
as select age(p) for each person p where name(p)=nm;

open :cl for call ageofpersonnamed(’Eve’);

count(:cl);

<]1>

This possibility should be used with great care since a complete materialization of the cursor is performed. Should
the cursor contain a large result then memory might become exhausted.

7.12 Recursive functions

AMOS supports a limited class of recursive queries. Recursive functions are normally disjunctive.
For example:

create function ancestors(person p)->person a
as select a for each person g
where (a = ancestors(q) and q = parent(p)) or a = parent(p);

Recursive queries are evaluated top-down. The system only handles recursive functions that call themselves re-
cursively in the 'forward’ direction (where all arguments are known). Otherwise, the system will complain that
the query is not executable ('unsafe’). Left recursive functiorsnesstor are re-ordered by the optimizer to
become right-recursive (in order to avoid internal looping). The top-down evaluation may still cause indefinite
looping in case there are circularities in the data.

NOTICE: Because of the above problems it is recommended to use the transitive closure function (see “Transitive
Closures” on page 22) as an alternative to recursion whenever possible. Extra care should be taken when defining
overloaded recursive function as the possibility of infinite loops exists.

8 Database updates

We describe how to update the contents of the database. Notice that database population by object creation and
attribute assignments was described in“Objects” on page 13 .

24

8.1 Function Updates

Information in AMOSQL can be thought of as mappings from function arguments to results. These mappings are
either defined at object creation time (“Objects” on page 13), or altered by ondwidtien update statements

SET, ADD, or REMOVE.

Syntax:

update-stmt ::=

update-op update-item [for-each-clause] [where-clause]
update-op ::=

SET | ADD | REMOVE
update-item ::=

function-name (" single-value-commalist ')’ '=’ res-values

Not every function is updatable. AMOS defines a functidn be updatable if it is a stored function, or if it is
derived from a single updatable functigim such a way that the argument and result parametergastition all
the arguments and resultsgofind such that no selection is involved in the derivation.

Semantics:

set sets the value of an updatable function given the arguments. For example:
set age(:adam)=33;

set can be combined with querying for set-oriented updates. For example:

set age(p)= q for each person p, integer q
where q = 1 + age(p);

will iterate over all persons and increment their ages.
A boolean function can be set to either TRUE or FALSE.

add adds the specified tuple(s) to the result of an updatable bag result function, analegbus to
remove removes the specified tuple(s) from the result of an updatable bag result function, analegbus to

The update statements are not allowed to violate the cardinality constraints (KEY) (See “Functions and Queries”
on page 14.) specified by thesate-type-stmt or thecreate-function-stmt
8.2 Updating type memberships

The add-type-stmt updates the type membership of one or more objects to make it belong to the specified
type.

Syntax:

add-type-stmt ::=
ADD TYPE type-name ['(’ [function-name-commalist] ')"]
TO new-instances

The updated objects may be assigned initial values for all the specified attribute functions in the same manner as
in thecreate object statement.

Theremove-type-stmt makes one or more objects no longer belong to the specified type.
Syntax:

remove-type-stmt ::=
REMOVE TYPE type-name FROM variable-name-commalist

Referential integrity is maintained so that all references to the objects as instances of the specified type cease to

25

exist.

An object will always be an instance of some type. If all user defined types have been removed, the object will
still be member oUserTypeObject

9 Database procedures

A database procedure is an AMOS function defined as a sequence of AMOSQL statements that may have side
effects (i.e. database update statements or variable assignments). Procedures may return results by using a special
result statement. Procedures shontit be used in queries (but this restruction is currently not enforced). Most,

but not all, AMOSQL statements are allowed in procedure bodies as can be seen by the syntax below.

Syntax:

procedure-body ::=
block |
create-type-stmt |
create-object-stmt |
create-function-stmt |
create-rule-stmt |
create-index-stmt |
delete-type-stmt |
delete-object-stmt |
delete-function-stmt |
delete-rule-stmt |
delete-index-stmt |
for-each-stmt |
update-stmt |
set-variable-stmt |
fetch-cursor-stmt |
open-cursor-stmt |
close-cursor-stmt |
select-stmt |
if-stmt |
result-stmt |
activate-rule-stmt |
deactivate-rule-stmt |
quit-stmt
block ::= BEGIN procedure-body-semicolonlist END |
BEGIN
DECLARE variable-declaration-commalist ’;’
procedure-body-semicolonlist
END
result-stmt ::=
RESULT expr
for-each-stmt ::=
FOR EACH [DISTINCT] variable-declaration-commalist
[where-clause] procedure-body
if-stmt ::=
IF predicate-expression
THEN procedure-body
[ELSE procedure-body]
set-variable-stmt ::=
SET gen-variable-name '=" expr

26

Examples:

create function creperson(charstring nm,integer inc) -> person p
as
begin
create person instances p;
set name(p)=nm,;
set income(p)=inc;
result p;
end;

set :p = creperson(’Karl’,3500);
create function makestudent(object o,integer sc) -> boolean
as add type student(score) to o (sc);
makestudent(:p,30);
create function flatten_incomes(integer threshold) -> boolean
as for each person p where income(p) > threshold
set income(p) = income(p) -
((income(p) - threshold) / 2);
flatten_incomes(1000);

A procedure is a function with one or sevgnalcedural statementa its body. Theéblock construct is used to
store several procedural statements in the body.

Procedures are compiled at definition time.

Procedures may return (bags of) results. rEiselt-stmt is used for this, where the form is evaluated and re-
turned as the result from the procedure.

Thefor-each-stmt construct can be used to iterate over the result of a query. For example the following func-
tion addsnc to the incomes of all persons with salaries higher linsih ~ and returns theiold incomes:

create function increase_incomes(integer inc,integer limit)
-> integer oldinc
as for each person p, integer i

where i > limit
and i = income(p)

begin
result i;
set income(p) =i + inc

end;

NOTICE: The semicolon can be omitted after last statement in a block.

NOTICE: result-stmt does not not change the control flow (different from, eegurn in C), but it only
specifies that a value is to be added to the result bag of the function and then the procedure evaluation is continued
as usual. Théor-each-stmt does not return any value at all unlessult-stmt is used within its body.

NOTICE: Queries and updates embedded in procedure bodies are optimized at compile time. The compiler saves
the optimized query plans in the database so that dynamic query optimization is not needed when procedures are
executed.

10 Database rules

Rules have been introduced in AMOSQL. These can be used as integrity constraints that abort or compensate for
inconsistent updates. Rules can also be used as a way for applications to monitor specific events in the database.

27

The syntax for rules conforms to that of AMOSQL functions as closely as possible:

create-rule-stmt ::=
CREATE RULE rule-name param-spec AS
[variable-declaration-commalist]
WHEN predicate-expression
DO procedure-body

Rules are deleted by:

delete-rule-stmt ::=
DELETE RULE rule-name

Thepredicate-expressiocan contain any boolean expression, including conjunction, disjunction and negation.
Rules are activated and deactivated by:

activate-rule-stmt ::=
ACTIVATE RULE rule-name ([parameter-value-commalist])
[PRIORITY (0]1]2]3|4|5)][STRICT] [INTO context-name]

deactivate-rule-stmt ::=
DEACTIVATE RULE rule-name ([parameter-value-commalist]) [FROM context-
name]

The semantics of a rule are as follows: If an event of the database changes the boolean value of the condition to
true, then the rule is marked txiggered If something happens later in the transaction which causes the condition

to become false again, the rule is no longer triggered. This ensures that we only react to Iogi&al avimes

check phaséusually done before committing the transaction), the actions are executed of those rules that are
marked as triggered. If an action is to be executed only once per activation, the rule can be deactivated as the last
instruction in the rule action. By using priorities at rule activation the user can specify the order of rule execution
in case of simultaneous triggering of several rules. Rules have 'nervous’ semantics as default. This means that a
rule will trigger everytime that a condition beconte® even if it was alreadtyue. By adding the keyworsitrict

at rule activation the rule will have ’strict’ semantics which is defined as: If an event of the database changes the
boolean value of the condition frofi@seto true, then the rule is marked agygered Rule context specifies if a

rule is to be activated into a specific rule context or be deactivated from a specific context. The defaidt is the
ferred rule context, where rules are automatically checked at (or actually just before) transaction commit. See
section 10.1 for more about contexts.

Example 1:

The salary changes of employees and managers are to be monitored. We want to ensure that only managers can
have their salaries reduced. First we define the employee and manager types and the respective income functions,
where managers receive an additional bonus:

create type person;
create type employee subtype of person;
create type manager subtype of employee;
create function name(person) -> charstring as stored;
create function mgrbonus(manager) -> integer as stored;
create function income(employee) -> integer as stored,;
create function income(manager m) -> integer i
as select i where i = employee.income->integer(m) + mgrbonus(m);
create employee(name,income) instances

1.To support physical events the system should provide functions that change values whenever a physical
event occurs and thus can be referenced in the condition of a rule.

28

;joe ("Joe Smith’,30000);

create manager(name,employee.income->integer) instances
:harold ("Harold Olsen’,80000);

set mgrbonus(:harold) = 10000;

Define a procedure for updating the income:

create function previous_income(employee) -> integer as stored;
create function set_income(employee e, integer i) -> boolean

as

begin

set previous_income(e) = income(e);

setincome(e) = i;

end;

Then we define procedures for what to do when a salary is decreased:

/* employee income cannot be decreased */
create function compensate(employee e) -> boolean
as set income(e) = previous_income(e);
/* dummy procedure, managers are not compensated */
create function compensate(manager) -> boolean;

Finally we define the rule to detect decreasing salaries for all employees:

create rule no_decrease() as
for each employee e
when income(e) < previous_income(e)
do compensate(e);

Activate the rule:

activate rule no_decrease();

If an employee that is not a manager gets his salary decreased, the rule will automatically set the salary back to the
old value at check time:

set_income(:joe, 20000);
check(); /* => reset income(:joe) to 30000 */

Commit does an implicit check:

set_income(:joe, 25000);
commit; /* => reset income(:joe) to 30000 */

Note: Since the rule is defined for all employees, and manager is a subtype of employee, the rule is overloaded for
managers. (Because the functiomsme and the procedummpensate are overloaded). If a person of type
manager gets a salary reduction, no action is taken. This is an example of a set-oriented rule. The action is executed
for every binding of the universally quantified variabléor which the condition is true.

Example 2:

Rules can be parameterized and instantiated with different arguments. Take a rule that ensures that a specific em-
ployee has an income below a certain maximum income, and the transaction is rolled back if an employee receives
an income above the threshold. This maximum income is fixed for all employees, but can vary for individual man-

29

agers.

create function maxincome(employee) -> integer

as select 50000;
create function maxincome(manager) -> integer as stored,;
create rule exceeding_maxincome(employee e) as

when income(e) > maxincome(e)

do rollback;

Set the income limit for Harold:

set maxincome(:harold) = 120000;

Activate the rule for a particular employee Joe and manager Harold:

activate rule exceeding_maxincome(:joe);
activate rule exceeding_maxincome(:harold);
setincome(:joe) = 75000; /* rollback at check time because 75000 > 50000
*
set maxincome(:harold) = 80000;
/* rollback at check time because 80000 + 10000 > 80000 */
set mgrbonus(:harold) = 45000;
/* rollback at check time because 80000 + 45000 > 120000 */

10.1 Rule contexts

Rule contexts [12] are a mechanism for dynamically grouping rules. An application can have several contexts
that it activates and deactivates at different times. When rules are activated in AMOS, they are always associated
with rule contexts. Only activated rules in activated contexts are monitored during a transaction. The contexts are
first-class objects and are created by the statement:

CREATE context-name

where thecontext-namés a global name. Contexts are deleted by:

DELETE CONTEXT context-name

The contexts are initiallinactivewhich means that before a contexadivatedthe events affecting its rules are
not monitored (unless the events are monitored by another already active context). Contexts are activated by:

ACTIVATE CONTEXT context-name

which enables all the activated rules in the context to be monitored. Contexts are deactivated by:

DEACTIVATE CONTEXT context-name

which disables all the activated rules in the context from being monitored. Two built-in contexts, named
deferred anddetached , are predefined and always active for deferred and detached rules, respectively.
These are checked automatically by the system. Deferred rules are checked immediately before transaction-com-
mit and detached immediately after. Rules are objects that can be fetched with the fiortgatnamed

that takes the name as a charstring and returns the context object. The active rules in a context are checked by
calling the functiorcheck with the context object as argument. Note that the context itself must be active as
well, otherwise the check operation will have no effect.

11 Sagas for long-running transactions

The AMOS transaction system has been extended with sagas. Sagas are first class objects and can be used to
chain a sequence of committed transations with compensating transactions. The sequence of sagas can be nested
by defining sub-sagas. Abortion of a saga causes all the compensations to be executed and the sagas (and sub-
sagas) to be deleted. Committing a saga just causes deletion (since the transactions are already committed). Com-
pensation of one saga is done in one complete sequence (unless stopped). If an application needs to schedule

30

sagas (forward and backward) in smaller steps it is possible to orchestrate many sagas through a saga layer (as
part of the application) outside AMOS.

Sagas are created by the following function calls:

set :s = create_sagal();

or

set s = create_sub_saga(); (only to be used within another saga)

The syntax for executing something in a saga is as follows:

saga-stmt ::=
SAGA saga procedure-body
COMPENSATION procedure-body

Sagas are commited (and deleted) by:

commit_saga(:s);

and are aborted (and deleted) by

abort_saga(:s);

During abortion of a saga all the compensations are executed until the beginning or until stopped by a call to
stop_compensation();

Sagas can be passed to procedures to be executed in the body of the procedure. Note that any local variables de-
fined outside the saga statement will have the values in the compensation that they had at the end of execution of
the forward transaction of the associated saga statement. If such variables are changed after the saga statement is
executed this will not be seen in the compensation. To support such behaviour it is possible to associate data with
a saga through functions that are indexed with the current saga (can be accesseshbysaga()).

12 Physical database design
This section describes some AMOSQL commands for database space and performance tuning.

12.1 Indexing

The system supports indexing on any argument or result of stored functions. Indexesniqundms non-unique

A unique index prohibits more than one different value of the argument or result. The cardinality cdwstraint

of stored functions (See “Cardinality Constraints” on page 17.) is implemented as unigue indexes. Thus by default
the system puts a unique index on the first argument of stored functions. That index can be made non-unique by
suffixing the first argument declaration with the keywoahkey or to specifyjbag of for the result, in which

case a non-unique index is used instead.

For example, in the following function there can be only men@e perperson :

create function name(person)->charstring as stored,;

By contrastnames allow more than one name gaarson :

create function names(person p nonkey)->charstring nm as stored,;

alternatively

create function names(person p)->bag of charstring nm as stored;

Any argument or result declaration can be suffixed with the keykeydto indicate the position of a unique in-

31

dex. For example, the following definition prohibits two persons to have the same name:

delete function person.name; /* Remove old name function */
create function name(person p)->charstring nm key as stored,;

Named non-unique indexes can be created on any arguments or results with the statement:

create-index-stmt ::=

CREATE INDEX index-name ON index-spec-commalist ;
index-spec ::=

function-name '(’ argres-name ’)’

For example:

create index i1 on name(nm), names(charstring);

creates two indexes on the resulhafme and ofnames, respectively.

Notice that one may use the name of the type of an argument or result to specify the index position when unique,
as in the example.

Named indexes are deleted by

delete-index-stmt ::=
DELETE INDEX index-name ;

For example, to delete the two indexes above do:

delete index i1;

There always has to be at least one index left on each stored functionleldtasndex is a dummy opera-
tion if one tries to delete the last remaining index.

To save space it is sometimes possible to delete the default index on the first argument of a stored function. For
example, suppose we store a table mapping parts to identifiers with an index on the identifier:

create type part;
create function partid(part p)->integer id key as stored;

partid will have two indexes, one gnand one oiid . To drop the index op, do the following:

create index dummy on partid(p);
delete index dummy;

12.2 Clustering

Functions can be clustered by creating multiple result stored functions, and then each individual function can be
defined as a derived function.

For example, to cluster the attributemme andaddress of persons one can define:

delete function person.name;
create function personprops(person p) ->
<charstring name,charstring address> as stored,;
create function name(person p) -> charstring nm
as select nm for each charstring a
where personprops(p) = <nm,a>;
create function address(person p) -> charstring a
as select a for each charstring nm
where personprops(p) = <nm,a>;

32

Clustering does not improve the execution time performance significantly in a main-memory DBMS such as
AMOS. However, clustering can decrease the database size considerably.

13 System functions
This section describes the built-in system AMOS functions.

13.1 Comparison operators
The built-in, infix comparison operators are:

=(object x, object y) -> boolean (infix operator =)
I=(object x, object y) -> boolean (infix operator !=)
>(object x, object y) -> boolean (infix operator >)
>=(object x,object y) -> boolean (infix operator >=)
<(object x, object y) -> boolean (infix operator <)
<=(object x,object y) -> boolean (infix operator <=)

All objects can be compared. Strings are compared by characters, lists by elements, OIDs by identifier numbers.
Equality between a bag and another object denotes set membership of that object. The comparison functions can,
of course, be overloaded for user defined types.

13.2 Arithmetic functions

abs(number x) -> number y

div(number x, number y) ->number z (infix operator /)
max(object x, objecty) -> object z

min(object x, objecty) -> object z

minus(number x, number y) -> number z (infix operator -)
mod(integer X, integer y) -> integer z

plus(number x, number y) -> number z (infix operator +)
times(number x, number y) -> number z (infix operator *)
iota(integer |, integer u)-> bag of integer z

sin(number x) -> number z

cos(number x) -> number z

tan(number x) -> number z

In(number x) -> number z

sgr(number x) -> number z

iota constructs bag of integers betwéeandu.
For example, to executetimes AMOSQL statemerstmt do:

for each integer i where i = iota(1,n)
stmt;

13.3 Aggregation functions
Some of these system functions are described in “Subqueries and Aggregation Operators” on page 21 .

count(bag of object 0) -> integer ¢

Number of objects in bag (“Subqueries and Aggregation Operators” on page 21).

in(bag of object b) -> bag of object o
in(vector v) -> bag of object o

Extracts elements of bags and vectors

maxagg(bag of object x) -> object y

33

Largest number in bag

minagg(bag of object x) -> object y

Smallest number in bag.

notany(bag of object 0) -> boolean b

Test if bag empty. Logical NOT EXISTS.

some(bag of object x) -> boolean b

Test if there are any elements in bag. Logical EXISTS.

sum(bag of integer x) -> number s
sum(bag of real x) -> number s

Sum uniform bags of numbers.

13.4 Accessing the type system

allfunctions() -> bag of function f
allfunctions(type t) -> bag of <integer pos, function f, integer kind>
allfunctions(type t,integer pos, integer kind) -> bag of function f

Returns all functions, all functions that take as argument or return a given type, all functions that take or return a
type at a given postion, respectively:

f : The function.

pos : The position number. (1stis 1, etc.)

kind : A number indicating if it is an argumerkirfd = 0) or a resultkind = 1).

allobjects () -> bag of object o
alltypes() -> bag of type t

All functions, objects, and types, respectively, in the database.

subtypes(type t) -> bag of type s
supertypes(type t) -> bag of type s

The types immediately below/above tyipén the type hierarchy.

allsupertypes(type t) -> bag of type s

All types above in the type hierarchy.

typesof(object 0) -> bag of object t

The types of an object.

allobjects(type tp)-> bag of object t
createobject(type tp) -> object t

Get all instancet of a given typép or create a new instanteof a given typep .

functionnamed(charstring nm) -> function fn
kindoffunction(function f) -> charstring knd
name(function fn) -> charstring nm
typenamed(charstring nm) -> type t

34

name(type t) -> charstring nm
objectname(object o, charstring nm) -> boolean
usedwhere(function f) -> function ¢
useswhich(function f) -> function c

functionnamed returns the function nameun

kindoffunction returns the kind of the functidnas a string. The result can be onéstidred’, 'de-
rived’, 'foreign’ or 'overloaded’ . nameoffunction returns the name of the functibn
typenamed returns the type nameun

nameoftype returns the name of the type

objectname returns TRUE if the object has the namem

usedwhere returns the functions calling the functibn

useswhich returns the functions called from the functfan

resolvents(function g) -> bag of function r

The resolvents of an overloaded functgan

resolventtype(function fn) -> bag of type t

The types of the first arguments of the resolvents of funétion

argrestypes(function fn nonkey) -> <integer pos,type tp,integer kind>
argrestypes(charstring fname nonkey) -> <integer pos,type tp,integer
kind>

Returns for each argument or result of a function:
pos : The position number. (1stis 1, etc.)

type : The type.
kind : A number indicating if it is an argumerkirfd = 0) or a resultkind = 1).

addtype(usertype tp,usertypeobject o) -> boolean
remtype(usertype tp,unsertypeobject 0) -> boolean

Procedures to add/remove tyipe to/from objecb.

cardinality(type t) -> integer ¢
Number of object of type.

13.5 Query optimizer tuning

optmethod(charstring new) -> charstring old

Three optimization modes for AMOSQL queries can be chosen. The built-in function

call optmethod("name");

The name of the old optimization method is returned. Changes the optimization methotetevhich can be
one of:

ranksort : (default) which is fast but not always optimal.

exhaustive : which is optimal but it may slow down the optimizer considerably.

randomopt : which is a combination of two heuristics: Iterative improvement and Sequence heuristics [4].
randomopt can be tuned by using the function

call optlevel(i,j);

wherei andj are integers specifying number of iterations in Iterative improvement and sequence heuristics re-

35

spectively. Default settings is=5 andj =5.

reoptimize(charstring fn) -> boolean

Reoptimize function namdd . if fn is equal to the strinfALL*" then all functions are reoptimized.

costhint(charstring fn,charstring bpat,object q)->boolean

Declare cost hing for the AMOSQL resolvent function naméud and the binding pattefspat . This cost hint
feature is explained iIMMOS System Manual and in [1]. The cost hint can be a vector of two elements,
{cost,fanout} , in case the cost to exectite is constant. It can also be the nhame of an AMOSQL function
returning the cost and the fanout.

13.6 Temporal support in AMOS

AMOS supports three data types for referencing tifiraeval is a type for specifying absolute time points and
time anddate are types for relative time points.

Timevals are written as |year-month-day/hour:minute:second|189h-11-15/12:51:32|
Times are written as |hour:minute:second|,|&2)51:32]

Dates are written as |year-month-day|, [.995-11-15|

The follwing functions exist for timevals, times, and dates.

now() -> timeval

time() -> time

date() -> date
timeval(integer,integer,integer,integer,integer,integer) -> timeval
time(integer,integer,integer) -> time
date(integer,integer,integer) -> date
time(timeval) -> time

date(timeval) -> date
date_time_to_timeval(date, time) -> timeval
year(timeval) -> integer

month(timeval) -> integer

day(timeval) -> integer

hour(timeval) -> integer

minute(timeval) -> integer

second(timeval) -> integer

year(date) -> integer

month(date) -> integer

day(date) -> integer

hour(time) -> integer

minute(time) -> integer

second(time) -> integer

timespan(timeval, timeval) -> <time, integer usec>

13.7 Miscellaneous functions

cd(charstring dir) -> charstring r
eval(charstring stmt) -> object r
pwd() -> charstring dir

quit() -> boolean

stop() -> boolean
system(charstring cmd) -> boolean

cd changes the current working Unix directornydio and returns its full name.
eval parses and evaluates the AMOSQL staterstent . Currently the result must be single-valued, otherwise

36

only the first element of the result tuple is returned.

pwd returns the full name of the current Unix working directory.

quit quits AMOS.

stop exits the AMOS top loop and returns to the program that called it. Useful when calling AMOS from other
systems.

system executes the Unix commauchd. No value returned.

14 Recovery-Storage System

This section describes the recovery system[Kar94] in AMOS and how to configure this from within the AMOS
system using AMOSQL.The recovery system in AMOS is responsible for the automatic persistency of the trans-
actions on the database image.

The recovery system is activated by simply typing:

recovery on;

and deactivated using

recovery off;

14.1 Configure

The recovery system uses the ping-pong method for saving images, so images are written to two alternating places
at a time interval. This interval, in minutes, can be specified using:

recovery interval 30;

At each commit the log-information is flushed onto the disk, when an excessive amount of information is changed
in a short period the log-file grows fastly. In order to limit the size of this file an image can be forced to be saved
when the log-file reaches a specified size. This size is specified in kilobytes (KB):

recovery maxlog 128;

The current state of the recovery system is shown by just typing recovery:

recovery;
Persistency system is active.
Interval for saving image is 30 minutes.
Maximum size for the log is around 128 KB.

These parameter can be set and be changed together, the syntax is:

recovery (ON | OFF) [interval <minutes>] [maxlog <kb>];

Before shutting down the AMOS system an image should be saved this should be done using:

recovery quit;

14.2 Recovery

If the AMOS system was incorrectly terminated, a recovery action is taking place at startup time. This is automatic
for an image that had recovery activated. When starting AMOS the image-file “amos.dmp” is loaded by default,

this is actually a symbolic link to the last fully saved image and “amos.log.first” and “amos.log.second” exists only

if the system was incorrectly exited. So just by starting amos at the unix prompt recovers:

unix> amos
NIL
AMOS 0.1a, (c) CAELAB 1993

37

15 Miscellaneous

The transaction logging can be turned on and off withabging statement:
logging-stmt ::= LOGGING toggle
toggle ::= (ON | OFF)
The AMOSQL statemembllback does nothing when logging is turned off. It is often practical to turn off log-
ging when building large databases, since the system then consumes much less space.
The system will print the execution time of each top level AMOSQL statement by issutigitite statement:

timing-stmt ::= TIMING toggle

The result printing of the results of AMOSQL statements can be toggled witshibestatement:

echo-stmt ::= ECHO toggle

The image size can be increased arbitrarily withrtiegesize statement:

imagesize-stmt ::= IMAGESIZE integer-constant

The system automatically increases the image size with 25% when the image is full. On some systems it is faster
to increase the image size to the expected final database size before building a large database.

To redirect the AMOSQL input from a file use:

redirect-stmt ::= '<’ string-constant

For example

<’person.AMOSQL";

16 Bugs

If You should find any bugs in a released AMOS, then send a naaildg-bugs@ida.liu.se describing the

bug. If possible include the an example detailed enough to recreate the bug. If AMOS dumps core You could run
gdb or some other debugger and look at the stack to see in what function the fault occuregdiy¥og would

type the following

gdb amos core
>where

and include the stack trace in the email.

38

References

[1] W.Litwin, T.Risch: Main Memory Oriented Optimization of OO Queries Using Typed Datalog with Foreign
PredicateslEEE Transactions on Knowledge and Data Engineenifa. 4, No. 6, December 1992.

[2] D.Fishman et al.: “Overview of the IRIS DBMS”, in W.Kim, F.H.Lochovsky (ed3bject-Oriented Con-
cepts, Databases, and ApplicatipdsCM Press, Addison-Wesley, 1989.

[3] Y.E.loannidis, Y.C.Kang: Randomized Algorithms for Optimizing large join quelfex;. ACM SIGMOD
Conf, Atlantic City, 1990, pp 312-321.

[4] J.Nas: Randomized optimization of object oriented queries in a main memory database management system,
Master’s thesis, LiTH-IDA-Ex 9325nkdping University 1993.

[5] P.G.Selinger et al: Access Path Selection in a Relational Database Management BysteACM SIG-
MOD Conf, Boston, 1979, pp 23-34.

[6] J.D.Ullman: Principles of Database and Knowledge-Base Systems, Volume | &@wmhuter Science
Press,1988 and 1989.

[7] M.Werner: A Client-Server Interface for AMOSAELAB MemgLinkdping University 1994,

[8] J.S.Karlsson: An Implementation of Transaction Logging and Recovery in a Main Memory Resident Data-
base SystenMasters’s thesis, LiTH-IDA-Ex-9404nkoping University 1994,

[9] S. Flodin: An Incremental Query Compiler with Resolution of Late BindRegearch Report
LiTH-IDA-R-94-46 Linképing University 1994

[10] S. Flodin, T. Risch, Processing Object-Oriented Queries with Invertible Late Bound Funetionsof
1995 VLDB conference

[11] M. Skéld, Active Rules based on Object Relational Queries - Efficient Change Monitoring Techhigues,
Thecis No 452, inkdping University.

[12] M. Skéld, E.Falkenroth, T.Risch, Rule Contexts in Active Databases - A Mechanism for Dynamic Rule
Grouping,In the RIDS'95 (Rules in Database Systet)ens, Greece, September 25-27, 1995, Springer
Lecture Notes in Computer Science, pp. 119-130, ISBN 3-540-60365-4

39

	CAELAB Memo 94-01 March 1994
	AMOS.v1 User’s Guide
	Jonas S. Karlsson, Staffan Larsson, Kjell Orsborn,...
	Dept. of Computer Science, Linköping University,
	581 83Linköping, Sweden
	Abstract
	1 Introduction
	2 AMOSQL introduction
	Figure 1 Examples of AMOSQL function definitions

	3 Running AMOS
	3.1 Running AMOS as World-Wide-Web server

	4 General syntactic constructs
	4.1 Identifiers
	4.2 Variables
	4.3 Constants
	4.4 Comments

	5 Types
	5.1 System type hierarchy
	Figure 2 AMOS type hierarchy

	5.2 Deleting types

	6 Objects
	6.1 Object deletion

	7 Functions and Queries
	7.1 Function Calls
	7.2 Cardinality Constraints
	7.3 Deleting functions
	7.4 The select statement
	7.5 Predicate expressions
	7.6 Overloaded Functions and Late Binding
	7.7 Disjunctive Queries
	7.8 Subqueries and Aggregation Operators
	7.9 Negated subqueries and quantification
	7.10 Transitive Closures
	7.11 Cursors
	7.12 Recursive functions

	8 Database updates
	8.1 Function Updates
	8.2 Updating type memberships

	9 Database procedures
	10 Database rules
	10.1 Rule contexts

	11 Sagas for long-running transactions
	12 Physical database design
	12.1 Indexing
	12.2 Clustering

	13 System functions
	13.1 Comparison operators
	13.2 Arithmetic functions
	13.3 Aggregation functions
	13.4 Accessing the type system
	13.5 Query optimizer tuning
	13.6 Temporal support in AMOS
	13.7 Miscellaneous functions

	14 Recovery–Storage System
	14.1 Configure
	14.2 Recovery

	15 Miscellaneous
	16 Bugs
	[1] W.Litwin, T.Risch: Main Memory Oriented Optimi...
	[2] D.Fishman et al.: “Overview of the IRIS DBMS”,...
	[3] Y.E.Ioannidis, Y.C.Kang: Randomized Algorithms...
	[4] J.Näs: Randomized optimization of object orien...
	[5] P.G.Selinger et al: Access Path Selection in a...
	[6] J.D.Ullman: Principles of Database and Knowled...
	[7] M.Werner: A Client-Server Interface for AMOS, ...
	[8] J.S.Karlsson: An Implementation of Transaction...
	[9] S. Flodin: An Incremental Query Compiler with ...
	[10] S. Flodin, T. Risch, Processing Object-Orient...
	[11] M. Sköld, Active Rules based on Object Relati...
	[12] M. Sköld, E.Falkenroth, T.Risch, Rule Context...

