
CAELAB Memo 94-01 March 1994

AMOS.v1 User’s Guide

Jonas S. Karlsson, Staffan Larsson, Kjell Orsborn, Tore Risch,
Martin Sköld, Magnus Werner

Dept. of Computer Science, Linköping University,
581 83Linköping, Sweden

Abstract

AMOS (Active Mediating Object System) is an Object-Relational database system.
AMOS differs from the first generation Object-Oriented (OO) databases in that a re-
lationally complete query language, AMOSQL, is available which is more general
than relational query languages, such as SQL. Furthermore, AMOS is a main-mem-
ory database system, since the design of AMOS is optimized for efficient execution
assuming that the entire database fits in main memory. For persistence, the system
provides primitives for logging and for saving and restoring the database from disk.
AMOS is implemented in C and runs on HP and SUN Unix platforms.

This manual describes how to use the AMOSQL query language. For interfaces to C,
Lisp, and description of some internals, seeAMOS System Manual.

9

0

4

8
9

3

4

6
7

0
1

3
3

4

7

8

1 Introduction...4
2 AMOSQL introduction ...5
3 Running AMOS ..6

3.1 Running AMOS as World-Wide-Web server ...8
4 General syntactic constructs ...

4.1 Identifiers ..9
4.2 Variables ...9
4.3 Constants...1
4.4 Comments ...10

5 Types...10
5.1 System type hierarchy...11
5.2 Deleting types ...12

6 Objects ..13
6.1 Object deletion..14

7 Functions and Queries...1
7.1 Function Calls ...16
7.2 Cardinality Constraints ...17
7.3 Deleting functions...17
7.4 The select statement..1
7.5 Predicate expressions..1
7.6 Overloaded Functions and Late Binding ..19
7.7 Disjunctive Queries...21
7.8 Subqueries and Aggregation Operators ..21
7.9 Negated subqueries and quantification ...22
7.10 Transitive Closures ...22
7.11 Cursors ..2
7.12 Recursive functions...24

8 Database updates...2
8.1 Function Updates ..25
8.2 Updating type memberships ...25

9 Database procedures ...2
10 Database rules ...2

10.1 Rule contexts...30
11 Sagas for long-running transactions..3
12 Physical database design...3

12.1 Indexing ..31
12.2 Clustering..32

13 System functions...3
13.1 Comparison operators ...3
13.2 Arithmetic functions ...33
13.3 Aggregation functions...33
13.4 Accessing the type system ..3
13.5 Query optimizer tuning...35
13.6 Temporal support in AMOS ...36
13.7 Miscellaneous functions..36

14 Recovery–Storage System ..3
14.1 Configure ..37
14.2 Recovery ...37

15 Miscellaneous ...3
ii

16 Bugs ..38
iii

S data

S-

ing a

rimitives

gs com-

shes.

 concur-

ith

reim-

ermed

, reso-

 their

nested

OSQL

porting

which

stive
xecution
and can

plans[4],
ORT

e que-

imizer

. By the

ly Lisp

reign

og [1],

e opti-

cond

Object-

ay
1 Introduction

AMOS (Active Mediating Object System) is an Object-Relational database system with roots in the IRI

model and its query language, OSQL1 . The AMOS implementation is an extension and modification of the W

IRIS system[1]. AMOS is optimized for databases where the entire database fits in main memory2. The architec-

ture gives AMOS excellent performance (as shown for AMOS’ predecessor, WS-IRIS, in [1]) while retain

relationally complete declarative query interface to the database. For persistence, the system provides p

to save and restore the database from disk. A transactional logging system is optionally available which lo

mitted database transactions on disk and thus makes all transactions recoverable after main-memory cra

The system can either be run in single user mode, or as a multi-user single-threaded server with restricted

rency. The system includes client communication primitives whereby a client process can communicate w

AMOS over a network. The client interface is documented in[7].

A graphical interface for AMOS also exists. However, this is only a prototype and will be redesigned and

plemented in the future.

AMOS’ query language, called AMOSQL, is an extension of the OO declarative query language of IRIS, t

OSQL. The main new features of AMOSQL are generalized foreign functions, a limited form of recursion

lution of late binding of overloaded functions[9], an efficient execution strategy for late bound functions and

inverses[10], 2nd order functions [1], active rules[11]. AMOSQL furthermore has aggregation operators,

subqueries, disjunctive queries, quantifiers, and is more than relationally complete.

AMOSQL provides a declarative access language to object databases. This declarativeness requires AM

queries to be optimized before execution. The query optimizer in AMOS is cost-based and is optionally sup

three kinds of optimization methods:

• Optimization based on heuristics as in [1], called RANKSORT. This is the default optimization method
is very fast and normally works reasonably. However, occationally it will produce suboptimal plans.

• Optimization based on classical relational optimization as in [5], called EXHAUSTIVE, where exhau
search is performed over all possible search plans to obtain the search plan with the lowest estimated e
cost. This gives an optimal execution plan but the method is NP-complete over the size of the query
therefore only be used for small queries.

• Optimization based randomized sampling of favorable search plans from the space of possible search
called RANDOMOPT, developed from techniques devised by [3]. This method is slower than RANKS
but not NP-complete as EXHAUSTIVE. It produces very good execution plans for both small and larg
ries, even though it does not always produce the optimal plan.

The optimizer is extensible whereby the user can provide cost formulae as AMOSQL functions to the opt

for all three optimization methods. A generalized foreign function mechanism,multi-way foreign functions [1] is

used to give transparent access to special purpose data structures such as the internal of the type system

foreign function mechanism the programmer can define AMOSQL functions in an external language (usual

or C). The architecture relies on extensible optimization of such foreign function calls[1]. The use of the fo

function mechanism is described in the documentAMOS System Manual.

The query compiler translates AMOSQL statements into an internal logic based language we call ObjectL

which is an object-oriented dialect of Datalog [6]. As part of the translation into ObjectLog programs, som

mizations are applied on AMOSQL expressions relying on object-oriented properties of AMOSQL. In a se

optimization step, the generated ObjectLog rules are transformed into an equivalent set of more efficient

Log rules. The optimizer takes special care to optimize common object-oriented OSQL query patterns.

1.[See [2] for an overview of Iris and OSQL.
2.[In case the database is larger than the available main memory, the system still works but swapping m
occur.
4

hich

 and a

rmance

r, object

use tai-

entifiers

other

ively

nd

o call-

ted in

ted

h

e rela-

ur basic

unc-

s.
AMOS runs on several Unix platforms. The system includes a Lisp interpreter (subset of CommonLisp) w

interprets a part of the system written in Lisp. The system has its own storage manager for the database,

query language interpreter/compiler to process and optimize AMOSQL statements. To achieve good perfo

we have carefully optimized the representation of critical system data structures, e.g. the storage manage

representation, type information, and the representation of function definitions. When advantageous, we

lored main memory data structure representations, rather than using relations. For example, our object id

are represented as variable length records where one field points to the object’s type information, and an

points to its function definition. It is critical that this information is represented efficiently, since it is extens

looked up both during compilation and during interpretation of AMOSQL functions. The system uses arou

800KB1 of code and 800KB of meta data.

AMOSQL can call programs in regular programming languages, such as C and Lisp, and AMOSQL is als

able from these languages. The documentation of external programming language interfaces is documen

AMOS System Manual.

The remainder of this document describes the AMOSQL language. The features of AMOSQL are illustra

through a running example.

2 AMOSQL introduction

The basic concepts of the AMOS data model aretypes, objects, andfunctions. Objects are represented throug

typed atomic object identifiers (OIDs), and functions associate properties (attributes) with objects or defin

tionships between objects. Functions model object attributes and relationships between objects through fo

function types

• Stored functions are updatable tables that are stored in the database.

• Derived functions are side-effect free functions defined in terms of other AMOSQL functions. Derived f
tions are query optimized when they are defined.

• Foreign functions are defined using an external programming language (Lisp or C).

• Database procedures are programs in a procedural sublanguage of AMOSQL that may have side effect

create type person;
create type student subtype of person;
create function Name(Person p) -> Charstring as stored;
create function Income(Person p) -> Integer as stored;
create function Bonus(Person p) -> Integer as stored;
create function Parent(Person c) -> bag of Person p as stored;
create function GrossIncome(Person p) -> Integer as
 select Income(p) + Bonus(p);
 /* Derived where ’+’ is foreign */

create function SParent(Person c) -> bag of Student s as
 select Parent(c); /* Parent if parent is student */

create function GrandSParentGrossIncome(Person c) -> bag of Integer gi as
 select gi /* Gross income of grandparent
 if grandparent is student */
 for each Person gp, Person p
 where GrossIncome(gp) = gi and
 SParent(p) = gp and
 Parent(c) = p;

1. On HP7xx workstations.
5

ed

t

 two

rst

nts

t type.

d

 AMOS

d

create function Income(Charstring nm) -> Integer as
 select Income(p) /* Derived overloaded */
 for each Person p
 where Name(p) = nm;

Figure 1 Examples of AMOSQL function definitions

Figure 1 shows examples of AMOSQL functions and types. Objects of typePerson have the attributesIn-

come, Bonus, Parent, GrossIncome , andGrandSParentGrossIncome . These are AMOSQL

functions of a single argument bound to objects of typePerson . Local variables are declared using the “for

each ” clause.

The operator’+’ is internally represented by the AMOS functionPlus . It is an example of aforeign function,

implemented in C outside AMOSQL.

AMOSQL has a SQL-likeselect statement both for ad hoc queries to the database and for defining deriv

functions. The derived functionGrossIncome , as any derived function, is defined through a singleselect

statement that follow the “as ” keyword.

The stored functionsParent , and the derived functionsSParent andGrandSparentGrossIncome return

sets (actually bags) of values.

In general, the arguments and results of a function together with their types are called thesignature of the function.

We denote signatures by

f(T
1
 P

1
,...,T

n
 P

n
) -> <U

1
 Q

1
,...,U

m
Q

m
> 1

P
1
,...,P

n
 are thearguments of f whose values are of typesT

1
,...,T

n
. A function can have as the result a se

of tuples of values,Q
1
,...,Q

m
, with typesU

1
,...,U

m
.

Overloaded functions are AMOSQL functions sharing a name for different definitions. In Figure 1there are

variants, orresolvents, of the overloadedIncome function. Both resolvents provide a person’s income, the fi

one is given an OID of an object of typePerson , while the other is given a person’s name as a string. Resolve

can be any of the four basic function types. AMOS chooses then the resolvent according to the argumen

AMOSQL also providesdatabase rules that are forward chaining rules that can monitor logical conditions an

perform actions when these conditions become true.

3 Running AMOS

It is recommended that each user creates a private directory for AMOS,<privdir> . You should then docd

<privdir> and make the following two symbolic links from<privdir> to<amosdir> , the directory where

the AMOS executables are stored:

ln -s <amosdir>/amos .
ln -s <amosdir>/amos.dmp .

AMOS is then ready to run in<privdir> by the command:

./amos [-W3] [<db> [<name>]]

where[-W3] is an option that enables a built in World-Wide-Web server and[<db>] is an optional name of

an AMOS database image (default isamos.dmp) and[<name>] is an optional name given to the AMOS. If no

<name> is given then the user name is used as default. The name is used when communicating with other

servers. If a different name than the default name should be used, then<db> has to be supplied and must precee

<name>.

1.[The brackets around the result are optional for functions returning a single result.
6

heir

p-

t

 example:

ple,

re and

) is

o

The system then enters anAMOS top loop in which it reads AMOSQL statements, executes them, and prints t

results. You need not connect to any particular database, but instead, if<db> is omitted, the system enters an em

ty database, where only the system objects are defined.

When the AMOS database is defined and populated, it can be saved on disk with the AMOSQL statemen

save "filename";

NOTICE: Do not save using the name ’amos.dmp’ since it will overwrite the system database.

In a later session you can connect to the saved database by starting AMOS with

./amos filename

The AMOSQL statement

connect "filename";

connects to a saved database from the AMOS top loop.

The prompter in the AMOS top loop is

AMOS n>

wheren is ageneration number.

The generation number is increased every time an AMOSQL database update statement is executed. For

AMOS 1> create type person;
AMOS 2> create type student subtype of person;

Changes can be undone by using therollback statement with a generation number as argument. For exam

the statement:

AMOS 3> rollback 2;

will restore the database to the state it had at generation number2. It thus undoes the effect of the statement

create type student subtype of person;

After the rollback above, the typestudent is removed from the database, but not typeperson .

The statementcommit makes changes non-undoable, i.e all updates so far cannot be rolled back any mo

the generation numbering starts over from1. If the recovery system (“Recovery–Storage System” on page 37

turned on the changes will also be saved on the disk.

If recovery is turned on the changes will be saved in a log file and be restored in case of a system crash.

For example:

AMOS 2> commit;
AMOS 1> ...

If persistency is turned off thecommit does NOT write any data to disk; thesave statement is used for that. A

rollback; without arguments rolls everything back to the previous commit point. It is thus equivalent t

rollback 1; .

To quit AMOS orderly first save the database and then type

AMOS 1> quit;
7

 “Run-

cape,

pe V2.

bled the

as:

ator)

address

0.0.1 in-

 the re-
3.1 Running AMOS as World-Wide-Web server

Integrated within AMOS is a W3 server. This server is enabled by starting AMOS using the -W3 option, see

ning AMOS” on page 6. By enabling the internal W3 server it is possible to use a web browser (e.g. Nets

Mosaic, etc.) as user interface. The browser must be able to handle the HTML tag <FRAME>, e.g. Netsca

Whenever this W3 server is enabled any netscape client may connect to it. Thus, while this server is ena

data in the database is open for public access.

When AMOS is started with the -W3 option it displays the port it is using to serve world wide web clients

mir31 <69> amos -W3
This is AMOS version unreleased
Copyright (c) EDSLAB, University of Linkoping, 1994
Based on WS-Iris, Copyright (c) HP, 1992
Listening to W3 socket AMOS W3 Server initialized, Using port 2000
AMOS 1>

In above example AMOS is using port 2000 for world wide web clients. The URL (Uniform Resource Loc

to use by the web browser is:’HTTP://<machine-name>:2000/’ where <machine-name> is the name or IP-

of the machine where AMOS is running. It is also possible to use the TCP/IP loopback address, e.g. 127.

stead of the machine name if AMOS and the web browser is running on the same machine.

In the example above AMOS is started from the machine mir31, thus the URL is HTTP://mir31:2000/ and

sult is pictured below.

The interface consists of three frames;AMOS identification frame, Database input frame andDatabase response

Database input
frame

Database Reponse
frame

AMOS identification
frame

Command buffer

Execute button
8

e input

revious

y in

with the

L

bles

foreign
ced

ee
frame. To issue a command to AMOS type the AMOSQL command into the Command buffer in the databas

frame and press the execute button. The response will then appear in the database response frame.

The database response frame is limited in size. The latest command will always appear in its full size but p

results may disappear after a while.

There are a few lisp functions defined which faciliate interactive control of the W3 server. These are:

(start-www) Starts the www server if not already running
(close-www) Closes the www server if it is running
(status-www) Displays information about the current status of the wwwserver, i.e. if

it is running or not and which port it uses.

NOTICE: The ’system() ’ AMOSQL function is disabled when the www-server is running. This necessar

order to prevent unauthorized access to the host system. However.

4 General syntactic constructs

This next sections describe the statements available in AMOSQL. For the syntax we use BNF notation

following special constructs:

A ::= B C : A consists of B followed by C.

A ::= B | C , alternatively (B | C): A consists of B or C.

A ::= [B] : A consists of B or nothing.

A ::= B-list : A consists of one or more Bs.

A ::= B-commalist : A consists of one or more Bs separated by commas.

’x’ : The character ’x’. Useful for clarity or when syntax use reserved characters (i.e.[,], and|).

AMOSQL statements are always terminated by a semicolon (;). All symbols are raised to upper case in AMOSQ

statements, except within strings; i.e. AMOS ignores type cases in function and type definitions.

4.1 Identifiers

Identifiers have the syntax:

identifier ::=
(’_’ | letter) [identifier-character-list]

identifier-character ::=
alphanumeric | ’_’

Identifiers are NOT case sensitive; they are always translated to upper case internally1.

4.2 Variables

Variables are of two kinds:

• AMOSQL variables are identifiers for data values in AMOSQL queries and functions. AMOSQL varia
must be locally declared in function signatures (“Functions and Queries” on page 14), byfor each clauses
(“The select statement” on page 18), or by thedeclare construct (“Database procedures” on page 26).
Syntax:
variable-name ::= identifier

• Interface variables hold query results temporarily during a session and is also used to share values with
languages (C or Lisp) (seeAMOS System Manual). Interface variables are global and cannot be referen
in function bodies.
Syntax:

1.AMOS supports international language settings by checking the shell environment variable LANG (s
local documentation for the library function setlocale).
9

arator

 pro-

defined
interface-variable-name ::= ’:’ identifier
gen-variable-name ::= variable-name | interface-variable-name

4.3 Constants

Constants can be integers, reals, strings, booleans, or OIDs.

Syntax:

constant ::=
integer-constant | real-constant | boolean-constant |
string-constant | oid-constant

integer-constant ::=
[’-’] digit-list

real-constant ::=
[’-’] digit-list ’.’ [digit-list]

boolean-constant ::=
TRUE | FALSE

string-constant ::=
string-separator character-list string-separator

string-separator ::=
’’’ | ’"’

oid-constant ::=
OID ’[’ 0x0, digit-list ’]’

In string-constant s the surrounding string separators must be the same. If the string contains the sep

used, it must be preceded with the escape character backslash.

oid-constant s denote references to objects with a specified OID number. For example:

OID[0x0,1234]

OID constants allows you to get hold of any object in the system, but they should be avoided in AMOSQL

grams!

4.4 Comments

The comment statement is a separator, i.e. it can be placed anywhere outside identifiers and constants.

Syntax:

comment ::=
/* character-list */

5 Types

Types are represented as identifiers.

Syntax:

type-name ::= identifier

Thecreate type statement creates a new user type. It also provides the option to createattribute functions.

Attribute functions are represented as regular AMOSQL functions of a single argument. They can also be

separately withcreate function statements (“Functions and Queries” on page 14).
10

mes an

eries”
Syntax:

create-type-stmt ::=
CREATE TYPE type-name [SUBTYPE OF type-name-commalist]

[’(’ attr-function-commalist ’)’]

attr-function ::=
function-name type-name [KEY]

For example:

 create type namedobject (name charstring key);
 create type person subtype of namedobject(age integer,

parents bag of person);
create type student subtype of person (score integer);

Type names must be unique across all types.

The new type will be an immediate subtype of all the supertypes named in theSUBTYPE clause. The names in the

SUBTYPE clause must be names of existing user types. If no supertypes are specified the new type beco

immediate subtype of the system typeUserTypeObject .

Theattr-function-commalist clause is optional, and provides a way to createattribute functions on the

new type. The attribute functions always have a single argument and a single result and are initially onlystored1

. The argument type is implicitly the type being created and the result type is specified by thetype-name . The

specified result types must denote existing types.

If KEY is specified for an attribute, it indicates that each value of the attribute is unique. (“Functions and Qu

on page 14).

5.1 System type hierarchy

The following types are predefined in AMOS:

AMOS
BAG OF x
BOOLEAN
CHARSTRING
CONTEXT
CURSOR
DATE
FUNCTION
INDEX
INTEGER
LIST
LITERAL
NUMBER
OBJECT
REAL
RULE
SAGA
TIME
TIMEVAL

1.[However, they can later be redefined as non-stored functions by separatecreate function state-
ments.
11

ming

tained.
TYPE
USERTYPE
USERTYPEOBJECT
VECTOR

“AMOS type hierarchy” on page 12 shows the upper levels of the type hierarchy of AMOS.

Figure 2 AMOS type hierarchy

• The root type is calledObject .

• All user types are placed in the type hierarchy belowUserTypeObject . The user is responsible for the
structure of the type hierarchy belowUserTypeObject .

• The type definitions are objects themselves and are instances of either the typeType for system types, or
UserType for user types.

• A literal is a built-in type without explicit OID representation, usually representing basic program
language data types.

• The typenumber is a supertype covering bothinteger andreal numbers.

• Multisets are literals holding collections of other values.

• Functions definitions are instances of the typeFunction .

• Cursors are instances ot the typeCursor .

• Rule definitions are instances of the typeRule .

• Rule contexts are used for dynamically grouping rules and are instances of typeContext .

• Sagas are used for defining long-running transactions and are instances of typeSaga.

• The typebag is a special data type that holds the result of queries as sets of objects with duplicates re

• Amos is a type used for handling distribution.

• Timeval is a type for absolute timestamps,time anddate are types for relative points in time

5.2 Deleting types

Thedelete type statement deletes a type and all its subtypes.

Syntax:

delete-type-stmt ::=
DELETE TYPE type-name

object

typefunctionliteralcursorrulesaga
user

indexamosmonitor typed
object

numberbooleancharstringtuplemultiset relation user
type

monitor
instnace

realintegerlistvectorbag

bag
integer

bag
real

monitor
activation

timeval time date

context
12

stances

ser type

e any

h

ct.

es are
For example:

delete type person; /* Delete types person and student */

Functions using the deleted type will be deleted as well (“Functions and Queries” on page 14).

Objects that were instances of the deleted type will no longer be instances of that type, but they remain in

of other types they may have. All user objects are instances ofUsertypeobject , so it is never the case that

deleting a type causes objects to be left without any type.

6 Objects

Thecreate statement creates one or more objects and makes the new object(s) instance(s) of a given u

and all its supertypes.

Syntax:

create-object-stmt ::=
CREATE type-name
[’(’ function-name-commalist ’)’] new-instances

new-instances ::=
INSTANCES initializer-commalist

initializer ::=
gen-variable-name |
[gen-variable-name] ’(’ value-list-item-commalist ’)’

value-list-item ::=
simple-init-value | multiple-init-value | NIL

simple-init-value ::=
single-value | multiset-value

single-value ::=
gen-variable-name | constant

multiset-value ::=
bag-value | vector-value

bag-value ::=
’BAG(’ single-value-commalist ’)’

vector-value ::=
’VECTOR(’ single-value-commalist ’)’ |
’{’ single-value-commalist ’}’

multiple-init-value ::=
’<’ simple-value-commalist ’>’

Example:

create person (name,age) instances
:adam (’Adam’,26),:eve (’Eve’,32);

create person instances :olof;
create person (parents) instances

:tore (bag(:adam,:eve));

The new objects are assigned initial values for the specified attribute functions. The attribute functions ar

updatable AMOSQL functions.

One object will be created for eachinitializer . Each initializer can have an optional variable name whic

will be bound to the new object. The variable name can subsequently be used as a reference to the obje

The initializer also contains a comma-separated list of initial values for the specified functions. Initial valu

specified as constants or variables.

The types of the initial values must match the declared result types of the corresponding functions.
13

syntax

ntax

eleting

 when

ument

ion

apping
Multiple result functions are initialized with a comma-separated list of values enclosed in angle brackets (

multiple-value).

Bag valued functions are initialized using the keywordBAG (syntaxbag-value).

Vector result functions are initialized with a comma-separated list of values enclosed in curly brackets (sy

vector-value).

It is possible to specifyNIL for a value when no initialization is desired for the corresponding function.

6.1 Object deletion

Objects are deleted with thedelete statement.

Syntax:

delete-object-stmt ::=
DELETE gen-variable-name

Example:

delete :adam;

Thedelete statement deletes a specified object from the database. Referential integrity is maintained by d

references to the deleted object. It is thus also removed from all stored functions where it is referenced.

Deleted objects are printed as

OID[*DELETED*,1234]

The objects may be undeleted by rollback. The system garbage collects the OIDs from the database only

their creation has been rolled back or their deletion committed.

7 Functions and Queries

Thecreate function statement creates a new user function that maps arguments of the specified arg

types to results of the specified result types.

Syntax:

create-function-stmt ::=
CREATE FUNCTION function-name argl-spec

-> resl-spec [fn-implementation]
function-name ::=specific-function-name |

type-name-list ’.’ specific-function-name ’->’ type-name-
list
type-name-list ::= type-name | type-name ’.’ type-name-list
specific-function-name ::= identifier
argl-spec ::=’(’ [arg-spec-commalist] ’)’
arg-spec ::=simple-arg-spec | BAG OF simple-arg-spec
simple-arg-spec ::=type-name [variable-name] (KEY | NONKEY)
resl-spec ::=arg-spec | multiple-result-spec
multiple-result-spec ::=’<’ simple-arg-spec-commalist ’>’
fn-implementation ::=AS (derived-body | procedure-body |

foreign-body | STORED)
derived-body ::= simple-select-stmt
foreign-body ::=FOREIGN [string-constant]

Thefn-implementation specifies what the function does when it is invoked. The following kinds of funct

implementations are supported:

• A stored function (syntaxSTORED) represents data stored as facts in the database. The corresponding m
14

ted using

d below
ned so
simple

 or

L
. Database

all is
rgument
19 .

arameter
ent and

nly
-

is

f

.e.
between arguments and results are internally stored in a table. Stored functions can always be upda
the update statements (“Function Updates” on page 25). The set of mappings are initially empty.

• A derived function (syntaxderived-body) is defined by a single AMOSQL query (simple-select-
stmt) in the body. The query specifies how to map argument values to results. Queries are describe
in “The select statement” on page 18 . The query optimizer is invoked when a derived function is defi
that optimization is not required when derived function are called (“Function Calls” on page 16). Some
derived functions can be updated (“Function Updates” on page 25).

• A foreign function (syntaxforeign-body) is defined by a program written in a foreign language (C
Lisp). The definition of foreign functions is documented separately in the documentAMOS System Manual.
Foreign functions can currently not be updated.

• A database procedure (syntaxprocedure-body) is a program written in a procedural subset of AMOSQ
that may have side effects (i.e. database updates). Database procedures should not be used in queries
procedures are described in “Database procedures” on page 26 .

• An overloaded function is a function defined on different types with identical names. When a function c
made to an overloaded function, the appropriate implementation is selected based on the actual a
types. Overloaded functions are described in Sec. “Overloaded Functions and Late Binding” on page

Theargl-spec and theresl-spec constrain theargument and theresult types of AMOSQL functions. Ex-

amples:

 create function age(person)->integer as stored;
 create function income(person)->integer as stored;
 create function richlimit()->integer as stored;

As the function richlimit illustrates, an AMOSQL function may have zero arguments.

Semantics:

• The types used in the declarations must be previously defined. The name of an argument or result p
can be left unspecified if it is never referenced in the function implementation. The names of the argum
result parameters for a given function definition must be unique.

• bag of specifications on a single result parameter declares it to be abag. A bag is a collection of objects,
possibly with duplicates. For example:
create function parents(person) -> bag of person;
permits each person to have more than one parent. Ifbag of had been omitted each person could have o
one parent (or none)1. This is a special case of acardinality constraint which are described more in detail be
low.

• Derive functions can also have arguments declaredbag of . Such functions are calledaggregation operators.
They are described in “Subqueries and Aggregation Operators” on page 21 .
NOTICE: Stored functions cannot be aggregation operators.

• AMOSQL functions may also havemultiple results, indicating that a logical tuple of values is returned. Th
is indicated by bracketing the result declarations (see syntax formultiple-result-spec and example
below).

Derived AMOSQL functions are defined by a single query (orselect statement). The syntax and semantics o

queries is explained in “The select statement” on page 18). Some examples of derived functions:

create function double_income (person p)->integer
as select income(p) + income(p);

create function rich(person p)->boolean
as select where income(p) > richlimit();

create function Married(Person h,Person w) -> Boolean as stored;
create function Wife(Person h)->Person w

1.However, in the current implementation bag-valued stored functions can not return duplicates, i
stored functions are always set valued. Derived functions can however be bag-valued.
15

.

s very

function

ich is

e user is

, define

tion

g.
as select w where Married(h,w);
create function family_incomes(person p) -> <integer h,integer w>

as select income(p),income(wife(p));
 create function family_totalincome(person p)->integer t

as select hi + wi
for each integer hi,integer wi
where <hi,wi> = family_incomes(p);

The functionwife is an example of a derived function calling a boolean function.

The functionfamily_incomes is an example of a multiple result derived function.

The functionfamily_totalincome is an example of a derived function calling a multiple result function

7.1 Function Calls

The simplest form of a query is to make afunction call. Syntax:

function-call ::=
function-name ’(’ [parameter-value-commalist] ’)’

parameter-value ::=
function-call | single-value | ’(’ simple-select-stmt ’)’

simple-select-stmt ::=
SELECT expr-commalist
[for-each-clause] [where-clause]

expr ::=
function-call | single-value

For example:

 age(:eve);

The above function call is equivalent to the ad hoc query

 select age(:eve);

The query optimizer is not invoked for such simple unnested calls to AMOS functions and the invocation i

fast. The reason is that the query optimizer is instead applied when a derived function is defined, and the

is optimized for unnested calls to the function.

Function calls can also be nested, for example:

 age(parents(:eve));

or equivalently

 select age(parents(:eve));

For nested function calls the query optimizer will be applied to produce an execution plan for the call, wh

then immediately executed. Thus nested function calls are significantly slower than unnested ones, and th

recommended to avoid nested function calls by defining suitable derived functions. In the example above

 create function parage(person p) -> integer
as select age(parents(p)); /* Optimizer invoked here

execution plan saved in db */
parage(:eve); /* Optimizer NOT invoked here */

Daplex semantics is used for nested function calls. This means that if a function is applied on an inner func

which is bag valued (such asparents) the outer function (age above) is applied on each elements of the ba

In the example above, the result of the queryparage(:adam); is a bag of the ages of all parents of:adam .
16

r-

nt

meter.

 a person

L is to

actual ar-

-

lt
The Daplex semantics is NOT used foraggregation operators (See “Subqueries and Aggregation Ope

ators” on page 21) which are functions that aggregate over the bag. For example, to count how many pare:ad-

am has, the aggregation operatorcount can be used which counts the elements of its argument bag:

 count(parents(:eve));

The built-in functions+,-,*,/ have equivalent infix syntax with the usual priorities. For example:

 (income(:eve) + income(:ulla)) * 0.5;

is equivalent to

 times(plus(income(:eve),income(:ulla)),0.5);

7.2 Cardinality Constraints

A cardinality constraint is a system maintained restriction on the number of occurrences of a function para

For example, a cardinality constraint could be that there is at most one salary and name per person, while

may have any number of parents. The only cardinality constraint that is currently supported in AMOSQ

make a given parameter of a stored function unique, i.e. a given object can participate at most once as

gument or result of the function. This is done by attaching the keywordKEY immediately after a parameter dec

laration. For example:

 create function name(person key) -> charstring key as stored;

Indicates that there is only one name for each person and that the names of persons are unique.

If the KEY cardinality constraint is violated by a database update the following error message is printed:

Update would violate upper object participation (updating function ...)

The keywordNONKEY specifies that the parameter has no cardinality constraint.

The default cardinality constraint isKEY for the first argument of a stored function andNONKEY for all others.

This implies that stored functions are by default single valued.

Thename function could thus also have been written:

 create function name(person) -> charstring key as stored;

For foreign functions it is up to the implementor to guarantee that specified cardinality constraints hold.

Cardinality constraint declarations are ignored for derived functions.

For example:

 create function Married(Person husband,Person wife key)->Boolean as
stored;

Polygamous marriages are refused to be stored by the functionMarried , since the first argument has the defau

cardinality constraintKEY.

Thebag of declaration on the result of a stored function actually just overrides the defaultKEY declaration of

its argument withNONKEY. Thus the functionparents above could also have been written:

 create function parents(person nonkey) -> person as stored;

7.3 Deleting functions

Functions are deleted with thedelete function statement.
17

defini-

 below
Syntax:

delete-function-stmt ::=
DELETE FUNCTION function-name

For example:

 delete function married;

Deleting a type also deletes all subtypes and all functions using the deleted types.

For example:

 delete type namedobject; /* Wipes out all functions and
types defined so far */

7.4 Theselect statement

Queries retrieve objects having specified properties. They are specified using theselect statement.

Syntax:

query-stmt ::=
select-stmt | function-call

select-stmt ::=
SELECT[DISTINCT] expr-commalist

[into-clause]
[for-each-clause]
[where-clause]

into-clause ::=
INTO gen-variable-name-commalist

for-each-clause ::=
FOR EACH variable-declaration-commalist

variable-declaration ::=
type-name variable-name |
BAG OF type-name variable-name

where-clause ::=
 WHERE predicate-expression

For example,

select age(p) for each person p where name(p) = ’Eve’;

Selects the age of the person named Eve.

 select name(q) for each person p, person q
where name(p) = ’Eve’ and age(q) > age(p);

selects the names of all persons older than Eve.

Function calls (“Function Calls” on page 16) is the simplest form of queries.

Theexpr-commalist defines the object(s) to be retrieved. See “Predicate expressions” on page 19 for

tion of function-call .

Thefor-each-clause declares types of local variables used in the query.

Thewhere-clause gives a selection criteria for the search. The details of the where clause is described

in “Predicate expressions” on page 19 .

The result of a select statement is asingle result tuple of objects or abag of single result tuples. Duplicates may

occur, unless suppressed using the DISTINCT keyword.
18

sult

ple:

 types of

ribed in

ed

rent

lemen-

ained by

l ’

e given
An into-clause is available for specifying variables to be bound to the result. In case more than one re

tuple is returned, the variables will be bound only to the elements of the first encountered tuple. For exam

 select p into :eve2 for each person p where name(p) = ’Eve’;
 name(:eve2);

This query retrieves into the environment variable:eve2 the person whose name is ’Eve’.

7.5 Predicate expressions

The general syntax of predicate expressions is:

predicate-expression ::=
predicate-expression AND predicate-expression |
predicate-expression OR predicate-expression |
’(’ predicate-expression ’)’ |
simple-predicate

simple-predicate ::=
function-call |
relterm relop relterm

relterm ::=
function-call | res-values

res-values ::=
single-value | ’<’ single-value-commalist ’>’

relop ::=
= | < | > | <= | >= | !=

In a function call, the types of the actual parameters and results must be the same as, or subtypes of, the

the corresponding formal parameters or results.

Resolution of overloaded functions is described in“Overloaded Functions and Late Binding” on page 19.

Query variables can be bound to bags. The treatment of bag variables and aggregation operators is desc

“Subqueries and Aggregation Operators” on page 21 .

The comparison operators (=, !=, <, <=, > and>=) are treated as binary boolean functions. They are defin

for any object type.

7.6 Overloaded Functions and Late Binding

Function names may beoverloaded, i.e., functions having the same name may be defined differently on diffe

argument types. This allows generic functions to apply to several different object types. Each specific imp

tation of an overloaded function is called aresolvent.

For example, assume the two following AMOS function definitions:

create function less(number i, number j)->boolean
as select where i < j;

create function less(charstring s,charstring t)->boolean
as select where s < t;

Its resolvents will have the signatures:

less(number,number) -> boolean
less(charstring,charstring) -> boolean

Internally the system stores the resolvents under different function names. The name of a resolvent is obt

concatenating the type of its arguments with the name of the overloaded function followed by the symbo-> ’

and the type of the result.(syntax in “Functions and Queries” on page 14). The two resolvents above will b
19

uery

r if no

ariable

t

-

ple,

tead

e income

we use

-

the namesnumber.number.less->boolean andcharstring.charstring.less->boolean .

Overloaded function resolvents are allowed to differ on their argument types and the result types. The q

compiler resolves the correct resolvent to apply. If there is an ambiguity, i.e. several resolvents qualify, o

resolvent qualify an error will be generated by the query compiler.

When overloaded function names are encountered in AMOSQL function bodies, the system will use local v

declarations to choose the correct resolvent (early binding). For example,

 create function younger(person p,person q)->boolean
as select less(age(p),age(q));

will choose the resolventnumber.number.less ->boolean , sinceage returns integers and the resolven

number.number.less ->boolean is applicable to integers by inheritance. The other function resol

ventcharstring.charstring.less->boolean does not qualify since it is not legal to apply to argu-

ments of typeinteger .

On the other hand,

create function nameordered(person p,person q)->boolean
as select less(name(p),name(q));

will choose the resolventcharstring.charstring.less->boolean . In both cases the resolution will be

done at compile time.

Dynamic type resolution is also done for top level function call to choose the correct resolvent. For exam

less(1,2);

will choosenumber.number.less->boolean

NOTICE: To avoid the overhead of dynamic type resolution one may use the ’dot notation’:

number.number.less->boolean(1,2);

AMOS supports alsolate binding of overloaded functions where the overload resolution is done at run time ins

of at compile time. For example, suppose that managers are employees whose incomes are the sum of th

as a regular employee plus some manager bonus:

 create type employee subtype of person;
 create type manager subtype of employee;
 create function mgrbonus(manager)->integer as stored;
 create function income(employee)->integer as stored;
 create function income(manager m)->integer i

as select employee.income(m) + mgrbonus(m);

Now, suppose that we need a function that returns the gross incomes of all persons in the database, i.e.

manager.income for managers andemployee.income for non-manager. In AMOS such a function is de

fined as

 create function grossincomes()-> integer i
as select income(p)
for each employee p; /* income(p) late bound */

Since income is overloaded with resolventsemployee.income->integer andmanager.income->in-

teger and both qualify to apply to employees1, the resolution ofincome(p) will be done at run time. If income

of employees are sought the desired resolvent has to be explicitly specified asemployee.income->inte-

1.Due to inclusion polymorphism, Objects of type manager are also of type employee
20

 name

some

10].

t dupli-

.

e bag.

nit. Thus

 result of
ger .

We currently have the restriction on late bound functions that they can only be used in theforward direction,

i.e. queries where their arguments are known but not their results.

Since the detection of the necessity of dynamic resolution is done at compile time, overloading a function

may lead to a cascading recompilation of functions defined in terms of that function name. This can take

time. For a more detailed and extensive presentation of the managemant of late bound functions see [9][

7.7 Disjunctive Queries

The OR operator works like a union operator, i.e. the union of the objects satisfying its operands (withou

cates removed) is returned. Queries and function definitions can have arbitrary nesting of ANDs and ORs

Example:

create function father(person) -> person as stored;
create function mother(person) -> person as stored;
create function parent(person p) -> person q

as select q where q=father(p) or q=mother(p);

The function body ofparent is adisjunctive query, since it contains an OR.parent would generate the bag of

all fathers and mothers for a given person.

7.8 Subqueries and Aggregation Operators

Normally when an AMOSQL function is applied on a bag-valued function it is applied on each element of th

For example,

age(parents(:eve));

will return the ages of all parents of:adam , i.e. the functionage is applied on each element of the result from

the function callparents(:adam) .

By contrast, an aggregation operator is a function that treats some bag valued argument(s) as a single u

the complete bag is passed at once to the outer function, rather than applying the outer function on each

the bag. For example,count(bag of object) is an example of an aggregation operator:

 count(parents(:eve));

In this case the number of parents of:adam is returned.

Aggregation operators are defined as functions where one or several arguments are declared as bags:

 bag of type x

The following system aggregation operators are defined:

sum(bag of integer x) -> number r
sum(bag of real x) -> number r
count(bag of object x) -> integer r
maxagg(bag of object x) -> object r
minagg(bag of object x) -> object r

NOTICE: Aggregation operators can be overloaded (as forsum). Also notice thatcount, maxagg andmi-

nagg can be applied to any bag, whilesum must be applied only to ’uniform’ bags of integers or reals.

NOTICE: AMOS supports nested subqueries as arguments to aggregation functions. For example,totalin-
21

gation op-

:

tion, f.
comes could also be written:

 create function totalincomes()->integer
as select sum((select i

for each person p,integer i
where income(p)=i));

/* income will be bound at runtime */

Subqueries always return bags as their result; thus the result of a subquery must be passed to only aggre

erators.

NOTICE: Nested subqueries must syntactically be enclosed in parentheses, as intotalincomes above.

Local variables in queries may be declared as bags. For exampletotalincomes could also have been written

 create function totalincomes()->integer
as select sum(b) for each bag of integer b
where b = (select i for each person p,integer i

where income(p)=i);
/* Late binding on income*/

7.9 Negated subqueries and quantification

There are two aggregation operators in AMOSQL to test if a bag is empty,notany , or not empty,some:

notany(bag of object x) -> Boolean
some(bag of object x)-> Boolean

For example, the functionbutlowestincomes(d) returns all incomes that is more thand higher than the low-

est income:

 create function butlowestincomes(integer d)->integer i
as select i for each integer i,person p
where some((select for each person q

where (income(q) + d) < i))/* Late */
and i = person.income(p);

some corresponds to the logical quantifierexists.

Contrast this to the complementary functionlowestincomes that computes all incomes within the distanced

from the lowest of all incomes:

 create function lowestincomes(integer d)->integer i
as select i for each integer i,person p
where notany((select for each person q

where (income(q) + d)<i))/* Late */
and i = person.income(p);

notany corresponds to the logical quantifiernot exists , i.e. it negates subqueries, whilesome corresponds

to exists .

7.10 Transitive Closures

A transitive closure is all objects, o, reached directly or indirectly from an object, s, by applying some func

The classical example is to find all ancestors of a given person following theparent function (or finding all sub-

parts of a given part).

The recommended way to compute transitive closures in AMOS is to use the built-in functiontclose :

tclose(function f,object o,integer maxdepth)-> <object r,integer depth>
22

 string.

 tran-

ded

 shown

ter then
Starting with objecto it constructs the transitive closure by successively applyingf(o), f(f(o)) etc. down

to levelmaxdepth . tclose returns the objects,r , in the closure and their distance,d, fromo. f must be func-

tion with a single argument and result.

tclose is overloaded so that, as an alternative, the name of the traversal function can be specified as a

Example:

create function ancestors(person o)-> bag of person a
as select a for each integer d
where tclose("person.parents->person",o,200) = <a,d>

and a != o;

Thetclose function is invertible if the traversal function is invertible. This means that the direction of the

sitive closure can be inverted. Thus both these queries are legal:

ancestors(:kain);
select p for each person p where ancestors(p) = :eve;

The first query (function call) returns all ancestors of:kain while the other query returns all descendants of

:eve 1 .

An alternative definition ofancestor is as a recursive function (see next section). However, it is recommen

to usetclose as an alternative to recursion whenever possible, since this is more efficient. Studies have

that transitive closures account for a large majority of the needs for recursive queries. Sincetclose is invertible

in our case, it will be almost as powerful as the recursive definition.

7.11 Cursors

For queries and function calls returning bag valued results, theopen-cursor-stmt and thefetch-cur-

sor-stmt , statements are available to iterate over the result.

Syntax:

open-cursor-stmt ::=
OPEN cursor-name FOR query-stmt

cursor-name ::=
gen-variable-name

fetch-cursor-stmt ::=
FETCH cursor-name (into-clause | next-clause)

next-clause ::=
NEXT integer-constant

close-cursor-stmt ::=
CLOSE cursor-name

For example:

create person (name,age) instances :Viola (’Viola’,38);
open :c1 for select p for each person p where name(p) = ’Viola’;
fetch :c1 into :Viola1;
close :c1;
name(:Viola1);
<"Viola">

A cursor is created by theopen-cursor-stmt and is represented by a cursor object ofresult tuples containing

objects with unknown types.

The result of the query is materialized if it doesn’t exceed 1000 tuples. Should the number of tuples be grea

1.[I.e. the set of all humans that ever lived(except two).
23

s. Should

 becomes

erefore,

ly.

.

 the

L

d

 Should

lves re-

that

inite

nsitive

 defining

ation and
the result isn’t fully materialized but will be created as it is retrieved.

Construction of cursor contents when the result is greater than 1000 tuples is handled by cursor processe

a cursor process die unexpectedly an error message is issued and the interface variable holding the cursor

unbound. However, this check is made only when cursors are opened or closed for efficiency reasons. Th

it might be possible to retrieve a partial result, withfetch , from a cursor whose cursor process died unexpected

Also, should the system be unable to create a cursor process, an error message saying so will be issued

Thefetch-cursor-stmt fetches the first result tuple(s) from the cursor; i.e. the tuple(s) is removed from

front of the cursor bag. NIL is returned if there are no more result tuples left in the cursor.

If present in afetch-cursor-stmt , theinto clause will bind elements of the first result tuple to AMOSQ

interface variables. There must be one interface variable for each element in the result tuple.

If present in afetch-cursor-stmt , thenext clause will display the specified number of result tuples an

remove them from the cursor bag.

If neither anext nor aninto clause is present in afetch-cursor-stmt , a single result tuple is fetched and

displayed.

Theclose-cursor-stmt removes the cursor.

When acommit is done all open cursors are closed.

It is sometimes useful to count the number of result tuples in a cursor bag:

create function ageofpersonnamed(charstring nm)-> integer a
as select age(p) for each person p where name(p)=nm;

open :c1 for call ageofpersonnamed(’Eve’);
count(:c1);
<1>

This possibility should be used with great care since a complete materialization of the cursor is performed.

the cursor contain a large result then memory might become exhausted.

7.12 Recursive functions

AMOS supports a limited class of recursive queries. Recursive functions are normally disjunctive.

For example:

 create function ancestors(person p)->person a
as select a for each person q
where (a = ancestors(q) and q = parent(p)) or a = parent(p);

Recursive queries are evaluated top-down. The system only handles recursive functions that call themse

cursively in the ’forward’ direction (where all arguments are known). Otherwise, the system will complain

the query is not executable (’unsafe’). Left recursive functions, asancestor are re-ordered by the optimizer to

become right-recursive (in order to avoid internal looping). The top-down evaluation may still cause indef

looping in case there are circularities in the data.

NOTICE: Because of the above problems it is recommended to use the transitive closure function (see “Tra

Closures” on page 22) as an alternative to recursion whenever possible. Extra care should be taken when

overloaded recursive function as the possibility of infinite loops exists.

8 Database updates

We describe how to update the contents of the database. Notice that database population by object cre

attribute assignments was described in“Objects” on page 13 .
24

ngs are

ueries”

ecified

nner as

ease to
8.1 Function Updates

Information in AMOSQL can be thought of as mappings from function arguments to results. These mappi

either defined at object creation time (“Objects” on page 13), or altered by one of thefunction update statements

SET, ADD, or REMOVE.

Syntax:

update-stmt ::=
update-op update-item [for-each-clause] [where-clause]

update-op ::=
SET | ADD | REMOVE

update-item ::=
function-name ’(’ single-value-commalist ’)’ ’=’ res-values

Not every function is updatable. AMOS defines a functionf to be updatable if it is a stored function, or if it is

derived from a single updatable functiong in such a way that the argument and result parameters off partition all

the arguments and results ofg and such that no selection is involved in the derivation.

Semantics:

set sets the value of an updatable function given the arguments. For example:

set age(:adam)=33;

set can be combined with querying for set-oriented updates. For example:

set age(p)= q for each person p, integer q
where q = 1 + age(p);

will iterate over all persons and increment their ages.

A boolean function can be set to either TRUE or FALSE.

add adds the specified tuple(s) to the result of an updatable bag result function, analogous toset .

remove removes the specified tuple(s) from the result of an updatable bag result function, analogous toset .

The update statements are not allowed to violate the cardinality constraints (KEY) (See “Functions and Q

on page 14.) specified by thecreate-type-stmt or thecreate-function-stmt .

8.2 Updating type memberships

Theadd-type-stmt updates the type membership of one or more objects to make it belong to the sp

type.

Syntax:

add-type-stmt ::=
ADD TYPE type-name [’(’ [function-name-commalist] ’)’]
TO new-instances

The updated objects may be assigned initial values for all the specified attribute functions in the same ma

in thecreate object statement.

Theremove-type-stmt makes one or more objects no longer belong to the specified type.

Syntax:

remove-type-stmt ::=
REMOVE TYPE type-name FROM variable-name-commalist

Referential integrity is maintained so that all references to the objects as instances of the specified type c
25

ct will

ave side

g a special

ost,
exist.

An object will always be an instance of some type. If all user defined types have been removed, the obje

still be member ofUserTypeObject .

9 Database procedures

A database procedure is an AMOS function defined as a sequence of AMOSQL statements that may h

effects (i.e. database update statements or variable assignments). Procedures may return results by usin

result statement. Procedures shouldnot be used in queries (but this restruction is currently not enforced). M

but not all, AMOSQL statements are allowed in procedure bodies as can be seen by the syntax below.

Syntax:

 procedure-body ::=
 block |
 create-type-stmt |
 create-object-stmt |
 create-function-stmt |
 create-rule-stmt |
 create-index-stmt |
 delete-type-stmt |
 delete-object-stmt |
 delete-function-stmt |
 delete-rule-stmt |
 delete-index-stmt |
 for-each-stmt |
 update-stmt |
 set-variable-stmt |
 fetch-cursor-stmt |
 open-cursor-stmt |
 close-cursor-stmt |
 select-stmt |
 if-stmt |
 result-stmt |
 activate-rule-stmt |
 deactivate-rule-stmt |
 quit-stmt
block ::= BEGIN procedure-body-semicolonlist END |
 BEGIN
 DECLARE variable-declaration-commalist ’;’
 procedure-body-semicolonlist
 END
 result-stmt ::=
 RESULT expr
 for-each-stmt ::=
 FOR EACH [DISTINCT] variable-declaration-commalist
 [where-clause] procedure-body
 if-stmt ::=
 IF predicate-expression
 THEN procedure-body
 [ELSE procedure-body]
 set-variable-stmt ::=
 SET gen-variable-name ’=’ expr
26

re-

 func-

ontinued

er saves

ures are

nsate for

atabase.
Examples:

 create function creperson(charstring nm,integer inc) -> person p
 as
 begin
 create person instances p;
 set name(p)=nm;
 set income(p)=inc;
 result p;
 end;

 set :p = creperson(’Karl’,3500);
 create function makestudent(object o,integer sc) -> boolean
 as add type student(score) to o (sc);
 makestudent(:p,30);
 create function flatten_incomes(integer threshold) -> boolean
 as for each person p where income(p) > threshold
 set income(p) = income(p) -
 ((income(p) - threshold) / 2);
 flatten_incomes(1000);

A procedure is a function with one or severalprocedural statementsin its body. Theblock construct is used to

store several procedural statements in the body.

Procedures are compiled at definition time.

Procedures may return (bags of) results. Theresult-stmt is used for this, where the form is evaluated and

turned as the result from the procedure.

Thefor-each-stmt construct can be used to iterate over the result of a query. For example the following

tion addsinc to the incomes of all persons with salaries higher thanlimit and returns theirold incomes:

 create function increase_incomes(integer inc,integer limit)
 -> integer oldinc
 as for each person p, integer i
 where i > limit
 and i = income(p)
 begin
 result i;
 set income(p) = i + inc
 end;

NOTICE: The semicolon can be omitted after last statement in a block.

NOTICE: result-stmt does not not change the control flow (different from, e.g.,return in C), but it only

specifies that a value is to be added to the result bag of the function and then the procedure evaluation is c

as usual. Thefor-each-stmt does not return any value at all unlessresult-stmt is used within its body.

NOTICE: Queries and updates embedded in procedure bodies are optimized at compile time. The compil

the optimized query plans in the database so that dynamic query optimization is not needed when proced

executed.

10 Database rules

Rules have been introduced in AMOSQL. These can be used as integrity constraints that abort or compe

inconsistent updates. Rules can also be used as a way for applications to monitor specific events in the d
27

ion.

dition to

ition

 are

s the last

cution

s that a

ges the

he

it. See

gers can

unctions,

sical
The syntax for rules conforms to that of AMOSQL functions as closely as possible:

create-rule-stmt ::=
CREATE RULE rule-name param-spec AS
[variable-declaration-commalist]
WHEN predicate-expression
DO procedure-body

Rules are deleted by:

delete-rule-stmt ::=
DELETE RULE rule-name

Thepredicate-expression can contain any boolean expression, including conjunction, disjunction and negat

Rules are activated and deactivated by:

activate-rule-stmt ::=
ACTIVATE RULE rule-name ([parameter-value-commalist])
[PRIORITY (0|1|2|3|4|5)][STRICT] [INTO context-name]

deactivate-rule-stmt ::=
DEACTIVATE RULE rule-name ([parameter-value-commalist]) [FROM context-

name]

The semantics of a rule are as follows: If an event of the database changes the boolean value of the con

true, then the rule is marked astriggered. If something happens later in the transaction which causes the cond

to become false again, the rule is no longer triggered. This ensures that we only react to logical events1 . In the

check phase (usually done before committing the transaction), the actions are executed of those rules that

marked as triggered. If an action is to be executed only once per activation, the rule can be deactivated a

instruction in the rule action. By using priorities at rule activation the user can specify the order of rule exe

in case of simultaneous triggering of several rules. Rules have ’nervous’ semantics as default. This mean

rule will trigger everytime that a condition becomestrue even if it was alreadytrue. By adding the keywordstrict

at rule activation the rule will have ’strict’ semantics which is defined as: If an event of the database chan

boolean value of the condition fromfalse to true, then the rule is marked astriggered. Rule context specifies if a

rule is to be activated into a specific rule context or be deactivated from a specific context. The default is tde-

ferred rule context, where rules are automatically checked at (or actually just before) transaction comm

section 10.1 for more about contexts.

Example 1:

The salary changes of employees and managers are to be monitored. We want to ensure that only mana

have their salaries reduced. First we define the employee and manager types and the respective income f

where managers receive an additional bonus:

create type person;
create type employee subtype of person;
create type manager subtype of employee;
create function name(person) -> charstring as stored;
create function mgrbonus(manager) -> integer as stored;
create function income(employee) -> integer as stored;
create function income(manager m) -> integer i

as select i where i = employee.income->integer(m) + mgrbonus(m);
create employee(name,income) instances

1.To support physical events the system should provide functions that change values whenever a phy
event occurs and thus can be referenced in the condition of a rule.
28

ck to the

aded for

e

 executed

ecific em-

receives

l man-
:joe (’Joe Smith’,30000);
create manager(name,employee.income->integer) instances

:harold (’Harold Olsen’,80000);
set mgrbonus(:harold) = 10000;

Define a procedure for updating the income:

create function previous_income(employee) -> integer as stored;
create function set_income(employee e, integer i) -> boolean

as
begin
set previous_income(e) = income(e);
set income(e) = i;
end;

Then we define procedures for what to do when a salary is decreased:

/* employee income cannot be decreased */
create function compensate(employee e) -> boolean

as set income(e) = previous_income(e);
/* dummy procedure, managers are not compensated */
create function compensate(manager) -> boolean;

Finally we define the rule to detect decreasing salaries for all employees:

create rule no_decrease() as
for each employee e
when income(e) < previous_income(e)
do compensate(e);

Activate the rule:

activate rule no_decrease();

If an employee that is not a manager gets his salary decreased, the rule will automatically set the salary ba

old value at check time:

set_income(:joe, 20000);
check(); /* => reset income(:joe) to 30000 */

Commit does an implicit check:

set_income(:joe, 25000);
commit; /* => reset income(:joe) to 30000 */

Note: Since the rule is defined for all employees, and manager is a subtype of employee, the rule is overlo

managers. (Because the functionsincome and the procedurecompensate are overloaded). If a person of typ

manager gets a salary reduction, no action is taken. This is an example of a set-oriented rule. The action is

for every binding of the universally quantified variablee for which the condition is true.

Example 2:

Rules can be parameterized and instantiated with different arguments. Take a rule that ensures that a sp

ployee has an income below a certain maximum income, and the transaction is rolled back if an employee

an income above the threshold. This maximum income is fixed for all employees, but can vary for individua
29

ontexts
sociated
exts are

e
d by:

amed
tively.
ion-com-

ecked by
ve as

e used to
 be nested
 (and sub-
ed). Com-
 schedule
agers.

create function maxincome(employee) -> integer
as select 50000;

create function maxincome(manager) -> integer as stored;
create rule exceeding_maxincome(employee e) as

when income(e) > maxincome(e)
do rollback;

Set the income limit for Harold:

set maxincome(:harold) = 120000;

Activate the rule for a particular employee Joe and manager Harold:

activate rule exceeding_maxincome(:joe);
activate rule exceeding_maxincome(:harold);
set income(:joe) = 75000; /* rollback at check time because 75000 > 50000
*/
set maxincome(:harold) = 80000;

/* rollback at check time because 80000 + 10000 > 80000 */
 set mgrbonus(:harold) = 45000;

/* rollback at check time because 80000 + 45000 > 120000 */

10.1 Rule contexts

Rule contexts [12] are a mechanism for dynamically grouping rules. An application can have several c
that it activates and deactivates at different times. When rules are activated in AMOS, they are always as
with rule contexts. Only activated rules in activated contexts are monitored during a transaction. The cont
first-class objects and are created by the statement:

CREATE context-name

where thecontext-name is a global name. Contexts are deleted by:

DELETE CONTEXT context-name

The contexts are initiallyinactive which means that before a context isactivated the events affecting its rules ar
not monitored (unless the events are monitored by another already active context). Contexts are activate

ACTIVATE CONTEXT context-name

which enables all the activated rules in the context to be monitored. Contexts are deactivated by:

DEACTIVATE CONTEXT context-name

which disables all the activated rules in the context from being monitored. Two built-in contexts, n
deferred anddetached , are predefined and always active for deferred and detached rules, respec
These are checked automatically by the system. Deferred rules are checked immediately before transact
mit and detached immediately after. Rules are objects that can be fetched with the functioncontextnamed
that takes the name as a charstring and returns the context object. The active rules in a context are ch
calling the functioncheck with the context object as argument. Note that the context itself must be acti
well, otherwise the check operation will have no effect.

11 Sagas for long-running transactions

The AMOS transaction system has been extended with sagas. Sagas are first class objects and can b
chain a sequence of committed transations with compensating transactions. The sequence of sagas can
by defining sub-sagas. Abortion of a saga causes all the compensations to be executed and the sagas
sagas) to be deleted. Committing a saga just causes deletion (since the transactions are already committ
pensation of one saga is done in one complete sequence (unless stopped). If an application needs to
30

 layer (as

ll to

riables de-

cution of

atement is

data with

nt

 default

nique by

-

sagas (forward and backward) in smaller steps it is possible to orchestrate many sagas through a saga
part of the application) outside AMOS.

Sagas are created by the following function calls:

set :s = create_saga();

 or

set s = create_sub_saga(); (only to be used within another saga)

The syntax for executing something in a saga is as follows:

saga-stmt ::=

SAGA saga procedure-body

COMPENSATION procedure-body

Sagas are commited (and deleted) by:

commit_saga(:s);

and are aborted (and deleted) by

abort_saga(:s);

During abortion of a saga all the compensations are executed until the beginning or until stopped by a ca

stop_compensation();

Sagas can be passed to procedures to be executed in the body of the procedure. Note that any local va

fined outside the saga statement will have the values in the compensation that they had at the end of exe

the forward transaction of the associated saga statement. If such variables are changed after the saga st

executed this will not be seen in the compensation. To support such behaviour it is possible to associate

a saga through functions that are indexed with the current saga (can be accessed bycurrent_saga()).

12 Physical database design

This section describes some AMOSQL commands for database space and performance tuning.

12.1 Indexing

The system supports indexing on any argument or result of stored functions. Indexes can beunique ornon-unique.

A unique index prohibits more than one different value of the argument or result. The cardinality constraikey

of stored functions (See “Cardinality Constraints” on page 17.) is implemented as unique indexes. Thus by

the system puts a unique index on the first argument of stored functions. That index can be made non-u

suffixing the first argument declaration with the keywordnonkey or to specifybag of for the result, in which

case a non-unique index is used instead.

For example, in the following function there can be only onename perperson :

create function name(person)->charstring as stored;

By contrast,names allow more than one name perperson :

create function names(person p nonkey)->charstring nm as stored;

alternatively

create function names(person p)->bag of charstring nm as stored;

Any argument or result declaration can be suffixed with the keywordkey to indicate the position of a unique in
31

 unique,

on. For

 can be
dex. For example, the following definition prohibits two persons to have the same name:

delete function person.name; /* Remove old name function */

create function name(person p)->charstring nm key as stored;

Named non-unique indexes can be created on any arguments or results with the statement:

create-index-stmt ::=
CREATE INDEX index-name ON index-spec-commalist ;

index-spec ::=
function-name ’(’ argres-name ’)’

For example:

create index i1 on name(nm), names(charstring);

creates two indexes on the result ofname and ofnames, respectively.

Notice that one may use the name of the type of an argument or result to specify the index position when

as in the example.

Named indexes are deleted by

delete-index-stmt ::=
DELETE INDEX index-name ;

For example, to delete the two indexes above do:

delete index i1;

There always has to be at least one index left on each stored function. Thusdelete index is a dummy opera-

tion if one tries to delete the last remaining index.

To save space it is sometimes possible to delete the default index on the first argument of a stored functi

example, suppose we store a table mapping parts to identifiers with an index on the identifier:

create type part;
create function partid(part p)->integer id key as stored;

partid will have two indexes, one onp and one onid . To drop the index onp, do the following:

create index dummy on partid(p);
 delete index dummy;

12.2 Clustering

Functions can be clustered by creating multiple result stored functions, and then each individual function

defined as a derived function.

For example, to cluster the attributesname andaddress of persons one can define:

delete function person.name;
create function personprops(person p) ->

<charstring name,charstring address> as stored;
create function name(person p) -> charstring nm

as select nm for each charstring a
where personprops(p) = <nm,a>;

create function address(person p) -> charstring a
as select a for each charstring nm

where personprops(p) = <nm,a>;
32

 as

mbers.

ions can,
Clustering does not improve the execution time performance significantly in a main-memory DBMS such

AMOS. However, clustering can decrease the database size considerably.

13 System functions

This section describes the built-in system AMOS functions.

13.1 Comparison operators

The built-in, infix comparison operators are:

=(object x, object y) -> boolean (infix operator =)
!=(object x, object y) -> boolean (infix operator !=)
>(object x, object y) -> boolean (infix operator >)
>=(object x,object y) -> boolean (infix operator >=)
<(object x, object y) -> boolean (infix operator <)
<=(object x,object y) -> boolean (infix operator <=)

All objects can be compared. Strings are compared by characters, lists by elements, OIDs by identifier nu

Equality between a bag and another object denotes set membership of that object. The comparison funct

of course, be overloaded for user defined types.

13.2 Arithmetic functions

abs(number x) -> number y
div(number x, number y) -> number z (infix operator /)
max(object x, object y) -> object z
min(object x, object y) -> object z
minus(number x, number y) -> number z (infix operator -)
mod(integer x, integer y) -> integer z
plus(number x, number y) -> number z (infix operator +)
times(number x, number y) -> number z (infix operator *)
iota(integer l, integer u)-> bag of integer z
sin(number x) -> number z
cos(number x) -> number z
tan(number x) -> number z
ln(number x) -> number z
sqr(number x) -> number z

iota constructs bag of integers betweenl andu.

For example, to executen times AMOSQL statementstmt do:

for each integer i where i = iota(1,n)
stmt;

13.3 Aggregation functions

Some of these system functions are described in “Subqueries and Aggregation Operators” on page 21 .

count(bag of object o) -> integer c

Number of objects in bago (“Subqueries and Aggregation Operators” on page 21).

in(bag of object b) -> bag of object o
in(vector v) -> bag of object o

Extracts elements of bags and vectors

maxagg(bag of object x) -> object y
33

return a
Largest number in bag

minagg(bag of object x) -> object y

Smallest number in bag.

notany(bag of object o) -> boolean b

Test if bag empty. Logical NOT EXISTS.

some(bag of object x) -> boolean b

Test if there are any elements in bag. Logical EXISTS.

sum(bag of integer x) -> number s
sum(bag of real x) -> number s

Sum uniform bags of numbers.

13.4 Accessing the type system

allfunctions() -> bag of function f
allfunctions(type t) -> bag of <integer pos, function f, integer kind>
allfunctions(type t,integer pos, integer kind) -> bag of function f

Returns all functions, all functions that take as argument or return a given type, all functions that take or

type at a given postion, respectively:

f : The function.

pos : The position number. (1st is 1, etc.)

kind : A number indicating if it is an argument (kind = 0) or a result (kind = 1).

allobjects () -> bag of object o
alltypes() -> bag of type t

All functions, objects, and types, respectively, in the database.

subtypes(type t) -> bag of type s
supertypes(type t) -> bag of type s

The types immediately below/above typet in the type hierarchy.

allsupertypes(type t) -> bag of type s

All types abovet in the type hierarchy.

typesof(object o) -> bag of object t

The types of an object.

allobjects(type tp)-> bag of object t
createobject(type tp) -> object t

Get all instancest of a given typetp or create a new instancet of a given typetp .

functionnamed(charstring nm) -> function fn
kindoffunction(function f) -> charstring knd
name(function fn) -> charstring nm
typenamed(charstring nm) -> type t
34

.

tics re-
name(type t) -> charstring nm
objectname(object o, charstring nm) -> boolean
usedwhere(function f) -> function c
useswhich(function f) -> function c

functionnamed returns the function namednm.

kindoffunction returns the kind of the functionf as a string. The result can be one of’stored’, ’de-

rived’, ’foreign’ or ’overloaded’ . nameoffunction returns the name of the functionf .

typenamed returns the type namednm.

nameoftype returns the name of the typet .

objectname returns TRUE if the objecto has the namenm.

usedwhere returns the functions calling the functionf .

useswhich returns the functions called from the functionf .

resolvents(function g) -> bag of function r

The resolvents of an overloaded functiong.

resolventtype(function fn) -> bag of type t

The types of the first arguments of the resolvents of functionfn .

argrestypes(function fn nonkey) -> <integer pos,type tp,integer kind>
argrestypes(charstring fname nonkey) -> <integer pos,type tp,integer
kind>

Returns for each argument or result of a function:

pos : The position number. (1st is 1, etc.)

type : The type.

kind : A number indicating if it is an argument (kind = 0) or a result (kind = 1).

addtype(usertype tp,usertypeobject o) -> boolean
remtype(usertype tp,unsertypeobject o) -> boolean

Procedures to add/remove typetp to/from objecto.

cardinality(type t) -> integer c

Number of object of typet .

13.5 Query optimizer tuning

optmethod(charstring new) -> charstring old

Three optimization modes for AMOSQL queries can be chosen. The built-in function

call optmethod("name");

The name of the old optimization method is returned. Changes the optimization method toname, which can be

one of:

ranksort : (default) which is fast but not always optimal.

exhaustive : which is optimal but it may slow down the optimizer considerably.

randomopt : which is a combination of two heuristics: Iterative improvement and Sequence heuristics [4]

randomopt can be tuned by using the function

call optlevel(i,j);

wherei andj are integers specifying number of iterations in Iterative improvement and sequence heuris
35

ts,

ion

d

ise
spectively. Default settings isi =5 andj =5.

reoptimize(charstring fn) -> boolean

Reoptimize function namedfn . if fn is equal to the string"*ALL*" then all functions are reoptimized.

costhint(charstring fn,charstring bpat,object q)->boolean

Declare cost hintq for the AMOSQL resolvent function namedfn and the binding patternbpat . This cost hint

feature is explained inAMOS System Manual and in [1]. The cost hint can be a vector of two elemen

{cost,fanout} , in case the cost to executefn is constant. It can also be the name of an AMOSQL funct

returning the cost and the fanout.

13.6 Temporal support in AMOS

AMOS supports three data types for referencing time.Timeval is a type for specifying absolute time points an

time anddate are types for relative time points.

Timevals are written as |year-month-day/hour:minute:second|, e.g.|1995-11-15/12:51:32| .

Times are written as |hour:minute:second|, e.g.|12:51:32| .

Dates are written as |year-month-day|, e.g.|1995-11-15| .

The follwing functions exist for timevals, times, and dates.

now() -> timeval
time() -> time
date() -> date
timeval(integer,integer,integer,integer,integer,integer) -> timeval
time(integer,integer,integer) -> time
date(integer,integer,integer) -> date
time(timeval) -> time
date(timeval) -> date
date_time_to_timeval(date, time) -> timeval
year(timeval) -> integer
month(timeval) -> integer
day(timeval) -> integer
hour(timeval) -> integer
minute(timeval) -> integer
second(timeval) -> integer
year(date) -> integer
month(date) -> integer
day(date) -> integer
hour(time) -> integer
minute(time) -> integer
second(time) -> integer
timespan(timeval, timeval) -> <time, integer usec>

13.7 Miscellaneous functions

cd(charstring dir) -> charstring r
eval(charstring stmt) -> object r
pwd() -> charstring dir
quit() -> boolean
stop() -> boolean
system(charstring cmd) -> boolean

cd changes the current working Unix directory todir and returns its full name.

eval parses and evaluates the AMOSQL statementstmt . Currently the result must be single-valued, otherw
36

 other

MOS

 trans-

g places

hanged

 saved

tomatic

efault,

ts only
only the first element of the result tuple is returned.

pwd returns the full name of the current Unix working directory.

quit quits AMOS.

stop exits the AMOS top loop and returns to the program that called it. Useful when calling AMOS from

systems.

system executes the Unix commandcmd. No value returned.

14 Recovery–Storage System

This section describes the recovery system[Kar94] in AMOS and how to configure this from within the A

system using AMOSQL.The recovery system in AMOS is responsible for the automatic persistency of the

actions on the database image.

The recovery system is activated by simply typing:

recovery on;

and deactivated using

recovery off;

14.1 Configure

The recovery system uses the ping-pong method for saving images, so images are written to two alternatin

at a time interval. This interval, in minutes, can be specified using:

recovery interval 30;

At each commit the log-information is flushed onto the disk, when an excessive amount of information is c

in a short period the log-file grows fastly. In order to limit the size of this file an image can be forced to be

when the log-file reaches a specified size. This size is specified in kilobytes (KB):

recovery maxlog 128;

The current state of the recovery system is shown by just typing recovery:

recovery;
Persistency system is active.
Interval for saving image is 30 minutes.
Maximum size for the log is around 128 KB.

These parameter can be set and be changed together, the syntax is:

recovery (ON | OFF) [interval <minutes>] [maxlog <kb>];

Before shutting down the AMOS system an image should be saved this should be done using:

recovery quit;

14.2 Recovery

If the AMOS system was incorrectly terminated, a recovery action is taking place at startup time. This is au

for an image that had recovery activated. When starting AMOS the image-file “amos.dmp” is loaded by d

this is actually a symbolic link to the last fully saved image and “amos.log.first” and “amos.log.second” exis

if the system was incorrectly exited. So just by starting amos at the unix prompt recovers:

unix> amos
NIL
AMOS 0.1a, (c) CAELAB 1993
37

g-

 is faster

uld run
15 Miscellaneous

The transaction logging can be turned on and off with thelogging statement:

logging-stmt ::= LOGGING toggle

toggle ::= (ON | OFF)

The AMOSQL statementrollback does nothing when logging is turned off. It is often practical to turn off lo

ging when building large databases, since the system then consumes much less space.

The system will print the execution time of each top level AMOSQL statement by issuing thetiming statement:

timing-stmt ::= TIMING toggle

The result printing of the results of AMOSQL statements can be toggled with theecho statement:

echo-stmt ::= ECHO toggle

The image size can be increased arbitrarily with theimagesize statement:

imagesize-stmt ::= IMAGESIZE integer-constant

The system automatically increases the image size with 25% when the image is full. On some systems it

to increase the image size to the expected final database size before building a large database.

To redirect the AMOSQL input from a file use:

redirect-stmt ::= ’<’ string-constant

For example

< ’person.AMOSQL’;

16 Bugs

If You should find any bugs in a released AMOS, then send a mail toamos-bugs@ida.liu.se describing the

bug. If possible include the an example detailed enough to recreate the bug. If AMOS dumps core You co

gdb or some other debugger and look at the stack to see in what function the fault occured. Usinggdb You would

type the following

gdb amos core
>where

 and include the stack trace in the email.
38

eign

t system,

 Data-

s,

 Rule
ger
References

[1] W.Litwin, T.Risch: Main Memory Oriented Optimization of OO Queries Using Typed Datalog with For
Predicates,IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 6, December 1992.

[2] D.Fishman et al.: “Overview of the IRIS DBMS”, in W.Kim, F.H.Lochovsky (eds.):Object-Oriented Con-
cepts, Databases, and Applications, ACM Press, Addison-Wesley, 1989.

[3] Y.E.Ioannidis, Y.C.Kang: Randomized Algorithms for Optimizing large join queries,Proc. ACM SIGMOD
Conf., Atlantic City, 1990, pp 312-321.

[4] J.Näs: Randomized optimization of object oriented queries in a main memory database managemen
Master’s thesis, LiTH-IDA-Ex 9325 Linköping University 1993.

[5] P.G.Selinger et al: Access Path Selection in a Relational Database Management System,Proc. ACM SIG-
MOD Conf., Boston, 1979, pp 23-34.

[6] J.D.Ullman: Principles of Database and Knowledge-Base Systems, Volume I and II,Computer Science
Press, 1988 and 1989.

[7] M.Werner: A Client-Server Interface for AMOS,CAELAB Memo, Linköping University 1994.

[8] J.S.Karlsson: An Implementation of Transaction Logging and Recovery in a Main Memory Resident
base System,Masters’s thesis, LiTH-IDA-Ex-9404 Linköping University 1994.

[9] S. Flodin: An Incremental Query Compiler with Resolution of Late Binding,Research Report
LiTH-IDA-R-94-46, Linköping University 1994

[10] S. Flodin, T. Risch, Processing Object-Oriented Queries with Invertible Late Bound Functions, Proc. of
1995 VLDB conference

[11] M. Sköld, Active Rules based on Object Relational Queries - Efficient Change Monitoring TechniqueLic
Thecis No 452, Linköping University.

[12] M. Sköld, E.Falkenroth, T.Risch, Rule Contexts in Active Databases - A Mechanism for Dynamic
Grouping,In the RIDS'95 (Rules in Database Systems), Athens, Greece, September 25-27, 1995, Sprin
Lecture Notes in Computer Science, pp. 119-130, ISBN 3-540-60365-4
39

	CAELAB Memo 94-01 March 1994
	AMOS.v1 User’s Guide
	Jonas S. Karlsson, Staffan Larsson, Kjell Orsborn,...
	Dept. of Computer Science, Linköping University,
	581 83Linköping, Sweden
	Abstract
	1 Introduction
	2 AMOSQL introduction
	Figure 1 Examples of AMOSQL function definitions

	3 Running AMOS
	3.1 Running AMOS as World-Wide-Web server

	4 General syntactic constructs
	4.1 Identifiers
	4.2 Variables
	4.3 Constants
	4.4 Comments

	5 Types
	5.1 System type hierarchy
	Figure 2 AMOS type hierarchy

	5.2 Deleting types

	6 Objects
	6.1 Object deletion

	7 Functions and Queries
	7.1 Function Calls
	7.2 Cardinality Constraints
	7.3 Deleting functions
	7.4 The select statement
	7.5 Predicate expressions
	7.6 Overloaded Functions and Late Binding
	7.7 Disjunctive Queries
	7.8 Subqueries and Aggregation Operators
	7.9 Negated subqueries and quantification
	7.10 Transitive Closures
	7.11 Cursors
	7.12 Recursive functions

	8 Database updates
	8.1 Function Updates
	8.2 Updating type memberships

	9 Database procedures
	10 Database rules
	10.1 Rule contexts

	11 Sagas for long-running transactions
	12 Physical database design
	12.1 Indexing
	12.2 Clustering

	13 System functions
	13.1 Comparison operators
	13.2 Arithmetic functions
	13.3 Aggregation functions
	13.4 Accessing the type system
	13.5 Query optimizer tuning
	13.6 Temporal support in AMOS
	13.7 Miscellaneous functions

	14 Recovery–Storage System
	14.1 Configure
	14.2 Recovery

	15 Miscellaneous
	16 Bugs
	[1] W.Litwin, T.Risch: Main Memory Oriented Optimi...
	[2] D.Fishman et al.: “Overview of the IRIS DBMS”,...
	[3] Y.E.Ioannidis, Y.C.Kang: Randomized Algorithms...
	[4] J.Näs: Randomized optimization of object orien...
	[5] P.G.Selinger et al: Access Path Selection in a...
	[6] J.D.Ullman: Principles of Database and Knowled...
	[7] M.Werner: A Client-Server Interface for AMOS, ...
	[8] J.S.Karlsson: An Implementation of Transaction...
	[9] S. Flodin: An Incremental Query Compiler with ...
	[10] S. Flodin, T. Risch, Processing Object-Orient...
	[11] M. Sköld, Active Rules based on Object Relati...
	[12] M. Sköld, E.Falkenroth, T.Risch, Rule Context...

