
Comparison of Amos II with Other Data
Integration Projects
(working paper)

Vanja Josifovski and Tore Risch

Laboratory for Engineering Databases

Link�oping University, Sweden

vanja@ida.liu.se, torri@ida.liu.se

April 16, 1999

Abstract

This working document gives an overview of some research projects whose aims

are similar to the Amos II project. Amos II is related to research in the areas of

OO views, data integration, distributed databases and general query processing. We

have surveyed the literature on a number of multi-database integration and OO view

projects and compared their approaches to Amos II .

1 Multi-database integration

The main purpose of Amos II project is development of a system for integration of data in
multiple data sources. This section compares the architecture and implementation techniques
used in Amos II with other multi-database integration projects [6, 22, 4, 20, 7, 45, 34, 25, 4,
28, 16]. In summary, the unique features of Amos II are:

To aid the comparison, we �rst summarize some major features of the Amos II data
integration capabilities:

� A distributed mediator architecture where query plans are generated using a distributed
compilation in several communicating mediator and wrapper servers.

� Data integration by reconciled OO views spanning over multiple mediators and spec-
i�ed through declarative OO queries. These views are capacity augmenting views, i.e.
locally stored attributes can be associated with them.

� Processing and optimization of queries to the reconciled views using OO concepts such
as overloading, late binding, and type aware query rewrites.

1

� Query optimization strategies for e�cient processing of queries over a combination of
locally stored and reconciled data from external data sources.

1.1 Disco

DISCO (Distributed Information SEarch Component) system is based on a centralized
mediator-wrapper architecture. Although its primary focus is not on query performance,
but on extensibility and partial query evaluation in presence of unavailable data sources, it
has many principles in common with the Amos II system.

A special mediator called the Catalog keeps information about the available DISCO
mediators and wrappers on the network. This service corresponds closely to the name
services in Amos II . DISCO is based on the ODMG [6] standard data model and uses
OQL and ODL as the query and data de�nition languages, respectively. One of the central
concepts in the ODL is the concept of type which has associated an interface (structural type
description) and an extent. In DISCO the concept of a type is extended with these facilities:

� Associating an interface with one or more extents stored in the data sources. The
extents contain objects that have structure as described by the interface.

� Type mappings between types de�ned in the mediator and the types with extents
stored in the data sources, in order to overcome structural di�erences.

The �rst extension allows for a type de�ned in the mediator to draw its extent from a set
of data sources. The resulting extent is an union of all the instances in all the sources. The
second extension is used to transform the data in the data sources into a common interface.

Data sources are de�ned by instantiation of the type Repository. Repositories are clas-
si�ed into repository types. To access a repository of a particular type, a wrapper must be
implemented for it. For example, the following expressions de�ne two repositories r1 and r2
of a same type to be wrapped with the wrapper w0. The data in both repositories has a
format described by the interface Person. The query retrieves the names of all the persons
with salary greater than 10.

extent person0 of Person wrapper w0 repository r0;

extent person1 of Person wrapper w0 repository r1;

select p.name

from p in union(person0, person1)

where p.salary > 10;

In this example, the extents are named explicitly. Alternatively, they can be speci�ed by
meta-data queries that dynamically determine the number of extents to be scanned.

For con
ict resolution the user can use the OQL view de�nition capabilities. Compared
to the approach used in Amos II this has the following disadvantages:

1. The reconciliation is performed in the mediator, while Amos II can push the con
ict
resolution code to the translators and the data sources when favorable.

2

2. The view mechanism (named sets in OQL) does not provide OIDs for the view in-
stances and therefore the optimizations based on locally stored data in Amos II are
not applicable.

3. The ODL/OQL language does not have con
icts resolution constructs as the integrated
union types (IUTs). This requires from the user to manually specify the resolution in
case of a data overlap.

The query processing in DISCO is performed over plans described in a formalism called
universal abstract machine (UAM) which contains the relational algebra operators extended
with primitives for executing parts of the plans in the wrapper. The mediator communicates
with the wrapper by using a grammar describing the operator sequences accepted by the
wrapper. It can also (in some cases) ask for the cost of a particular operator sequence.
This method is more elaborate than the method for description of data source capabilities
in Amos II , but it is more complex and time consuming, due to the combinatorial nature
of the problem of constructing the subplans executed in the wrappers.

Finally, to our knowledge, an implementation of a prototype has been planned, but there
are no experimental results have been reported.

1.2 Garlic

The Garlic [22, 23, 37] system, developed at the IBM Almaden Research Center, also has a
centralized wrapper-mediator architecture. The system is based on ODMG's OO data model.
The data from the wrapped data sources is represented as objects. The OIDs of these objects
are constructed from the data source name, the object type, and a set of keys speci�ed for
each type retrieved from a data source. Except for the system data and intermediate results,
Garlic does not provide facilities for storing local user-de�ned data, even though it has a
fully functional query processor. The primary goals of the Garlic project are:

� To explore how the query optimization techniques based on exhaustive dynamic pro-
gramming, developed in earlier IBM research prototypes and products, can be used in
a data integration scenario.

� To expand these techniques, so that wrappers for di�erent data source types can be
easily speci�ed, modi�ed, and added to the system.

At the hart of the Garlic system is the query service facility. This facility is divided into
two units: (i) a query language processor, and (ii) a distributed query execution engine. The
query language processor performs tasks that correspond to some of the the calculus related
phases in the query processor of Amos II (semantic checking, rewrite, etc.). The second unit
performs cost based optimization and outputs an executable query execution plan.

The query optimizer in Garlic is based on dynamic programming. The optimizer builds
plans of gradually increasing sizes, by adding POPs (Plan OPerators) to already built partial
plans. The POPs can be relational algebra operators, operators for storing and retrieving
data in temporary tables, and operators for accessing the wrappers. During the search, the
optimizer prunes the plans that are more expensive than other plans representing the same

3

subquery. In addition to the composition of the plans, Garlic takes in account the location
of the result of the plan execution. Two plans computing the same subquery, but placing
the result in two di�erent sites are not pruned from the system.

POPs are added to already constructed partial plans using STARS - (STrategy Alter-
native Rules). Each rule describes how a new plan is constructed from one or more partial
plans. Each rule has attached a condition that guards its triggering. The rules create POPs
that are executed locally, or the PushDown POP which executes a subquery in a wrapper.
For the select-project-join queries there are three main STAR types (named STAR roots)
for: access (scan), join, and finish (plan completions as e.g. projections). The two �rst
STARs can produce plans that execute either in the mediator or in the data sources, while
the third one is always executed in Garlic. An illustrative example of a STAR root is the
join root which is translated into three di�erent POPs: ReproJoin - executed in a wrapper,
NestedLoopJoin - executed in Garlic over materialized operands, and BindJoin which is a
semi-join-like POP where the outer table is sent one tuple at a time to the site of the inner
table, retrieving the matching tuples.

The functionality of Garlic roughly corresponds to the multidatabase query engine in
Amos II . An important di�erence is that Garlic does not store local data. The generated
OIDs are used only to access the data in the data sources. This makes the techniques for
optimization of queries over a combination of locally stored and imported data in Amos II
not applicable. It seems that the Garlic OIDs are used only internally in the query processor,
and possibly as object handles for user requests over individual objects. Furthermore, Garlic
has no facilities equivalent to the IUTs in Amos II .

Another di�erence between the two approaches is that Garlic is based on a centralized
query compilation and execution architecture, while Amos II is based on a query proces-
sor which performs distributed query compilation in the network of translators and other
mediators. Therefore, we cannot directly compare the POP formalism of Garlic with the
decomposition tree (DcT) formalism of Amos II which is designed to distribute queries over
multiple Amos II servers. By contrast, a Garlic system treats another Garlic system as a
(relational) data source. Therefore strategies as achieved by the DcT distribution are not
explored. Although, it can be guessed that STAR rules can be formed to take advantage
of the intermediate result materialization capabilities of the Garlic mediators in order to
employ similar strategies as in Amos II in a network of Garlic mediators, this approach has
not been pursued in the reported work.

One limitation of the current implementation of Amos II is that it always pushes the joins
to a data source where all its operands are available. Garlic, on the other hand, also considers
plans which perform the join in the mediator. Our on-going work includes expansion of Amos
II to consider such query execution plans.

1.3 Pegasus

The goal of the Pegasus project is to develop a heterogeneous information and process
ow
management system (HP-MS). This project was started in the early 1990s at the HP Labs
in Palo Alto.

Pegasus is a fully
edged database management system. The focus of the project is

4

on integration of relational databases, multimedia databases, and legacy applications. The
three main goals of the Pegasus project are:

� seamless integration of external schemas with the local database

� e�cient query processing

� work
ow management

Pegasus originates in the same data model as Amos II : the Iris OO data model [15],
an OO extension of DAPLEX [42]. Earlier versions of Pegasus used the language HOSQL
which is an extension of the language OSQL [30] used in the Iris system. OSQL has also
served as a basis for Amos II 's query language AMOSQL. More recently Pegasus has been
shifted to a SQL3 based language SQL3+. This language extends the SQL3 standard with
data integration facilities.

Although the terminology di�ers greatly, the architecture of the Pegasus system is similar
to the mediator-wrapper architecture used in Amos II , but it is not distributed. The core
of Pegasus corresponds to the mediator services. External data sources are named Exter-
nal Data Resource Management Systems (EDRMSs). The interaction with the EDRMSs is
performed using a module named Pegasus Agent (PA) which also has some processing capa-
bilities. The PA process is intended to run on the same machine as the EDRMS it serves.
The functionality of the a PA is similar to a functionality of the translators in the Amos
II architecture. Nevertheless, a PA is not a fully
edged Pegasus server in the centralized
architecture of Pegasus. This is one of the most important di�erences with the Amos II
architecture.

The data integration facilities of Pegasus are named using the distributed database ter-
minology. Foreign tables are imported from declared data sources. In the following example,
summarized from [4], �rst a DB2 relational data source named DB1 is de�ned and then a
table is imported and bound to the type Programmer in Pegasus.

REGISTER RELATIONAL DB2 DATASOURCE db1 AT 'smith@host1' AS Pdb;

CREATE TYPE Programmer WITH OID VISIBLE

(Prog_id INTEGER,

Ssn INTEGER,

Name CHAR,

Salary INTEGER);

CREATE TABLE ProgrammerTable (Dcn: Programmer) AS IMPORTED

FROM RELATIONAL DATASOURCE Pdb RELATION Programmer

WITH OID PRODUCING BY (Prog_id)

(Prog_id AS MATCHING Prog_id,

Ssn AS MATCHING Ssn,

Salary AS MATCHING Salary,

Name AS MATCHING Name);

5

The resulting table has one-to-one correspondence with the table in the relational database.
The OIDs of the new type are formed using the Prog id column from the relational database.

Imported tables can be integrated with locally de�ned tables, as well as tables imported
from other data sources, by two mechanisms:

� integrated views

� adding columns of one table to another

The �rst mechanism allows for merging horizontally fragmented tables, while the sec-
ond is used for merging vertically fragmented tables. As opposed to the classical distributed
database work, here the fragments are maintained by autonomous database systems. The fol-
lowing example from [4] de�nes �rst a supertype over the types Programmer and Engineer,
and then an integrated view over the tables corresponding to this types:

CREATE TYPE Employee

OVER Programmer WITH Prog_id AS Emp_id,

Engineer WITH Eng_id AS Emp_id,

(Emp_id INTEGER,

Ssn INTEGER,

Name CHAR,

Salary INTEGER);

CREATE VIEW EmployeeTable (Dcn Employee)

AS SELECT * FROM ProgrammerTable UNION ALL

SELECT * FROM EngineerTable;

DEFINE ROW EQIVALENCE FOR EmployeeTable ON

(Tp ProgrammerTable, Te EngineerTable)

BY Tp.Dcn->Ssn = Te.Dcn->Ssn;

DEFINE RECONCILER ON EmployeeTable.Dcn->Ssn

(ProgrammerTable, EngineerTable)

RETURNS INTEGER USING DISAMB_SUM

The ROW EQUIVALENCE clause de�nes the equality condition for the rows of the de�ned
view. Rows that satisfy this condition will be treated as one in the resulting tables. Possible
con
icts in the values of the other columns are resolved by RECONCILER de�nitions. These
can be system speci�ed as, for example DISAMB SUM which returns the sum of the input
values, or user de�ned derived functions. Although the view de�nition uses the UNION
operator, the ROW EQUIVALENCE clause enforces outer-join semantics and processing.

The processing of the queries over the integrated view proceeds in three phases. The �rst
phase performs query rewrites to transform the query from using the integrated view to the
imported tables. Then, the query processor identi�es portions of the query tree which can
be evaluated in a single EDRMS and converts them into Virtual Tables (VT) which encap-
sulate the operations performed in the EDRMS. The resulting query tree has VTs or locally

6

stored tables as leafs and internal nodes which represent operators of extended relational
algebra. The extensions deal, among other, with object-oriented concepts, constraints and
reconciliation. Some of the query rewrite rules applied in this phase are: [4]:

� Push as much as possible of the operations into the EDRMS.

� Push up the reconcile operations in order to place the join operations close to the
outerjoins.

� Combine joins with the outerjoins in order to make the inputs to the outerjoin smaller.

� Transform the outerjoins to left- or right-outerjoins, or to ordinary joins when some of
the other query predicate use some attributes which are not present is the both of the
joined tables. Since the language is null-intolerant (a predicate evaluates to false when
a part of it is null), this eliminates the parts of the outerjoin where this predicate is
not present.

The second query processing phase builds a left-deep query tree using a cost based
method. The costs of the VTs are obtained using elaborate cost model for the operations
performed in the EDRMS and calibration of the data sources [11].

The left-deep query tree generated in the �rst two phases is rebalanced in the third phase.
The rebalancing operations are performed at certain points of the tree and are based on the
associativity and commutativity properties of the join and cross-product operators.

Each of the three query processing phases in Pegasus can be related to a phase in the
query processing in Amos II . The �rst phase corresponds to the calculus generation and
rewrite, with a di�erence that the rewrites in Amos II reduce the number of predicates, while
in Pegasus they perform reordering of the operators that in
uences their order of execution
in the �nal execution plan. Techniques, as in Amos II , that take advantage of the types of
the query variables to reduce the query size are not described.

In processing of queries over the integrated views, Pegasus keeps the outerjoins as a single
operation, and later in the query it performs a correction of the result by reconciliation
operators. This approach has an advantage in keeping the queries compact, but it does not
take advantage of the selections stated over reconciled functions. We believe that this kind
of selections appear often in queries over the integration views.

In Amos II , on the other hand, the outerjoin and the reconciliation is broken into up
to three cases: one join and two anti-semi-joins, each processed separately. This allows
selections speci�ed over the reconciled functions to be pushed all the way down to the data
sources in the two anti-semi-joins cases. In the join case, the optimizer might be able to push
the selections down to the data sources when the reconciliation is de�ned using function
values from only one of the data sources. Even when this is not the case, the join still
generates smaller intermediate results than the full outerjoin, in particular when the overlap
is small. The size of the result and the data shipped to perform the join has a maximum size
proportional to the size of the smaller of the integrated extents. The outer join produces an
intermediate result that is of size equal to the sum of the sizes of the integrated extents.

Another disadvantage of performing the reconciliation late in the query execution is that
the reconciliation operator requires its whole input, which is in this case an outer join of the

7

integrated tables, to be materialized before the processing starts. This prevents streamed
execution and might pose problems in cases when the intermediate results are too big to �t
into the integration system memory.

Although the problem of parameterized queries to the data sources is noted in the context
of tree rebalancing, Pegasus does not reduce the number of such queries by materializing
temporary indices in the system's memory, as done in Amos II .

Due to its centralized architecture the rebalanced trees in Pegasus are constructed and
stored in a single system. Distributed architecture is one of the future topics of the Pegasus
project [4]

1.4 TSIMMIS

The TSIMMIS system - The Stanford-IBM Manager of Multiple Information Sources [20]
is a continuation of the Light Weight Object Repository (LORE) project, and is aimed for
integration of a large number of structured and unstructured data sources. The basis for the
integration is a common data model named object exchange model (OEM). The idea behind
the OEM is to provide as simple as possible, but complete facilities for data integration.
Although OEM is not a fully
edged OO model, the basic entity in OEM is called \object".
Each object is composed of four elements: label, type, value, and object� id. As opposed to
other OO models, the OEM is self-descriptive. The type and the label of an object contains
the information usually stored in a database schema. Actually, the notion of schema is
absent in the OEM. The authors claim that the labels can be used not only for naming the
objects, but also for inferring semantics that can be used in the data integration process.
The value �eld of an object can contain a collection of literals or nested objects, thus creating
a graph-like database structure.

To query a database described in OEM, a client can issue a query in a query language
named OEM-QL. This query language adopts the OQL (and SQL) syntax style and is based
on the select-from-where clause. The semantics, however is based on the OEMmodel. The
path expressions in OEM-QL allow queries over the labeled graph that contain wildcards
and other regular expressions that make the navigation easier. As a result, an OEM-QL
query returns an OEM graph.

The TSIMMIS project uses a centralized mediator/wrapper data integration architecture.
Mediators can fetch and combine data from wrapped data sources. However, unlike our
translators, the wrappers do not have a complete query processor and data store. The
emphasize in TSIMMIS has been to enable easy wrapper and mediator generation, using a
mediator speci�cation language (MSL), rather than on query performance as in our work.
MSL is a rule based language where the input query is matched against a rule speci�cation.
In the wrapper de�nition, when a match is found, data source speci�c code speci�ed within
the rule is executed in order to retrieve the relevant data from the data sources. The data
source capabilities mechanism in Amos II are more elaborate and perform cost based and
heuristic optimizations that are not applied in TSIMMIS. Also, the OO transformations used
in Amos II are, due to the di�erences in the CDM, are not applicable in TSIMMIS. The
mediator generation system in TSIMMIS allows for joins, but does not consider integration
operators for resolving con
icts in overlapping data as in Amos II . Furthermore, to the

8

extent of our knowledge, the TSIMMIS project has not reported performance evaluation
of the execution of queries over views de�ned over data combined from the mediator and
di�erent data sources.

1.5 Multibase

The Multibase project [7, 8, 9, 10] is a pioneer work on integration of data in multiple
databases. As in Amos II , the Multibase system is based on a derivative of the DAPLEX
data model [42] extended with generalization. Data integration is performed by de�ning
generalized types as supertypes of existing database types. For the generalized types, derived
functions based on the functions of the subtypes can be de�ned to reconcile the data in the
integrated databases. These features are closely related to the functions clause in the IUT
de�nitions in Amos II .

Query transformations are used to transform a query over the generalized types into a set
of queries over the local schemas. These query transformations break down the outerjoins and
the reconciliation functions into queries the over disjoint parts of the integrated relations,
using joins and anti-semi-joins. The approach allows for similar optimization techniques
as the ones used in Amos II for optimizing queries over IUTs having no locally stored
functions. Nevertheless, the method used in Multibase is not based on system prede�ned
types and the properties of type hierarchies, which makes the query analysis and optimization
more complicated. Furthermore, the project does not explore combining optimization by
generalization with constructs as the DTs in Amos II .

Another important di�erence between the two systems is that the Amos II data model is
OO, while the Multibase system lacks OIDs. The lack of OIDs disallows both materialization
of the instances of the integrated types and seamless mixing of local data with data retrieved
from various data sources. Locally stored data in not considered in this project.

In [8] it is also identi�ed that in presence of selections over the reconciled functions, the
two anti-semi-joins will be usually able to take advantage of these. The authors describe
three optimization techniques to push the selections through the most common aggregations
used in reconciliation of function values of overlapping data. Nevertheless, they note that
these techniques apply to very limited number of cases. Therefore, we have chosen not to
pursue this approach in Amos II .

Finally, to the extent of the reported work available to us, the bene�ts of the proposed
optimization techniques have not been quanti�ed by experimental results.

1.6 Data Joiner

The IBM's DataJoiner [46, 45] is a state-of-the-art commercial product targeted for inte-
gration of relational databases of di�erent vendors. As opposed to the previous generation
integration tools that provide only a gateway for retrieving data stored in multiple vendor
databases, the DataJoiner has a full scale distributed query processor capable of pushing
down whole subqueries in to the connected databases. DataJoiner also is a fully
edged
DB2 database.

DataJoiner's query optimizer has a detailed knowledge of the strategies used in the

9

database engines supported as data sources. This meta-data, stored in a Server Attribute
Tables (SATs) includes information as the vendors' join implementations, index usage, type
of query trees used in the optimization, speci�cs of the SQL dialect etc.

As a complement to the SAT table information, the system uses sampling techniques
or catalog queries to build locally stored statistics about the characteristics of the tables
imported from the data sources. Using this information, the DataJoiner optimizer is capable
of precise estimates of the costs of the subqueries pushed to the source databases.

The DataJoiner query optimizer is an extension of the DB2/CS Starburst optimizer.
It enumerates all the possible plans using a dynamic programming approach, as in Amos
II . The suboptimal plans are pruned. The generated plans explore both performing the
operations in the integrator, or if possible, in the data sources.

The portions of the plans pushed to the data sources are translated to SQL that closely
resembles the execution strategy used by the local query processor. By this, the DataJoiner
takes over the optimization decisions from the relational database used as data sources. The
authors of the system claim that in many cases they generate queries that perform better
than if the original query was executed directly in the system. An industry report [38]
comparing the DataJoiner with two other products in the same area, sets the performance
and the functionality of this product high above the other two products.

1.7 MIND

The MIND (Middle-East Turkish University Interoperable DBMS) prototype [34, 36, 13]
is based on the OMG's distributed object management architecture. The system is im-
plemented around DEC's ObjectBroker ORB. Various relational databases from di�erent
vendors are connected to the system using an interface de�ned in IDL. Two interfaces play
a major role in the MIND integration architecture: the Global Database Agent (GDA) and
the Local Database Agent (LDA). For each session with a client, the GDA is instantiated in
a server CORBA object which handles the requests for the client. The CORBA architecture
provides location transparency for the GDA objects (GDAO). A GDAO contains a Global
Transaction Manager Object and a Global Query Processor Object (GQPO). The latter
performs the query decomposition and sends an executable plan for execution to the former.
The LDA objects (LDAOs) manage the submissions of the operations to the relational data
sources and transaction management. The tasks of the GDAOs and LDAOs can be related
to the tasks of the mediator and wrapper in the mediator-wrapper architecture.

The schema integration process is based on a typical four schema transformation layers:
local, export, global and external schema in order from the individual data sources to the
applications. The focus of these transformations is on resolution of the class structural
con
icts and class extent con
icts, while preserving the autonomy of the sources.

The con
ict resolution is speci�ed by a mapping de�nition. The following example
[34] illustrates an integration of departments tables from three databases (dept@DB1, di-
vision@DB2 and department@DB3):

/* global schema: department(dept_no, dept_name, address) */

/* local schemas: DB1: dept(dno, dname)

10

DB2: division(dno, dname, location)

DB3: department(dno, deptname, address) */

mapping department {

origin

DB1: dept d1,

DB2: division d2,

DB3: department d3;

def_ext dept_ext as

select * from d1, d2, d3 where d1.dno *= d2.dno

and d2.dno*=d3.dno;

def_att dept_no as

select d1.dno, d2.dno, d3.dno from d1, d2, d3;

def_att dept_name as

select d1.dname, d2.dname, d3.deptname from d1, d2, d3;

def_att address as

select d2.location, d3.address from d2, d3; }

The mapping clause speci�es the data sources, the extent of the new class, and the corre-
spondence of the local tables' attributes to the attributes of the global table. Note that the
*= operator denotes an outerjoin.

The goal of the query decomposition is to produce:

� A set of single data source queries that retrieve the needed data from each of the
involved data sources

� A set of post-processing operations executed in the GDAO that produce the query
result from the intermediate results sent by the data sources.

The set of single data source subqueries is produced by instantiating the global schema
query for each of the data sources. One limitation of this process as described in [34] is
that in presence of a join over two integrated tables, the generated single site queries assume
that the joins are performed only over fragments (integrated tables) located at a same data
source. For example, a query where the dept type de�ned above is joined with a emp table
integrating data from the same three sources, will produce subqueries which explore only
entries where the local employee tables join with the local department tables. Cross-source
strategies (e.g. where an employee at DB1 works at a department stored at DB2) are not
considered. Although this conforms with the probable intended semantics of the example
above, in general, this kind of simpli�cations are application dependent and, in our opinion,
should be inferred based on declared database constraints.

In the post-processing phase, the GDAO performs operations as outer-joins and joins
to build the �nal result from the intermediate results returned by the data sources. The
execution plan for this phase is generated by using a dynamic and heuristics-based query
optimization approach that takes in account the actual load of the systems during the query
execution time.

11

As the other systems that perform the reconciliation in the �nal phases of the query
processing, the method used in MIND su�ers from not being able to use the selections based
on reconciled functions early in the query processing. Also, although the requests to the
data sources can be executed in parallel, the reconciliation process in the mediator has to
wait until all the inputs are materialized, before emitting the �rst result tuple.

Another di�erence between MIND and Amos II is that MIND's integration facilities do
not provide means of materializing OIDs for the data from the data sources and augmenting
the views over this data with locally de�ned attributes.

1.8 IRO-DB

The IRO-DB project (Interoperable Relational and Object-Oriented Databases - ESPRIT -
III P8629) [14, 43, 17] developed tools for uni�ed access to a number of relational and OO
databases. The system is based on the ODMG standard data model and the query language
OQL. The architecture of IRO-DB is divided into three layers:

� The Local layer represents the data sources wrapped by Local Database Adapters
(LDA) that proovide ODMG/ODL mapping to the schema and OQL access to the
data in the sources. This layer also generates OIDs for the instances in the OO CDM
that correspond to the instances in the data sources.

� The Communication Layer performs the transfer of objects and OQL queries be-
tween the server and the client sites. The protocol used is an OO extension of the
remote database access (RDA) standard, named OORDA. The main purpose of the
communication layer is to allow the interoperable layer to communicate with the local
layer, but it can also be used by the applications to directly access the data sources
via an OO extension of SQL CLI.

� The Interoperable Layer provides the application with means of integrated access
to multiple remote databases. Its functionality can be divided into two parts: an
interoperable DBMS (IRO-DBMS) that supports use and maintenance of an interop-
erable (global) schema, and tools for aiding the building of an interoperable schema
(Integrators Workbench).

Compared with the wrapper-mediator architecture, the interoperable layer provides services
that correspond to the mediator services, while the local layer corresponds to the wrapper. In
the following, a description of the IRO-DBMS is presented. The IRO-DBMS is also consisted
of several functional units:

� The API generator generates an ODMG compliant C++ API from the integrated
schema to be used by applications that access this schema.

� The global transaction manager implements the nested transaction protocol of the
ODMG standard.

� The global parser and processor takes a text representation of an OQL query and
returns the result of its execution over the interoperable schema. The features of this

12

unit in relation to the Amos II system will be explored in greater detail in the rest of
this section.

� The global data repository stores and provides the rest of the system with an export
schemas description, a description of the interoperable schema, schema localization in-
formation, and a description of the mappings between the export and the interoperable
schemas.

The data integration schema in IRO-DB is speci�ed by three layers of class mappings.
Each class to be exported by a data source is named an external class. In the interoperable
system each external class of interest has a corresponding imported class which serves a
similar purpose as the proxy types in Amos II . The actual integration is performed by
de�ning derived classes. The interoperable system can also host locally stored data organized
into standard classes. The following example illustrates the use of the mapping construct
used for de�ning derived classes. In the example, �rst two imported classes, S1 PART
representing the table part at the source S1, and S2 PART representing the table prt at the
source S2, are de�ned. The mapping clause de�nes the extent of the derived class PART
and its attributes using query expressions [43]:

mapping imported S1_PART{

origin S1::PART orig;}

mapping imported S2_PART{

origin S2::PRT orig;}

mapping PART {

origin S1_PART sorig;

origin S2_PART iorig;

def_extent parts as select PART(sorig: s_i, iorig: i_i)

from s_i in s1_parts, i_i in s2_ptrs

where s_i.part_id = i_i.prt_id;

def_att part_id as this.sorig.part_id;

def_att upd_date as this.sorig.upd_date;

def_att description as this.iorig.ptr_tpflg;}

Since the derived classes can use a general query to draw their extents from the origin
classes, they can be used for functionality that corresponds to the DTs in Amos II . Extent
de�nitions with outerjoin conditions could be used to de�ne constructs similar to the IUTs,
but this are not elaborated in the IRO-DB reports available to us, nor are special query
processing techniques to support this type of operators presented. Also, the derived classes
are not placed in the class/type hierarchy as are the DTs and IUTs in Amos II .

As Amos II , IRO-DB also uses proxy objects in the interoperable system to represent
objects in the data sources. The same mechanism is used for the derived classes. This
mechanism is similar to the coercion mechanism used for the Amos II DTs. However, the
Amos II IUTs are di�erent. When IUTs are used in Amos II , no new OIDs are created
(and no coercion is used) since the extent of the IUT is an union of disjunctive sets of

13

object instances of the auxiliary subtypes. Another di�erence in the proxy manipulation
is that in Amos II the proxy OIDs are generated in the mediator corresponding to the
interoperable layer in IRO-DB, while in IRO-DB these are generated by the LDAs. This
leads di�erent internal representation of the OIDs of the standard class objects and the
OIDs of the imported class objects. The objects of the later type have longer OIDs storing
redundant class and source information that in Amos II is stored in the interoperable schema
as a property of the imported classes.

The handling of the requests for object attribute values also di�ers considerably between
the systems. In IRO-DB when a proxy object is used, the systems accesses the data source
and materializes in the interoperable database (also named home database) all the attributes
of the object. Possible references to other global objects are replaced by global OIDs, if these
objects are already in the home database. Otherwise, these objects are retrieved �rst and
then assigned global OIDs. The process proceeds until no unresolved object references exist
in the materialized object graph. After this materialization, the queries using this object
within a single transaction, access the local copy. The home database thus acts as an object
cache of all integrated data in IRO-DB.

IRO-DB queries can be processed using two modes of operation: (i) ad-hoc queries can
be processed by ignoring the current contents of the home-database and rematerializing
there a superset of the object instances needed for the query evaluation before processing
the query over the cache; (ii) long-transaction queries that are more likely to access the
same objects more than once, and therefore the query processor tries to materialize only the
objects missing in the home-database with the cost of more complicated processing.

Compared to this mechanism, Amos II uses selective retrieval of the proxy object function
values that are used in the queries. This approach does not pay the penalty of retrieving some
(possibly big) unused attributes and long chains of object referenced from the �rst object.
In conjunctive Amos II queries, the calculus rewrites remove the common subexpressions
that produce most of the repeated accesses to a single function. It is possible, in a rare case,
that the same function values are retrieved twice within same conjunctive query that has
two variables ranging over a single proxy type. This is a rare case and the penalty is big only
when the function values are very large or the function invocation is very costly. Prefetching
of proxy function values can be more useful in Amos II in the context of disjunctive queries
as the one used when processing of queries over the IUTs. However, the analysis of these
queries is much more complex than the analysis of conjunctive queries. Such features are
one of the future research topics in the Amos II project.

Some issues that are addressed in Amos II , but to the extend of our knowledge, are not
considered in IRO-DB are: (i) optimization of queries over combined local and imported data,
(ii) queries with outerjoins and complex reconciliation functions, (iii) queries over hierarchies
of derived classes and (iv) experimental study of the performance of the presented query
processing strategies. The IRO-DB project is succeeded by the MIRO-Web project [17].

1.9 DIOM

The Distributed Interoperable Model (DIOM) project [31, 39] has developed a distributed
mediation framework based on the ODMG-93 data model. The goal of this project is to

14

provide a scalable platform for uniform access to autonomous and heterogeneous systems
based on evolving and composable mediators. A network of domain-speci�c mediators is
deployed to support application access to the data in the data sources. Each mediator is
instantiated from a meta-mediator by de�ning an integration schema. The meta-mediator
architecture, Diorama, consists of two layers: a mediator layer and a wrapper layer. The
mediator layer contains:

� Interface manager: provides a GUI interface and an API that expose the mediator
functionality to the users.

� Distributed query mediation services: provides source selection, query decomposition,
parallel access plan generation and result assembly.

� Runtime supervisor: executes subqueries in the wrappers.

� Information source catalog manager: manages the data source information and inter-
face repository meta-data. Communicates with the local implementation repository in
the wrapper layer in the management of the local wrappers data.

The wrapper layer has the following components:

� Query wrapper service manager: receives the requests from the runtime supervisor,
translates the query in DIOM to a query in a local language using the data in the
implementation repository, executes the subquery and returns results.

� Implementation repository manager: maintains the correspondence between the source
data and its DIOM representation.

The uni�ed view of the data in the repositories is built using meta-operations applied to
base interfaces representing data in the data sources and compound interfaces built recur-
sively by meta-operations. There are four meta operations in DIOM:

� Aggregation allows composition of a new interface based on a number of existing inter-
faces. The new interface can reference the existing interfaces when de�ning attributes.
For example, a new interface employment can be de�ned that links employees from one
database with departments from another.

� Generalization is used to merger several semantically similar interfaces into one. The
new interface abstracts some common properties/attributes of the merged interfaces.
An instance union semantics is used that does not provide for overlap resolution.

� Specialization creates a new interface by adding new attributes or operations to an
existing interface.

� Import/Hide is used to import portions of schema from other DIOM mediators. It
preserves the closure of the imported subschema by implicitly importing the types of
the attributes and operations of the explicitly imported types. The hide clause can be
used to exclude certain attributes from importing. The imported interfaces can also
state their relationship in the exporting interface hierarchy using the ISA keyword.
This meta-operation corresponds to the proxy type mechanism in Amos II .

15

Queries over integrated schemas are posed in a language named interface query language
(IQL). The syntax of IQL is similar to the one proposed by the ODMG-93 OQL. One
distinction is the target clause that is added to the select-from-where block to describe the
possible data sources where the query is applied. The authors also propose a mechanism for
automatic detection of equi-joins among the object types used in the from clause, to relieve
the user of specifying obvious conditions in the where clause.

The IQL queries are processed in 5 phases:

� Query routing This phase selects the relevant information sources from the set of all
available sources, by mapping the domain model terminology to the source model
terminology.

� Query Decomposition Partitions a query expressed over a compound interface into
queries over the basic interfaces used in the de�nition of the compound interface. In-
terfaces de�ned using aggregation and generalization meta-operations are substituted
by n-ary join and union expressions respectively. Selections and projections are pushed
down to the sources while joins that are performed at the same site are grouped to-
gether.

� Parallel access plan generation The query scheduling strategy described in [39] �rst
builds a join operator query tree (schedule) using a heuristics approach, and then
assigns execution sites to the join operators using an exhaustive cost-based search.
Amos II , on the other hand, performs a cost-based schedule composition and heuristic
execution site assignment. Furthermore, the scheduling process in DIOM is centrally
performed, and no distinction is made between the data sources and the mediators in
the optimization framework, ignoring thus the problem of having sources with di�erent
capabilities. DIOM uses a parallel execution cost model. This is one of the current
research issues in the Amos II project.

� Subquery Translation and Execution performs tasks similar to that of the wrapper layer
in Amos II .

� Query result packaging and assembly This phase uses the results of the subqueries
generated by the query decomposition to assemble the result required by the user.

DIOM does not specify constructs for resolving con
icts in an overlap among the data
in the data sources. Also, no strategies to optimize queries over a combination of local and
reconciled data are presented. Finally, no quanti�cation of the bene�ts of the proposed
strategies is presented in the available DIOM project reports.

1.10 UNISQL

The UNISQL [25] system is one of the �rst commercial products that provide views for
database integration. The data integration views are build of virtual classes that correspond
to the Amos II DTs, but are organized in a separate hierarchy. The virtual class instances
inherit the OIDs from the ordinary class objects. This does not provide for de�nition of

16

stored functions over virtual classes de�ned by multiple inheritance, as in Amos II . In
UNISQL there is no mechanism corresponding to the IUTs in Amos II , but rather a set of
queries can be used to specify a virtual class as an union of other classes. This relationship
is not included in the type hierarchy, imposing two di�erent kinds of dependencies among
the virtual classes.

1.11 Remote-Exchange

The remote exchange project at University of Southern California [16] uses a CDM similar
to the one used Amos II to establish a framework for instance and behavior sharing. Three
dimensions of freedom are explored for function application in a federated database environ-
ment: the location of the function (local or remote), the location of the arguments (local or
remote), and the type of the function (stored or computed). Each case is elaborated and
an abstract implementation description is given. Most of the cases correspond to the ones
present in Amos II , although the terminology di�ers considerably. One case which is not
covered in Amos II is the execution of remote derived functions over local objects. In this
case the execution is performed at a remote site, where each function call in the de�nition
of the derived function is trapped and a callback is issued to the local system for the needed
argument values. This requires that the function calls used in the remote derived func-
tion evaluated over a local object have exactly the same name and semantics in the remote
database as they have in the local one, limiting the use of the feature.

The disadvantages of the Remote-Exchange approach is that it forces late binding on
every function execution that might need to be done remotely. Next, all remote operations
are performed on an instance basis by performing a RPC for each individual instance. An-
other performance degradation is caused by the size of the surrogate identi�ers for remote
instances which are 300 bytes long and contain all the information needed to perform the
remote function evaluation over the instance. Data integration features as the DTs and IUTs
in Amos II are not described.

1.12 Myriad

Myriad [28, 29] is a federated database project developed at the University of Minnesota.
The federation is de�ned as an integrated database with a global schema consisting of a set
of global relations. This relational schema can be speci�ed over data tables stored locally, as
well as in other relational database systems accessed by gateways. An SQL-like language is
used to query the integrated database schema. The goal of this project is to provide global
query processing and transaction management over a set of autonomous and heterogeneous
relational DBMS storing pre-existing data.

The global schema is generated from the export schemas by a speci�cation based on
outer-joins and the generalized attribute derivation GAD operator. The GAD operator is a
reconciliation speci�cation mechanism by which the local database attributes are mapped
to a corresponding global schema attribute. The following example, based on a example in
[28], de�nes a global res relation based on a three relations res A, res B and res C stored in
the relational databases A, B and C accordingly:

17

RES <-- GAD(

OUTERJOIN({res_A, res_B, res_C},

(res_A.rname = res_B.rname)

(res_B.rname = res_C.rname)

(res_C.rname = res_A.rname)),

(rname F_key(res_A.rname, res_B.rname, res_C.rname))

(rating F_avg(res_A.rating, res_B.rating))

(cost F_max(res_A.cost, res_B.cost)))

In the example, it is assumed that the three data sources have equal schema. The outerjoin
is performed over the attribute rname. The reconciliation is performed by the system de�ned
functions F fn. They perform the usual aggregation operations, except the F key function
which picks the �rst of the arguments with a non-null value.

Global queries are accepted by a Federated Query Manager (FQM), that performs the
translation into executable plans executed by Federated Transaction Management. On the
data source side, the function of the wrapper is performed by a Federated Transaction Agent
which accepts the requests and invokes the Federated Query Agent which processes the re-
quests and handles the communication with the data source.

The FQM translates a query over the global schema into a set of queries over individual
export schemas and a set of result assembling operations executed in the FQM. Although a
fully
edged query optimization module is not implemented [28], [29] presents an extensive
study of optimization of queries including several outerjoins and GAD operators. This work
manipulates the queries in a formalism named constrained query trees (CQT). CQTs are
relational operator query trees extended with n-ary union, join and outerjoin operators. The
authors note that a rigid interpretation of the de�nition of the outerjoin does not yield the
expected result when more than two outerjoins are performed in sequence, and introduce
operators to correct this problem. A graph of dependencies among the input relations is
assigned to each n-ary operator node to allow transformations that, under certain conditions:

1. transform outerjoins into joins

2. split n-ary outerjoin nodes into an equivalent tree of two outer join nodes

3. distribute GADs over outerjoins

4. commute selections and projections over with GAD and outerjoins

5. distribute joins over outerjoins

Some of these transformations are similar or extend transformations described in other ap-
proaches (e.g. 5 in [12], 1 and 4 in [10], and [32, 47], etc.). The application of these
transformations is subject to conditions de�ned over the attributes involved in the trans-
formed nodes. It is not clear how this framework will perform in practice. There is no cost
model de�ned to evaluate the bene�ts of the transformations and/or heuristics to determine
which transformation is bene�cial for a given tree, or how to choose a transformation that
will lead to the best tree. The framework has not been experimentally evaluated.

18

For other research on optimization of sequences of outerjoins the reader is referred to
[18, 19] where outer joins are treated as disjunctions of joins and ant-semi-joins (as in Amos
II); [2] uses hypergraphs for outerjoin reordering; and [21] describes how to push selections
through outerjoins.

2 Object-Oriented Views

The integration facilities of Amos II are based on work in the area of OO views [1, 24, 40,
41, 44, 26, 3, 41, 33]. This section gives a short overview of two prototypes that has been
most in
uential for the design of the OO views for data integration in Amos II .

2.1 Multiview

The Multiview [26, 27, 40] OO view system adds dynamically updateable materialized OO
views on the top of the GemStone OO DBMS. The views are de�ned by de�ning virtual
classes, which are placed in the same class hierarchy as as the ordinary GemStone classes.
The virtual classes are capacity-augmenting, i.e. attributes and methods can be added to
them, as to the ordinary GemStone classes. Virtual classes are de�ned using six object-
preserving algebra-operators:

� select: Returns a subset of the input class based on a predicate expression.

� hide: Removes properties from a set of objects.

� re�ne: Casts a set of input objects downwards in the class hierarchy (i.e. changes the
class of the input objects to a subclass of their original class).

� union: Makes a union of two input class extents. The equality condition is OID
equality.

� intersection: Returns an intersection of the extents of two classes.

� di�erence: Returns an di�erence of the extents of two classes.

The classes in GemStone and Multiview are organized in a multiple inheritance hierar-
chy. As Amos II , GemStone also requires that each object instance belongs to a single
most speci�c class. In presence of declaratively speci�ed virtual classes, it is impossible to
guarantee that two virtual classes will not both contain a same instance of some of their
common superclasses, which at the same time is not an instance of any of their common
subclassess. For example, if a class Person is subclassed by two virtual classes Student and
Teacher which do not have any common subclasses, there might be a person that satis�es
both the conditions of being a student and a teacher. Such an instance would violate the
requirements of belonging to a single most speci�c class. In [27] it is suggested that, to solve
this problem, in a multiple inheritance OO views hierarchy the system must either generate
automatically the intersection classes to classify this instances, or assign unique OIDs to the
instances of the virtual classes. The second solution, which is applied in both Multibase and

19

Amos II , furthermore requires single point of inheritance property of the class hierarchy.
This property guarantees that two classes having inherited the same property, inherit it from
a single class in the class hierarchy.

The Multibase system uses an elaborate solution where each object is represented by a
single conceptual object and a number of implementation objects for each of its superclasses.
The graph of each conceptual object with its corresponding implementation objects mirrors
the class hierarchy.

This idea has been simpli�ed and adapted in Amos II where there is no distinction
between implementation and conceptual objects. In Amos II , these relationships are stored
in coercion tables. The bene�t of this approach is that, in a data integration scenario, new
view classes can be de�ned over already existing populated classes. The instances of the
view classes can then have their own OIDs without a�ecting the classes they are derived
from.

Within the Multibase system, a class restructuring strategy is proposed to avoid con
icts
in the class hierarchy by preserving the single point of inheritance property when new view
classes are added. Because of the complexity of that process, in Amos II we adopted some
modeling constraints in order to prevent situations in which these transformations are needed.

Multiview is an implemented system with experimental results reported. However, it
assumes active view materialization techniques and does not elaborate the consequences
of the use of the applied techniques for data integration in a distributed heterogeneous
environment.

2.2 O2 Views

The O2 system is one of the �rst commercial OO systems to provide OO view functionality
[35, 41]. Before the introduction of the OO view system, the O2 system relied on named
sets to provide some of the OO view features. Named sets however, do not provide some
important features as: (i) description of the structure of the objects in the set, (ii) inheritance
of methods from already de�ned classes (iii) attachment of new methods, etc..

The O2 views are implemented on the top of the O2 system. The views are de�ned
using virtual schemas derived from root schemas. A root schema can either be another
virtual schema or an O2 schema. This allows for composition of views to an arbitrary degree
of nesting. Corresponding to the root and virtual schemas there are a root and a virtual
(data)base, representing the instances involved in the view mapping.

The views �lter the data of the root base into the virtual base. Two modeling constructs
are added to the O2 data de�nition language to support the de�nitions of the �lter mapping:
virtual classes (VC) and imaginary classes (IC). A virtual class is de�ned as a subclass of
a virtual or an ordinary O2 class, named root class. A VC inherits the attributes of its
root class, and can also have virtual attributes with functionality equivalent to the derived
functions in Amos II . Some attributes of the root class can be declared hidden and therefore
not accessible to the user of the VC. Other properties of the VCs are that they:

� have an extent selected by a declarative query form the root database.

� are connected to the class hierarchy.

20

� provide a named set representing the extent.

� provide OIDs for the class instances based on the one-to-one correspondence with
instances in the root database.

The ICs have the following properties:

� The IC extent is selected by a declarative query from the root database.

� The ICs are not connected to the class hierarchy.

� The ICs assign OIDs to the instances based on a set of core attributes, corresponding
to keys.

The following example, in which a VC Adult is de�ned as a specialization of the class Person,
illustrates the language constructs used for the VC de�nition:

virtual class Adult from Person extension Adult

virtual attributes

age: integer has value self-> age;

hide attribute date_of_birth

includes

(select p from p in People where p->age >= 21)

where self references the corresponding object of class Person, and the includes clause
de�nes how is the extent of the VC selected from the extent of the root class.

The separation of the view de�nition facilities between the VC and IC constructs provide
for a wide range of restructuring capabilities, while preserving the consistency of the class
hierarchy. In comparison with Amos II , the IC approach is in Amos II used in the proxy
types that retrieve their data from data sources other than Amos II mediators. The VCs
are equivalent to Amos II DTs having a single supertype. In the query processing, Amos II
relies as much as possible on OIDs, rather than on key values as the O2 view system. When
subtyping among Amos II mediators, OIDs are used and manipulated because they are at
least as small as the shortest possible key of an object. We assume that there is a functional
dependency between the keys and the OID of an object, and therefore key manipulation is
not needed in intersection-based OO views, as the DTs.

The O2 views mechanism does not provide multiple inheritance and integration facilities
as the DTs and IUTs in Amos II . Therefore this approach can be classi�ed as a class
restructuring mechanism, or a selection-based view mechanism. For more advanced view
de�nitions, the user is still limited to the named sets constructs.

References

[1] S. Abiteboul and A. Bonner: Objects and Views. ACM SIGMOD Intl. Conf. on Man-
agement of Data (SIGMOD'91), pp. 238-247, ACM Press, 1991.

21

[2] G. Bhargva, P. Goel and B. Iyer: Hypergraph based reorderings of outerjoin queries with
complex predicates ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD'95),
pp. 304-315, ACM Press, 1995.

[3] E. Bertino: A View Mechanism for Object-Oriented Databases. 3rd Intl. Conf. on Ex-
tending Database Technology (EDBT'92), Vienna, Austria, 1992.

[4] O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase Systems, Pretince
Hall, Englewood Cli�s, NJ, 1996.

[5] A. Bouguettaya, B. Benatallah and A. Elmagarmid: Interconnecting Heterogeneous In-
formation Systems. Kluwer Academic Pulishers, The Netherlands,1998

[6] R. Cattell: The Object Database Standard: ODMG-93 2.0, Morgan Kaufman Publishers,
San Mateo, CA, 1996

[7] U. Dayal, N. Goodman, T. Landers, K. Olson, J. M. Smith and L. Yedwab: Local
Query Optimization in MULTIBASE: A System for Heterogeneous Distribited Database,
Techical Report CCA-81-11, Computer Corporation of America, 1981

[8] U. Dayal, T. Landers and L. Yedwab: Global Query Optimization in Multibase: A
System for Heterogeneous Distribited Database, Techical Report CCA-82-05, Computer
Corporation of America, 1982

[9] U. Dayal: Processing Queries Over Generalization Hierarchies in a Mutltidatabase Sys-
tem, 9th Conf. on Very Large Databases (VLDB'83), Florence, Italy, 1983

[10] U. Dayal, H. Hwang: View De�nition and Generalization for Database Integration in a
Multidatabase System, IEEE Trans. on Software Eng. 10(6), Nov. 1984.

[11] W. Du, R. Krishnamurthy and M-C. Shan: Query Optimization in Heterogeneous
DBMS. 18th Conf. on Very Large Databases (VLDB'92), Vancouver, Canada, 1992

[12] W. Du and M. Shan: Query Processing in Pegasus, Object-Oriented Multidatabase Sys-
tems, O. Bukhres, A. Elmagarmid (eds.), Pretince Hall, Englewood Cli�s, NJ, 1996.

[13] C. Evrendilek, A. Dogac, S. Nural, F. Ozcan: Query Optimization in Multidatabase
Systems. Journal of Distributed and Parallel Databases Vol. 5 No. 1, January 1997, pp.
77-114.

[14] V. Smahi, J. Fessy and B. Finance: Query Processing in IRO-DB, Int. Conf. on Deduc-
tive and Object-Oriented Databases (DOOD'95) pp.299-319, 1995

[15] D. Fishman, D. Beech, J. Annevelink, E. Chow, T. Connors, J. Davis, W. Hasan, C.
Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M-A. Neimat, T. Risch, M-C Shan,
W. Wilkinson: Overview of the Iris DBMS. In W. Kim and F. Lochovsky (eds.): Research
Foundations in OO and Semantic DBS pp. 174-199, 1990

22

[16] D. Fang, S. Ghandeharizadeh, D. McLeod and A. Si: The Design, Implementation, and
Evaluation of an Object-Based Sharing Mechanism for Federated Database System. 9th
Intl. Conf. on Data Engineering (ICDE'93), (IEEE), Vienna, Austria, 1993.

[17] P. Fankhauser, G. Gardarin, M. Lopez, J. Munoz and A. Tomasic: Experiences in
Federated Databases: From IRO-DB to MIRO-Web. 24st Conf. on Very Large Databases
(VLDB'98), New York, NY, 1998

[18] C. Galindo-Legaria: Outerjoins as Disjunctions, ACM SIGMOD Intl. Conf. on Man-
agement of Data (SIGMOD'94), pp. 348-358, ACM Press, 1994.

[19] C. Galindo-Legaria and A. Rosenthal: Outerjoin Simpli�cation and Reordering for
Query Optimization, ACM Transactions on Database Systems, Vol. 22, No. 1, March
1997

[20] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y.Sagiv, J. Ullman,
V. Vassalos, J. Widom: The TSIMMIS Approach to Mediation: Data Models and Lan-
guages. Journal of Intelligent Information Systems (JIIS) Vol 8 No. 2 117-132, Kluwer
Academic Pulishers, The Netherlands,1997

[21] P. Goel and B. Iyer: Query Optimization: Reordering for a general Class of Queries.
ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD'96), pp. 47-55, ACM Press,
1996.

[22] L. Haas, D. Kossmann, E. Wimmers, J. Yang: An Optimizer for Heterogeneous Systems
with NonStandard Data and Search Capabilities. Data Engineering Bulletin Vol. 19 No.
4 pp 37-44, 1996

[23] L. Haas, D. Kossmann, E. Wimmers, J. Yang: Optimizing Queries accross Diverse Data
Sources. 23th Int. Conf. on Very Large Databases (VLDB97), pp. 276-285, Athens Greece,
1997

[24] S. Heiler and S. Zdonik: Object views: Extending the Vision. 6th International Conf.
on Data Engineering (ICDE'90), IEEE, pp. 86-93, 1990

[25] W. Kelley, S. Gala, W. Kim, T. Reyes, B. Graham: Schema Architecture of the
UNISQL/M Multidatabase System, Modern Database Systems - The Object Model, In-
teroperability, and Beyond, W. Kim (ed.), ACM Press, New York, NY, 1995.

[26] H. Kuno, Y. Ra and E. Rundensteiner: The Object-Slicing Technique: A Flexible Object
Representation and Its Evaluation, Univ. of Michigan Tech. Report CSE-TR-241-95, 1995.

[27] H. Kuno and E. Rundensteiner: The MultiView OODB View System: Design and
Implementation University of Michigan Technical Report CSE-TR-246-95, 1995.

[28] E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, M. Ganesh: Myriad: Design and
Implementation of a Federated Database System. Software - Practice and Experience, Vol.
25(5), 553-562, John Wiley & Sons, May 1995.

23

[29] E-P. Lim, J. Srivastava and S-Y. Hwang: An Algebraic Transformation Framework
for Multidatabase Queries, Journal of Distributed and Parallel Databases Vol 3. No.3, pp
273-307, Kluwer Academic Pulishers, The Netherlands, 1995

[30] P. Lyngbaek et al: OSQL: A Language for Object Databases, Tech. Report, HP Labs,
HPL-DTD-91-4, 1991.

[31] L. Liu and Calton Pu: An Adaptive Object-Oriented Approach to Integration and Ac-
cess of Heterogeneous Information Sources. Journal of Distributed and Parallel Databases
Vol 5. No. 2, pp. 167-205, Kluwer Academic Pulishers, The Netherlands, 1997.

[32] W. Meng, K-L. Liu and C. Yu: Query Decomposition in Multidatabase Systems.
Techival Report CS-TR-93-9, Department of Computer Science, State University of New
York and Binghampton, 1993

[33] A. Motro: Superviews: Virtual Integration of Multiple Databases. IEEE Transaction
on Software Engineering, Vol. SE-13, No. 7, July 1987.

[34] S. Nural, P. Koksal, F. Ozcan, A. Dogac: Query Decomposition and Processing in
Multidatabase Systems. OODBMS Symposium of the European Joint Conference on En-
gineering Systems Design and Analysis, Montpellier, July 1996.

[35] O2 Technology: O2 Views User Manual, version 1, Dec. 1993

[36] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, A. Dogac: Dynamic Query Optimiza-
tion on a Distributed Object Management Platform Fifth International Conference on
Information and Knowledge Management (CIKM96), Maryland, USA, November 1996.

[37] M. Roth and P. Schwarz: Don't Scrap It, Wrap It. 23th Int. Conf. on Very Large
Databases (VLDB97), pp. 266-275, Athens Greece, 1997

[38] F. Rendeze, K. Hergula: The heterogeneity problem and middleware thechonlogy: Ex-
perience and performance of database gateways. 24th Conf. on Very Large Databases
(VLDB'98), New York, 1998

[39] K. Richine: Distributed Query Scheduling in DIOM. Tech. Report TR97-03, Computer
Science Department, University of Alberta, 1997.

[40] E. Rundensteiner, H. Kuno, Y. Ra, V. Crestana-Taube, M. Jones and P. Marron The
MultiView project: object-oriented view technology and applications, ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD'96), pp. 555-563, ACM Press, 1996.

[41] C. Souza dos Santos, S. Abiteboul and C. Delobel: Virtual Schemas and Bases. 4th Intl.
Conf. on Extending Database Technology (EDBT'92), Viena, Austria, 1992.

[42] D. Shipman: The Functional Data Model and the Data Language DAPLEX. ACM
Transactions on Database Systems, 6(1), ACM Press, 1981.

24

[43] V. Smahi, J. Fessy and B. Finance: Query Processing in IRO-DB Technical Report
PRiSM, Versailles University 1994/37, Versailles, France, 1994

[44] M. Scholl, C. Laasch and M. Tresch: Updatable Views in Object-Oriented Databases.
Second Deductive and Object-Oriented Databases Conference (DOOD91), Dec, 1991.

[45] S. Subramananian and S. Venkataraman: Cost-Based Optimization of Decision Sup-
port Queries using Transient Views. ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD'98), pp 329 - 330, 1998

[46] S. Venkataraman and T. Zhang: Heterogeneous Database Query Optimization in DB2
Universal DataJoiner 24th Conf. on Very Large Databases (VLDB'98), pp 685 - 689, New
York, 1998

[47] C. Yu and W. Meng: Princliples of Database Query Processing for Advanced Applica-
tions, Morgan Kaufman Publishers, San Francisco CA, 1998

25

