
Indexing Values of Time Sequences
Presented at the 5th International Conference on Information and Knowledge Management (CIKM’96),

Rockville, Maryland, November 12-16, 1996

Abstract

A time sequence is a discrete sequence of values, e.g. tem-
perature measurements, varying over time. Conventional
indexes for time sequences are built on the time domain and
cannot deal withinverse queries on a time sequence (i.e.
computing the times when the values satisfy some condi-
tions). To process an inverse query the entire time sequence
has to be scanned. This paper presents a dynamic indexing
technique on the value domain for large time sequences
which can be implemented using regular ordered indexing
techniques (e.g. B-trees). Our index (termedIP-index) dra-
matically improves the query processing time of inverse
queries compared to linear scanning. For periodic time
sequences that have a limited range and precision on their
value domain (most time sequences have this property), the
IP-index has an upper bound for insertion time and search
time.

1 Introduction

In many real-time and temporal database applications the
state of a data objecto, varies over discrete time points,
forming a time sequence(TS). A time sequence can be
viewed as a state sequenceSi with Si=(ti, vi), wherevi is the
value of the data object at timeti.

There are three basic characteristics of such time
sequences:

1. Time sequences areordered, i.e.∀ i, j: i > j → ti > tj.

2. Each value vi is functionally dependent on the timeti, but
the inverse does not hold.

3. The valuevi can be 1-dimensional (e.g. for temperatures
or voltages), 2-dimensional (e.g. for positions in a
plane), or of higher dimensionality. In this paper we will
concentrate on 1-dimensional data. Our ideas can be
extended to multi-dimensional data as well.

Two basic classes of queries on time sequences can be iden-
tified:

1. Forward queries, e.g.

• What was the value at time pointt’?

• What was the value range in the time interval [t’, t’’]?

2. Inverse queries, e.g.

• At what time point(s) t was the value equal tov’?

• In what time interval(s) [t’, t’’] was the value larger
(smaller) thanv’?

Complex queries can be composed by combining these
basic queries.

t

v

v’

t’ t’’ t’’’

Sg1
Sg6 Sg10

S1

S6

S10

Ling Lin
Department of Computer Science

Linkoping University, Sweden

linli@ida.liu.se

Tore Risch
Department of Computer Science

Linkoping University, Sweden

torri@ida.liu.se

Martin Sköld
Department of Computer Science

Linkoping University, Sweden

marsk@ida.liu.se

Dushan Badal
Department of Computer Science

University of Colorado at Colorado Springs, USA

badal@sunshine.uccs.edu

Fig. 1.1: Illustration of inverse queries

For example, if the data in Fig. 1.1 represents a patient’s
temperature reading over a time period, a forward query
could be “What was the patient’s temperature at 11:00 yes-
terday?”, and an inverse query could be “At what time
period did the patient have a temperature higher than
38°C?”. Note that the result of the inverse query is a
sequence of time intervals.

Forward queries can be supported by B+-trees[9], AP-
trees[12], I-trees[23], or by computational methods[10].
Inverse queries, however, are difficult to support since there
can be more than one time point (time interval) where the
value is equal to (larger than, smaller than)v’. This paper
provides an indexing method to efficiently answer inverse
queries onTSs. The index supports efficient insertions of
new states at the end ofTSs.

The intuition behind our index is illustrated in Fig. 1.1. The
TS is viewed continuously as a sequence of segments
Sgi=[Si, Si+1]. The time points when the value is equal tov’

in Fig. 1.1 are <t’ , t’’ , t’’’ >. These time points can be com-
puted (by interpolation) if we get all the segmentsSgi that
intersect the linev=v’ (i.e., the segmentsSg1, Sg6, Sg10 in

Fig. 1.1). We propose an index method that retrieves all the
intersecting segments for a valuev’. This index performs
especially well for periodicTSs with a limited range and
precision on the value domain. We have measured its per-
formance in a main-memory database.

2 Related Work

There has been much research work done on time
sequences. Most of it deals with similarity matches
[2][17][20], i.e., finding all similar time sequences (or sub-
sequences) that match a given pattern within some error
distance. There have been indexes[3][4] and query lan-
guages [4] developed to achieve this goal.

Several indexing methods have been proposed for temporal
relations[9][12][21][22]. Most of them are intended to sup-
port operations like temporal join, temporal selection, etc.,
and they mostly assume interval time stamps rather than
time points.

By contrast our goal is to develop an indexing technique to
support inverse queries onTSs. This index can be seen as an
index on the value domain rather than on the time domain.
To the best of our knowledge no work has been done in this
area.

Our idea is to transform the problem of inverse queries into
k-dimensional spatial search problems, i.e. finding all inter-
vals intersecting a given line. There have been several
indexing methods proposed for k-dimensional spatial
search, e.g. k-d trees[18], R-trees[13] and SR-Tree[16].

There are also some index trees proposed in computational
geometry to deal with interval problems, e.g., Interval
Trees[8], and Segment Trees[5]. However, none of the
above methods are suitable for inverse queries onTSs. The
reasons are: 1)TSs consist of large sets of intervals [Si,
Si+1] which are dynamically growing, while most spatial
data structures assume a fixed search space. 2) The intervals
in TSs have a special property that the end point ofSgi is the
starting point ofSgi+1 (i.e. Si+1). We will show that this
property makes our index algorithm much more simple
compared to R-trees. Our index method can be built upon a
regular ordered one-dimensional index such as B-trees,
while R-trees require a complicated algorithm for handling
boundary conditions between regions.

Related work can be found in [9] where temporal opera-
tions are viewed as interval intersection problems and

where B+-trees are used to index interval time stamps.
Another related work[15] views temporal aggregation prob-
lems as an interval overlapping problem and then uses the
Segment Tree[5] to build an index for computing temporal
aggregates.

[19] proposes a temporal data model forTSs. It defines four
typesof TSs according to what interpolation assumptions
are applied, a) Step-wise constant (all values between [Si,
Si+1] are assumed to be equal tovi), b) Continuous (a curve-
fitting function is applied between [Si, Sj]), c) Discrete
(missing values cannot be interpolated) d) User-defined (a
user-defined interpolation function is applied). Our index
can be used to answer inverse queries covering all the
above cases.

3 The IP-index

We start with the simplest inverse queries onTSs, i.e. “At
what time point was the value equal tov?”, denoted as

F-1(v).

A naive way of answering inverse queries is to do curve fit-
ting on theTS to generate the functionv=F(t), and then

solve the equationt=F-1(v). This method is not practical
when theTSs are long and dynamically growing.

t

v

Sg1

Sg3
Sg2

S1

S2

S3

S4

t’ t’’

v’

Fig. 3.1: An exampleTS and an inverse query

t

v

Sg1

Sg3
Sg2

k1

k2

k3

k4

S1

S2

S3

S4

<Sg1, Sg2>

<Sg2>

<Sg2, Sg3>

Fig. 3.2: Illustration of the IP-index

We propose a better solution. Each stateSi in the TS is
viewed as points in the two-dimensional planet-v as shown
in Fig. 3.1. Then each consecutive statesSi, Si+1 constitute a
line segmentSgi. Then, if we can find all segmentsSgi that
intersect the linev=v’, we can answer inverse queries. For
example, in Fig. 3.1, the segments which intersect the line
v=v’ are <Sg2, Sg3>. The answer of the inverse query

F-1(v’) will then be:

• If the “step-wise” constant or “discrete” assumption is

applied, thenF-1(v’)=nil , since there is no value defined
betweenS2, S3 andS3, S4 respectively.

• If the “continuous” or “user-defined” assumption is

applied, thenF-1(v’)=<t’, t’’ >, wheret’ andt’’ are calcu-
lated by applying some interpolation function (e.g. linear
interpolation, least square, etc.) on the states around the
segmentsSg2 andSg3 respectively.

So, the problem of inverse queries is transformed into the
problem of finding all the intersecting segments for the line
v=v’. A naive way to solve the problem is to scan the entire
TS to check if any two consecutive statesSi, Si+1 “contain”
v’, i.e. if vi <v’<vi+1, or vi+1 <v’<vi. Such an algorithm,
however, has the complexity ofΘ(N), whereN is the size of
theTS.Below we propose an indexing technique to perform
inverse queries more efficiently.

3.1 The IP-index Definition

If we project each line segmentSgi on thev-axis, we get
non-overlapping intervalsIj=[kj, kj+1), where eachkj is a

distinct value ofvi (seek1...k4 in Fig. 3.2). We can see that
all values that belong to one interval have the same
sequence of intersecting segments (marked to the left in
Fig. 3.2). Our index associates with each interval [kj, kj+1)

all segmentsSgi that span1 it. It is termed theIP-index. A

simple illustration of the IP-index is shown in Fig. 3.2,
where we associate each interval [kj, kj+1) with the
sequence of spanning segmentsSgi.

Since the segments are consecutive, each segmentSgi is
uniquely identified by its starting stateSi. We useSi to rep-
resent the segmentSgi in the IP-index. We term the starting
states of each segments that intersect the linev=v’ as the
anchor-states of v’. Then, the sequence of intersecting seg-
ments can be represented as the sequence of anchor-states,
which is termed theanchor-state sequence. The anchor-
state sequence is a state sequence ordered by time.

Since each interval [kj, kj+1) is uniquely identified by its
starting pointkj, we usekj to represent the interval [kj, kj+1)
in the IP-index.

Suppose thatk1<k2<...<kj<... are the ordered distinct val-
ues ofvi in theTS. Then each index entryNi in the IP-index
has the form [key, anchors] where

• Ni.key=kj.

• Ni.anchorsis the anchor-state sequence for allv’ such
thatv’≥kj andv’<kj+1. It is also denoted asanchors(kj).

For example, the IP-index for the simpleTS in Fig. 3.2 is:

anchors(k1)=<S1, S2>
anchors(k2)=<S2>
anchors(k3)=<S2, S3>
anchors(k4)=nil

1. We say a segmentSgi spans an intervalIi when
the projection ofSgi on thev-axis spans the
intervalIi, i.e. if Sgi=((ts, vs), (te, ve)) andIi =(va,

vb), thenvs≤va andve≥vb.

We should point out that if the interpolation method intro-
duces new extreme points (and thus introduces extra seg-
ments) to the original time sequence, the IP-index needs to
be modified to include the extra segments as well.

3.2 The IP-index Insertion Algorithm

As we mentioned in the introduction, the IP-index supports
efficient insertion of new states at the end ofTSs. Each new
state forms a new segment, and this section shows how to
efficiently insert a new segmentSgi into the IP-index.

Suppose that in Fig. 3.2 we have inserted statesS1, S2 and
S3, and then we want to insert a new stateS4. This means
that we already have three index entries in the IP-index with
keys v1 (=k2), v2 (=k1), v3 (=k4) respectively, and we also
haveanchors(k1)=<S1, S2>, anchors(k2)=<S2>, anchors(k4)
=nil. To insert the stateS4=(t4, v4) we need to do the follow-
ing:

1. The new stateS4 creates a new index entry with the key
v4 (=k3), which divides the existing interval [k2, k4) into

two intervals, [k2, k3) and [k3, k4) (see Fig. 3.2).

The segments that span the new interval [k2, k3) are the
same as the segments that spanned the old interval [k2,

k4) (which are already present in the IP-index), i.e.,
anchors(k2)=<S2> stays unchanged.

The segments that span the new interval [k3, k4) are the
segments that spanned the old interval [k2, k4) plus the
new segmentSg3, i.e.,

anchors(k3)= anchors(k2)+
1S3 = <S2>+S3 = <S2, S3>.

2. For all the entries in the IP-index with keys inside the

interval [k3, k4) (in Fig. 3.2 there happens to be no such
key), appendS3 to the end of their associated anchor-
state sequences. This is becauseSg3 spans all the sub-
intervals inside the interval [k3, k4).

The result of the insertion conforms with Fig. 3.2.

So, the insertion of a new stateSi=(ti, vi) (i=4 in the above
example) into the IP-index has the following steps:

1. If vi is an existing key in the IP-index, then go to step 4.

2. Search the index entriesNi in the IP-index to find the
index entryNL where
NL.key= max{(Ni.key) | ((Ni.key) ≤vi)}.
This step finds the existing interval (in the example of
Fig. 3.2 we haveNL.key=k2 thus the interval is [k2, k4))
which the new key (v4 in the example) lies within.

3. Insert a new index entry withkey=vi andanchors

=NL.anchors.

4. For all index entriesNj whereNj.key lies inside the inter-
val [min(vi-1, vi), max(vi-1, vi)), append the starting state
(Si-1) of the new segment toNj.anchors.

3.3 Implementation

Note that the above insertion algorithm is about how to
associate the intersecting segments with each inserted value
vi. It does not assume any specific implementation. Actually

1. We use ‘+’ to denote adding a new element to the
end of a sequence.

the IP-index can be implemented by any ordered indexing

k2

k1 k3

k4

<S2>

<S1, S2>

<S2, S3>

nil

(t1, v1) (t2, v2) (t4, v4)(t3, v3)
S1 S2 S3 S4 The array ts

1 2 3 4 The index of ts

The AVL-tree

Fig. 3.3: The AVL-tree implementation of the IP-
index in Fig. 3.2

technique, e.g., B-Trees, AVL-Trees[1] or 2-3 Trees[7], and
the anchor-state sequence can be implemented as a sequen-
tial data structure (list or array) which supports fast append-
ing.

To verify our ideas we implemented the IP-index in a main-
memory database[11]. The time sequence was stored in an

arrayts, where ts[i]=(ti, vi). We used an AVL-tree as index-
ing data structure since it has small re-balancing time.
(Notice that the keysvi do not arrive in order, which means
that the tree needs to be re-balanced during insertion.) Each
index entry in the above algorithm corresponds to anode in
the AVL-tree. The anchor-state sequence was implemented
as a dynamic array of integers, where each integer is an
index of the arrayts.

Fig. 3.3 illustrates the AVL-tree implementation of the IP-
index in Fig. 3.2.

Before we give the insertion algorithm for the AVL-tree
implementation of the IP-index, we explain the notation and
functions that will be used in the algorithm:

• tree -- the AVL-tree implementing the IP-index.

• ts -- the array storing the time sequence

• Si=(ti, vi) is the arriving state (to be inserted into the IP-
index).

• insert_ts(ts, i, Si) -- inserts the stateSi into arrayts where
ts[i]=(ti, vi).

• insert_node(tree, vi, anc) -- inserts into the AVL-tree a
new node with key=vi, anchors=anc.

• get_lower(tree, vi): searches the AVL-tree to find the
nodeNL where

NL.key= max{ Nj.key| Nj.key≤ vi, 1≤j≤size(tree)}

This function is used to find the existing interval which
needs to be split into two parts; e.g. in Fig. 3.2,
get_lower(tree, v4).key=k2. The function returnsnil if no
node is found.

• exist_key(tree, vi): returnstrue if there already exists a
node in the IP-index whose key is equal tovi.

The code for the IP-index implementation using an AVL-
tree is as follows:

Insert_ip(tree,ts,t i ,v i):

Si =<t i ,v i >

insert_ts(ts,i,S i)

/* insert the state into the array which stores the
time sequence*/

if not exist_key(tree,v i)

NL=get_lower(tree,v i) (part 1)

if NL=nil

insert_node(tree,v i ,nil)

else

insert_node(tree,v i ,N L.anchors)

/* insert a new index entry, and copy the
anchor state sequence from the
“lower” index entry*/

endif

endif

if i >1

/* if not the first state in the time sequence*/

for each node Nj (part 2)

(1 ≤j ≤size(tree))

where Nj.key lies inside the
interval [min (v i-1 ,v i),
max(v i-1 ,v i))

Nj.anchors= Nj.anchors +(i-1)

/* add the new anchor state to the anchor
state sequences of all the intervals
spanned by the new segment*/

end for each

endif

Fig. 3.4: The IP-index insertion algorithm

3.4 Performance vs. Precision of Values

This section discusses the relationship between the per-
formance of the IP-index and the precision of the values in
the time sequence.

The algorithm in Fig. 3.4 contains two parts. Algorithm
analysis shows that (Part 1) takesΘ(LogM) time whereM is
the total number of index entries in the IP-index, since they
are actually AVL-tree search operations. Furthermore, (Part
2) takesm*append_time wherem is the number of intervals
which are spanned by the new segment (append_time is the
time taken to add the new state to the end of an anchor-state
sequence, which is assumed to be constant since we use a
sequential data structure which supports fast appending).

So, if we limit the parametersM andm, we can reduce the
insertion time of the IP-index. This can be achieved by lim-
iting the precision of the measured values. The reason is:
for a time sequence with range=R and precision=P in the
value domain, the number of index_entries will be less than
R /P.So, the lower the precision (the larger the value of P)
is, the smaller the value ofM andm will be. Thus, we can

reduce the insertion time by limiting the precision of the
values, which will be shown in the performance measure-
ment section.

The above observation is practical since 1) all measured
time sequences have a limited range on value domain, 2)
the original precision of the measured data is always limited
due to errors and uncertainty in measurements. For exam-
ple, when measuring the temperature of a patient the value
range is the temperatures that the human body can possibly
be alive at and at a precision that can represent changes that
affect the well being of the patients. Therefore, even if the
thermometer used for measuring the temperature of a
patient has the precision of 0.001°C, we can still limit the
precision to 0.1°C, which will both improve the perform-
ance of the IP-index and still be reasonable for the applica-
tion.

From the above discussions we can see that the IP-index is
not suitable for some unusual time sequences, e.g. periodic
time sequences with unlimited precision, or signals which
oscillate with an increasing amplitude over time (these two
kinds of time sequences have unlimited range or precision,
which makes theM parameter large). It is also not suitable
for those time sequences with “big jumps” in the values all
the time (this kind of time sequence makes the parameterm
large). Fortunately, most time sequences from real applica-
tions do not have these properties.

3.5 The IP-index Search Algorithm

To search the IP-index is to find the index entry which con-
tains the anchor-state sequence of the valuev’, i.e., to
search the index entriesNi in the IP-index to find the index
entryNL where

NL.key= max{(Ni.key) | ((Ni.key) ≤ v)́} (1)

ThenNL.anchors contains the anchor-state sequence for the
valuev’.

In the exampleTS in Fig. 3.1, the index entryNL for the
valuev’ is [k3, anchors] whereanchors=<S2, S3>. The rea-
son is thatk3 (=v4) is the first key which is “below” or equal
to v’.

The search algorithm is dependent on the implementation
of the IP-index. In the AVL-tree implementation the search
algorithm is to search for the node in the AVL-tree whose
key satisfies the above condition. It is well known that the
complexity is Θ(LogM) where M is the total number of
nodes in the tree.

As we discussed in the last section, the value of the parame-
ter M is determined by the precision of the values. The
lower the precision is, the smaller the value ofM will be.
So, limiting the precision of values will reduce the search
time of the IP-index as well.

4 Queries

There are several kinds of queries that can be answered effi-
ciently using the IP-index. Using an example of a patient’s
temperature reading, we can answer queries like:

• Query 1: When did the patient have the temperature
37°C?

This query is expressed asF-1(37) and it represents the
simplest form of inverse queries. It only requires search-
ing the IP-index to find the anchor-state sequence for the
value 37 (plus some post-processing if interpolation is
needed).

• Query 2: During what time period did the patient have the
temperature higher than 37°C?

This query can be expressed asF-1(v>37). We refer this
kind of query asinequality inverse queries. To answer
this query we first calculate all time points equal to

F-1(37): These time points form a sequence of time inter-
vals. Then for each time interval we check if the values
inside the interval are greater than37 or not. If so, then
this time interval is returned.

• Query 3: When did the patient have a temperaturearound
37°C?

This query can be expressed asF-1((37-e, 37+e)), while
e is a value which is application dependent. This kind of
query is useful since many applications need to know
“When was the valueapproximately equal tov’?” rather
than “When was the valueexactlyequal tov’?”.

Query 3 can be easily computed given that we can com-
pute Query 2. This is because

F-1((v’, v’’)) = F-1(v >v’) ∩ F-1(v <v’’), where ‘∩’ means
‘interval intersection’ andv’=37-eandv’’ =37+e.

• Query 4: When did the patient have two consecutive
fevers during 24 hours?

This is used for analysing the symptoms of disease[20].
It is an example of shape queries onTSs. It can be com-

puted as follows: 1) computeF-1(v>37) (which are the
periods of “fever”), 2) check if there exist two time inter-
vals in the “fever” periods that have the distanced of 24
hours. (The distance between two time intervals can be
defined either as the distance between the starting points
of both intervals or as the distance between the mid-
points of both intervals.)

5 Performance Measurements

We tested the performance of the IP-index using the AVL-

tree implementation in a main-memory database[11]1.

We measured the insertion time and search time of the IP-
index for different kinds ofTSs. The size (number of states)
of eachTS was 10000.

1. A simulated periodic sequence, sin(t/100) (t=1...10000)
with very high precison, plotted in Fig. 5.1.

2. An application time sequence[14] (which is the measure-
ment of pressure in a fluidized bed) plotted in Fig. 5.2.

3. A simulated time sequence with a largely monotonic
trend (but not strictly monotonic) plotted in Fig. 5.3.

1. All measurements were made on a HP9000/710
with 64 Mbyte of main memory and running HP/
UX.

Fig. 5.1: Sinus Data

5.1 Insertion for Periodic Time Sequences

In Fig. 5.4 and Fig. 5.5 we show the measured insertion
times of the IP-index for the time sequences shown in
Fig. 5.1 and Fig. 5.2 respectively. The insertion times are
measured as the sequences grow.

• The curves labelled “Original Value Insert” show the
insertion times of the IP-index. For the pressure data the
range=[-6, 10] and the precision=0.001. For the sinus data
the range=[-1, 1] and the precision= 0.000001. We can
see that the insertion time increases linearly with the size
of the sequence. This is because the precision is very high
which makes the parametersM andm (see section 3.4)
large.

Fig. 5.2: Pressure Data

Fig. 5.3: Monotonic Trend Data

• For the curves labelled “Limited Precision Insert” the pre-
cision of the values is limited to 0.1 for the pressure data
and 0.001 for sinus data respectively. We notice that the
insertion time become constant after the total number of
index entries has been inserted into the IP-index. This is
because a) the limited precision makes the number of
nodes of the AVL-tree does not grow any more; only the
anchor-state sequence associated with each node grows
with the time sequence and b) the limited precision makes
them parameter (number of intervals spanned by the new
segment as discussed at the end of section 3.4) have an
upper limit, which causes the insertion time to have an
upper limit (See Fig. 3.4 (Part 2)).

Our measurements verify that for a periodic time sequence
with a limited range and precision on the value domain,

Fig. 5.4: Sinus Data Insertion

Fig. 5.5: Pressure Data Insertion

there will be an upper bound on the IP-index insertion time.

5.2 Search for Periodic Time Sequences

In Fig. 5.6 the IP-index search time is compared with linear
scanning of the time sequence to find the anchor-state
sequence for some randomly generated valuev’. The test
was done on the simulated periodic sequence with very
high precison as plotted in Fig. 5.1. The comparison was
measured as the sequence grows. The results show that the
IP-index dramatically improves the performance of inverse
queries. Note that the results are displayed in logarithmic
scale since the difference between the IP-index search time
and the linear scanning time is too great to display with lin-
ear scaled axes. (Note that the curve labelled “IP-index
Search” in Fig. 5.6 is the same as the one labelled “Original
Value Search” in Fig. 5.7; they do not look the same
because they are displayed in different scaled axes.)

Fig. 5.7 and Fig. 5.8 show the performance of the IP-index
search for two periodicTSs. After every 1000 insertions, we
measured the average time to search for the anchor-state
sequence for some randomly generated valuev’. The results
show that the search time is logarithmic due to the AVL-
tree implementation (see the curves labelled “Original
Value Search”). However, when the assumption of “limited
range and precision” is satisfied, the IP-index search time
has an upper bound regardless of the time sequence size
(see the curve labelled “Limited Precision Search”). The
reason is the same as in the insert case, i.e., the number of
nodes (M) of the AVL-tree does not increase after all index
entries are inserted, (only the anchor-state sequences asso-
ciated with each node grow) so the search time stays con-
stant toΘ(LogM).

Fig. 5.6: Compare the IP-index with Linear Scanning

5.3 Time Sequences with Monotonic Trends

In Fig. 5.9 we measured the performance of the IP-index for
a simulated time sequence with a largely monotonic trend.
We see that both the insertion time and the search time are
approximately logarithmic due to the AVL-tree implemen-
tation. Since in this case we do not have a limited range on
the value domain, the “upper limit” on insertion and search
time cannot be achieved.

We also notice that a strictly monotonic time sequence does
not need any IP-index. The reason is that the value domain
is then monotonic just as the time domain is, which means
that conventional indexes on the time domain can be
applied to the value domain.

Fig. 5.7: Sinus Data Search

Fig. 5.8: Pressure Data Search

6 Conclusions and Future Work

This paper presented the IP-index which is an index on the
value domain for time sequences. We showed how to use
the IP-index to supportinverse queries, such as finding all
the time points when the temperature was equal to a given

value v (computingF-1(v)), or to find the time intervals
where the values are greater (smaller) than a given valuev’

(computingF-1(v>v’) or F-1(v<v’)).

The IP-index can be implemented using any ordered index
structures, such as B-trees. The performance measurements
showed that the IP-index radically improves the processing
time of inverse queries on time sequences, compared to lin-
early scanning the sequence (the only alternative without
the IP-index). For a periodic time sequence with a limited
range and precision on the value domain, the IP-index
insertion and search time have an upper bound regardless of
the size of the sequence. Furthermore, by limiting the preci-
sion of the values the IP-index insertion and search times
can be dramatically improved.

In future work we will investigate how to use the IP-index
in query optimization. For example, we can define the cost
models for the IP-index and store the cardinality (the
lengths of the anchor-state sequences) in each index entry

in order to estimate the cost ofF-1(v’) when theTS is very
long. We can also set a “moving window” on the anchor-
state sequence to discard or archive the old values of theTS
when they are not required any more.

An interesting improvement is to extend the IP-index for
indexing collections ofTSs [19] based on the composite key
o+v (o is the identifier of eachTS).

Another future work will be to generalize the IP-index to n-

Fig. 5.9: Monotonic Trend Data

dimensionalTSs, e.g. to query the past positions of an air-
craft given that theTS is a spatial-temporal trajectory of the
aircraft.

We also need to explore the IP-index for very large time
sequences stored on disk.

7 Acknowledgements

The authors would like to acknowledge Olof Johansson for
the valuable discussions which led to the IP-index concept.

References
[1] G. M. Adelson-Velskii and E. M. Landis:Doklady

Akademia Nauk SSSR, 146, (1962), pp. 263-266; English
translation inSoviet Math, 3, pp. 1259-1263.

[2] R. Agrawal, C. Faloutsos and A. Swami: Efficient Similar-
ity Search in Sequence Databases, in Proc. of the Fourth
International Conference on Foundations of Data Organi-
zation and Algorithms, Chicago, Oct. 1993, pp. 69-84.

[3] R. Agrawal, K. Lin, H. S. Sawhney, K. Shim: Fast Similar-
ity Search in the Presence of Noise, Scaling, and Translation
in Time-Series Databases, inProc. VLDB, Conf.,1995, pp.
490-501.

[4] R. Agrawal, G. Psaila, D. L. Wimmers and M. Zaït: Query-
ing Shapes of Histories, inProc. 21st VLDB Conf.,1995,
pp. 502-514.

[5] J. L. Bently:Algorithms for Klee’s Rectangle Problems,
Computer Science Department, Camegie-Mellon Univer-
sity, Pittsburgh, 1972.

[6] C. Bettini, X. S. Wang, E. Bertino, S. Jajodia: Semantic
Assumptions and Query Evaluation in Temporal Databases,
Proc. SIGMOD Conf.,May 1995, pp. 257-268.

[7] D. Comer: The Ubiquitous B-Tree,ACM Comp. Surveys,
11, 2, June 1979, pp. 121-137.

[8] H. Edelsbrunner:Dynamic Rectangle Intersection Search-
ing, Institute for Information Processing, Rept. 47, Techni-
cal University of Graz, Graz, Austria.

[9] R Elmasri, G. T. J. Wuu and V. Kouramaijian: The Time
Index and the Monotonic B+-tree, in [22], pp. 433-455.

[10] E. T. Falkenroth: Computational Indexes for Time Series,
Proc. of 8th Intl. Conf. on Scientific and Statistical Data-
base Management, June 1996, Stockholm, Sweden, pp. 18-
23.

[11] G. Fahl, T. Risch and M. Sköld: An architecture for Active
Mediators,Proc. Intl. Workshop on Next Generation Infor-
mation Technologies and Systems, Haifa, Israel, 1993, pp.
47-53.

[12] H. Gunadhi and A. Segev: Efficient Indexing Methods for
Temporal Relations”,Trans. Knowledge and Data Enginee-
ring, Vol. 5, No. 3, June 1993, pp. 496-509.

[13] A. Guttman: R-Trees: A Dynamic Index Structure for Spa-
tial Searching,Proc. ACM SIGMOD Conf., June 1984, Bos-
ton, MA.

[14] F. Johnsson, R. C. Zijerveld, C. M. van den Bleek, J. C.

Schouten and B. Leckner:Characterization of Fluidization
Regimes in Circulating Fluidized Beds - time series analysis
of pressure fluctuations, Technical Reports, Chalmers Insti-
tute of Technology, Sweden, 1996 (submitted for publica-
tion).

[15] N. Kline and R. Snodgrass: Computing Temporal Aggre-
gates,Proc. Data Engineering Conf., 1995, pp. 222-231.

[16] C. P. Kolovson and M. Stonebraker: Segment Indexes:
Dynamic Indexing Techniques for Multi-Dimensional Inter-
val Data,Proc. ACM SIGMOD Conf., 1991, pp. 138-148.

[17] C. S. Li, P. S. Yu and V. Castelli, “HierachyScan: A Hiera-
chical Similarity Search Algorithm for Databases of Long
Sequences”, in Proc. Data Engineering Conf., Feb. 1996,
pp. 546-553.

[18] K. Ooi, B. McDonell and R. Sacks-Davis: Spatial kd-tree:
Indexing mechanism for spatial database, inIEEE COMP-
SAC 87, 1987.

[19] A. Segev and A. Shoshani: A Temporal Data Model Based
on Time Sequences, in [22], pp. 248-269.

[20] H. Shatkay, S. B. Zdonik: Approximate Queries and Repre-
sentations for Large Data Sequences, inProc. Data Engine-
ering Conf., Feb. 1996, pp.536-545.

[21] H. Shen, B. C. Ooi, and H. Lu: The TP-Index: A Dynamic
and Efficient Indexing Mechanism for Temporal Databases,
in Proc. Data Engineering Conf.,1994, pp. 274-281.

[22] A. U. Tansel et al.(editors):Temporal Databases, Theory
Design and Implementation, The Benjamin/Cummings Pub-
lishing Company, Inc. ISBN 0-8053-2413-5, 1993.

[23] K. Torp, L. Mark and C. S. Jensen:Efficient Differential
Timeslice Computation, Technical Report, College of Com-
puting, Georgia Institute of Technology, Georgia, USA,
Sept. 1994 (submitted for publication).

