Indexing Values of Time Sequences

Presented at the 5th International Conference on Information and Knowledge Management (CIKM’96),
Rockville, Maryland, November 12-16, 1996

Ling Lin
Department of Computer Science
Linkoping University, Sweden
linli@ida.liu.se

Tore Risch
Department of Computer Science
Linkoping University, Sweden
torri@ida.liu.se

Martin Skold
Department of Computer Science
Linkoping University, Sweden
marsk@ida.liu.se

Dushan Badal
Department of Computer Science

University of Colorado at Colorado Springs, USA
badal@sunshine.uccs.edu

Abstract

A time sequence is a discrete sequence of values, e.g. terr
perature measurements, varying over time. Conventional
indexes for time sequences are built on the time domain anc
cannot deal withnverse querieon a time sequence (i.e.

computing the times when the values satisfy some condi-

2. Each valuey is functionally dependent on the tirpebut

the inverse does not hold.

The valuey; can be 1-dimensional (e.g. for temperatures
or voltages), 2-dimensional (e.g. for positions in a
plane), or of higher dimensionality. In this paper we will
concentrate on 1l-dimensional data. Our ideas can be

tions). To process an inverse query the entire time sequenc: €xtended to multi-dimensional data as well.

has to be scanned. This paper presents a dynamic indexinTy,q pasic classes of queries on time sequences can be iden-
technique on the value domain for large time sequencesfia(:

which can be implemented using regular ordered indexing
techniques (e.g. B-trees). Our index (ternfeédndeX dra-
matically improves the query processing time of inverse
gueries compared to linear scanning. For periodic time
sequences that have a limited range and precision on thei
value domain (most time sequences have this property), thés |nverse queries, e.g.
IP-index has an upper bound for insertion time and search
time.

1. Forward queries, e.g.

¢ What was the value at time potif
* What was the value range in the time intervakt]]?

¢ At what time point(s) t was the value equal/td

* In what time interval(s)t], t’] was the value larger
(smaller) tharv'?

In many real-time and temporal database applications thecomplex queries can be composed by combining these
state of a data objed, varies over discrete time points, pasic queries.

forming atime sequencégTS. A time sequence can be
VA

1 Introduction

viewed as a state sequerg®vith §=(tj, v;), wherey; is the
value of the data object at time

There are three basic characteristics of such time
sequences:

1. Time sequences aoedered i.e.Lli, jii>] - >t

Fig. 1.1: lllustration of inverse queries There are also some index trees proposed in computational
geometry to deal with interval problems, e.g., Interval
For example, if the data in Fig. 1.1 represents a patient'srrees[8], and Segment Trees[5]. However, none of the
temperature reading over a time period, a forward queryabove methods are suitable for inverse queriesSnThe
could be “What was the patient’s temperature at 11:00 yesreasons are: 1JSs consist of large sets of interval§, [

terday?”, and an inverse query could be “At what time S.1] which are dynamically growing, while most spatial

period did the patient have a temperature higher than) .
,,) .~ data structures assume a fixed search space. 2) The intervals
38°C?". Note that the result of the inverse query is a. . .
L in TSs have a special property that the end poilsigpis the

sequence of time intervals.

starting point ofSg,; (i.e. S4+1). We will show that this
Forward queries can be supported by B+-trees[9], AP-property makes our index algorithm much more simple
trees[12], I-trees[23], or by computational methods[10]. compared to R-trees. Our index method can be built upon a
Inverse queries, however, are difficult to support since thergegylar ordered one-dimensional index such as B-trees,
can be more than one time point (time interval) where theyhjle R-trees require a complicated algorithm for handling

value is equal to (larger than, smaller theh)This paper boundary conditions between regions.
provides an indexing method to efficiently answer inverse

queries onTSs. The index supports efficient insertions of Related work can be found in [9] where temporal opera-

new states at the end B%s. tions are viewed as interval intersection problems and

where B-trees are used to index interval time stamps.

Another related work[15] views temporal aggregation prob-

Jems as an interval overlapping problem and then uses the
Segment Tree[5] to build an index for computing temporal

aggregates.

The intuition behind our index is illustrated in Fig. 1.1. The
TS is viewed continuously as a sequence of segment
Sg=[S, S+1]. The time points when the value is equaV'to

in Fig. 1.1 are &, t", t” >. These time points can be com-

puted (by interpolation) if we get all the segmeBggsthat
[19] proposes a temporal data modelT&. It defines four

intersect the line=v’ (i.e., the segmentSg, Sg;, Sgg in ! ! ! !
Fig. 1.1. We propose an index method that retrieves all thetypesof TS according to what interpolation assumptions
e are applied, a) Step-wise constant (all values betwgen [

intersecting segments for a value This index performs)
especially well for periodid@Ss with a limited range and Si+1] are assumed to be equalfp b) Continuous (a curve-

precision on the value domaiwe have measured its per- fitting function is applied betweer§[§J), c) Discrete

formance in a main-memory database. (missing values cannot be interpolated) d) User-defined (a
user-defined interpolation function is applied). Our index
2 Related Work can be used to answer inverse queries covering all the

. above cases.
There has been much research work done on time

sequences. Most of it deals with similarity matches i

[2][17][20], i.e., finding all similar time sequences (or sub- 3 The IP-index

sequences) that match a given pattern within some errowe start with the simplest inverse queriesTds, i.e. “At
distance. There have been indexes[3][4] and query lanwhat time point was the value equab®, denoted as
guages [4] developed to achieve this goal. F(v).

Several indexing methods have been proposed for temporal naive way of answering inverse queries is to do curve fit-
relations[9][12][21][22]. Most of them are intended to Sup- ting on theTSto generate the function=F(t), and then
port operations like temporal join, temporal selection, etC..qove the equatiot=F "(v). This method is not practical

and they mostly assume interval time stamps rather thaovhen theTSs are long and dynamically growing
time points. '

By contrast our goal is to develop an indexing technique to S,
support inverse queries @i%. This index can be seenasan VA
index on the value domain rather than on the time domain. ,
To the best of our knowledge no work has been done in this
area.

Our idea is to transform the problem of inverse queries into
k-dimensional spatial search problems, i.e. finding all inter-
vals intersecting a given line. There have been several
indexing methods proposed for k-dimensional spatial
search, e.g. k-d trees[18], R-trees[13] and SR-Tree[16].

Fig. 3.1: An exampldSand an

inverse query

Fig. 3.2: lllustration of the IP-index

We propose a better solution. Each stgtén the TS is

viewed as points in the two-dimensional pl&wveas shown
in Fig. 3.1. Then each consecutive st&e§,, constitute a

line segmenBg. Then, if we can find all segmergg that

intersect the line=v’, we can answer inverse queries. For
example, in Fig. 3.1, the segments which intersect the line
v=V' are S, Sg>. The answer of the inverse query

F1(v') will then be:

If the “step-wise” constant or “discrete” assumption is

applied, thermX(v)=nil , since there is no value defined
betweers,, S; andS;, S, respectively.

If the “continuous” or “user-defined” assumption is

applied, therF1(v))=<t’, t” >, wheret' andt” are calcu-
lated by applying some interpolation function (e.g. linear

all segment$g that spaﬁ it. It is termed thdP-index A

simple illustration of the IP-index is shown in Fig. 3.2,
where we associate each intervdd, [k,;) with the

sequence of spanning segmesgs

Since the segments are consecutive, each sedgbgeid
uniquely identified by its starting stafe We use§ to rep-
resent the segmeByg in the IP-index. We term the starting

states of each segments that intersect theviiné as the
anchor-state®f v'. Then, the sequence of intersecting seg-
ments can be represented as the sequence of anchor-states,
which is termed thenchor-state sequenc&he anchor-

state sequence is a state sequence ordered by time.

Since each intervak], k1) is uniquely identified by its
starting poinkj, we usek; to represent the intervel[ki, 1)
in the IP-index.

Suppose thak;<k,<...<k;<... are the ordered distinct val-

interpolation, least square, etc.) on the states around theyes ofv; in the TS Then each index entfy; in the IP-index

segment$Sg andSg; respectively.

So, the problem of inverse queries is transformed into the
problem of finding all the intersecting segments for the line
v=v'. A naive way to solve the problem is to scan the entire
TSto check if any two consecutive stasS,; “contain”

V', i.e. if v <V'<viq or viyg <v'<v;. Such an algorithm,
however, has the complexity &N), whereN is the size of
theTS.Below we propose an indexing technique to perform
inverse queries more efficiently.

3.1 The IP-index Definition

If we project each line segmeByg on thev-axis, we get
non-overlapping interval§=[kj, k.1), where eaclk is a
distinct value ofy; (seek;...k, in Fig. 3.2). We can see that

all values that belong to one interval have the same
sequence of intersecting segments (marked to the left in
Fig. 3.2). Our index associates with each interiall,)

has the formKey, anchorkwhere

N;.key=k.

* N;.anchorsis the anchor-state sequence for\alisuch
thatv’zk; andv’<kj, . It is also denoted achois(k).

For example, the IP-index for the simfi8in Fig. 3.2 is:
anchosk)=<S;, S>>
anchos(ky)=<S>
anchoiskz)=<S,, S>

anchos(kg)=nil

1. We say a segmeBqg spans an intervdj when
the projection o5g on thev-axis spans the
intervall;, i.e. if Sg=((tg, Vg), (te: Vo)) andl; =(vy,
Vp), thenvgsv, andvgxvy,.

We should point out that if the interpolation method intro-

interval ks, kg) (in Fig. 3.2 there happens to be no such

duces new extreme points (and thus introduces extra seg- key), appendS; to the end of their associated anchor-
ments) to the original time sequence, the IP-index needs to gi4te sequences. This is becaBsg spans all the sub-

be madified to include the extra segments as well.

3.2 The IP-index Insertion Algorithm

intervals inside the intervakd, k).

The result of the insertion conforms with Fig. 3.2.

As we mentioned in the introduction, the IP-index supports So, the insertion of a new sta@e(t;, Vi) (i=4 in the above

efficient insertion of new states at the end 8. Each new

example) into the IP-index has the following steps:

state forms a new segment, and this section shows how tc

efficiently insert a new segmegg into the IP-index.

Suppose that in Fig. 3.2 we have inserted st{eS, and
S;, and then we want to insert a new stafeThis means

1. If v; is an existing key in the IP-index, then go to step 4.

2. Search the index entrid§ in the IP-index to find the
index entryN, where

that we already have three index entries in the IP-index with ~ Ni-key= maxX(N;.key | (N;.key) <v)}.

keys vy (Zko), Vo (ZKkyp), V5 (=ky) respectively, and we also
haveanchorgk;)=<S;, S>>, anchorgk,)=<S,>, anchorgk,)
=nil. To insert the stat8,=(t,, v4) we need to do the follow-
ing:

1. The new stat&, creates a new index entry with the key

v, (=k3), which divides the existing intervakt], k,) into
two intervals, ko, k3) and ks, ks) (see Fig. 3.2).

The segments that span the new interkal iz) are the

same as the segments that spanned the old intégyal [
ks) (which are already present in the IP-index), i.e.,

anchos(ky)=<S,> stays unchanged.

The segments that span the new interkgl k,) are the
segments that spanned the old interka) k,) plus the
new segmenBg;, i.e.,

anchos(kg)= anchos(ky)+!S; = <S,>+5; = <S,, 5.

This step finds the existing interval (in the example of
Fig. 3.2 we haveN|_ .keyk, thus the interval iskp, k))
which the new keyy, in the example) lies within.

3. Insert a new index entry wiltey=v; andanchors
=N, .anchors.

4. For all index entrieBl; whereN;.keylies inside the inter-
val [min(vi_1, v;), maxg;.1, v;)), append the starting state
(S.1) of the new segment tg.anchors.

3.3 Implementation

Note that the above insertion algorithm is about how to
associate the intersecting segments with each inserted value
v;. It does not assume any specific implementation. Actually

1. We use ‘+' to denote adding a new element to the
end of a sequence.

2. For all the entries in the IP-index with keys inside the

the IP-index can be implemented by any ordered indexing

—» The AVL-tree

S
(ty, v) (tfz) (t’i’s Va)

— The arrays

(ts, Va)

: 1 2 3

4—» The index ofts .

Fig. 3.3: The AVL-tree implementation of the IP-
index in Fig. 3.2

technique, e.g., B-Trees, AVL-Trees[1] or 2-3 Trees[7], and

the anchor-state sequence can be implemented as a sequen-

tial data structure (list or array) which supports fast append-
ing.

To verify our ideas we implemented the IP-index in a main-
memory database[11]. The time sequence was stored in an

arrayts, wheretdi]=(t;, v;). We used an AVL-tree as index-
ing data structure since it has small re-balancing time.
(Notice that the keys; do not arrive in order, which means
that the tree needs to be re-balanced during insertion.) Each
index entryin the above algorithm corresponds tocalein

the AVL-tree. The anchor-state sequence was implemented

insert_ts(ts,i,S i)
/* insert the state into the array which stores the
time sequence/

if not exist_key(tree,v i)
N, =get_lower(tree,v i) (part 1)
if N, =nil
insert_node(tree,v i ,nil)
else

insert_node(tree,v i N .anchors)
/* insert a new index entry, and copy the
anchor state sequence from the
“lower” index entry*/

as a dynamic array of integers, where each integer is an

index of the arrays.

Fig. 3.3 illustrates the AVL-tree implementation of the IP-

index in Fig. 3.2.

Before we give the insertion algorithm for the AVL-tree

implementation of the IP-index, we explain the notation and

functions that will be used in the algorithm:

The code for the IP-index implementation using an AVL-

tree-- the AVL-tree implementing the IP-index.

ts -- the array storing the time sequence

S=(t;, v) is the arriving state (to be inserted into the IP-

index).

insert_ts(ts, i, $ -- inserts the stat§ into arrayts where
tefi]=(t;, vj).

insert_nodéree, y, anc)-- inserts into the AVL-tree a
new node with keyw, anchorsanc.

get_lowe(tree, y): searches the AVL-tree to find the
nodeN; where

N_.key= maxN;.key| N;.key< v;, 1<jssize(tree)

This function is used to find the existing interval which
needs to be split into two parts; e.g. in Fig. 3.2,
get_lowe(tree, y).key=k,. The function returnail if no
node is found.

exist_key(tree, ¥ returnstrue if there already exists a
node in the IP-index whose key is equa¥to

tree is as follows:

Insert_ip(tree, ts,t

iV

Sj=<tj,vi>

endif

endif

if i>1
[* if not the first state in the time sequentle
for each node N, (part 2)

(1 gj <size(tree))
where N;.key lies inside the
interval [min(viz ,v),
max(Vig ,V)
Nj.anchors=Nj.anchors +(i-1)
/* add the new anchor state to the anchor
state sequences of all the intervals
spanned by the new segméht

end for each
endif

Fig. 3.4: The IP-index insertion algorithm

3.4 Performance vs. Precision of Values

This section discusses the relationship between the per-
formance of the IP-index and the precision of the values in
the time sequence.

The algorithm in Fig. 3.4 contains two parts. Algorithm
analysis shows that (Part 1) tal®d.ogM) time whereM is

the total number of index entries in the IP-index, since they
are actually AVL-tree search operations. Furthermore, (Part
2) takesm*append_timevheremis the number of intervals
which are spanned by the new segmappénd_times the

time taken to add the new state to the end of an anchor-state
sequence, which is assumed to be constant since we use a
sequential data structure which supports fast appending).

So, if we limit the parameteld andm, we can reduce the
insertion time of the IP-index. This can be achieved by lim-
iting the precision of the measured values. The reason is:
for a time sequence with rande=and precisionP in the
value domain, the number of index_entries will be less than
R /P.So, the lower the precision (the larger the value of P)

is, the smaller the value & andm will be. Thus, we can

reduce the insertion time by limiting the precision of the 4 Queries

values, which will be shown in the performance measure- . . .
ment section There are several kinds of queries that can be answered effi-

ciently using the IP-index. Using an example of a patient’s

The above observation is practical since 1) all measuregemperature reading, we can answer queries like:
time sequences have a limited range on value domain, 2)

the original precision of the measured data is always limite®® Query 1: When did the patient have the temperature
due to errors and uncertainty in measurements. For exam- 37°C?

[h ing the t t f tient th I . . .
Ple, When measuring the temperature of a patent the vauie This query is expressed 531(37) and it represents the

range is the temperatures that the human body can possibly simplest form of inverse queries. It only requires search
be alive at and at a precision that can represent changes that; P d ' yreq

affect the well being of the patients. Therefore, even if the mgi the3I7P-|n|dex to find the:[anchor-s_,tate_fs_ect}uen(iet_for the
thermometer used for measuring the temperature of a va ude d (plus some post-processing if interpolation is
patient has the precision of 0.0@1 we can still limit the needed).

precision to 0.3C, which will both improve the perform- e Query 2: During what time period did the patient have the
ance of the IP-index and still be reasonable for the applica- temperature higher than 37?

tion.

This query can be expressedra¥v>37). We refer this
kind of query asnequality inverse queriesTo answer
this query we first calculate all time points equal to

F1(37). These time points form a sequence of time inter-
vals. Then for each time interval we check if the values
inside the interval are greater thanor not. If so, then
this time interval is returned.

From the above discussions we can see that the IP-index is
not suitable for some unusual time sequences, e.g. periodic
time sequences with unlimited precision, or signals which
oscillate with an increasing amplitude over time (these two
kinds of time sequences have unlimited range or precision,
which makes thé/1 parameter large). It is also not suitable
for those time sequences with “big jumps” in the values all
the time (this kind of time sequence makes the parameter , Query 3: When did the patient have a temperaitoend
large). Fortunately, most time sequences from real applica- 37c7
tions do not have these properties.

This query can be expressedFé%((37-e, 37+8), while
3.5 The IP-index Search Algorithm eis a value which is application dependent. This kind of
query is useful since many applications need to know
“When was the valuapproximatelyequal tov’?” rather
than “When was the valiexactlyequal tov'?”.

To search the IP-index is to find the index entry which con-
tains the anchor-state sequence of the valyd.e., to
search the index entrigg in the IP-index to find the index
entryN, where Query 3 can be easily computed given that we can com-
; pute Query 2. This is because
N .key= maf(N;.key | (N;.key < Vv)} @) FY(v, v")) =FYv>v') n Fi(v<v"), where h’ means
ThenN.anchorscontains the anchor-state sequence for the ‘interval intersection’ and’=37-eandv” =37+e.

valuev’. . . .
* Query 4. When did the patient have two consecutive

In the exampleTSin Fig. 3.1, the index entri, for the fevers during 24 hours?
valueV' is [k3, anchor$ whereanchors<S,, $>. The rea-
son is thaks (=V,) is the first key which is “below” or equal
tov'.

This is used for analysing the symptoms of disease[20].
It is an example of shape queriesT®s. It can be com-

puted as follows: 1) compu&l(v>37) (which are the
The search algorithm is dependent on the implementation periods of “fever”), 2) check if there exist two time inter-
of the IP-index. In the AVL-tree implementation the search vals in the “fever” periods that have the distadad 24
algorithm is to search for the node in the AVL-tree whose hours (The distance between two time intervals can be
key satisfies the above condition. It is well known that the defined either as the distance between the starting points
complexity is©®(LogM) where M is the total number of of both intervals or as the distance between the mid-
nodes in the tree. points of both intervals.)

As we discussed in the last section, the value of the parame-
ter M is determined by the precision of the values. The
lower the precision is, the smaller the valuavbiwill be.

So, limiting the precision of values will reduce the search
time of the IP-index as well.

5 Performance Measurements

We tested the performance of the IP-index using the AVL-

tree implementation in a main-memory databasé[11]

We measured the insertion time and search time of the IP-

index for different kinds oT Ss. The size (number of states)

of eachTSwas 10000.

1. A simulated periodic sequence, sin(t/100) (t=1...10000)

with very high precison, plotted in Fig. 5.1.

2. An application time sequence[14] (which is the measure-

ment of pressure in a fluidized bed) plotted in Fig. 5.2.

3. A simulated time sequence with a largely monotonic

trend (but not strictly monotonic) plotted in Fig. 5.3.

Fig. 5.1: Sinus Data

1. All measurements were made on a HP9000/710
with 64 Mbyte of main memory and running HP/
UX.

Fig. 5.2: Pressure Data

Fig. 5.3: Monotonic Trend Data

5.1 Insertion for Periodic Time Sequences

In Fig. 5.4 and Fig. 5.5 we show the measured insertion
times of the IP-index for the time sequences shown in
Fig. 5.1 and Fig. 5.2 respectively. The insertion times are
measured as the sequences grow.

* The curves labelled “Original Value Insert” show the
insertion times of the IP-index. For the pressure data the
range=[-6, 10] and the precision=0.001. For the sinus data
the range=[-1, 1] and the precision= 0.000001. We can
see that the insertion time increases linearly with the size
of the sequence. This is because the precision is very high
which makes the parametdvk andm (see section 3.4)
large.

there will be an upper bound on the IP-index insertion time.

5.2 Search for Periodic Time Sequences

In Fig. 5.6 the IP-index search time is compared with linear
scanning of the time sequence to find the anchor-state
sequence for some randomly generated valudhe test
was done on the simulated periodic sequence with very
high precison as plotted in Fig. 5.1. The comparison was
measured as the sequence grows. The results show that the
IP-index dramatically improves the performance of inverse
gueries. Note that the results are displayed in logarithmic
scale since the difference between the IP-index search time
and the linear scanning time is too great to display with lin-
ear scaled axes. (Note that the curve labelled “IP-index
Search” in Fig. 5.6 is the same as the one labelled “Original
Fig. 5.4: Sinus Data Insertion Value Search” in Fig.5.7; they do not look the same
because they are displayed in different scaled axes.)

Fig. 5.6: Compare the IP-index with Linear Scanning

Fig. 5.5: Pressure Data Insertion Fig. 5.7 and Fig. 5.8 show the performance of the IP-index
search for two periodi€Ss. After every 1000 insertions, we
measured the average time to search for the anchor-state

* Forthe curves labelled “Limited Precision Insert” the pre- Séquence for some randomly generated velughe results
cision of the values is limited to 0.1 for the pressure dateS"OW that the search time is logarithmic due to the AVL-
and 0.001 for sinus data respectively. We notice that thd"®€ implementation (see the curves labelled *Original

insertion time become constant after the total number ofalue Search")._HOV\{fayer, when the assumption of “limited
index entries has been inserted into the IP-index. This i¢2Nge and precision” is satisfied, the IP-index search time

because a) the limited precision makes the number of'@ @n upper bound regardless of the time sequence size
nodes of the AVL-tree does not grow any more; only the(see the curve labelled “Limited Precision Search”). The
anchor-state sequence associated with each node groWgason is the same as in the insert case, i.e., the nqmber of
with the time sequence and b) the limited precision maked10des M) of the AVL-tree does not increase after all index
them parameter (number of intervals spanned by the newfntries are inserted, (only the anchor-state sequences asso-
segment as discussed at the end of section 3.4) have &ited with each node grow) so the search time stays con-
upper limit, which causes the insertion time to have anStant to®(LogM).

upper limit (See Fig. 3.4 (Part 2)).

Our measurements verify that for a periodic time sequence
with a limited range and precision on the value domain,

Fig. 5.7: Sinus Data Search

Fig. 5.8: Pressure Data Search

5.3 Time Sequences with Monotonic Trends

Fig. 5.9: Monotonic Trend Data

6 Conclusions and Future Work

This paper presented the IP-index which is an index on the
value domain for time sequences. We showed how to use
the IP-index to suppoitverse queriessuch as finding all

the time points when the temperature was equal to a given

value v (computing F1(v)), or to find the time intervals
where the values are greater (smaller) than a given value

(computingFL(v>v') or Fl(v<v')).

The IP-index can be implemented using any ordered index
structures, such as B-trees. The performance measurements
showed that the IP-index radically improves the processing
time of inverse queries on time sequencesnpared to lin-
early scanning the sequence (the only alternative without
the IP-index). For a periodic time sequence with a limited
range and precision on the value domain, the IP-index
insertion and search time have an upper bound regardless of
the size of the sequence. Furthermore, by limiting the preci-
sion of the values the IP-index insertion and search times
can be dramatically improved.

In future work we will investigate how to use the IP-index

In Fig. 5.9 we measured the performance of the IP-index foin query optimization. For example, we can define the cost
a simulated time sequence with a largely monotonic trendmodels for the IP-index and store the cardinality (the
We see that both the insertion time and the search time adengths of the anchor-state sequences) in each index entry
approximately logarithmic due to the AVL-tree implemen- iy order to estimate the costBR(V') when theTSis very
tation. Since in this case we do not have a limited range ofpng. We can also set a “moving window” on the anchor-
the value domain, the “upper limit” on insertion and searchstate sequence to discard or archive the old values #&he

time cannot be achieved.

when they are not required any more.

We also notice that a strictly monotonic time sequence doefn interesting improvement is to extend the IP-index for

not need any IP-index. The reason is that the value domaifdexing collections oT Ss [19] based on the composite key
is then monotonic just as the time domain is, which meang+y (o is the identifier of eachs.

that conventional indexes on the time domain can be

applied to the value domain.

Another future work will be to generalize the IP-index to n-

dimensionalTSs, e.g. to query the past positions of an air-
craft given that th@Sis a spatial-temporal trajectory of the
aircraft.

We also need to explore the IP-index for very large time
sequences stored on disk. [15]

7 Acknowledgements [16]

The authors would like to acknowledge Olof Johansson for

the valuable discussions which led to the IP-index concept.[17]

References

[1] G. M. Adelson-Velskii and E. M. Landifoklady
Akademia Nauk SSSR46, (1962), pp. 263-266; English
translation inSoviet Math 3, pp. 1259-1263. [19]

[2] R. Agrawal, C. Faloutsos and A. Swami: Efficient Similar-
ity Search in Sequence Database®rioc. of the Fourth [20]
International Conference on Foundations of Data Organi-
zation and AlgorithmsChicago, Oct. 1993, pp. 69-84.

[8] R.Agrawal, K. Lin, H. S. Sawhney, K. Shim: Fast Similar- [21]
ity Search in the Presence of Noise, Scaling, and Translation
in Time-Series Databases,Pnoc. VLDB Conf.,1995, pp.
490-501.

[4] R.Agrawal, G. Psaila, D. L. Wimmers and M. Zait: Query-
ing Shapes of Histories, Proc. 21st VLDB Conf1995,
pp. 502-514.

[5] J. L. Bently:Algorithms for Klee's Rectangle Problems
Computer Science Department, Camegie-Mellon Univer-
sity, Pittsburgh, 1972.

[6] C. Bettini, X. S. Wang, E. Bertino, S. Jajodia: Semantic
Assumptions and Query Evaluation in Temporal Databases,
Proc. SIGMOD ConfMay 1995, pp. 257-268.

[71 D. Comer: The Ubiquitous B-TreACM Comp. Surveys
11, 2, June 1979, pp. 121-137.

[8] H. EdelsbrunnerDynamic Rectangle Intersection Search-
ing, Institute for Information Processing, Rept. 47, Techni-
cal University of Graz, Graz, Austria.

[91 R Elmasri, G. T. J. Wuu and V. Kouramaijian: The Time
Index and the Monotonic™Btree, in [22], pp. 433-455.

[10] E. T. Falkenroth: Computational Indexes for Time Series,
Proc. of 8th Intl. Conf. on Scientific and Statistical Data-
base Managemeniune 1996, Stockholm, Sweden, pp. 18-
23.

[11] G. Fahl, T. Risch and M. Skéld: An architecture for Active
Mediators,Proc. Intl. Workshop on Next Generation Infor-
mation Technologies and Systeidaifa, Israel, 1993, pp.
47-53.

[12] H. Gunadhi and A. Segev: Efficient Indexing Methods for
Temporal Relations'Trans. Knowledge and Data Enginee-
ring, Vol. 5, No. 3, June 1993, pp. 496-509.

[13] A. Guttman: R-Trees: A Dynamic Index Structure for Spa-
tial SearchingProc. ACM SIGMOD ConfJune 1984, Bos-
ton, MA.

[14] F. Johnsson, R. C. Zijerveld, C. M. van den Bleek, J. C.

(18]

(22]

(23]

Schouten and B. LeckneCharacterization of Fluidization
Regimes in Circulating Fluidized Beds - time series analysis
of pressure fluctuationgechnical Reports, Chalmers Insti-
tute of Technology, Sweden, 1996 (submitted for publica-
tion).

N. Kline and R. Snodgrass: Computing Temporal Aggre-
gatesProc. Data Engineering Conf1995, pp. 222-231.

C. P. Kolovson and M. Stonebraker: Segment Indexes:
Dynamic Indexing Techniques for Multi-Dimensional Inter-
val Data,Proc. ACM SIGMOD Conf1991, pp. 138-148.

C. S. Li, P. S. Yu and V. Castelli, “HierachyScan: A Hiera-
chical Similarity Search Algorithm for Databases of Long
Sequences”, iProc. Data Engineering Conffeb. 1996,
pp. 546-553.

K. Ooi, B. McDonell and R. Sacks-Davis: Spatial kd-tree:
Indexing mechanism for spatial databaséEiBE COMP-
SAC 871987.

A. Segev and A. Shoshani: A Temporal Data Model Based
on Time Sequences, in [22], pp. 248-269.

H. Shatkay, S. B. Zdonik: Approximate Queries and Repre-
sentations for Large Data Sequence®roc. Data Engine-
ering Conf, Feb. 1996, pp.536-545.

H. Shen, B. C. Ooi, and H. Lu: The TP-Index: A Dynamic
and Efficient Indexing Mechanism for Temporal Databases,
in Proc. Data Engineering Confl994, pp. 274-281.

A. U. Tansel et al.(editorsTemporal Databases, Theory
Design and Implementatipithe Benjamin/Cummings Pub-
lishing Company, Inc. ISBN 0-8053-2413-5, 1993.

K. Torp, L. Mark and C. S. JensekEfficient Differential
Timeslice Computatigrifechnical Report, College of Com-
puting, Georgia Institute of Technology, Georgia, USA,
Sept. 1994 (submitted for publication).

