
Optimizing Queries in Distributed and Composable

Mediators

Vanja Josifovski, Timour Katchaounov, Tore Risch

Laboratory for Engineering Databases

Link�oping University, Sweden

fvanja, timka, torrig@ida.liu.se

4th Conf. on Cooperative Information Systems, CoopIS'99, Edinburgh, Scotland, 1999

Abstract

The mediator-wrapper approach to integrate data from heterogeneous data sources

has usually been centralized in the sense that a single mediator system is placed be-

tween a number of data sources and the applications. As the number of data sources

increases, the centralized mediator architecture becomes a bottleneck. This paper

presents an architecture for composable and distributed mediator servers, de�ned in

terms of other mediator servers. The modularity of composable mediators allows to

build larger systems of distributed mediators integrating many data sources, without

the need to maintain a global schema. Composable mediators furthermore provide data

independence by allowing locality of changes in both submediators and data sources.

However, a problem with a distributed and composable mediator architecture is that

the query performance may degrade as the number of mediators increases. We describe

some challenges for processing queries in this type of environment, and propose a dis-

tributed query decomposition algorithm that eliminates some of the overhead of logical

mediator composition. For certain mediator compositions it produces distributed query

plans whose inter-mediator data 
ow is optimal with respect to the query, but is di�er-

ent from the logical interdependencies between the involved mediators. Experimental

results show that this strategy improves the query performance and allows increase of

the number of mediators without query performance degradation.

1 Introduction

The wrapper-mediator approach for integration of data from heterogeneous data sources has
been used in several projects [13, 25, 11]. This approach divides a data integration system
into two functional units. The wrapper provides access to the data in the data sources using
a common data model (CDM), and a common query language. The mediator provides a
semantically coherent CDM representation of the combined data from the wrapped data
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sources, built using reconciliation primitives. Usually the data sources are distributed to
several sites and accessed over some computer network. The mediator provides transparent
access to the combined data from the data sources through queries to the mediating view
The user/programmer does not need to make individual interfaces to each data source.

Current mediator systems and prototypes [13, 25, 11, 21, 5] are centralized systems where
a single mediator server integrates data through a number of wrappers. Although indicated
in some system architecture overviews, to the best of our knowledge no system allows many
distributed mediator servers to interoperate. An original goal for mediator architectures
[26] was that mediators should be relatively simple abstractions of modules of data and
that larger systems of mediators should be composed through these primitive mediators.
By making mediators servers composable and modular by allowing some mediators to act
as wrappers for other mediators, it would be possible to scale the data integration process
in the sense that more complex systems of data sources can be integrated than through a
central integration. Composable mediators would allow for conceptual modeling of mediators
without detailed knowledge of the de�nitions of other mediators and data sources, through
modular design. As for other complex systems, modularity is essential for building large
systems of mediators. Furthermore, modularity also increases the data independence between
applications, mediators, and data sources by allowing for changes in lower level mediators
and data sources without changes in higher level systems. When many mediator servers
become available on the computer networks composability will be required for designing new
distributed mediator servers in terms of the existing ones.

The design of composable and distributed mediator servers introduces, however, some
new challenges to be addressed in this paper. For example, a naive implementation of sev-
eral levels of mediators as black boxes, as with CORBA technology [24], would often cause
signi�cant performance overhead. While on a conceptual level it can make the modeling
task easier, such black box treatment of mediators would prohibit extensive query process-
ing over submediators. There is a need to minimize the overhead of the mediator composition
hierarchy. CORBA-like technologies furthermore provides only object-instance oriented com-
munication primitives while eÆcient query execution requires bulk-oriented inter-mediator
communication.

We have developed a distributed mediator system, AMOSII , in which federations of
mediator servers, acting as virtual object-oriented (OO) databases, can intercommunicate.
Each mediator server in the federation has full OO query processing and cost-based optimiza-
tion capabilities. It exports to other systems interfaces having capabilities for i) exchanging
meta-data, ii) processing OO queries, iii) estimating query costs, and iv) bulk-oriented ex-
change of data. The user can post OO queries to any mediator server and the involved
mediators in the federation will interoperate to produce the result as quick as possible.

In such a distributed mediator hierarchy the logical composition of mediators needs not
necessarily be the same as the optimal data 
ow through the network of mediators for
answering a query. Often it is favorable to do as much data selection as possible in the data
sources and the mediators close to them. If a query needs data from only a single data source
it is better to bypass all intermediate mediators which would then do no further �ltration.
It should furthermore be noted that the performance also depends on the speed of the links
between the nodes in the federation and on the computers involved. A good distributed
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mediator query optimizer should take into account local and shipping costs to produce an
optimal query execution plan distributed over the mediators.

The query optimization task in AMOSII is distributed over the distributed mediator
servers. For a given mediator query a distributed query processing algorithm produces a
distributed execution plan with optimized data 
ow that eliminate much of the overhead of
composed mediation. Each local AMOSII optimizer knows the local access costs and can ask
other mediators and data sources about their access costs. No mediator has total knowledge
about all costs.

The query optimizer is thus modular in the sense that it does not work in a central
environment where one mediator system has all knowledge needed for query processing.
This eliminates the need for a centralized directory of schema and optimization information
that might become a bottleneck when the number of mediator servers increase. Instead, in
the proposed framework, each local query optimizer exchanges meta-information and costs
with the other query optimizers in the federation.

We have done some experiments showing promising results for our distributed mediator
query optimization techniques. The experiments show that the distributed query decompo-
sition algorithm can produce better distributed inter-mediator plans than if data is joined
through a central mediator. Furthermore, the reported results show that the distributed
query decomposition algorithm produces plans that allow for increasing the number of in-
volved servers with minimal increase of the query processing time. The experiments also
show that, for a given query, di�erent optimal distributed query execution plans sometimes
need to be produced depending one the communication speeds between mediator nodes. For
example, a personal mediator may reside in a portable computer and di�erent execution
plans are optimal when communicating with the federation over a telephone line than when
the computer is connected to the LAN.

The paper is organized as follows. Section 2 introduces the terminology and the features
of the AMOSII system. In Section 3 the query decomposition and the distributed compilation
are described. Section 4 presents experimental results showing the bene�ts of the proposed
strategies. The conclusions are presented in Section 5.

2 Data Integration with AMOSII

The AMOSII system has its roots in the workstation version of the Iris system, WS-Iris [18].
The core of AMOSII is an open, light-weight, and extensible database management system
(DBMS). To achieve better performance, and because most of the data reside in the data
repositories, AMOSII is designed as a main-memory DBMS. Nevertheless, it contains all the
traditional database facilities, such as a recovery manager, a transaction manager, and a OO
query language named AMOSQL [9]. An AMOSII server provides services to applications
and to other AMOSII servers.

AMOSII is a distributed mediator system [26] where a number of mediator servers com-
municate over the Internet. Some of these servers can be con�gured as translators [7] which
wrap di�erent kinds of data sources, e.g. ODBC compliant relational databases [2] or XML
�les. We use the term translator since it is a fully 
edged AMOSII system which can wrap
more than one data source, contains a complete query processor, and supports semantic
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abstractions and conversions of the data in the data sources through OO views. A translator
is thus also a mediator which provide a virtual OO database server layer that transparently
translates data from some data sources.

Users and applications can pose OO queries to any AMOSII server. We call the server(s)
to which some queries are posed client mediator(s) for those queries. The other AMOSII
servers involved in answering a query are called server mediators. For example, in a mobile
environment a portable computer could have a client mediator that integrates data from
several server mediators on a company LAN. Such a scenario is assumed in our experiments
below.

A client mediator can have various types of data sources and access a number of au-
tonomous server mediators. As opposed to a distributed database environment where the
data, meta-data and optimization information are available in a centralized repository, in an
autonomous environment each server contains only portions of this data.
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Manufact.

System

Materials
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Mediator

Translator

Local
Data
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Figure 1: Interconnected AMOSII systems

Figure 1 illustrates the di�erent roles that an AMOSII server can assume. In this ex-
ample, applications access data stored in data sources through a collection of composed
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mediator servers. The servers may run on separate workstations and provide data integra-
tion, translation, and abstraction services through which di�erent object view hierarchies are
presented in the di�erent mediators, as indicated in Figure 1. The mediator servers appear
as virtual database servers having data abstractions, query interface, and other database
functionality. AMOSII mediators are composable since a mediator server can regard other
mediator servers as data sources. A single AMOSII server can also assume more than one
role described in Figure 1 and serve more than one application simultaneously. Di�erent
interconnecting topologies can be used to connect mediator servers depending on the inte-
gration requirements of the environment. Here, a naive implementation where messages are
passed between the several layers of composed mediator servers may have unacceptable per-
formance. However, we have developed distributed mediator query optimization techniques
that minimize the overhead of composing mediator servers, to be further elaborated in this
paper.

The data model in AMOSII is an OO extension of the DAPLEX [22] functional data
model. It has three basic constructs: objects, types (i.e. classes), and functions. Objects
model entities in the domain of interest. An object can be classi�ed into one or more types
which makes the object instances of those types. The set of all instances of a type is called
the extent of the type. Object properties and their relationships are modeled by functions.

The types are divided into stored, derived, proxy, and integration union types, where the
instances of stored types are explicitly stored locally in AMOSII and created by the user, the
instances of derived types [14] are derived through a declarative query from the instances of
one or more constituent supertypes, the instances of proxy types represent objects stored in
other AMOSII servers or in some of the supported types of data sources, and the instances
of integration union types (IUTs) [14] are de�ned as unions of instances representing the
same real-world entity in di�erent data sources. Even though the IUTs are outside the
scope of this paper, the features presented in the experiments reported in this work are
directly connected with the processing of queries over the IUTs, which require outer-join
based operations transformed into a set of select-project-join queries [15].

The proxy, derived and integrated union types are the core of the integration framework
in AMOSII . Composition of such types provide means for resolving a wide spectrum of
semantic heterogeneities between the data and meta-data in the sources. Queries over the
OO views are transformed into queries over data in multiple data sources. The OO view
mediation framework is described in [14, 15].

The AMOSII functions are divided by their implementations into three groups. The
extent of a stored function is physically stored in the database. Derived functions are imple-
mented in the query language AMOSQL. Foreign functions are implemented in some other
programming language, e.g. Java, Lisp or C++. Each foreign function can have several
associated access paths and, to help the query processor, each access path has an associated
cost and selectivity function [18].

The AMOSQL query language is based on the OSQL [19] language with extensions of
mediation primitives, multi-directional foreign functions [18], overloading, late binding [8],
active rules [23], etc. It contains data modeling as well as querying constructs. The general
syntax for AMOSQL queries is:

select <result>
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from <type declarations for local variables>

where <condition>

For example, the following query retrieves the names of the parents of all persons having
'sailing' as hobby:

select p, name(parent(p))

from person p

where hobby(p) = 'sailing

Figure 2, presents an overview of the query processing in AMOSII . The �rst �ve steps,
also called query compilation steps, translate the body of a query expressed in AMOSQL to
a query execution plan which is stored with the query.
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Figure 2: Query processing in AMOSII

From the parsed query tree, AMOSII �rst translates the AMOSQL queries into a type
annotated object calculus representation [15].

Next, the calculus optimizer applies rewrite rules to reduce the size of the query [15].
After the rewrites, queries operating over data outside the mediator are decomposed into

distributed subqueries expressed in an object algebra, to be executed in di�erent AMOSII
servers and data sources. The decomposition uses a combination of heuristic and dynamic
programming strategies. At each site, a single-site cost-based optimizer generates optimized
execution plans for the subqueries.

An interested reader is referred to [9] for a more detailed description of the AMOS and
AMOSII system and to [18, 7, 8, 14, 15] for more on its query processing.

3 Query Plan Distribution

The distributed mediator framework of AMOSII allows cooperation of a number of distinct
mediators on a query processor level. While distribution is present in any mediation frame-
work due to the distribution of the data sources, the distributed mediator server framework
introduces a higher level of interaction among the mediator systems. In other words, a client
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mediator does not treat another AMOSII server as just another data source. More speci�-
cally, if we compare the interaction between a centralized mediator system and a wrapped
data source and the interaction between two AMOSII servers, there are two major di�erences:

� An AMOSII server can accept compilation and execution requests for general queries
accessing data in more than one source. The wrapper interfaces accept subqueries that
are always over data in a single data source.

� AMOSII supports materialization of intermediate results to be used as input to locally
executed subqueries, generated by query decomposition in another AMOSII server.
A wrapper provides execute functionality for queries to the data source. The query
execution interface of AMOSII , on the other hand, provides ship-and-execute (SAE)
functionality, that can �rst accept and store locally an intermediate result, and then
execute a subquery using it as an input.

These two features in
uence the design of both the query decomposer and the run-time
support for query execution. Techniques based on these features to achieve improved query
performance are presented in this section. In the remaining of the section, �rst we overview
the basic decomposition algorithm, and then present a method to improve the resulting
query execution schedules by taking advantage of the features described above.

3.1 Query Decomposition

The query decomposition phase [14] of the query processing in AMOSII is invoked whenever
a query is posed over data from more than one data source. The input of the query de-
composition is a query calculus expression operating over imported (proxy) and local stored
types. The output is an executable algebra plan. The query decomposition process follows
in 5 phases:

1. Predicate grouping

2. Execution site assignment

3. Execution schedule generation

4. Object algebra generation

The rest of this subsection gives an overview of each of these phases. A more thorough
description can be found in [14].

� Predicate grouping.

This phase attempts to reduce the problem of �nding a suboptimal execution plan by
reducing the number of predicates. Predicates executed at the same data source are
grouped into one or more composite predicates that are treated afterwards as single
predicates. For each composite predicate, a temporary derived function is de�ned
locally or at another AMOSII server. The following grouping heuristics is used:
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{ Joins are pushed to the data sources whenever possible

{ Cross-products are avoided

Within a composite predicate, the optimization is performed in the AMOSII server
where this predicate is forwarded for execution.

� Site assignment (group placement).

This phase uses cost-based heuristics to make the �nal decision which composite pred-
icate is executed where, eventually replicates some of the predicates, and assigns exe-
cution sites to those predicates that can be executed at more than one site (e.g. �-joins
speci�ed by comparison operators). The output of this phase is a query graph where
all the nodes are assigned to some site.

� Cost-based execution scheduling.

In order to translate the query graph from the previous phase into an executable query
plan, the query processor must decide on the order of execution of the predicates in
the graph nodes, and on the direction of data shipping between the nodes.

Client Mediator

1

Mediator Server
2

3

4

Figure 3: Query processing cycle, described by a decomposition tree node

Execution schedules for distributed queries in AMOSII are represented by decomposi-
tion trees (DcTs). Each DcT node describes one data cycle through a client mediator.
Fig. 3 illustrates one such cycle. In a cycle, the following steps are performed:

1. Materialize intermediate results in a source where they are to be processed.

2. Execute a subquery function with the materialized data as input

3. Ship the results back to the client mediator

4. Execute one or more subquery functions de�ned in the client mediator (post-
processing).

Each DcT node stores information about the �rst three steps in a structure called ship-
and-execute (SAE) structure. The last step is described by a post-processing structure.
The result of a cycle is always materialized in the client mediator. A sequence of cycles
can represent an arbitrary execution plan.

As the space of all execution plans is exponential to the number of participating
databases, we examine only a subset of the family of left-deep decomposition trees
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by using dynamic programming and heuristics to prune the search space. The out-
come of this phase is an executable left-deep decomposition tree. Being central to our
discussion, we elaborate more on decomposition tree generation in the next subsection.

� Algebra generation.

The input to this phase is an executable decomposition tree, which is translated into
equivalent sets of inter-calling local object algebra plans.

3.2 Tree Balancing and Distribution

The query decomposition algorithm as presented above, produces an initial centralized ex-
ecution plan. This plan is similar to the execution schedules produced in other distributed
and multidatabase systems, e. g. [3, 13, 17], where the query compilation and execution
is a centralized process, managed by a coordinator for distributed databases, or by a single
client mediator. All inter-site result assembling operations (equi-joins) are performed in the
client mediator (coordinator).

This type of plans su�er from heavy involvement of the central client mediator and high
network traÆc between the client and server mediators. Furthermore these plans might
contain redundant operations in which intermediate results are shipped from one server
mediator to another, passing through the client mediator.

In order to eliminate these problems, an additional query decomposition phase is in-
troduced after the cost based scheduling, that improves the centralized left-deep execution
schedule produced by the cost based scheduling. It uses a distributed compilation process to
translate the input schedule into a plan distributed over all the participating servers which
communicate the intermediate results directly to each other.

As noted above, in the execution schedules represented by the initial left-deep decompo-
sition trees of the centralized plans, all data shipped between any of the server mediators,
always passes through the client mediator. A graphical representation of the data 
ow
patterns generated by these plans is shown in Fig. 4. The composition of mediators is

Client Mediator

MS1 MS
2

MS
n. . .

Figure 4: Class of centralized data 
ow patterns in AMOSII

designed using semantic considerations, as opposed to trying to distribute load or other per-
formance considerations. It may introduce considerable performance problems, mostly due
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to transmission costs between (possibly) many layers of mediators. In many cases, it might
be cheaper if di�erent server mediators can exchange data directly, independently from the
client mediator. This is even more true in the cases of non-homogeneous execution envi-
ronments, for example when the client mediator accesses the server mediators over a slow
communication channel.

In he rest of this section, we present a novel distributed query decomposition technique,
named Tree Distribution, for tree balancing in an environment of distributed, autonomous
mediator systems. It extends the query decomposition process in AMOSII in order to explore
the richer space of execution plans allowing direct communication among the server mediators
involved in a query. It distributes not only the execution, but also the decomposition of the
query plans among di�erent servers. Experimental results show substantial performance
improvement over the plans before the tree distributions.

The class of plans in Fig. 4 are transformed, when favorable, into plans using direct com-
munication between di�erent server mediators participating in the query without passing
data through the client mediator. The algorithm uses random hill-climbing with a complex-
ity that is linear to the size of the decomposition tree. Although this approach does not
enumerate all the possible plans, in our experience it suÆces for the typical mix of queries
posed to a client mediator. The gains are especially apparent when the client mediator is
hosted on a computer connected to the server mediators via a slow line.

3.3 Tree Distribution

Each node of the left-deep tree generated by the cost-based decomposition phase describes
one processing cycle of Fig. 3 above. The data 
ow presented in Fig. 4 shows that the
centralized left-deep plans generate data 
ow composed of several individual cycles between
the client and server mediators (SM). Note that, in presence of OO server mediators, this
strategy is more general than the strategy used in some other multidatabase systems (e.g.
[20, 12, 17]) where the joins are performed in the client mediator system over data retrieved
from the participating wrapped data sources. The latter does not allow for mediation of OO
sources that access not only stored data, but also contain programs executed in the data
source (e.g. image analysis, matrix operations). In such cases, it is impossible to retrieve
the program logic from the source and therefore it is necessary to ship intermediate results
to the source in order to execute the programs using the shipped data as input. From this
aspect, the strategy is similar, but more eÆcient than the bind-join strategy in [13] since we
use bulk shipping rather than instance (tuple) shipping.

The main idea of the tree distribution algorithm is to transform the centralized tree by
a series of node merge operations. A node merge aims to eliminate the data 
ow through
the client mediator and is applied over two consecutive decomposition tree nodes (a lower
and an upper node) such that the lower node does not specify post-processing operations
in the client mediator (step 4 in Fig. 3). The absence of the post-processing operations
in the lower node means that the data is streamed unchanged from the server mediator
participating in the lower node cycle (e.g SM0), through the client mediator, to the server
mediator participation in the upper node cycle (e.g. SM1).

The node merge operation produces a new node that substitutes the two merged node
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NIL
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SAE: Envelope(Subquery upp + Subquery low)

Lo

b)

Figure 5: Decomposition tree node merger operation a) before the merge b) after the merge

in the DcT, as shown in Fig. 5. The new node has the same post-processing operations as
the upper node. The ship-and-execute (SAE) operations of the new node are performed by
a envelope function de�ned and compiled at one of the two mediator servers participating in
the processing cycles described by the merged nodes. The body (predicate) of the envelope
function is made by conjuncting the bodies of the functions speci�ed in the SAE structures
of the merged nodes. When the envelope function is compiled at one of the server mediators
participating in the query, the generated execution plan contains a processing cycle that ships
data sideways between the two server mediators, eliminating the involvement of the client
mediator. The merged node describes a cycle where the envelope function is invoked in one
of the server mediators, and the result of its invocation is shipped back to the client mediator.
Note that each envelope function is a derived function (view) over data in more than one
server mediator, and therefore the distributed query compiler generates a new decomposition
tree for it at the server where it is compiled. After repeated recursive application of node
merge operations the query execution plan is described by a set of decomposition trees
stored in both the client mediator and the participating server mediators. Since these trees
are generated by compilation at the server mediators, the client mediator does not need any
of optimization information used in the compilation of the envelope functions.

The application of the merge operation is applied at a random qualifying point in the
tree. If the new tree has lower execution time than the original, then it is used instead of
the original. The process continues until no bene�cial merge operations are performed. The
maximum number of merges during this process is 2(n� 1), where n is the number of nodes
in the input decomposition tree. In it's �nal variant the input tree might become distributed
between n� 2 server mediators and the client mediator.

The family execution plans, generated by this algorithm have the general data 
ow pat-
tern of Fig. 6, where all communicating servers can be classi�ed into two types of groups -
groups containing servers which exchange data only with the client mediator (A in Fig. 6)
and groups of servers that communicate directly with each other in a sequential manner
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Figure 6: Class of distributed data 
ow patterns in AMOSII

(group B in Fig. 6). In the plans generated by the transformations described above, groups
of the both type are interchanged. The introduction of type B groups into the plans, achieved
by the proposed transformation, allows for better performance in a common case when a
network of server mediators, connected by fast connections is accessed by a remote client
mediator through a slow (modem or mobile) line.

4 Experimental Evaluation

This section presents the results from a comparison of the centralized plan with the dis-
tributed plan produced by the Tree Distribution algorithm for a class of queries to a client
mediator.

4.1 Experimental environment

The performance experiments were made in two di�erent environments. In both cases we had
up to four server mediator, named M1, M2, M3, and M4, respectively, running on the same
computer, and a client mediator, named M0, executing as a client on a remote computer, to
which the queries were posed. All data was stored in an Oracle 8 relational data source, and
server mediator M1 was acting as a translator through an ODBC wrapper. The Oracle server
was running on the same computer as the four server mediators. The choice to run the server
mediators M1-M4 on the same computer was made in order to simplify the experimental
setting. We use local TCP/IP communication also between servers running on the same
Windows NT workstation, and we measured that the local TCP/IP performance is actually
about 10-15% slower than inter-computer TCP/IP communication over our 100 Mbit LAN.
Furthermore, in our experiments we do not explore asynchronous server intercommunication
which makes only one system run at the time. Thus this setting is roughly equivalent to the
case when the translators are running on di�erent computers on the LAN. It was ensured
that all participating AMOSII systems �t into main memory, and no swapping occurred
during the experiments.
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The hardware used during the experiments was Compaq Professional Workstations with
200 MHz Pentium Pro CPUs, 128 MB RAM, and a 100 Mbit LAN card, running Windows
NT Workstation 4.0.

In the �rst set of experiments the client mediator was connected to the server mediators
through the LAN, while the second set of experiments were performed with the client medi-
ator running on a remote NT workstation connected to our LAN over a 128 Kbit ISDN line.
This corresponds to the situation where the client mediator resides in a portable computer
which is sometimes connected over a LAN and sometimes remotely over a slower connection.

4.2 Queries and query plans

For the experiments we used a synthetic database with tables having varying number of
tuples. Two types of precompiled queries were used in the experiments. In the examples
we will use AMOSQL syntax. The �rst query was used to measure scale-up properties of
the tree distribution algorithm as the mediator query spans more servers. In order to do
this, we compiled three similar queries, such that the �rst one - Q1' involved two server
mediators (M1,M2), the next one Q1" involved three server mediators (M1,M2,M3), and
Q"' was executed over all four servers M1-M4. In each mediator Mi a function

process@Mi(charstring str; integer sel)! charstring

was de�ned, which was simulating processing of data in Mi by selecting sel% of it's in-
coming data. For the discussed experiments we choose 100% selectivity (sel = 100) for all
process@Mi functions. In order to extend a query to involve server Mi, a call to the corre-
sponding function process@Mi was added to the query. Server M1 wrapped the relational
data source, and the DATA column of a relational table EMPLOYEE was accessed by the
foreign AMOSQL function data(emp) ! charstring. As an example of the three queries,
we show Q1", which involves the client mediator M0, and three other server mediators,
M1,M2,M3:

select s3

from string d,

string s1,

string s2,

string s3,

employee@M1 e

where d = data(e) and

s1 = process@M1(d, 100) and

s2 = process@M2(s1, 100) and

s3 = process@M3(s2, 100);

Each of the three queries was compiled once using only the centralized query decom-
position technique, and once using also the tree distribution algorithm. Correspondingly,
di�erent execution plans were produced by the di�erent decomposition techniques. In the
example case of Q1", the centralized decomposition produced a tree-like data 
ow graph,
shown in Fig. 7a, while the distributed algorithm generated the L-shaped data 
ow graph,
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shown in Fig. 7b. Each directed arc of the data 
ow graphs is marked by the number of
tuples sent in the corresponding direction. The numbers in the ovals show the order of ex-
ecution. Considering that each tuple has size of 100 bytes, the total amount of data sent
over the network in case a) is 50000, while in case b) it is only 30000. Even this simple
consideration gives us a hint that case b) will be considerably more bene�cial than case a).
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(b) Distributed plan

Figure 7: Data
ow graphs for Q1, 10000 tuples of size 100 bytes

The simpli�ed cost model for evaluating data 
ow patterns between databases presented
here gives us some insight of the possible bene�ts of the tree distribution algorithm. Later
on, in Sec. 4.3 we present experimental con�rmations of our expectations.

The second group of experiments used query Q2. The major di�erence between the
group of queries Q1 and query Q2 is, that in Q2 we introduced a function de�ned in the
client mediator process@M0(charstring str; integer sel)! charstring, which restricts data
retrieved from the relational data source. In this case we chose 10% selectivity for the
process@M0 call:

select s2

from string d,

string s1,

string s2,

string m,

employee@M0 e

where d = data(e) and

s1 = process@M1(d, 100) and

m = process@M0(s1, 10) and

s2 = process@M2(m, 100);

4.3 Experimental results

This subsection presents the results from measurements of execution times for queries Q1
and Q2 in the two environments described in section 4.1. During the measurements, each
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query was executed four times, and the average of the last three measurements was taken.
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Figure 8: Execution times for Q1", 10000 tuples of size 100 bytes

Figure 8a compares the performance of the centralized execution plans for queries Q1',
Q1", and Q1"' with the corresponding distributed plans produced by the tree distribution
algorithm. As expected the distributed plans generated by the tree distribution algorithm are
signi�cantly faster than the centralized plans. In particular, the performance improvements
for Q1', Q1", and Q1"' are 33%, 47%, and 49%, respectively. Thus, as the queries span
more servers the performance improvement of the tree distribution algorithm increases. In
this case the tree distribution algorithm produces plans that scale better since they send less
data between the servers and the client mediator M0 than the centralized plans.

In Fig. 8a the connection between M0 and the other servers uses a fast LAN. If a slower
connection is used the performance gains will be larger, as shown in Fig. 8b where M0 is
connected to the server mediators through a slower ISDN connection. The performance
gains are here 50%, 80%, and 86%, respectively. The execution time is virtually constant,
independent on the size of the query, since the amount of data shipped between the client
and server mediators is constant with the distributed plan.

The latter measurements correspond to a mobile client mediator connected to the server
mediators, while the former measurements could be when the same client mediator is docked
directly to the company LAN. In these examples the rebalanced plans are always better,
since all selections are in the server mediators M1-M4 and there are no selections in the
client mediator M0. If there were selections in M0, as in Q2, it could be possible that it
would be favorable to use the centralized plan, since the selection in M2 could restrict the
number of shipped tuples. To evaluate this we made some tests with query Q2, having a
selection in M0.

Fig. 9a compares the centralized plan produced for Q2 with the corresponding distributed
plan. As expected, it shows that the centralized plan is better in this case.

In Fig. 9b the query Q2 is tested with an ISDN connection to M0. Because of the slower
connection it is here more favorable to use a distributed plan, since the cost to ship data to M0
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Figure 9: Execution times for Q2, 1000 tuples, 2 servers

is higher than the costs of shipping many more tuples between the server mediators. However,
in this case our tree distribution algorithm would produce the suboptimal centralized plan,
because no node merge would take place. We are investigating how the tree distribution
algorithm can be generalized to handle this case too. Fig. 9a and 9b also illustrates that
there are cases where di�erent strategies are needed depending on the speed of the connection
to M0. In a dynamic (e.g. mobile) mediator environment this would have to be taken into
consideration. The system could here generate two di�erent distributed plans and use one
or the other depending on if the mobile client mediator is connected via LAN or ISDN. This
is an area for further research.

5 Related Work

The research presented in this paper is related to the areas of data integration and dis-
tributed databases. This Section references and brie
y overviews some representative exam-
ples of projects in these areas, close to the work presented in this paper. A more elaborate
comparison of the AMOSII system with other data integration systems is presented in [16].

One of the �rst attempts to tackle the query optimization problem in distributed databases
was done within the System R* project [3]. In that project an exhaustive, centrally per-
formed query optimization is made to �nd the optimal plan. Because of the problem size,
AMOSII searches only a portion of the whole search space by an exhaustive search strategy.
Other phases use heuristics to improve the plan and reduce the optimization time. The
SDD-1 system [10] also uses a hill-climbing heuristics as in AMOSII to schedule \moves of
relations" and \local processing actions" in that compose the distributed query execution
schedule. Another classical work on query optimization in a distributed database environ-
ment is presented in [1]. In this approach, named AHY (Apers-Hevner-Yao), the system
performs �rst local processing over the relations, then it reduced the results by semi-joins,
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and �nally composes the result at a central site named evaluation site. This is clearly di�erent
from AMOSII where joins are performed in di�erent servers. All three approaches perform
the query compilation in at a single site, as opposed to the distributed query compilation in
AMOSII .

As opposed to the distributed databases, where there is a centralized repository contain-
ing meta-data about the whole system, the architecture described in this papers consists of
autonomous systems, each storing only locally relevant meta-data. Most of the mediator
frameworks reported in the literature (e.g. [13, 25, 11]) propose centralized query compila-
tion and execution coordination. In [5] it is indicated that a distribute mediation framework
is a promising research direction, but to the extent of our knowledge no results in this area
are reported. Within the same project a centralized query tree rebalancing is proposed [4].

In the DIOM project [21], the importance of the mediator composability is also recog-
nized. A framework for integration of relational data sources is presented where the opera-
tions can be executed either in the mediator or in the data source. The query optimization
strategy used �rst builds a join operator query tree (schedule) using a heuristic approach,
and then assigns execution sites to the join operators using an exhaustive cost-based search.
AMOSII , on the other hand, performs a cost-based scheduling and heuristic placement.
Furthermore, the compilation process in DIOM is centrally performed, and there is no clear
distinction between the data sources and the mediators in the optimization framework.

6 Summary and Future Work

We have given an overview of the architecture of the AMOSII mediator system where feder-
ations of distributed mediator servers can be composed by AMOSII servers. Each AMOSII
server has DBMS facilities for query compilation, and exchange of data and meta-data with
other AMOSII servers. OO views can be de�ned where data from several other mediator
servers are abstracted, transformed, and reconciled.

The importance was reiterated of being able to logically compose systems of mediators
without global meta-data knowledge in order to build large data integration systems.

It was shown how to decrease the overhead of logically composing mediator servers by
a distributed query optimization technique called Tree Distribution. Here, a distributed
compilation algorithm generates distributed execution plans where the optimized data 
ow
is di�erent from the logical mediator composition, and where each participating mediator
interacts only with its neighbor mediator servers.

Performance measurements show that the Tree Distribution algorithm signi�cantly im-
proves query performance and also allows for scale-up with respect to the number of mediator
servers involved in a query.

The performance improvements are particularly large in an environment with low band-
width connections between a client mediator and a set of composed server mediators, as
e.g. in a mobile environment where a portable computer is connected via ISDN or a regular
phone line to mediator servers communicating via LAN.

We showed that if there are selections in the client mediator di�erent query distributions
are optimal depending on the speed of the connection and the selectivity of the selections.
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Further research is ongoing to handle the larger class of distributed and multiple query plans
required in this situation.

More work is also needed to deal with parallel execution plans, unreliable and sometimes
disconnected connections from the client mediator, and deep mediator compositions.
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