
Distributed Mediation

using a

Light�Weight OODBMS

Vanja Josifovski and Tore Risch

Link�oping University� Sweden

fvanja� torrig�ida�liu�se

May ��� ����

Abstract

An overview is given of a light�weight� Object�Oriented �OO�� multi�database
system� named AMOS II� Object�Oriented multi�database queries and views
can be de�ned where external data sources of di�erent kinds are translated
through AMOS II and integrated through its OOmediation primitives� Through
its multi�database facilities many distributed AMOS II systems can inter�
operate� Since most data reside in the data sources� and to achieve good
performance� the system is designed as a main�memory DBMS having a stor�
age manager� query optimizer� transactions� client�server interface� etc� The
AMOS II data manager is optimized for main�memory and is extensible so
that new data types and query operators can be added or implemented in
some external programming language� Such extensibility is essential for data
integration�

� Introduction

The AMOS II system has its roots in the workstation version of the Iris system�
WS�Iris ����� and the DAPLEX ��	� functional data model
 The core of AMOS
II is an object�oriented� open� light�weight� and extensible database management
system �DBMS�
 To achieve good performance AMOS II is designed as a main�
memory DBMS
 Each AMOS II server is also a DBMS of its own containing all
the traditional database facilities� such as a storage manager� a recovery manager�
a transaction manager� and an OO query language� named AMOSQL ���
 The
system can be used as a single�user database or as a multi�user server to applications
and to other AMOS II systems
 The data manager is designed for main�memory and
is optimized for e�cient execution when the entire database �ts in main�memory

AMOS II is distributed mediator system �	�� allowing a number of AMOS II me�
diator servers to communicate over the Internet
 Applications can access data from
several distributed data sources through a collection of mediators
 The mediator
servers have facilities for translating� combining� reconciling� and abstracting data
through OO views over other mediators and external data sources
 The abstraction
services allow presenting di�erent object view hierarchies in the di�erent mediators

The mediator servers appear as virtual database servers having data abstractions
and an OO query language
 AMOS II mediators are composable since a mediator
server can regard other mediator servers as data sources
 A single AMOS II server
can also assume more than one role and serve more than one application simultane�
ously
 Di�erent interconnecting topologies can be used to connect mediator servers
depending on the integration requirements of the environment

Some of the servers can be con�gured as translators ��� wrapping di�erent kinds
of data sources� e
g
 access to relational databases through ODBC �	� or access
to XML �les ���
 We use the term translator �rather than the commonly used
term wrapper� since translators are complete AMOS II systems which can wrap
more than one data source and support semantic data abstractions and conversions
from its data sources through OO views
 A translator is thus also a mediator that
provides a virtual OO database server layer that transparently translates data from
some data sources
 Wrappers are usually simpler interfaces to data sources while a
translator can contain several wrapper subsystems for di�erent data sources

Mediator servers can also act as integrators which combine and convert data
from other mediator servers through OO views
 As for translators� these OO views
provide a virtual OO database layer to be transparently accessed from clients and
other mediator servers
 Con�icts and overlaps between similar real�world entities
being modeled di�erently in di�erent data sources can be reconciled through the
mediation primitives ��� ��� ��� of AMOSQL

The declarative multi�database query language AMOSQL requires queries to be
optimized before execution
 The query compiler translates AMOSQL statements
into object calculus and algebra expressions in an internal simple logic based lan�
guage called ObjectLog ����� which is an OO dialect of Datalog ����
 As part of
the translation into object algebra programs� many optimizations are applied on
AMOSQL expressions relying on their OO and multi�database properties
 During
the optimization steps� the object calculus expressions are re�written into equivalent
but more e�cient expressions
 For distributed multi�database queries the query de�
composer distributes each object calculus query into local queries to be executed in
the di�erent distributed AMOS II servers and data sources
 A cost�based optimizer
on each site translates the local queries into procedural execution plans in an OO
algebra� based on statistical estimates of the cost to execute each generated query
execution plan expressed in the OO algebra
 A query interpreter �nally interprets
the optimized algebra to produce the �partial� result of a query

The query optimizer is extensible through a generalized foreign function mech�
anism� multi�directional foreign functions ����
 It gives transparent access from
AMOSQL to special purpose data structures such as internal AMOS II meta�data
representations or user de�ned storage structures
 The mechanism allows the pro�
grammer to implement query language operators in an external language �Java� C
or Lisp� and to associate costs and selectivity estimates with di�erent user�de�ne
access paths
 The architecture relies on extensible optimization of such foreign
function calls ����
 They are important both for accessing external query processors
�	� and for integrating customized data representations from data sources

To achieve good performance we have carefully optimized the representation of
critical system data structures� e
g
 the storage manager� object representation�
type information� and the representation of function de�nitions
 We use tailored
main memory data structure representations of system objects� rather than� e
g
�
storing them in relational tables represented as B�trees ���
 For example� our object
identi�ers are represented as variable length records with pointers to data struc�
tures representing type�information� function de�nitions� dependent objects� etc
 It
is crucial that system information is represented e�ciently� since it is extensively
looked up during both compilation and interpretation of AMOSQL functions
 The
storage manager has an incremental garbage collector for removing unused data

AMOS II is runs under Windows NT
 The system uses around ���KB of code
and ���KB of meta data
 The system has client�server and inter�database com�
munication primitives whereby AMOS II servers can communicate over TCP�IP

The rest of this paper �rst describes the multi�database architecture of AMOS
II� then its data model and query language is overviewed� and �nally the data
mediation primitives and their processing are summarized

� Multi�database Architecture

The multi�database architecture of AMOS II allow several AMOS II systems to
connect and communicate over a network using TCP�IP
 There are furthermore
AMOSQL data interoperability primitives to exchange data between di�erent AMOS
II systems and to mediate semantically heterogeneous data �Sec
 ��

Fig
 illustrates how AMOS II systems can communicate and how they can be
con�gured in di�erent modes with respect to how they interact with other systems

The lines indicate communication between sub�systems where the arrows indicate
the servers

Application

Program

A: Embedded

AMOS Client

D: Mediator

Server

E: Translator

ORACLE

Database

B: Client

Mediator

F: Name

Server

C: Stand-alone

Database

Application

Program

G: Embedded

Database

Figure � Distributed Mediator Architecture

The system can be con�gured in two dimensions�

� It can be a single�user� a server or an embedded system� where a single�user
AMOS II system is a private database� a server is servicing several other
AMOS II systems� and an embedded system is linked to some application

� It can be a stand�alone� or a mediator system� where a stand�alone system
is an isolated database and a mediator access data from some mediator�s� or
data source�s�

The gray�shaded AMOS II systems in �g
 illustrate the following modes of oper�
ation along the two dimensions�

Single�user Server Embedded

Stand�alone C F G
Mediator B D�E A

� �A� is an embedded AMOS II mediator linked to an application program
 The
small footprint of an embedded AMOS II system makes it easy to link it to ap�
plications
 The system has interfaces to application programs in Java� C� and
Lisp
 Applications always access meditator servers by AMOSQL commands
that are passed through an embedded AMOS II mediator

� �B� is a single�user mediator importing and integrating data from AMOS II
servers through the multi�database facilities� but not servicing other systems

� �C� is a single user stand�alone database where the user can enter AMOSQL
commands to populate� search� and update a private database

� �D� is a mediator server servicing inter�database requests from other AMOS II
systems and de�ning mediating OO views integrating data from other servers

� �E� is a mediator server that translates data from a relational database
 It
has knowledge of how to translate AMOSQL queries to SQL and interfaces
to call SQL through ODBC �	�
 It can use the facilities of AMOSQL for
semantic mediation of data from its data sources and its local database into
views presented to other systems

� �F� is a stand�alone database server accessed from mediator �D� by TCP�IP

It is also a nameserver
 It keeps track of the mediator servers and clients in
this group of mediators� as indicated by the dotted arrows
 Every AMOS II
mediator belongs to a group of mediators and must be given a unique name
within the group
 The nameserver is an ordinary AMOS II mediator server
having the special task to store information about names� locations� and other
meta�properties of the mediators in a group
 A nameserver thus identi�es a
group of mediators and all mediators in the group will access meta�data about
the federation of mediators from the nameserver �dotted lines in Fig
 �

� �G� is a stand�alone embedded AMOS II system which provides database
facilities for an application� e
g
 for FEA analysis ����

When you start running AMOS II you initially will have a stand�alone single�user
database which cannot communicate with other AMOS II stand�alone databases or
mediators
 The stand�alone database can become a server by issuing some system
function calls
 There are furthermore system calls for making the stand�alone system
join or leave a mediator federation through updates to the nameserver database

� Data Model

The data model of AMOS II is an OO extension of the DAPLEX ��	� functional
data model
 It has three basic constructs� objects� types and functions

Objects model all entities in the database
 Everything in AMOS II is represented
as objects managed by the system� both system and user�de�ned objects
 There
are two main kinds of representations of objects� literals and surrogates
 The literal
objects are self�described system maintained objects which do not have explicit
OIDs� e
g
 numbers and strings
 Literal objects can also be collections of other
objects� e
g
 vectors ��dimensional arrays of objects� and bags �unordered sets
with duplicates�
 The surrogates have associated explicit object identi�ers �OIDs�
which are explicitly created and deleted by the user or the system
 Examples of
surrogates are objects representing real�world entities such as persons� meta�objects
such as functions� or even AMOS II mediators as meta�mediator objects

An object can be classi�ed into one or more types making the object an instance
of those types
 The set of all instances of a type is called the extent of the type

The types are organized in a multiple inheritance� supertype�subtype hierarchy
 If
an object is an instance of a type� then it is also an instance of all the supertypes of
that type� conversely� the extent of a type is a subset of the extent of a supertype
of that type �extent�subset semantics�

The surrogate types can be stored� derived� proxy� or integration union types�

� Stored types have their extents explicitly stored locally in an AMOS II
database
 Their instances are maintained by the user

� Derived types �DTs� are de�ned implicitly in terms of one or more con�
stituent supertypes through a declarative query over the supertypes
 Their
extents are subsets of the intersection of the extents of the constituent types

� Proxy types represent objects stored in other mediators or in some of the
supported kinds of data sources

� Integration union types �IUTs� are de�ned as supertypes of other types

An IUT extent contains one instance for each real�world entity represented by
the �possibly overlapping� extents of the subtypes

The proxy� derived and IUTs are the core of the integration framework in AMOS II

Composition of such types provide means for resolving a wide specter of semantic
heterogeneities between the data and meta�data in the sources
 Queries over the
OO views are transformed into queries over data in multiple data sources

Object attributes� queries� methods� and relationships are modeled by functions

Depending on their implementation the basic functions can be classi�ed into stored�
derived� foreign� and proxy functions� as well as database procedures�

� Stored functions represent properties of objects �attributes� stored in the
database
 Stored functions correspond to attributes in OO databases and
tables in relational databases

� Derived functions are functions de�ned in terms of queries over other
AMOSQL functions
 Derived functions cannot have side e�ects and the query
optimizer is applied when they are de�ned
 Derived functions correspond
to side�e�ect free methods in OO models and views in relational databases

AMOSQL has an SQL�like select statement for de�ning derived functions
which can also be used for ad hoc queries

� Foreign functions are implemented through an external programming lan�
guage �Java� Lisp or C�
 Foreign functions correspond to methods in OO
databases and multi�directional foreign functions ���� provide access to exter�
nal storage structures similar to data �blades�� �cartridges�� or �extenders� in
object�relational databases
 To help the query processor� a multidirectional
foreign function can have several associated access path implementations with
cost and selectivity functions

� Proxy functions represent functions in other mediators

� Database procedures are functions de�ned using a procedural sublanguage
of AMOSQL
 They correspond to methods with side e�ects in OO models

� Query Processing

The AMOSQL query language is similar to OQL ��� but based on the functional
query languages OSQL ���� and DAPLEX ��	� with extensions of mediation primi�
tives ���� ���� multi�directional foreign functions ����� late binding ��� active rules
����� etc
 The functional data model is �exible and well suited for data integration�
which actually was one of the motivations for the DAPLEX functional data model
��	�
 By describing type hierarchies and semantic heterogeneity using declarative
functions and a functional Common Data Model there are many opportunities for
the extensive query optimization needed in an OO mediation framework

AMOSQL has data modeling as well as querying constructs
 The general syntax
for queries is�

select �result�

from �type declarations for local variables�

where �condition�

For example� the following query retrieves the names of the parents of all persons
having �sailing� as hobby�

select p� name�parent�p��

from person p

where hobby�p� � �sailing�	

Fig
 �� presents an overview of the query processing in AMOS II
 The �rst �ve
steps� also called query compilation steps� translate the body of a query expressed
in AMOSQL to a query execution plan which is stored with the query
 To illustrate
the query compilation we use the ad hoc query above

Interpreter
Algebra

result

Generator
Calculus Calculus

object
calculusquery

Optimization

object
calculus

External
requests

Estimator
Cost Algebra

Generator

Single-site
Cost Based
Optimizer

Generator

Decomp.
Tree

decomposition
trees

decomposition
tree

object
algebra

Query decomp. & algebraic optimization

AMOSQL

Figure �� Query processing in AMOS II

From the parsed query tree� AMOS II �rst translates the AMOSQL queries into
a type annotated object calculus representation ����
 For example� the query above
is translated into the following calculus expression�

f p� nm j
p � Personnil�person�� �
pa � parentperson�person�p� �
nm � nameperson�string�pa� �
�sailing� � hobbyperson�string�p�g

The �rst predicate in the expression is inserted by the system to assert the type of
the variable p
 This type check predicate de�nes that the variable p is bound to one
of the objects returned by the extent function for type Person� Person��� which
returns all the instances of its type
 The variables nm and pa are generated by the
system
 Next� the calculus optimizer applies rewrite rules to reduce the number of
predicates
 In the example� it removes the type check predicate�

f p� nm j
pa � parentperson�person�p� �
nm � nameperson�string�pa� �
�sailing� � hobbyperson�string�p�g

This transformation is correct because p is used in a stored function �e
 g
 name�
with an argument or result of type person
 The referential integrity system of stored
functions constrains the stored instances to the correct type ����

The query decomposition phase ��� �� is invoked whenever a query is posed
over data from more than one data source
 It uses a combination of heuristic and
dynamic programming strategies to produce an executable algebra plan from a
query calculus expression operating over imported �proxy� and locally stored types

The query decomposition process is performed in � phases�

 Predicate grouping� This phase attempts to reduce the problem of �nding a
suboptimal execution plan by reducing the number of predicates
 Predicates
executed at the same data source are grouped into one or more composite
predicates that are treated afterwards as single predicates

�
 Site assignment �predicate placement�� This phase uses cost�based heuris�
tics to make the �nal decision which composite predicate is executed where�

eventually replicates some of the predicates� and assigns execution sites to
those predicates that can be executed at more than one site �e
g
 ��joins spec�
i�ed by comparison operators�
 The output of this phase is a query graph
where all the nodes are assigned to some site

�
 Cost�based execution scheduling� In order to translate the query graph
from the previous phase into an executable query plan� the query processor
must decide on the order of execution of the predicates in the graph nodes�
and on the direction of data shipping between the nodes
 Execution schedules
for distributed queries in AMOS II are represented by decomposition trees

Each node in a decomposition tree describes one data cycle through a client
mediator
 In a cycle� �rst the intermediate results are shipped to the site
where they are used
 Then a subquery is executed at that site using the ma�
terialized data as input� and the result is shipped back to the client mediator

Finally� one or more post�processing subqueries are performed at the client
mediator
 The result of a cycle is always materialized in the client mediator

A sequence of cycles can represent an arbitrary execution plan
 As the space
of all execution plans is exponential to the number of participating databases�
we examine only a subset of the family of left�deep decomposition trees using
a dynamic programming approach

	
 Tree distribution� In this phase ���� a distributed compilation is performed
at the participating mediators to rebalance and distribute the decomposition
trees produced by the previous phase
 One de�ciency of the plans produced
by the previous phase is that all the data �ows are from or to one mediator

This can lead to many super�uous data �ows when the data is to be trans�
ferred from one data source to another
 The execution schedule resulting from
the tree distribution can contain sequences where the data is shipped directly
from one mediator to another� eliminating the bottleneck of shipping all data
through a single mediator
 This approach makes the set of mediators to func�
tion as one distributed mediation system
 Some of the problems encountered
here are how to transport OIDs and typed information in general through
mediators that have no knowledge of these types

�
 Object algebra generation� The input to this phase is an executable de�
composition tree� which is translated into equivalent sets of inter�calling local
object algebra plans

� Data Integration by Object�Oriented Modeling

To provide data integration features� the type system is extended with derived types
�DTs� ���� de�ned as subtypes of other types� and integration union types �IUTs�
���� de�ned as supertypes of other types
 Data is integrated through DTs and
IUTs by building an OO view type hierarchy based on local types� and types im�
ported from other data sources� including other AMOS II servers
 The traditional
inheritance mechanism� where the corresponding instances of an object in the su�
per�subtypes are identi�ed by the same OID� is extended with declarative speci��
cations of the correspondence between the instances of the derived super�subtypes

The DT instances are derived from the instances of their supertypes according to
a declarative condition speci�ed in the DT de�nitions
 DT instances are assigned
OIDs� which allows their use in locally stored functions �attributes� de�ned over
the DTs in the same way as over the ordinary types
 The DTs provide means for
mediation based on operators such as join selection� and projection
 However� these
do not su�ce for integration of sources having overlapping data
 This is provided

by the IUT framework� based on OO type hierarchies and late binding
 IUTs are
used to model unions of real�world entities represented by overlapping type extents

The integrated types become subtypes of the IUT
 Equality among the instances of
the integrated types is established based on a set of key attributes
 IUTs can also
have locally stored attributes� and attributes reconciled from the integrated types

Informally� while the DTs represent restrictions and intersections of extents of other
types� the IUTs represent reconciled unions of data in one or more mediators or data
sources

Fig
 � illustrates the use of OO views for data integration in AMOS II
 A com�
puter science department is �CSD� formed out of the faculty members of two uni�
versities named A and B
 The CSD administration needs to set up a database of
the faculty members of the new department in terms of the databases of the two
universities
 The faculty members of CSD can be employed by either one of the
universities
 There are also faculty members employed by both universities
 The
full time members of a department are assigned an o�ce in the department

locat ion

CSD_emp

Faculty

A_emp

CSD_Aemp

Ta

Uni A

DB

Personnel

B_emp

CSD_Bemp

Tb

Uni B

DB

socsec
age

salar y
name

pay
dept

ssn
name

Full_Time

cour ses
bonus

salar y
name
ssn

office

Figure �� An Object�Oriented View for the Computer Science Department Example

In Fig
 �� the mediators are represented by rectangles� the ovals in the rectangles
represent types� the solid lines represent inheritance relationships between the types�
and the dashed lines represent inheritance relationship de�ned by IUTs
 The two
translators TA and TB provide a representation of the university databases in the
of AMOS II data model
 In translator TA there is a type Faculty and in translator
TB a type Personnel
 A mediator is setup in the CSD to provide the integrated
view
 Here� the types CSD A emp and CSD B emp are de�ned as subtypes of the
types in the translators�

create derived type Faculty�Ta create derived type Personnel�Tb

subtype of A�emp subtype of B�emp

where dept�A�emp� � ��CSD��	 where location�B�emp� � ��G house��	

The system imports the external types� looks up the functions de�ned over them
in the originating mediators� and de�nes local proxy types and functions with the
same signature but without any implementation

The IUT CSD emp represents all the employees of the CSD
 It is de�ned over the
constituent types CSD A emp and CSD B emp
 CSD emp contains one instance for
each employee object regardless of whether it appears in one of the constituent types
or in both
 There are two kinds of functions de�ned over CSD emp
 The functions
on the left of the type oval in Fig
 � are derived from the functions de�ned in
the constituent types
 These reconciled functions have more than one overloaded
implementation� one for each possible combination of constituent types instances�
matching a IUT instance
 The functions on the right are locally stored

The data de�nition facilities of AMOSQL include constructs for de�ning IUTs
as described above
 The type CSD emp is de�ned as follows�

CREATE INTEGRATION TYPE csd�emp

KEYS ssn INTEGER	

SUPERTYPE OF

csd�A�emp ae
 ssn � ssn�ae�	

csd�B�emp be
 ssn � id�to�ssn�id�be��	

FUNCTIONS

CASE ae

name � name�ae�	

salary � pay�ae�	

CASE be

name � name�be�	

salary � salary�be�	

CASE ae� be

salary � pay�ae� � salary�be�	

PROPERTIES

courses BAG OF STRING	

bonus integer	

END	

For each of the constituent subtypes� a key expression is given
 The instances of
di�erent constituent types having the same key values will map into a single IUT
instance
 The key expressions can contain both local and remote functions

The FUNCTIONS clause de�nes the reconciled functions of CSD emp� derived
from functions over the constituent types
 For di�erent subsets of the constituent
types� a reconciled function of a IUT can have di�erent implementations speci�ed
by the CASE clauses
 For example� the de�nition of CSD emp speci�es that the
salary function is calculated as the salary of the faculty member at the university
to which it belongs
 In the case when s�he is employed by the both universities�
the salary is the sum of the two salaries
 When the same function is de�ned for
more than one case� the most speci�c case applies
 If no single most speci�c case
exists �e
g
 name�� the system assumes �any� semantics and chooses one based on
a heuristics to improve the performance of the queries over these functions
 Finally�
the PROPERTIES clause de�nes the two stored functions over the IUT CSD emp

The IUTs can be subtyped by DTs as other types
 In Fig
 �� the type Full Time
is de�ned as a subtype of the CSD emp type� representing the instances for which
the number of courses exceeds certain number
 The locally stored function o�ce
stores information about the o�ces of the full time CSD employees

��� Implementation of OO Mediation Primitives

Queries over DTs are expanded by system�inserted predicates performing the DT
system support tasks ����
 These tasks are divided into three mechanisms� �i� pro�
viding consistency of queries over DTs� �ii� generation of OIDs for the DT instances�
and �iii� validation of the DT instances with assigned OIDs
 The system generates
derived templates and functions to perform these tasks
 During query processing
the query is analyzed and� where needed� the appropriate functions�templates are
inserted
 A selective OID generation mechanism avoids overhead by generating
OIDs only for those derived objects that are either needed during the processing of
a query� or have associated local data in the mediator database

The functions specifying the view support tasks often have overlapping parts

���� demonstrates how calculus�based query optimization can be used to remove
redundant computations introduced from the overlap among the system�inserted
expressions� and between the system�inserted and user�speci�ed parts of the query

Each IUT is mapped by the system to a hierarchy of system generated DTs�
called auxiliary types �ATs� ����
 The ATs represent disjoint parts �a join and two

anti�semi�joins� of the outerjoin needed for this type of data integration
 The recon�
ciliation of the attributes of the integrated types is modeled by a system generated
set of overloaded derived functions generated by the system from the speci�cation
in the IUT de�nition
 Several novel query processing and optimization techniques
are developed for e�ciently processing the queries containing overloaded functions
over the ATs� as described in ����

� Related Work

AMOS II is related to research in the areas of OO views� data integration� dis�
tributed databases and general query processing
 There has been several projects
on intergration of data in a multi�database environment ��� �� �� �� �� 	� �� ���
��� ��� ��� ���
 The integration facilities of AMOS II are based on work in the
area of OO views �� �� �� �	� ��� ��� ��� ���
 Due to the space constraints we
do not detail the related approaches in this paper
 ��� gives a good overview of
distributed databases and query processing
 An interested reader is referred to ���
for an elaborate comparison of AMOS II with other data integration projects

Some unique features of AMOS II are�

� A distributed mediator architecture where query plans are distributed over
several communicating mediator database servers
 This direction has been
noted as a promising future research direction in� e
g
� ���

� Modeling reconciled OO views spanning over multiple mediators and speci�ed
through declarative functional queries

� Query processing and optimization of queries to reconciled views using OO
concepts such as overloading� late binding� and type aware query rewrites

� Query optimization strategies for OOmediator views that combine data stored
in the mediator with the reconciled data

� Summary

We have given an overview of the architecture of the AMOS II mediator system
where federations of distributed mediator servers can be composed by AMOS II
servers
 Each AMOS II system has DBMS facilities for query compilation� and
exchange of data and meta�data with other AMOS II systems
 OO views can be
de�ned where data from several mediator servers are abstracted� transformed� and
reconciled
 AMOS II systems can furthermore be embedded in applications and
used as stand�alone databases

We described the OO and functional data model and query language forming
the basis for data integration in AMOS II
 We gave an overview of type�aware query
re�writes of OO calculus query representations used by the query processor
 The
distributed multi�mediator query decomposition strategies used were summarized

References

�� S
 Abiteboul and A
 Bonner� Objects and Views
 ACM SIGMOD��� Conf��
ACM Press� ��

��� R
Bayardo� et al� Infosleuth� Agent�based semantic integration of information
in open and dynamic environments� ACM SIGMOD��	 Conf� ���

��� E
 Bertino� A View Mechanism for Object�Oriented Databases

rd Conf� on
Extending Database Technology �EDBT���� Vienna� Austria� ���

�	� Silvio Brandani� Multi�database Access from AMOS II using ODBC
 Link�oping
Electronic Press� ����� Dec
� ���� http���www�ep�liu�se�ea�cis����������

��� O
 Bukhres� A
 Elmagarmid �eds
�� Object�Oriented Multidatabase Systems�
Pretince Hall� ���

��� R
Cattell� The Object Database Standard� ODMG��
 ���� Morgan Kaufman�
���

��� U
 Dayal� H
 Hwang� View De�nition and Generalization for Database Integra�
tion in a Multidatabase System� IEEE Trans� on Softw� Eng� ����� Nov
 ��	

��� C
 Evrendilek� A
 Dogac� S
 Nural� F
 Ozcan� Query Optimization in Multi�
database Systems
 Distributed and Parallel Databases� ���� Jan
 ���

��� G
 Fahl� T
 Risch� Query Processing over Object Views of Relational Data
 The
VLDB Journal� ��	�� November ���

��� D
 Fang� S
 Ghandeharizadeh� D
 McLeod and A
 Si� The Design� Implemen�
tation� and Evaluation of an Object�Based Sharing Mechanism for Federated
Database System
 �th Data Engineering Conf� �ICDE��
� ���

�� S
 Flodin� T
 Risch� Processing Object�Oriented Queries with Invertible Late
Bound Functions� ��st VLDB Conf�� Zurich� Switzerland� ���

��� S
 Flodin� V
 Josifovski� T
 Risch� M
 Sk�old and M
 Werner� AMOS II User�s
Guide� available at http���www�ida�liu�se��edslab

��� H
Garcia�Molina and K
Salem� Main Memory Database Systems� An
Overview� IEEE TKDE Journal� 	���� Dec
 ���

�	� H
Garcia�Molina� et al� The TSIMMIS Approach to Mediation� Data Models
and Languages
 Intelligent Information Systems �JIIS ����� Kluwer� ���

��� L
 Haas� D
 Kossmann� E
 Wimmers� J
 Yang� Optimizing Queries accross
Diverse Data Sources
 �
th VLDB Conf�� Athens Greece� ���

��� S
 Heiler and S
 Zdonik� Object views� Extending the Vision
 �th Data Engi�
neering Conf� �ICDE���� ���

��� H
Lin� Querying XML Data from an Object�Oriented and Extensible Database
Mediator System� Technical Report� EDSLAB�IDA� Link�oping University� ���

��� V
 Josifovski� Design� Implementation and Evaluation of a Distributed Media�
tor System for Data Integration� Ph
D
 Thesis� Link�oping U
� Sweden� ���

��� V
Josifovski� T
Katchaounov� T
Risch� Optimizing Queries in Distributed
and Composable Mediators� Technical Report� �submitted for publication� ED�
SLAB�IDA� Link�oping University� ���

���� V
Josifovski and T
Risch� Functional Query Optimization over Object�
Oriented Views for Data Integration� Intelligent Information Systems �JIIS
Vol
 �� No
 ���� Kluwer� ���

��� V
Josifovski and T
Risch� Comparison of Amos II with Other Data In�
tegration Projects Technical Report� EDSLAB� Link�oping University� ����
http���www�ida�liu�se��edslab�amosII comp�pdf

���� V
Josifovski� T
Risch� Integrating Heterogeneous Overlapping Databases
through Object�Oriented Transformations� ��th VLDB Conf�� Edinburgh� Scot�
land� Sept
 ���

���� W
 Kelley� S
 Gala� W
 Kim� T
 Reyes� B
 Graham� Schema Architecture of
the UNISQL�M Multidatabase System� Modern Database Systems � The Object
Model� Interoperability� and Beyond� W
 Kim �ed
�� ACM Press� ���

��	� H
 Kuno� Y
 Ra and E
 Rundensteiner� The Object�Slicing Technique� A Flex�
ible Object Representation and Its Evaluation� Univ
 of Michigan Tech
 Report
CSE�TR��	���� ���

���� E�P
 Lim� et al� Myriad� Design and Implementation of a Federated Database
System
 Software � Practice and Experience� ������ May ���

���� W
 Litwin and T
 Risch� Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates
 IEEE TKDE Journal 	���� ���

���� L
Liu� C
Pu� An Adaptive Object�Oriented Approach to Integration and Ac�
cess of Heterogeneous Information Sources� Distributed and Parallel Databases�
����� April ���

���� P
 Lyngbaek et al� OSQL� A Language for Object Databases� Tech
 Report� HP
Labs� HPL�DTD���	� ��

���� A
 Motro� Superviews� Virtual Integration of Multiple Databases
 IEEE Trans�
action on Software Engineering� Vol
 SE��� No
 �� July ���

���� K
Orsborn� T
Risch� Next Generation of O�O Database Techniques in Fi�
nite Element Analysis
 Intl� Conf� on Computational Structures Technology� Bu�
dapest� Hungary� ���

��� M
T
 �Ozsu� P
Valduriez� Distributed Database Systems� Prentice Hall� ���

���� E
 Rundensteiner� H
 Kuno� Y
 Ra� V
 Crestana�Taube� M
 Jones and P
 Mar�
ron The MultiView project� object�oriented view technology and applications�
ACM SIGMOD��� Conf�� ���

���� M
 Scholl� C
 Laasch and M
 Tresch� Updatable Views in Object�
Oriented Databases
 Second Deductive and Object�Oriented Databases Conference
�DOOD��� Dec� ��

��	� D
 Shipman� The Functional Data Model and the Data Language DAPLEX

ACM Transactions on Database Systems� ���� ACM Press� ��

���� M
 Sk�old� T
 Risch� Using Partial Di�erencing for E�cient Monitoring of De�
ferred Complex Rule Conditions
 ��th Data Engineering Conf� �ICDE���� ���

���� C
 Souza dos Santos� S
 Abiteboul and C
 Delobel� Virtual Schemas and Bases

Intl� Conf� on Extending Database Technology �EDBT���� Vienna� Austria� ���

���� S
 Subramananian and S
 Venkataraman� Cost�Based Optimization of Decision
Support Queries using Transient Views
 ACM SIGMOD��� Conf�� ���

���� A
 Tomasic� L
 Raschid� P
 Valduriez� Scaling Access to Heterogeneous Data
Sources with DISCO
 IEEE TKDE Journel� ����� ���

���� J
D
Ullman� Principles of Database and Knowledge�Base Systems� Volume I �
II� Computer Science Press� ���� ���

�	�� G Wiederhold� Mediators in the Architecture of Future Information Systems�
IEEE Computer� ������ Mar
 ���

