
A Scalable Architecture for e-Science
Data Management

Salman Toor
Dept. Information Technology

Uppsala University
Uppsala, Sweden

salman.toor@it.uu.se

Manivasakan Sabesan
Dept. Information Technology

Uppsala University
Uppsala, Sweden

manivasakan.sabesan@it.uu.se

Sverker Holmgren
Dept. Information Technology

Uppsala University
Uppsala, Sweden

sverker.holmgren@it.uu.se

Tore Risch
Dept. Information Technology

Uppsala University
Uppsala, Sweden

tore.risch@it.uu.se

Abstract—The massive increase in the size of the data provided
by e-Science applications requires not only to increase the capa-
bilities of resources, but also to design new strategies for efficient
utilization of already available resources. In this paper we present
a scalable approach to extend a file-oriented storage system,
Chelonia, with geographically distributed databases defined by a
generic database schema. The database schema is able to model
the data from typical e-Science applications. The system includes
web service query service allowing e-Science applications to query
the required data.

I. INTRODUCTION

The evolution of distributed computing infrastructures has
opened a whole new world for the large scale computationally
expensive applications. Initially the focus of such applica-
tions was to exploit the computational power. Due to the
availability of more resources, the amount of experiments
from the e-Science community representing natural sciences
has increased dramatically. It was realized that due to the
increasing amount of computational experiments there is a
vital requirement of reliable and consistent storage systems.

To manage the scalability of data a concept has evolved,
known as data grids [15] or storage clouds [24]. Often
such systems are designed to handle file oriented storage
capabilities, i.e. the application/user can put, get, delete or
replicate entire files within the system. This is mainly because
most of the existing applications are designed to deal with
flat files and to keep focus on the computational aspect. The
Chelonia storage system [2] is one of the available solutions
to provide a scalable and efficient distributed file store.

As the magnitude of data generated by the applications
increased significantly the data management becomes non-
trivial. Therefore a number of middlewares have started to
investigate different strategies to provide efficient and reliable
storage systems. These systems often uses the database only
for managing the meta-data of the system. However the
requirements of the applications are becoming more and more
sophisticated. There is a number of applications from system
biology, astronomy and different branches of physics which
generate huge amounts of data that require scalable storage
solutions to provide functionalities more than just put, get or
delete files.

The use of multidimensional matrices is one of the essen-
tial components in computational sciences. However, it has

been observed that in many disciplines there are applications
that generate thousands of matrices representing trajectories.
Such applications use lots of computational power and in
case of reanalyzing the data from old experiments require
all the trajectories used in those experiments. The proposed
architecture allows not only to store such data but also to
query them according to the requirements. The emerging
storage requirements motivate us to extend the capability of
the Chelonia storage system to handle matrices.

The input data files can be as small as a few hundred
kilobytes or can be in size of gigabytes. Often in a file only a
part of the data is required. Since everything is in the file, the
whole file first needs to be transferred to the computational
resource where the application reads and extracts the desired
data from the file. This entire activity is wasting computational
time and network bandwidth. This waste of resources will
increase dramatically with the increasing number of such
applications. Retrieving only the required part from the stored
file enables the applications to scale well in terms of effi-
cient computational and network resources. This leads to an
approach to store the data and use queries to extract relevant
parts of stored data in a structured way. For this we have
extended the architecture of Chelonia with a regular Relational
DataBase Management System (RDBMS).

The importance of the RDBMSs in terms of data manage-
ment has already been well proven, but the efficient utilization
of databases depends on carefully designed database schema.
In the scientific environment, designing a schema is rather
difficult because of the complex nature of data. The strength of
the extended Chelonia architecture is the underlying Chelonia
database schema which is generic enough to handle the
needs of scientific applications from a number of different
disciplines.

The Chelonia database schema frees the user from designing
a schema for each new scientific application. It is designed
to handle the various different datatypes used in scientific
experiments ranging from simple datatypes such as integers,
reals and strings to complex datatypes such as multidimen-
sional matrices, and even trajectories. In addition, a user
can make queries to select desired data elements from the
stored scientific results in a uniform way because the database
schema is the same for all kinds of scientific applications.

A user makes declarative queries specified in Structured
Query Language (SQL) to the database. The declarative SQL
queries allow the user to specify the data to be retrieved from
the database on a very high level. Such SQL queries free
the user from writing the detailed application programs for
how to retrieve the required data. In general SQL is a widely
accepted and mostly used standard for querying data. The
declarative queries provide an efficient way for the RDBMS
to optimize the queries to improve the query execution time.
The optimization functionalities are already well established
with existing RDBMSs. In addition, the RDBMS provides the
facility to extend its functionalities by defining User Defined
Functions (UDF) in some programming language. By defining
new UDFs, arbitrary functionalities that are not standard
RDBMS functions can be incorporated within the RDBMS. In
the extended Chelonia architecture, UDFs are used to enhance
the SQL functionality to meet the requirements from e-Science
applications so that processing can be done inside the database
server without having to return the entire dataset(E.g. matrix)
back to the client.

The Chelonia storage system is managing several geograph-
ically distributed storage nodes. With the extended architecture
of Chelonia, a storage node incorporates a RDBMS. Utilizing
the geographically distributed storage nodes, Chelonia scales
the data in multiple autonomous databases and provides a
seamless view over these databases.

Most of the existing operations of Chelonia are accessed via
web service operations. To execute queries the Web Service
MEDiator (WSMED) [18] system is used that provides a
web service to query the scientific data without any further
programming. The search is completely specified by SQL
queries. The WSMED adheres to the Everything as a Service
(XaaS) [11] paradigm by providing a general web service
to process queries over the other web services, known as the
WSMED web service.

This summarizes the contributions of our work:

• Chelonia is extended with a RDBMS to enrich the
capability of its file oriented storage by storing the
data generated from different e-Science applications in
a structured way.

• A generic scientific database schema, the Chelonia
database schema, is used to model the data from different
e-Science applications.

• The stored data can be queried in a uniform and structured
way.

• A web service querying service, the WSMED web ser-
vice, is provided to search the scientific data in Chelonia.

The rest of the paper is organized as follows. Section II
analyses related work of state-of-the-art projects. In Section
III and IV we present the overview of the Chelonia storage
system and WSMED. The proposed extended architecture is
discussed in Section V. Preliminary results have been analyzed
in Section VI and finally conclusion and some future directions
are presented in Section VII.

II. RELATED WORK

Google App Engine [5] is a web based execution environ-
ment that allows very many users to store tables. The resource
utilization of Google App Engine is very limited. The appli-
cations can make queries with limited SQL functionalities.
In contrast, Chelonia manages the scientific data and enables
queries without any limitations.

A highly available and scalable cloud database service
Microsoft SQL Azure [12] is built on SQL Server technolo-
gies. The users do not need to do any additional software
installations to store and query their data.

Relational Cloud [16] is providing database as a service by
supporting high availability via transparent replication, auto-
matic workload partitioning, and live data migration on a pool
of commodity servers within a single data center. In contrast,
Chelonia allows to utilize geographically distributed storage.
Automated workload partitioning as done in Relational Cloud
in the context of scientific application’s data and live data
migration can be interesting future directions for Chelonia.

In comparison with the above mentioned systems, Chelonia
provides a very generic schema suitable for e-Science appli-
cations to free the users from the complicated schema design
and supports querying complex datatypes.

NetCDF (Network Common Data Form) [8] supports
machine-independent data formats that support the creation,
access, and sharing of array-oriented scientific data stored in
regular files. Chelonia also provides a framework to represent
array-oriented e-Science data. In addition, Chelonia stores the
data in a database using a generic scientific database schema
and enables queries to the stored data.

The OGSA-DAI (Open Grid Services Architecture Data
Access and Integration) [10] is a framework that allows
workflows to be executed for various applications. Such work-
flows involve accessing, updating, combining, transforming or
delivering data that could be distributed across a number of
databases and held in various formats. Chelonia is a grid-aware
storage solution and thus grid jobs or workflows can utilize
all the functionalities provided by Chelonia. Further Chelonia
provides a very generic scientific database schema to relieve
the user from the burden of designing a specific schema for
each application. Then a user makes queries to the stored data
in a uniform way.

III. THE CHELONIA STORAGE SYSTEM

The Chelonia storage system [23] was designed to address
medium scale storage requirements. It was developed within
the knowARC [4] project under the NorduGrid [9] collabo-
ration. Chelonia was developed in conjunction with the next
generation ARC middleware [1] [17]. Initially, Chelonia was
developed as a distributed storage for flat files. It has four
fundamental web services which have well defined tasks and
all together it provides a scalable, flexible and fault tolerant
storage system for flat files.

The web services provided by Chelonia are Bartender,
A-Hash, Librarian and Shepherd. Following are the brief
functionality of each of the services.

• Bartender is the front-end service of the Chelonia stor-
age system. All the incoming requests invoke this service
first. The operations provided by Bartender allow to get,
put, delete or move the files and collections (directories).

• A-Hash is a meta-data store of the Chelonia system. It
contains the information about the available objects in a
key-value pair format. A-Hash can be deployed either in
a centralized or a replicated manner.

• Librarian is a state-less service which gets requests from
Bartender and helps to take decisions. The responsibility
of the Librarian service is to handle logical names. Since
the service is state-less itself, it uses the A-Hash service
to store all the information regarding the available files,
collections and the mount-points.

• Shepherd runs at a storage node known as the Shep-
herd node. This service is responsible for checking the
available files periodically and update the information in
the A-Hash through the Librarian service. The Shepherd
service also ensures that the files have correct number of
replicas.

The Chelonia Storage system provides several interesting
features which makes it flexible and easy to use and deploy.
Following are the key features of Chelonia:

• The non-intrusive architecture of Chelonia avoids the
possibility of a single point of failure. The system can
have multiple Bartenders connecting with a single or
multiple Librarians. Similarly, if there is a replicated
A-Hash, a single or multiple Librarians can connect to
any of the available A-Hashes, while the integrity of the
results will be intact.

• A global hierarchical namespace allows to access files
and collections without using their URLs.

• The accessibility of Chelonia is through Chelonia
command-line tool.

• In Chelonia, a third party transfer mechanism is used to
transfer files, i.e. once the users have been authorized to
access a file, a transfer URL is generated by the Shepherd
service which is returned back to the user and later the
user can fetch the file directly from the Shepherd node.

All the web services of Chelonia are used in the extended
architecture to manage the stored data. [20], [21], [22] explain
the functionality and features of the Chelonia in detail.

IV. THE WEB SERVICE MEDIATOR (WSMED) SYSTEM
The eminent application of web services is to search dif-

ferent kinds of data from servers providing information of
different kinds. For a given set of parameters, such data
providing web services return collections of objects without
any side effects. The Web Service MEDiator (WSMED) [18]
[19] [25] is built to query any data providing web service
operations without any further programming. The search is
completely specified by declarative SQL queries that retrieves
data from the data providing web services. To comply with the
Everything as a Service (XaaS) paradigm WSMED provides
a general WSMED web service to process SQL queries over
other web services.

To query any data providing web service, WSMED can
import any WSDL file and automatically generate relational
views for the web service operations defined in the WSDL
file. These views can be queried and joined with SQL. The
execution time of a web service operation call depends on
the operation properties. Such a property is known as web
service operation cost to execute a web service operation. The
cost is relying on when and where the operation is invoked.
In general the cost for an operation call is not explicitly
available and very hard to calculate. To speed up the operation
calls, WSMED deploys adaptive parallelization operator. For
a given SQL query, WSMED dynamically composes the web
services. Further it optimizes the web service operation calls
by adaptively parallelizing such calls without knowing the cost
of calling each web service operation.

Figure 1 illustrates the service oriented architecture of
WSMED with web service operations INIT, IMPORTWSDL,
AUTHENTICATION, VIEWINFO, QUERY, and EXIT S.

Fig. 1. Service Oriented Architecture

• The INIT operation registers a WSMED user session.
• For a given URL of a WSDL document, the IM-

PORTWSDL operation imports WSDL meta-data infor-
mation and automatically creates an SQL view Viewi

for each operation OPj provided by a web service WSk

described by an imported WSDL document WSDLk.
• The AUTHENTICATION operation provides authentica-

tion information for web service operations.
• The VIEWINFO operation provides information about

the SQL view over a given web service operation. For
example, it lists view attributes that must always be
specified in the queries and attributes to be returned once
the given web service operation is called.

• The QUERY operation accepts SQL queries to the gen-
erated views. The results from the operation is auto-
matically flattened, optimized, and post processed by
WSMED in order to deliver a proper SQL result as a
collection of tuples.

• Finally, the operation EXIT S terminates a user session.
The WSMED web service is demonstrated through a pub-

licly accessible WSMED Demo [13] from any browser. It
enables the user to access any data providing web services.

The schema of the generated views can be inspected and the
query can execute general SQL queries over the views. The
demonstration is fully implemented as a JavaScript calling
WSMED web service using SOAP. The WSMED Demo
fulfills the major characteristics of XaaS. The WSMED web
service is used to query the stored scientific data in Chelonia.

V. THE EXTENDED ARCHITECTURE OF CHELONIA

The proposed architecture provides a loosely coupled model
for the integration of Chelonia, WSMED and the RDBMS.
Figure 2 illustrates the complete overview of the architecture.
Initially Chelonia could only handle flat files, but with the ex-
tension Chelonia can be used to generate and query databases
managed by a RDBMS. The proposed approach allows both
Chelonia and WSMED to work as stand-alone systems. The
responsibilities of each of the component is according to its
strength, i.e. due to its none-intrusive architecture and storage
capability, Chelonia is responsible for populating databases in
the RDBMS, whereas WSMED is providing a web service
for querying scientific data. The interaction between appli-
cations/users and the new architecture is exactly the same
as in the original version of Chelonia. All the requests goes
through the Bartender, A-Hash is used to store the meta-data
and Shepherds are responsible for underlying data integrity
and third party transfer.

The rest of the section is divided into three sub sections.
Section V-A depicts the generalized database schema. The
population of data in the Chelonia is discussed in Section V-B
and Section V-C describes how to specify the SQL queries
using WSMED.

A. Chelonia Database Schema

To store the data from an application, we have devised
a generic database schema. The schema is implemented in
MySQL server [7]. The schema contains six different relations
TASKS, VARIABLEDIRECTORY, ITRIPLES, FTRIPLES,
STRIPLES, and ATRIPLES. Following are the relations where
the names appearing in capital letters depict the relation (table)
names, and underlined attributes represents the respective
primary keys.

TASKS(taskId : i n t , taskName : char ,
sourceCode : t e x t , whoDid : char ,
e x e c u t i o n D a t e : d a t e)

The relation TASKS store data about the executed tasks.
It has five attributes taskId, taskName, sourceCode, whoDid,
and executionDate with the respective datatypes int, char, text,
char, and date. taskId represents the identifier for each exe-
cuted task, taskName indicates the name of the task, source-
Code contains the programming language code or pseudo code
for the task, whoDid depicts the name of the person who has
designed and executed the task and executionDate represents
when the task is executed.

VARIABLEDIRECTORY (vName : char ,
vType : char , d imens ion : c h a r)

The VARIABLEDIRECTORY stores the data about the dif-
ferent variables measured during each task execution. The at-
tributes are vName, vType, and dimension with datatypes char,
char, and char. vName denotes the variable name and vType
notifies the type of a variable (e.g. int or float or string or ar-
ray of int or array of float or array of string). In general the
value for each stored attribute vType array of (int/float/string)
may have different dimensions. For example values for a
variable with vName matrixVal and vType array of int could
have the dimension three. The dimension value three is stored
as the dimension attribute. The default value of the dimension
of vTypes int, float and string is one.

The ITRIPLES, FTRIPLES and STRIPLES are used to store
the values for each variable, representing the vTypes int, float
and string respectively. Therefore the value attribute is defined
with the datatypes int, float and longtext for the relations
ITRIPLES, FTRIPLES, and STRIPLES. The other attributes
taskId and vName has the datatype int and char respectively
for all three relations. The datatype longtext supports storing
long strings and enables sophisticated text searches on the
stored strings.

ITRIPLES (taskId : i n t , vName : char ,
v a l u e : i n t)
FTRIPLES (taskId : i n t , vName : char ,
v a l u e : f l o a t)
STRIPLES (taskId : i n t , vName : char ,
v a l u e : l o n g t e x t)

The ATRIPLES relation is used to store array values of
variables. It has the attributes taskId, vName and value, with
the datatypes int, char and longblob. The longblob datatype
enables to store huge arrays as binary objects.

ATRIPLES (taskId : i n t , vName : char ,
v a l u e : l o n g b l o b }

The Shepherd service receives the data file(s) to be stored.
Then it initiates the request to populate the data into the
MySQL database. Once the database is created with the above
schema and populated, any SQL queries can be made by a user.
In general e-Science applications require to store multidimen-
sional matrices and trajectories known as complex datatypes.
Such multidimensional matrices are stored as binary objects
(longblob datatypes) in the MySQL database. To search the
contents of such binary objects, we defined UDFs written in
C++. In our approach, when a Shepherd receives a data file
with matrices or trajectories, it forwards that file to the MySQL
database to store the data.

This approach gives the following benefits:
• The functionality of normalizing and storing binary ob-

jects in databases is comparably a better option in terms
of execution time for populating and querying data com-
pared to generating a data structure at the application
level.

• The usage of UDFs along with several other standard
SQL functions enrich the declarative functionality of
complex queries for e-Science applications.

• The approach of using UDFs improves the loosely cou-
pled model. That is the Shepherd is still completely

Fig. 2. Extended architecture for enabling databases using Chelonia services (Bartender (B), Librarian (L) AHash (A-H) and Shepherd (S)) and querying
with Web Service MEDdiator (WSMED).

independent of how the data is to be stored and queried
in the underlying database.

• In contrast to the conventional downloading of the whole
file to applications for computations, UDFs return only
the required data from the file.

B. Populating data with Chelonia

In order to populate the data into the underlying database,
the user needs to provide the data in a file that comply with an
XML schema required by MySQL. The user needs to send his
data in an XML file, the input file. If the input data consists of
only simple datatypes it is sufficient to represent all the data
to be stored. In case of complex datatypes, an additional file,
the complex data file, also has to be supplied. LOAD XML [6]
is used to populate the data from the XML file to the MySQL
database.

The complex data file should follow a proposed structure
to be readable by Chelonia. The format is flexible enough to
handle multidimensional matrices as well as trajectories. For
the complex datatypes, we are using a semicolon separated
format in which the first section denotes the datatypes, the
second section contains the information about the dimension
and the third section contains the actual data.

Listing 1. Generalized format for representing multidimensional matrix

dimType1 , dimType2 , . . . , dimTypei , va lType ;
dimVal1 ; dimVal2 ; . . . ; dimVali ;

{ {
{ v a l 1,...,1 , . . . , v a l 1,...,dimV ali }
{ v a l 2,...,1 , . . . , v a l 2,...,dimV ali }
. . . dimV al(i−1)

}dimV al2

}dimV al1 ;

Listing 2. Example of three dimensional matrix

i n t , i n t , i n t , f l o a t ; 3 ; 3 ; 2 ;
{

{{1.1 ,1.2}{2.1 ,2.2}{3.1 ,3.2}}
{{4.1 ,4.2}{5.1 ,5.2}{6.1 ,6.2}}
{{7.1 ,7.2}{8.1 ,8.2}{9.1 ,9.2}}

} ;

Listing 3. Generalized representation of n dimensional trajectory

dimType1 , dimType2 , , dimTypen , va lType ;
xCord1 , xCord2 , . . . , xCordi ;
yCord1 , yCord2 , . . . , yCordi ;
. . .
. . .
nCord1 , nCord2 , . . . , nCordi ;

{
{ v a l 1}{ v a l 2 } . . . { v a l i}

} ;

Listings 1 and 3 illustrate the generalized format for rep-
resenting the complex datatypes: multidimensional matrices
and trajectories. Listing 2 provides an example of a matrix
with the dimension [3 ∗ 3 ∗ 2]. The dimType is the datatype
for each dimension. In case of matrices it is an integer but
in case of trajectories it can be either integer or real. valType
is the datatype of the actual data to be stored. The number
of elements in each dimension is represented in dimVal for
matrices. For trajectories the comma separated list of elements
represent the number of elements. The last section contains the
actual data organized within a set of curly brackets where each
curly bracket set represents one dimension.

All the data management functionalities of the proposed
architecture is provided by the four basic commands using the
Chelonia command-line tool. makedb and unmakedb: used

to create and remove the database objects in the underlying
RDBMS. updatedb: used to populate and update the data.
querydb: is used to send the SQL query to the database.

The operations of populating and querying the database are
all asynchronous i.e when a user sends a request to create a
database, Bartender checks the paths validity and passes on
the request to the appropriate Shepherd node. In the Chelonia,
an object (file or database) can be in five different stages:

• CREATING: When an object is in the process of upload-
ing.

• ALIVE: Object is available without any problems.
• STALL: Object is in the store, but having some problem.
• THIRDWHEEL: When an object needed to be removed,

the Shepherd service marks that object with this state and
later it will be removed from the Shepherd node.

• UPDATING: This state is only valid for the databases.
While processing the request for the first time, the state of

the database is ”CREATING” which basically prevents any
user requests to access the database. Users can only populate
data or send queries once the state of the database becomes
”ALIVE”. For each query, the Shepherd service generates
a transfer URL which points towards the file containing
the results. Each updatedb request changes the state of the
database to UPDATING, which stops the users to send queries
until the database will be available again.

Since Chelonia is a grid-aware storage system, all these
commands can be issued form the grid jobs as well. One
of the major gains of the proposed system is to allow query
execution that enables to access only the desired data rather
then transferring complete files. Chelonia can run in fully
secure and insecure manner. Currently, the communication of
WSMED with Chelonia is through insecure HTTP channel.
If there is a requirement for a secured system, one can only
use the Chelonia command-line tool. The work related to the
secure communication between Chelonia and WSMED is an
ongoing work.

C. Querying with WSMED

The web service operation named queryDatabase provided
by the Bartender web service enables to search any stored
data in Chelonia by specifying an SQL query. Because the
Bartender web service is invoked from the WSMED Demo, the
wsdl document bartender.wsdl has to be imported by providing
its URL [3]. Then WSMED automatically creates an SQL view
queryDatabase as described in Listing 4.

After this initialization, one can make any SQL queries
using the SQL view queryDatabase to dynamically call the
web service operation also called queryDatabase. The schema
of the view queryDatabase has view attributes REQUESTID,
DBNAME, QUERY, PROTOCOL, SUCCESS, TURL, FIN-
ISHED REQUESTID, and POSSIBLE PROTOCOL:

Listing 4. SQL view queryDatabase

q u e r y D a t a b a s e (REQUESTID : char ,
DBNAME : char , QUERY : char ,
PROTOCOL : char , SUCCESS : char ,

TURL : char , FINISHED REQUESTID : char ,
POSSIBLE PROTOCOL : c h a r)

The values should be specified for the following view
attributes to call the web service operation queryDatabase .

• REQUESTID: An identifier given by a user. E.g. 0R
• DBNAME: the name of the database the user would like

to query. E.g. /db1
• PROTOCOL: list of comma separated protocols the user

would like to use to fetch the result file that contains the
result of the given user SQL query. E.g. http.

• QUERY: the SQL query the user would like to make to
the database specified by DBNAME. E.g:

Listing 5. SQL query1
s e l e c t r e a d a r r a y (”100 : 6000 ,100 : 8000” , v a l u e)

from ATRIPLES
where t a s k I d =2 and vName=” m a t r i x V a l ”

Listing 5 illustrates an example query1 that returns a sub
section of a matrix specified by the attribute value in the table
ATRIPLES for a task specified by the attribute taskId = 2 and
a measurement specified by the attribute vName=matrixVal.
read array as a UDF. It requires two arguments:

• dimension: a string that specifies the dimension of the
required subsection of a matrix. The dimension string
should start from lower and upper limits of the first
dimension up to the required dimension i of the given
matrix value (i ≤ dimension of the matrix). That is
the dimension string is specified in a format lower
limit of dimension1:upper limit of dimension1, ... ,
lower limit of dimensioni:upper limit of dimensioni.
query1 requests a subsection of a matrix with dimensions
(100:6000,100:8000) from the stored two dimension ma-
trix [10000*10000] specified by the attribute value.

• matrix: denotes the stored matrix. In query1 the matrix
is specified by the attribute value.

The attributes SUCCESS, TURL, FINISHED REQUESTID
and POSSIBLE PROTOCOL are filled with results returned
by the web service operation call queryDatabase.

• SUCCESS: specifies the status about the call query-
Database to execute query1.

• TURL: depicts the URL of the result file for the given
query1. Such a result file is to be fetched later by the user
by one of the protocols suggested by the returned comma
separated list of protocols in POSSIBLE PROTOCOL.

• FINISHED REQUESTID denotes the identifier of the
finished request.

In Listing 6 query2 represent the SQL query to call the web
service operation queryDatabase using WSMED web service.

Listing 6. SQL query2
s e l e c t TURL, POSSIBLE\ PROTOCOL
from q u e r y D a t a b a s e
where REQUESTID= ’0 ’ and DBNAME= ’ / db1 ’

and PROTOCOL= ’ h t t p ’ and
QUERY= ’ s e l e c t
r e a d a r r a y (” 1 0 0 : 6 0 0 0 , 1 0 0 : 8 0 0 0 ” , v a l u e)

from ATRIPLES
where t a s k i d =2 and vName=” m a t r i x V a l ” ’

Then query2 returns :
http://sal6.uppmax.uu.se:60005/hopi/304876e0-49fdf3f-fd354, http

Once the result file for the query1 is ready, user can use
any http client tools such as wget or curl by using TURL to
fetch the file.

VI. EXPERIMENTS AND RESULTS

For the experiments, all the Chelonia services have been
deployed on the UPPMAX (Uppsala Multidisciplinary Cen-
ter for Advanced Computational Science) resources whereas
WSMED is running from the UDBL (Uppsala DataBase
Laboratory) resources.

The Chelonia services are running on three different ma-
chines each having 2 GB of RAM and dual core Intel Pentium-
4 3.0 GHz processor with the operating system Scientific
Linux-5.3. One of the machines is dedicated for the Shepherd
node and the other two are running the Bartender, Librarian
and A-Hash services. WSMED is running on a 3 GHz single
processor Intel Pentium-4, 2.5 GB RAM and with Windows
7 operating system.

While the system is still under active development, we are
able to present promising initial results that showcase the key
features of the extended architecture of Chelonia. To get a clear
understanding, we have divided our results into three sections.
The first Section VI-A discusses the requirements from an
existing e-Science application, QTL Analysis[14] which can
potentially use the extended architecture of Chelonia. In the
last two subsections, we have discussed the execution time
while populating and querying large datasets. These datasets
depict the same datatypes as required by the QTL application.

A. QTL Analysis

In the field of population genetics and Quantitative Trait
Locus (QTL) analysis, one is interested in finding sets of QTL
influencing a specific property, or trait, in a population. A QTL
is then a genetic position where there exists genetic variation,
in the form of different alleles, that control the trait. In order to
find QTL, data on trait values (phenotypes), genetic markers
(genotypes) and pedigrees need to be available. In recent
years, treating expression of individual proteins determined by
microarrays as phenotypes has become commonplace. Finding
such expression QTL, or eQTL, means sifting through tens of
thousands of expression profiles for all individuals, finding
correlations against those genetic variation. In this setting, it
is beneficial to only extract the expression data for a single
protein in each search, i.e. extracting a single column from
an individual-phenotype matrix. When interactions between
multiple genetic positions are studied, the search can be
distributed to several nodes. In that case, only a subset of the
genetic marker data is needed on each node, meaning that only
specific contiguous blocks of the individual-genotype matrix
is needed. By using the extended architecture of Chelonia,
engineering complexity is reduced while the bandwidth and
local storage needs are kept at a minimum.

B. Data Population

In the first experiment we have populated data with a
number of different variables with both simple and complex
datatypes. We have populated matrices with varying number
of elements ranging from 1 million to 100 million. The
experiments have been conducted both for the integer and
real numbers. Figure 3 shows the execution time taken by the
Shepherd to populate the underlying MySQL database. Note
that this execution time excludes the time to transfer the files
from the client side to the Shepherd node. The time taken by
real number matrices is higher than for integers as the parsing
of integer numbers take less time compare to real numbers.
Notice that it took only 13 minutes to populate a matrix with
100 million elements. Since we are storing the data files as
binary objects inside the database, the system can only handle
the data according to the maximum size (4GB) of the longblob
datatype supported in the MySQL server, which is more than
sufficient for our applications to run.

The system is capable of handling character and strings the
same way as integers and reals. This feature can be particularly
interesting for applications like genome analysis.

Fig. 3. Execution time while populating matrices of size 1, 5 10 and 100
million both with integer and real numbers

C. Query Response

We have also measured the query execution time. The
syntax of the queries is illustrated in listing 5. The first query
accesses 10, 000 elements with the index range 101 : 200 to
501 : 600. The second query accesses 100, 000 elements with
the index range 601 : 700 to 1 : 1000. Both queries have
been executed on the stored matrices with integer and real
datatype elements. Figure 4 shows the query execution time.
The execution time increases with the size of the matrix as we
have to load the matrix before every query and then store the
results to a output file which user retrieves from Shepherd later.
With the maximum matrix size of 100 million elements both
for integer and real numbers the system manages to retrieve
queried section in less the 15 seconds.

It is also important to note that the size of the data files with
100 million for integer and real numbers are 510 MB and 897
MB and the result file for 10, 000 and 100, 000 are 28 KB
and 380 KB, which is significantly smaller than the original
data files. Consider a scenario where a user would like to
submit 1, 000 grid jobs for a certain scientific experiment. For
each job, the complete input data file needs to be uploaded.
But with the proposed system, only the required section of
the data is called, which is significantly smaller and faster to
transfer over the network. That is the proposed architecture
substantially improves the execution time of the jobs in terms
of computational and network resources.

Fig. 4. Query execution time to fetch 10, 000 and 100, 000 elements from
the available matrices.

VII. CONCLUSION AND FUTURE DIRECTIONS

The extended Chelonia architecture stores the data in ge-
ographically distributed autonomous databases and supports
SQL queries to retrieve sections of the required data. The
Chelonia database schema is generic enough to address the
needs of applications from multiple disciplines and frees the
users from designing specific schema for different applica-
tions. The users are able to query the underlying databases
from a browser without installing any additional software. This
project has recently been launched. The architecture of the
system and the results show that the proposed architecture
has the strength to provide a better model for data intensive
applications than a file based approach.

There are multiple directions for future work. One of the
prominent characteristics supported by the overall framework
is the scalable distribution of the data. It can be further
enriched by horizontally fragmenting the database for different
taskIds and distribute such fragments among different Shep-
herd nodes.

WSMED enables scalable SQL queries calling web service
operations via its adaptive parallelization operators. To utilize
such scalable querying functionality the Chelonia needs to be
extended to handle parallel web service operation calls.

Currently the binary object size is limited by the size pro-
vided by the underlying RDBMS. One possible enhancement

is to divide the objects into medium sized chunks (binary
blocks). This technique will help to enhance the efficiency
and can also be helpful to optimize the query response time
and will support unlimited matrix size.

ACKNOWLEDGEMENTS

We would like to thank Alex Read, Jon. K. Nilsen, and
Zsombor Nagy for their contribution in the development of
Chelonia, Carl Nettelblad for his useful contribution regarding
the QTL application and Mattias Ellert for the comments.

REFERENCES

[1] Advanced Resources Connector. http://www.nordugrid.org/arc/.
[2] Chelonia Web page. http://www.nordugrid.org/chelonia/.
[3] Chelonia web service wsdl. http://udbl2.it.uu.se/WSMED/bartender.

wsdl.
[4] EU KnowARC project. http://www.knowarc.eu/.
[5] Google App Engine. http://code.google.com/appengine/docs/

whatisgoogleappengine.html.
[6] LOAD XML. http://dev.mysql.com/doc/refman/5.5/en/load-xml.html.
[7] My SQL 5.5 Reference Manual. http://dev.mysql.com/doc/refman/5.5/

en/.
[8] NetCDF. http://www.unidata.ucar.edu/software/netcdf/.
[9] NorduGrid Collaboration. http://www.nordugrid.org/.

[10] OGSA-DAI frame work. http://www.ogsadai.org.uk/.
[11] The Next Wave: Everything as a Service. http://www.hp.com/hpinfo/

execteam/articles/robison/08eaas.html.
[12] WINDOWS AZURE. http://www.microsoft.com/windowsazure/

sqlazure/database/.
[13] WSMED Demo. udbl2.it.uu.se/WSMED/wsmed.html.
[14] L. Bao, L. Wei, J.L. Peirce, R. Homayouni, H. Li, M. Zhou, H. Chen,

L. Lu, R.W. Williams, L.M. Pfeffer, D. Goldowitz, and Y. Cui. Combin-
ing gene expression qtl mapping and phenotypic spectrum analysis to
uncover gene regulatory relationships. Mamm Genome, 17(6):575–83,
2006.

[15] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and
Steven Tuecke. The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of Network
and Computer Applications, 23(3):187 – 200, 2000.

[16] Carlo Curino, Evan Jones, Raluca Ada Popa, Nirmesh Malviya, Eu-
gene Wu, Samuel Madden, Hari Balakrishnan, and Nickolai Zeldovich.
Relational Cloud: A Database Service for the Cloud. In 5th Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, Jan-
uary 2011.

[17] M. Ellert et al. Advanced Resource Connector middleware for
lightweight computational Grids. Future Gener. Comput. Syst.,
23(1):219–240, 2007.

[18] Sabesan Manivasakan. Querying Data Providing Web Services. PhD
thesis, Uppsala UniversityUppsala University, Division of Computing
Science, Computing Science, 2010.

[19] Sabesan Manivasakan and Tore Risch. Adaptive Parallelization of
Queries Calling Dependent Data Providing Web Services. Lecture Notes
in Business Information Processing. Springer, 2011.

[20] Zs. Nagy, J. K. Nilsen, and S. Toor. Chelonia - Self-healing distributed
storage system. NorduGrid. NORDUGRID-TECH-17.

[21] Zs. Nagy, J. K. Nilsen, and S. Toor. Chelonia Administrator’s Manual.
NorduGrid. NORDUGRID-MANUAL-10.

[22] Zs. Nagy, J. K. Nilsen, and S. Toor. Chelonia User’s Manual. Nor-
duGrid. NORDUGRID-MANUAL-14.

[23] J. K. Nilsen, S. Toor, Zs. Nagy, and B. Mohn. Chelonia – A Self-
healing Storage Cloud. In M. Bubak, M. Turala, and K. Wiatr, editors,
CGW’09 Proceedings, Krakow, 2 2010. ACC CYFRONET AGH. ISBN
978-83-61433-01-9.

[24] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson
Garfinkel. Amazon S3 for science grids: a viable solution? In DADC
’08: Proceedings of the 2008 international workshop on Data-aware
distributed computing, pages 55–64, New York, NY, USA, 2008. ACM.

[25] Manivasakan Sabesan, Tore Risch, and Feng Luan. Automated web
service query service. International Journal of Web and Grid Services,
6(4):400–423, 2010.

