
Presented at 2nd International Workshop on User Interfaces to Data Intensive
Systems, Zurich, Switzerland, May 31. - June 1. 2001

An Object-Oriented Multi-Mediator
Browser

Kristofer Cassel and Tore Risch

Tore.Risch@dis.uu.se
Uppsala Database Laboratory
Dept. of Information Science

Uppsala University
Sweden

March 16, 2001

ABSTRACT

The area of data integration has gained increased popularity in recent years. A data browser is
described for a data integration system where an intermediate layer of distributed mediators is
used to query and integrate data from heterogeneous data sources. The data sources can be
regular relational databases but also other data producing programs. They often have complex
data representations and are often object-oriented (OO). The mediator database layer is therefore
also object-oriented for a high abstraction level. An OO query interface is used to access the
mediator layer from application programs and users. For a scalable and component based
architecture the mediators can be used as servers for other mediators. This leads to a distributed
mediator architecture where mediator servers interact with other mediators and data sources. The
OO multi-mediator browser GOOVI is presented, which enables maintenance of such
distributed mediator databases. With GOOVI all autonomous mediators in a federation can be
viewed, queried, and updated. This multi-mediator browser also provides user interfaces for
integrating data through OO views. The paper describes the architecture and functionality of
GOOVI.

1. Introduction

With the mediator/wrapper approach to data integration [Wie92] wrappers define interfaces to
heterogeneous data sources while mediators are virtual database layers where queries and views
to the mediated data can be defined. The mediator approach to data integration has gained a lot
of interest in recent year [BE96,G97,HKWY97,LP97,TRV98]. Early mediator systems are
central in that a single mediator database server integrates data from several wrapped data
sources. In the work presented here, the integration of many distributed sources is facilitated
through a scalable distributed mediator architecture where views are defined in terms of object-
oriented (OO) views from other mediators and where different wrapped data sources can be
plugged in. This allows for a component-based development of mediator modules, as early
envisioned in [Wie92].

GOOVI (Graphical Object-Oriented View Integrator) is is a graphical user interface for
managing a federation of mediator servers in the mediator system Amos II [RJ01,RJK00,JR99a].
Amos II is a distributed OO mediator system that allows OO views in mediator servers to be
defined in terms of views in other mediator servers on the net. Data sources are wrapped by
embedding them in Amos II mediator servers through foreign data source interfaces
[RJ01,JR99a]. The primary GOOVI user is a mediator administrator who defines and modifies
distributed mediators and who investigate properties of them. Such a mediator administrator
needs to find mediators in a federation, to inspect and modify the schema of each individual
mediator, to inspect and update the contents of each mediator, and to define integrating views of
data from other mediators. The actual wrapping of data sources requires some programming and
is outside the scope of this paper.

An overview is presented of the distributed architecture of GOOVI along with examples of
interactions with the system to illustrate its functionality. The purpose of GOOVI to manage a
federation of distributed mediator servers requires a unique combination of facilities.

For finding relevant mediators in a federation GOOVI provides interfaces to browse some
general meta-mediator properties of the federation members, such as their names and locations.
The autonomy of the individual mediator servers must be respected and therefore no central
schema is maintained.

To inspect the schema of each autonomous mediator, GOOVI provides a very easy way to
graphically browse several AMOS II mediator databases in a distributed federation. The type
hierarchies of different mediators can be visualized in separate windows. GOOVI also has
primitives for schema modification for each browsed mediator.

For manipulating the contents of the mediator databases, individual database object instances in
each mediator database can be both inspected and modified, similar to OO database browsers.
The interface illustrates on a high level the relationships between database objects in a single
mediator. Furthermore, it allows OO multi-database queries to be submitted to any mediator
server in the federation. The results of the queries are presented as browser objects too, for
convenient further browsing. Separate browser and query window groups can be opened for
browsing different autonomous Amos II mediators in a federation.

For combining data from different mediators GOOVI provides a graphical interface to define
OO multi-mediator views. Such a view definition facility must include primitives for reconciling
differences between data in different mediators. The multi-database integration primitives of
Amos II [JR99a,JR99b] provides such functionality.

This paper first discusses related work. Then the style of interactions with GOOVI is
presented in Section 4. Section 5 describes how to define multi-mediator views, followed
by an overview of the implementation in Section 6.

2. Related work

Most commercial relational databases provide graphical database browsers. A few systems
address browsing of OO databases [MDT88,F89,AGS90,CHMW96,CA96]. As in Pesto
[CHMW96] the results of queries to individual mediators in GOOVI are returned as database
structures that can be examined by GOOVI as any other database objects. This is called query-
in-place in Pesto. As in Jasmine [CA96] we use an interface style with a Windows oriented
look-and-feel. However, unlike Jasmine (and like Pesto) our query interface is stream oriented to
allow for retrievals of large sets of data. Furthermore, GOOVI allows multi-mediator queries to
be submitted to any mediator in a federation and the resulting objects from different databases to
be inspected.

Browsers for centrally integrated XML sources are proposed in [B99][MP00]. A major
difference between GOOVI and all other known database browsers is that GOOVI is designed
for browsing federations of distributed OO mediators. This puts new requirements on the
browser to be able to separately visualize data from several autonomous OO mediators in a
federation and to be able to graphically define reconciling views of data from several of them.
GOOVI therefore allows the user to open separate OO mediator browser windows for each
member in the federation. Separate windows, e.g. for querying and data integration, can be
associated with each such database browser window. A connection manager allows the user to
select among the members of the federation to open up new database browser windows.

Furthermore, data integration windows can be defined where OO multi-mediator views can be
defined that derive and reconcile data from several mediator servers [JR99a,JR99b].

The interaction between GOOVI and the mediator in the federation respects the autonomy of the
members. This means that, unlike other database browsers, GOOVI does not presuppose any
central database, mediator, or global conceptual schema. The only requirements are that the
databases in the federation are wrapped in Amos II mediators and that they are registered with a
meta-mediator called the mediator name server. The mediator name server is an ordinary
mediator server having name, location and some other meta-mediator properties of the members
in a federation. However, the mediator name server contains only very limited information about
the members of the federation; it respects the autonomy of the members and it is not a full
central data dictionary.

3. Browsing Multi-mediators

A federation of Amos II servers may contain many mediator servers distributed on a computer
network. Each mediator server is an autonomous database server supporting the OO query
language AmosQL of Amos II having a syntax and semantics similar to the OO parts of SQL-99
[RJ01,RJK00]. The mediator servers have primitives for communicating with other mediator
servers and for wrapping external data sources. Foreign data can be made accessible to the
federation by developing an interface, called a wrapper, for each kind of data source where
simple query algebra operations are executed on external data elements. We have successfully
developed wrappers for ODBC, STEP/EXPRESS, XML, web-based search engines and
currency exchange services, etc.

If a data source has no own query processing capabilities, as e.g. STEP/EXPRESS and basic
XML, the processing of the imported data is done transparently inside Amos II in a streamed
fashion or through materialization in the mediator database, depending on the data source.

However, if the data source accepts queries, as e.g. ODBC and search engines, there is also a
need to develop query translators that translate (rewrite) AmosQL queries into execution plans
containing query fragments submitted to the foreign query engine for evaluation.

From a mediator administrator’s perspective the mediator layer appears as a federation of
distributed and autonomous mediator servers each using the same OO data model and query
language, where some mediators wrap one or several data sources while other combine data
through OO views over data from other mediators.

 Figure 1 illustrates one such scenario where we have five mediator servers named WC,
NAMESERVER, TORE, HOLIDAYFLIGHGTS_INC, and FLYGRESOR_AB1 running somewhere
on the network. The mediator named NAMESERVER is a mediator server knowing the locations,
names, and other properties of the mediator servers in the federation, i.e. the mediator name
server.

Mediator servers will query the mediator name server using AmosQL when they need to know
meta-properties of members in the federation. Notice here that this architecture does not include
any global conceptual schema; every autonomous mediator server has its own local OO schema
and the mediator name server knows only very general meta-properties of the other mediator
servers. The different mediators and databases can be located anywhere on the Internet and,
since they are autonomous, the number of mediators in a federation can be very large.

In the example, TORE does not have any local database, but only OO view definitions of data in
other mediators. WC, HOLIDAYFLIGHGTS_INC, and FLYGRESOR_AB wrap regular databases
(e.g. relational databases). The mediator USER represents the view of the federation for a
particular user. The user can browse and store private data in a local database. It is also used
internally by GOOVI for caching data extracted from other databases. The user can ask GOOVI
what mediator servers are available in the federation. GOOVI will send queries to the name
server to find this out.

USER

NAMESERVER

FLYGRESOR_AB HOLIDAYFLIGHTS_INC

TORE WC

Figure 1: Multi-Mediator Scenario

Figure 2 shows an example of a GOOVI interaction in our multi-mediator scenario. In the
example two multi-mediator type browser windows are open, the top one connected to the
TORE mediator and the bottom one to the mediator server named WC for which also a query is
stated. The result of the query is presented as a scan of objects of type PLAYER. Furthermore,
Figure 2 also shows how the user can ask GOOVI what mediator servers are available in the

1 Air Travel Inc. in Swedish.

federation by opening a mediator browser to the right. GOOVI has here internally queried the
name server mediator for the names, locations, ports, etc. of the mediator servers in the
federation. Through the mediator browser dialog the user can open separate type browser
windows on any mediator server in the federation.

Figure 2: GOOVI Interaction

When the mediator browser is opened it has to contact the mediator name server to obtain the set
of mediators in the federation. The mediator name server can be located anywhere on the net and
the user is therefore first asked to specify its network location to GOOVI. The members of the
federation can be located anywhere on the net too. Through queries to the mediator name server
the mediator browser can present the user with a menu of the members of the federation.

3.1 The Type Browser
The type browser window graphically displays the type hierarchy for a particular mediator
server. Initially the type browser window for the mediator is displayed. The approach of having
the type hierarchy as the main view of an OO database is a natural choice since the types and

their relationships are central for an OO database. It was also chosen, e.g., in Jasmine [CA96]
and Iris [F89].

Figure 3 The GOOVI Type Browser

Figure 3 shows the type browser window for a mediator database FLYGRESOR_AB, wrapping a
data source containing flight data for a Swedish travel agent. The window is divided vertically in
two parts with a left panel showing the type hierarchy and a right panel having a number of tabs
for inspecting different properties of the mediator. There is also a menu bar on top with
functions for creating new types, viewing, searching, editing, etc. Some of the menu-items have
keyboard shortcuts.

When opening browsers of several autonomous AMOS II mediator servers, separate and
independent type browser windows appear on the screen for each mediator, as shown in Figure
2. Every type browser window thus has a one-to-one relation to a connection to an AMOS II
database in the federation. This helps the user to keep track of what mediator databases are being
inspected. By closing the corresponding type browser window the connection is also closed
along with all other dialogs associated with the closed type browser. The type browser window
thus serves as a grouping of all GOOVI dialogues associated with a particular mediator server.
The name of the AMOS II database (e.g. FLYGRESOR_AB) is stated in the title of the type
browser. When the last type browser window is closed GOOVI is exited after a confirmation.

3.2 The Query Editor
The query editor allows execution of queries and browsing the resulting scans displayed in a
graphical format. The entities of query results are inspectable and have a consistent appearance
as other database objects for generality and user orientation. We have chosen to specify queries
as text input to browser forms rather than using elaborate mouse selection as in some other
database query tools [CA96, CHMW96], the reason being that we believe that a somewhat
trained person, such as a mediator/database administrator, is more efficient with typing OO
queries than elaborate mouse selections. Future studies should investigate how to combine our
text based interface with a graphical query language, e.g. along the lines of Pesto [CHMW96].

In the query editor AmosQL queries can be entered textually. A history of queries makes it
possible to browse previously stated queries to edit or redo them. We do not save the query
results in the history for memory and performance reasons. It is however possible to open new
independent query editor windows for any query where a piece of the latest result is then
visualized. Figure 4 shows an example of such a separate query window. This gives the user the
choice to have several active queries and their results on the desk top to be used for inspection,
copying, and pasting between query results and browsed objects.

The query editor is divided into three parts. First there is a label that states a numeric query
history identifier. Then there are buttons to move backward and forward in the history and for
help and (re-)execution of the current query.

Below the button panel there is a text area where queries can be entered textually or edited using
the standard OS clipboard. Further below there is an outliner that displays the result when the
‘execute’ button is pressed.

The result of an AMOS II database query consists of a scan of objects where the objects are
visualized by dark (red) icons, as in Figure 2 and 3. For objects having names the browser
maintains the correspondence between the OID and its name and the object’s name is displayed
as in Query#1 of Figure 2. The name of an object is specified in the mediator through a user
defined name function. The results of queries are connected to the clipboard for general cut-and-
paste between different GOOVI windows.

The result of a query can also be a scan of tuples, which are then visualized graphically to
indicate their structure, as shown in Figure 4. Each tuple can have sub-tuple nestings to any
level. Such a scan is visualized as a tree. If there are sub-tuples inside the elements of a scan
special collection icons are created. This gives a nice presentation of most data structures
retrieved from AMOS II database.

Figure 4 Scan visualization.

Fig. 4 shows the result trees from a query that returns rows of tuples containing string and
integer elements. The collection icons (indicated <..>) indicate tuples. If one of the elements in
the tuple in the example had been a vector (ordered collection), e.g. if the two countries were put
in a vector this would result in clickable nodes in this position.

This outliner is streamed and only a predefined (default 20) set of result elements are displayed
initially. To get the next set of elements in the scan the ‘Next row’ button is used located at the
very bottom of the query editor.

3.3 The Object Inspector
The object inspector window is opened if the user double clicks on an icon for an Amos II
object. The object inspector allows displaying and editing the values of the attributes of the
selected object.

Figure 5 Object Inspector

Fig. 5 is an example of the object inspector in GOOVI. The attribute column displays the result
of the function named in the attribute-name column. The object inspector also allows updates of
database attributes.

Collection attributes are displayed as icons. As collections can be large, they are not
immediately displayed, but retrieved in chunks by double-clicking on a collection icon.

3.4 The Function Inspector
The function inspector allows to view/edit arguments, results and source code of Amos II
functions (Fig. 6). These definitions are stored in the database as (meta-) objects of type
FUNCTION and are retrieved by the function inspector through queries to the database
schema returning such meta-objects and their properties. Amos II functions can be of
several kinds and the inspected function’s type is indicated at the bottom of the function
inspector window.

Figure 6 Function Inspector

The example illustrates a derived function defined in terms of other AmosQL functions through
an AmosQL query. Functions can also be stored in the database or defined in some external
programming language [RJ01]. Roughly speaking attributes in OO languages correspond to
stored functions, while methods correspond to derived and foreign functions.

4. Database integration with GOOVI

In order to combine data from different mediators, GOOVI allows importation of meta-objects,
such as types (classes) and functions (method, attributes), from one AMOS II server to another.
This is achieved by first selecting type and function definitions for exportation from one
mediator and then importing them to another one.

To demonstrate the database integration support of GOOVI, assume we are in a tourist office
and want to book flights. We have access to two databases, a British one called
HOLIDAYFLIGHTS_INC and a Swedish one called FLYGRESOR_AB. The first database has a
type called FLIGHT with the attributes: flight_no, price, origin and destination. The price is

given in British pounds. The latter database has a type called FLYG with the attributes: flyg_no,
pris, start and destination. Pris holds the price in Swedish crowns.

The first step is to import these types into the mediator TORE. We first have to select them for
exportation from the mediators HOLIDAYFLIGHTS_INC and FLYGRESOR_AB. We therefore
open a type browser for the HOLIDAYFLIGHTS_INC database and mark the type FLIGHT.
Then we choose FILE->EXPORT in the menu bar. A dialog will confirm that the type is now
ready for exportation. Next we go to the type browser for the mediator TORE and choose FILE-
>IMPORT. A dialog will confirm that the type was imported and it is called
FLIGHT@HOLIDAYFLIGHTS_INC and automatically placed under type USEROBJECT. The
same procedure is then repeated to import the type FLYG from the mediator FLYGRESOR_AB
and then we have the situation shown in Fig. 7.

Figure 7 Mediator view after imports

An imported type can be used in database queries as other types, as also illustrated in Figure 7.
The instances of an imported type are represented as proxies describing its origin. If more than
one type is imported it is possible to state multi-database queries and views that join data from
different mediator databases. However, OIDs are unique within each mediator and such joins
can therefore not compare OIDs but have to join on literal properties only.

To reconcile overlapping and conflicting data from several mediators, an integration union type,
IUT, [JR99a] can be defined. IUTs define types whose extents are proxies of objects from other
mediators and where the same entities may be found in more than one source but with different,
and sometimes conflicting, properties.

To illustrate how IUTs are defined with GOOVI, we mark the two imported types in the
mediator TORE and choose FILE->NEW->INTEGRATION TYPE. In Fig. 8 we see the so
created create integration type dialog.

Figure 8 Integration Union Type creation

The first two fields in the IUT creation dialogue to left are the name and the key type of the IUT
identifying equivalent objects from different mediators. In our example two objects are
considered equivalent if their flight numbers (represented as integers) are the same. The flight
number for FLYG@FLYGRESOR_AB is defined by the function flyg_no while the
corresponding function for FLIGHT@HOLIDAYFLIGHTS_INC is flight_no. The next fields
state the key expression for the two types to integrate which map instances of the integrated
types to the common key. GOOVI generates unique variable names to be used in the integrating
expressions. We specify there that the flyg_no of the mediator FLYGRESOR_AB corresponds to
flight_no in HOLIDAYFLIGHTS_INC.

To specify how to define object attributes of the IUT in terms of attributes from different
mediators, one needs to define the attributes of the IUT by pressing ‘add attribute’ and filling in
the popup form seen to the right in Fig. 8. Here the attribute intl_pris of the IUT is derived from
the prices in FLYGRESOR_AB and HOLIDAY_FLIGHTS_INC. Different expressions are used if
a flight exists in one of the two databases or in both. In this example the lowest price is chosen if
the flight exists in both databases. The function pounds_to_crowns is a function defined in the
mediator to convert British pounds to Swedish crowns. If real-time access to the current
exchange is required, this function can be defined in the mediator by wrapping, e.g., access to
web-based currency exchange information2. The attributes name, origin, and destination are
defined in the same way. Finally ‘create’ is pressed to create the IUT PRIS in mediator TORE. It
can then be browsed and queried as any other type. Updates of IUTs are currently not allowed.

5. Implementation

GOOVI is implemented in Java. Sun’s Java Native Interface JNI [SUN99] is used to tightly
connect the Java Virtual machine (VM) to the AMOS II mediator database engine, which is
written in C. The interface is completely query based by sending Amos II queries and function
calls to the database engine for execution. This is possible since all system objects (including
types and methods) are represented as database objects that can be queried using AmosQL.
While end users usually query the contents of the mediator databases, GOOVI mainly submits to
the Amos II kernel meta-queries about the structures of mediators in a federation. AmosQL
update statements are sent to Amos II when the user creates or updates objects, while AmosQL
meta-data definitions are send when new types and functions are created.

Program errors in Java applications, such as GOOVI, cannot crash the Amos II kernel system.
The reason is that Java applications run in a separate thread from the kernel and the Java VM
traps all Java program errors. Furthermore, the high level AmosQL based interface from Java
prohibits calls to the Amos II kernel that can adversely affect it.

The Amos II kernel in its turn has TCP/IP based primitives for efficient communication with the
name server and other mediator servers in the federation. Several novel techniques
[JR99a,JR99b,JR00,RJ01] are used for efficiently executing multi-mediator queries over several
distributed mediator servers. The techniques are based on installing optimized query plans on
different mediators and then shipping bulks of data between them. For good performance we
have therefore chosen to let GOOVI (and other Java applications) to communicate with the
mediators in a federation through a local database rather than to directly communicate with each
mediator.

2 For example, we have successfully developed such a wrapper for www.swissquote.ch.

Figure 9 illustrates how GOOVI is interfaced with the local Amos II database system and how
the system communicates with Amos II servers in the federation through the local mediator
database system.

Goovi

JNI

Local Amos II
database

Amos II
server Amos II

server
Amos II
server

Mediator
name server

Figure 9: Connecting GOOVI to Amos II mediator databases

A possible disadvantage with the current approach is that some Amos II kernel code must be
installed on the machine where GOOVI runs in order to provide the C-based interface to the
Amos II kernel. However, we are working on a pure Java client-server interface to the local
Amos II database, which would make it possible to run GOOVI as a Java applet, at the expense
of much higher communication costs between GOOVI and the local database.

6. Conclusions

The architecture and appearance of the OO multi-mediator browser GOOVI was described. The
purpose of GOOVI is to be able to browse, query, and integrate federations of autonomous
mediator servers in a computer network. The data integration facilities allow the definition of
OO views that integrate data from several mediator servers. Each mediator server is autonomous
and there is no global conceptual schema of all mediators in a federation. Instead a meta-

mediator, the mediator name server , knows locations, names and some other meta-data about
the members in a federation. The interface between GOOVI and a federation of mediators is
implemented by internally querying the mediator name server for meta-properties using an OO
query language and then use these meta-properties to connect to individual members in the
federation. All communication between the browser and the mediator engine is thus made
through the query language. This is possible since meta-objects are first class objects too.

The user can open a group of windows connected to a type browser window for each selected
member of a mediator federation. In these windows type structures are investigated, queries are
specified, and integrating OO views are defined. Database objects returned from queries are
displayed graphically and can be browsed and used in other queries, etc.

GOOVI is the first OO multi-database browser that addresses graphical integration of multiple
mediators. Such a tool is very useful for the mediator developer when integrating data from a
federation of databases wrapped in mediators.

In summary, GOOVI has the following unique properties:

- It is an OO multi-database browser where several OO databases can be browsed
separately.

- It can graphically integrate data from multiple distributed mediators in a federation.

- It respects the autonomy of the mediators in the browsed federation; it is thus not based
on the availability of any global conceptual schema.

- Every object on any level in the federation is transparently inspectable, including
mediators, type definitions, function definitions, and the database contents.

A limitation with the current GOOVI version is that many mediator definitions, e.g. queries and
view properties, are not entered graphically, but as editable text string. Some system, e.g. Pesto
and Jasmine, makes e.g. query specification fully graphical. Sometimes text is more convenient
to enter than graphical interactions. This issue should be investigated further even though it does
not alter the main principles of the system, which is the focus of this paper.

The use of Java as an implementation language provides a portable implementation and a rich
library of user interface primitives. A uniform query based Java application program interface
provides a flexible and high-level interaction between GOOVI and the Amos II kernel. The
system is fully implemented under Windows 98/NT/2000 and downloadable from
http://www.dis.uu.se/~udbl/amos. A Unix version of the Amos II kernel is also available with
which Windows-based GOOVI clients can communicate with Unix based mediator servers.

7. REFERENCES

[AGS90] R.Agrawal, N.Gehani, J.Srinivasan: ODE-View: The Graphical Interface to ODE.
Proc. ACM SIGMOD Conf., May 1990.

[B99] L.Bouganim, T. Chan-Sine-Ying, T-T.Dang-Ngoc, J-L.Darroux, G.Gardarin, F.Sha:
MIROWeb: Integrating Multiple Data Sources Trough Semistructured Data Types. Proc. 25th

Intl. Conf. On Very Large Databases (VLDB’99), Edinburgh, Scotland, 1999.

[BE96] O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase Systems. Pretince
Hall, 1996.

[CA96] Computer Associates corporation: Jasmine Version 1.2 Tutorial, 1996.

[CHMW96] M.Carey, L.Haas, V.Maganty, J.Williams: PESTO: An Integrated Query/Browser
for Object Databases. Proc. 22nd Conf. On Very Large Databases (VLDB’96), 203-214, 1996.

[F89] D.H.Fishman, J.Annevelink, E.Chow, T.Connors, J.W.Davis, W.Hasan, C.G.Hoch,
W.Kent, S.Leichner, P.Lyngbaek, B.Mahbod, M.A.Neimat, T.Risch, M.C.Shan,
W.K.Wilkinson: Overview of the Iris DBMS, in W.Kim, F.H.Lochovsky (eds.): Object-
Oriented Concepts, Databases, and Applications, ACM Press, 1989.

[HKWY97] L. Haas, D. Kossmann, E.L. Wimmers, J. Yang: Optimizing Queries across Diverse
Data Sources. 23rd Intl. Conf. on Very Large Databases (VLDB'97), 276-285, 1997

[G97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y.Sagiv, J. Ullman, V.
Vassalos, J. Widom: The TSIMMIS Approach to Mediation: Data Models and Languages.
Intelligent Information Systems (JIIS), Kluwer, 8(2), 117-132, 1997

[JR99a] V.Josifovski, T.Risch: Functional Query Optimization over Object-Oriented Views for
Data Integration. Journal of Intelligent Information Systems (JIIS), Vol. 12, No. 2-3, 1999

[JR99b] V.Josifovski, T.Risch: Integrating Heterogeneous Overlapping Databases through
Object-Oriented Transformations. 25th Conf. on Very Large Databases (VLDB'99), 435-446,
1999.

[JR00] V.Josifovski, T.Risch: Query Decomposition for a Distributed Object-Oriented Mediator
System . To be published in Distributed and Parallel Databases J., Kluwer, 2000.

[MDT88] A.Motro, A.D’Atri, L.Tarantino: The Design of KIVIEW: An Object-Oriented
Browser. Proc. 2nd Intl. Conf. On Expert Database Systems, April 1988.

[LP97] L.Liu, C.Pu: An Adaptive Object-Oriented Approach to Integration and Access of
Heterogeneous Information Sources. Distributed and Parallel Databases, Kluwer, 5(2), 167-
205, 1997.

[MP00] K.Munroe, Y.Papakonstantinou: BBQ: A Visual Interface for Browsing and Querying
XML, Proc. Visual Database Systems (VDB) 2000.

[RJ01] T.Risch, V.Josifovski: Distributed Data Integration by Object-Oriented Mediator
Servers. To be published in Concurrency - Practice and Experience J., John Wiley & Sons,
2000.

[RJK00] T.Risch, V.Josifovski, T.Katchanouov: AMOS II Concepts, Department. of
Information Science, Uppsala University, 2000, (available at http://www.dis.uu.se/~udbl/amos/).

 [SUN99] Sun corporation: JNI - Java Native Interface, 1999
(http://www.javasoft.com/products/jdk/1.1/docs/guide/jni/index.html).

[TRV98] A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous Data Sources
with DISCO. IEEE Transactions on Knowledge and Date Engineering, 10(5), 808-823, 1998

[Wie92] G Wiederhold: Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25(3), 38-49, 1992.

