
Using Partial Differencing for Efficient Monitoring of Deferred Complex Rule
Conditions

Martin Sköld, Tore Risch
Department of Computer and Information Science, Linköping University, S-581 83 Linköping, Sweden,

e-mail: {marsk,torri}@ida.liu.se

Presented at the 12th International Conference on Data Engineering (ICDE'96)'
New Orleans, Louisiana, February 1996

Abstract
This paper presents a difference calculus for

determining changes to rule conditions in an active DBMS.
The calculus has been used for implementing an algorithm
to efficiently monitor rules with complex conditions. The
calculus is based onpartial differencing of queries derived
from rule conditions. For each rule condition several
partially differentiated queries are generated that each
considers changes to a single base relation or view that the
condition depends on. The calculus considers both
insertions and deletions. The algorithm is optimized for
deferred rule condition monitoring in transactions with few
updates. The calculus allows us to optimize both space and
time. Space optimization is achieved since the calculus and
the algorithm does not presuppose materialization of
monitored conditions to find its previous state. This is
achieved by using abreadth-first, bottom-uppropagation
algorithm and by calculating previous states by doing a
logical rollback. Time optimization is achieved through
incremental evaluation techniques. The algorithm has been
implemented and a performance study is presented at the
end of the paper.

1 Introduction
When introducing rules into a database it is crucial that

the overall performance of the database is not impaired
significantly.Rule monitoring is the activity of monitoring
changes to the state of rule conditions. Anaive method of
detecting changes is to execute the complete condition when
an event that triggers the rule has occurred. This, however,
can be very costly, since a rule condition can span over large
portions of the database.

This paper presents a technique for efficient monitoring
of active rules integrated with a query language of an Object
Relational database system. The technique is especially
designed fordeferred rules, i.e. rules where the rule
execution is deferred until a check phase that usually occurs
when transactions are committed. The technique can also be
used for immediate rule processing[4], but this is outside the

scope of the paper.
A difference calculus will be defined for computations of
changes to the results of database queries and views.
Queries and relational views are regarded as functions over
sets of tuples and the calculus for monitoring changes is
regarded as an extension of set algebra. Let P be a function
dependent on the functions Q and R, denoted theinfluents of
the affected function P. The problem of finite
differencing[14] is how to calculate changes to P,∆P, in
terms of changes to its influents. Withpartial differencing,
changes to P are defined as the combination of the changes
to P originating in the changes to each of its influents. Thus,
∆P is a function of thepartial differentialfunctions∆P/∆Q
and ∆P/∆R. In this paper we define how to automatically
derive the partial differentials∆P/∆Q and∆P/∆R, and how
to calculate∆P from them. The calculus is mapped to
relational algebra by defining partial differentials for the
basic relational operators. Partial differencing has the
following properties compared to other approaches:

• We assume that the number of updates in a transaction is
usually small and often very few (or only one) tables are
updated. Therefore, very few partial differentials are
affected in each transaction. Each partial differential gen-
erated by the rule compiler is a relatively simple database
query which is optimized using traditional query opti-
mization techniques [22]. The optimizer assumes few
changes to a single influent.

• We separately definepositive andnegative partial differ-
entials, denoted∆P/∆+Q and∆P/∆-Q, respectively, since
monitored conditions are often only dependent on inser-
tions in influents (not on deletions), as will be shown.
Furthermore, the partial differentials for handling inser-
tions and deletions do not have the same structure. Con-
ditions that depend on deletions are actually historical
queries that must be executed in the database state when
the deleted data were present. This makes negative dif-
ferentials different and not easily mixable with positive
ones.

• The calculus allows us to optimize both space and time.
Space optimization is achieved since the calculus and
the algorithm does not presuppose materialization of
monitored conditions to find their previous state.
Instead it gives a choice between materialization
and computation of the old state from the new one,
given all the state changes.Time optimization is
achieved through incremental evaluation techniques.

• Based on the calculus, an algorithm has been developed
for efficient rule condition monitoring by propagation of
incremental changes through adependency network. For
correct handling of deletions in the absence of materiali-
zations and for efficient execution, abreadth-first, bot-
tom-up propagation is made through the network of both
insertions and (only when applicable) deletions. The algo-
rithm reduces memory utilization by only temporarily
saving the intermediate changes appearing during the
propagation.

• For explainability, one can easily determine which influ-
ents actually caused a rule to trigger and if it was triggered
by an insertion or a deletion. It is straight forward to
determine this by remembering which partial differen-
tials were actually executed in the triggering.

The method is implemented and a performance
measurement has been made. We have implemented both our
incremental algorithm and a ‘naive’ condition monitoring
algorithm that recomputes the whole rule condition every time
an update has been made to an influent affecting a condition.
The performance evaluation shows that for transactions with
few updates our incremental algorithm scales better over the
database size than the naive method. For transactions with
many updates to several influents the method is not as efficient
as naive evaluation, but with a factor that is constant over the
size of the database.

The default semantics of our active rules [19] uses the
CA model where each rule is a pair, <Condition,Action>,
where the condition is a declarative database query, and the
action is a database procedural expression. The method can
be used for ECA-rules as well; the event part just further
restricts when the condition is tested. Set-oriented action
execution[24] is supported since data can be passed from the
condition to the action of each rule by using shared query
variables. Condition evaluation is delayed until acheck
phase usually at commit time. In the check phase, change
propagation is performed only when changes affecting
activated rules have occurred, i.e. no overhead is placed on
database operations (queries or updates) that do not affect
any rules. After the change propagation, one triggered rule
is chosen through aconflict resolution method1. Then the
action of the rule is executed for each instance for which the
rule condition is true based on the net changes of the rule

condition.
The paper proceeds as follows. In section 2 related

work is presented. In section 3 active rules in our DBMS are
introduced with a running example used throughout the rest of
the paper. In section 4 the calculus of partial differencing is
introduced, first intuitively and then formally. In section 5
the propagation algorithm is presented. In section 6 a
performance measurement of the algorithm is presented. In
section 7 some possible refinements to the implementation
are presented. Finally in section 8 a summary and future
work is presented.

2 Related Work
Incremental evaluation of database queries was

presented as finite differencing in [14] and in [3] as a
technique for continuously maintaining derived data in
materialized views. The technique was adopted for rule
condition monitoring in HiPac[4][20], Ariel[11],
PARADISER[5], and[7]. Recent work on incremental
maintenance of materialized views can be found in [10][13]
and on incremental evaluation of Datalog programs in [6].

Our work differs from the above in that we deal with the
problem of partial differencing of database queries, i.e.
automatic generation of several separate partial differentials
from a given rule condition rather than one large incremental
expression. Furthermore, we also deal with deletions and
incremental evaluation of deferred rule conditions.

In [17] the relational algebra is extended with
incremental expressions. In [1] a method is presented that
derives two optimized conditions,Previously True and
Previously False, based on a materialization of a simple
truth value of a condition. Since our rules are set-oriented we
need to consider sets of truth values.

In contrast to the work above we will also present a
space and time efficient propagation algorithm based on our
calculus. By usingbreadth-first, bottom-uppropagation to
correctly and efficiently propagate both positive and
negative changes without retaining space consuming
materializations of intermediate views our algorithm differs
from the PF-algorithm [12]. The materialized views can be
very large and can even be considerably larger than the
original database, e.g. where cartesian products or unions
are used. This may exhaust memory or buffers when many
conditions are monitored and the database is large. Ariel[11]
uses a propagation algorithm called TREAT[16] and avoids
materialization of intermediate results, but in a more
restricted way than in our approach, without using any
formal calculus.

1. Conflict resolution is the process of choosing one single
rule when more than one rule is triggered.

3 Monitoring Active Rule Conditions
Active rules have been introduced into AMOS[8][19]

(Active Mediators Object System), an Object Relational
DBMS. The data model of AMOS is based on the functional
data model of Daplex[21] and Iris[9]. AMOSQL, the query
language of AMOS, is a derivative of OSQL. The data
model of Iris is based on objects, types, and functions. In
AMOS the data model is extended with rules. Everything in
the data model is an object, including types, functions, and
rules. All objects are classified as belonging to one or
several types, i.e. classes. Functions can be stored, derived,
or foreign. Stored functions equal object attributes or base
tables, derived functions equal methods or relational views,
and foreign functions are functions written in some
procedural language1. Procedures can be defined as
functions that have side-effects. AMOSQL extends OSQL
with active rules, a richer type system, and multidatabase
functionality.

3.1 Rules in AMOSQL
Condition Action (CA) rules have been introduced into

AMOSQL. The condition is an AMOSQL query and the
action is an AMOSQL procedural expression.
The syntax for rules is as follows:

create rule rule-name parameter-specificationas
when for-each-clause | predicate-expression
do procedure-expression

where
for-each-clause::=

for eachvariable-declaration-commalist
wherepredicate-expression

The predicate-expression can contain any boolean
expression, including conjunction, disjunction, and negation.
Rules are activated and deactivated separately for different
parameters.

The semantics of a rule is as follows: If an event of the
database changes the truth value for some instance of the con-
dition totrue, the rule is marked astriggered for that instance.
If something happens later in the transaction which causes the
condition to become false again, the rule is no longer trig-
gered. This ensures that we only react to net changes, i.e.log-
ical events. A non-empty result of the query that represents
the condition is regarded astrue and an empty result is
regarded asfalse.

A classical example for active databases is that of moni-
toring the quantity of items in an inventory. When the quan-
tity of an item drops below a certain threshold, new items are
to be automatically ordered. The definitions in AMOSQL

1. In AMOS foreign functions can be written in Lisp or C.

would be:
create type item;
create type supplier;
create function quantity(item) -> integer;
create function max_stock(item) -> integer;
create function min_stock(item) -> integer;
create function consume_freq(item)

-> integer;
create function supplies(supplier) -> item;
create function delivery_time(item,supplier)

-> integer;
create function threshold(item i) -> integer

as
select consume_freq(i) *

delivery_time(i, s) + min_stock(i)
for each supplier s where supplies(s) = i;

create rule monitor_item(item i) as
when quantity(i) < threshold(i)
do order(i, max_stock(i) - quantity(i));

create rule monitor_items() as
when for each item i
where quantity(i) < threshold(i)
do order(i,max_stock(i) - quantity(i));

The monitor_item rule monitors the quantity of a
specific item in stock and orders new items when the
quantity drops below the threshold, considering the time to
get new items delivered. The procedureorder does the
actual ordering.

The consume-frequency defines how many instances of
a specific item are consumed on average per day. The
monitor_items rule monitors all items instead of just
one at a time. This rule will be used as an example
throughout the rest of the paper.

Next we populate the database and activate the rule
monitor_items :
create item instances :item1 2, :item2;
set max_stock(:item1) = 5000;
set max_stock(:item2) = 7500;
set min_stock(:item1) = 100;
set min_stock(:item2) = 200;
set consume_freq(:item1) = 20;
set consume_freq(:item2) = 30;
create supplier instances :sup1, :sup2;
set supplies(:sup1) = :item1;
set supplies(:sup2) = :item2;
set delivery_time(:item1, :sup1) = 2;
set delivery_time(:item2, :sup2) = 3;
activate monitor_items();

This will ensure that the quantity of items of type 1 is
always kept between 5000 and 100, and new items will be
delivered if the quantity drops below 140. The quantity of

2. These are interface variables and are not part of the stored
database.

items of type 2 will be kept between 7500 and 200, and new
items will be ordered if the quantity drops below 290.

3.2 Rule Compilation
The rule compiler generates the condition function

cnd_monitor_items from the condition of the rule
monitor_items . This function returns all the items with
quantities below the threshold. Condition monitoring is
regarded as monitoring changes to the condition
function[18].
create function cnd_monitor_items() -> item

as
select i for each item i
where quantity(i) < threshold(i);

The action part of the rule generates a procedure that takes
an item as argument and orders new items to fill the inven-
tory.
create function act_monitor_items(item i)

-> boolean 1 as
order(i, max_stock(i) - quantity(i));

At run-time theact_monitor_items procedure will be
applied to the set ofchanges calculated from the differential
denoted∆cnd_monitor_items :
act_monitor_items(∆cnd_monitor_items());

AMOSQL is a stream-oriented language so the
procedure is executed for every changed value of the
condition. We distinguish betweenstrict andnervous rule
execution semantics. With strict semantics the action
procedure is executedonly when the truth value of the
monitored condition changes from false to true in some
transaction. With nervous semantics the rule sometimes
triggers when there has been an update that causes the rule
condition to become true without having been false
previously. Nervous semantics is often sufficient; however,
in our example strict semantics is preferable since we only
want to order an item once when it becomes low in stock.
Note that before the action part of a triggered rule is
executed a conflict resolution method is applied.

By looking at the definition ofcnd_monitor_items

we can define a dependency network (fig. 1) that specifies
what changes can affect the differential
∆cnd_monitor_items . Each edge in the dependency net-
work defines the influence from one function to another.
With each edge we also associate the partial differentials
that calculate the actual influence from a particular node.
For instance, ∆quantity is an influent of
∆cnd_monitor_items with a partial differential
∆cnd_monitor_items /∆quantity (the edge marked * in

1. A procedure that does not explicitly return anything
implicitly returns a boolean.

fig. 1). The dependency network is constructed from the
definition of the condition function and its sub-functions.

In our system AMOSQL functions are compiled into a
domain calculus language called ObjectLog[15], which is a
variant of Datalog where facts and Horn Clauses are
augmented with type signatures. In AMOS stored functions
are compiled into facts (base relations) and derived
functions are compiled into Horn Clauses (derived
relations). In our example the system can deduce the
dependency network by looking the definitions of the
functionscnd_monitor_items andthreshold :
cnd_monitor_items item (I) ←

quantity item,integer (I,_G1) ∧
threshold item,integer (I,_G2) ∧
_G1 < _G2

threshold item,integer (I,T) ←
consume_freq item,integer (I,_G1) ∧
delivery_time item,supplier,integer (I,_G2,_G3) ∧
supplies item,supplier (I,_G2) ∧
_G4 = _G1 * _G3 ∧
min_stock item,integer (I,_G5) ∧
T = _G4 + _G5

4 The Calculus of Partial Differencing
The calculus of partial differencing is our basis for

incremental evaluation of rule conditions. It formalizes
update event detection and incremental change monitoring.
The calculus is based on the usual set operatorsunion (∪),
intersection (∩), difference (-), andcomplement (~). Three
new operators are introduced,delta-plus (∆+), delta-minus
(∆-), anddelta-union (∪∆). ∆+ returns all tuples added to a
set over a specified period of time, and∆- all tuples removed
from the set. Adelta-set (∆-set) is defined as a disjoint pair
<∆+S, ∆-S> for some set S and∪∆ is defined as the union
of two ∆-sets. The calculus is general and in section 4.6
partial differencing of the relational algebra operators is
shown.

Separatepartial differentials are generated for monitor-
ing insertions and deletions for each influent of a derived
relation. The intuition is to calculate positive partial differ-

∆quantity

Figure 1: Dependency network of the rule condition

∆cnd_monitor_items

∆threshold

∆consume_freq
∆delivery_time ∆supplies

∆min_stock

*

entials (monitoring insertions) in the new state of the data-
base. The negative partial differentials (monitoring
deletions) are calculated in the old state since this was when
the deleted tuples were present in the database.

The old state of a relation is calculated from the new
state by performing alogical rollback that inverts all the
updates.Given the value of Snew we can calculate Sold
by inverting all operations done to S, i.e. by using Sold
= (Snew∪ ∆−S) - ∆+S. The calculus is based on accumu-
lating all the relevant updates to base relations during a
transaction. These accumulated changes are then used
to calculate the partial differentials of derived relations.
Changes are propagated in a breadth-first, bottom-up
manner through a propagation network where the∆-sets
can be seen as temporary ‘wave-front’ materializations.
Calculating the old state, Sold, requires all the propagated
changes that influence S, i.e. the complete∆+S and∆−S.

Our algorithm guarantees that all changes to influents of
an affected relation are propagated before the changes to
the affected relation are propagated further. Therefore, by
propagating breadth-first, bottom-up we can calculate the
old states (Sold) of relations by doing a logical rollback.
Next we define how to accumulate these changes and how
to generate partial differentials.

4.1 Differencing of Base Relations
All changes to base relations, i.e. stored functions, are

logged in a logical undo/redo log. During database
transactions, before these physical update events are written
to the log, a check is made if a stored base relation was
updated that might change the truth value of some activated
rule condition. If so, thephysical events are accumulated in
a ∆-set that reflects alllogical events so far of the updated
relation. Only those functions that are influents of some rule
condition need∆-sets. The∆-sets can be discarded when the
changes of the affected relations have been calculated,
which saves space. Since rules are only triggered by logical
events the physical events have to be added with thedelta
union operator,∪∆, that cancels corresponding insertions
and deletions in the∆-set. The∆-set for a base relation B is
defined as:

∆B = <∆+B, ∆-B>,

where∆+B is the set of added tuples to B and∆-B is the
set of removed tuples, they are defined as:

∆+B = B - Bold and1

∆-B = Bold - B, and thus
Bold = (B ∪ ∆-B) - ∆+B

We define∪∆ formally as:
∆B1 ∪∆ ∆B2 = <(∆+B1 - ∆-B2) ∪ (∆+B2 - ∆-B1),

 (∆-B1 - ∆+B2) ∪ (∆-B2 - ∆+B1) >

1. The current database always reflects the new state

The operator works correctly when there is no net effect
of updates to a function. Updates to stored functions are
made by first removing the old value tuples and then adding
the new ones. For example, let us update the minimum
stock of some item twice assuming thatmin_stock was
originally 100:
set min_stock(:item1) = 150;
set min_stock(:item1) = 100;

This produces the physical update events:
-(min_stock,:item1,100) ,
+(min_stock,:item1,150) ,
-(min_stock,:item1,150) ,
+(min_stock,:item1,100).

The ∆-set formin_stock changes accordingly with:
∆min_stock = <{},{(:item1,100)}>
∆min_stock = <{(:item1,150)},{(:item1,100)}>
∆min_stock = <{},{(:item1,100)}>
∆min_stock = <{},{}>

i.e. there is no net effect of the updates.

4.2 Partial Differencing of Views

As for base relations, the∆-set of a relational view, i.e.
a derived function, is defined as a pair:

∆P = <∆+P,∆-P>

We need to define how to calculate the∆-set of an
affected view in terms of the∆-sets of its influents. To
motivate our calculus we next exemplify change moni-
toring of views for positive changes (adding) and nega-
tive changes (removing), respectively. We then show
how to combine partial differentials into the final calcu-
lus.

4.3 Positive Partial Differentials
For a view P defined as a Horn Clause with a

conjunctive body, let Ip be the set of all its influents. The
positive partial differentials ∆P/∆+Xi, Xi ∈Ip (for insertions
only) are constructed by substituting Xi in P with its positive
differential∆+Xi.

For example, if
p(X, Z) ←

q(X, Y) ∧
r(Y, Z)

then
∆p(X, Z)/ ∆+q ←

∆+q(X, Y) ∧
r(Y, Z)

and
∆p(X, Z)/ ∆+r ←

q(X, Y) ∧
∆+r(Y, Z)

If DBold consist of the stored relations (facts)q(1, 1) ,
r(1, 2) , r(2, 3) , then we can derivep(1, 2) .

A transaction performs the updates
assert q(1, 2), assert r(1, 4)

DBnew now becomesq(1, 1) , q(1, 2) , r(1, 2) , r(1,

4) , r(2, 3) , and we can derivep(1, 2) , p(1, 3) , p(1,

4)

The updates give the∆-sets,
∆q = <{(1,2)},{}>
∆r = <{(1,4)},{}>
Then∆p(X, Z)/ ∆+q = <{1,3},{}>

and∆p(X, Z)/ ∆+r = <{1,4},{}>

and joining with∪∆ finally gives
∆p = <{(1,3),(1,4)},{}>

The AMOSQL compiler expands as many derived
relations as possible to have more degrees of freedom for
optimizations. The condition function of our running
example will be expanded to:
cnd_monitor_items item (I) ←

quantity item,integer (I,_G1) ∧
consume_freq item,integer (I,_G2) ∧
delivery_time item,supplier,integer (I,_G3,_G4) ∧
supplies item,supplier (I,_G3) ∧
_G5 = _G2 * _G4 ∧
min_stock item,integer (I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

The positive partial differentials based on the influents
quantity andconsume_freq are defined as:
∆cnd_monitor_items item (I)/ ∆+quantity ←

∆+quantity item,integer (I,_G1) ∧
consume_freq item,integer (I,_G2) ∧
delivery_time item,supplier,integer (I,_G3,_G4) ∧
supplies item,supplier (I,_G3) ∧
_G5 = _G2 * _G4 ∧
min_stock item,integer (I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

∆cnd_monitor_items item (I)/ ∆+consume_freq ←
quantity item,integer (I,_G1) ∧
∆+consume_freq item,integer (I,_G2) ∧
delivery_time item,supplier,integer (I,_G3,_G4) ∧
supplies item,supplier (I,_G3) ∧
_G5 = _G2 * _G4 ∧
min_stock item,integer (I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

The other differentials ∆cnd_monitor_items/

∆+delivery_time , ∆cnd_monitor_items/

∆+supplies , and ∆cnd_monitor_items/ ∆+min_stock

are defined likewise. Using these partial differentials we can
build a propagation network for cnd_monitor_items

(fig. 2). This is basically the dependency network (fig. 1)
augmented with partial differentials. One difference to fig. 1
is that the propagation network forcnd_monitor_items is
flat since the AMOS query compiler expands functions as
much as possible. In the case oflate binding1 this is not
possible and the result is a more bushy network
In section 7.1 we show how sub-expressions can be reused
to produce a more bushy network.

Note that the examples above only deal with
conjunctions in the bodies of the Horn Clauses. In
ObjectLog disjunctions are introduced in the body only and
not as separate Horn Clauses as in traditional Datalog2.
Disjunctions, i.e. unions, are treated in section 4.5

4.4 Negative Partial Differentials

Often the rule condition depends only on positive
changes, as for themonitor_items rule. However, for
negation and aggregation operators, negative changes
must be propagated as well. For strict rule semantics,
propagation of negative changes is also necessary for
rules whose actions negatively affect other rules’ con-
ditions.

In our example in section 4.3 the two partial differen-
tials of the relation P with regard to the negative changes of
Q and R are defined as:

∆p(X, Z)/ ∆- q ←
∆- q(X, Y) ∧
r old (Y, Z)

and
∆p(X, Z)/ ∆- r ←

qold (X, Y) ∧
∆- r(Y, Z)

1. Late binding means that some type information can not be
determined at compile-time (early binding) and must instead
be determined at run-time.

2. In ObjectLog separate Horn Clauses are generated for dif-
ferent AMOSQL functions that are overloaded on the type
signatures of a single function name. Since only one func-
tion is chosen at run-time, this is not a disjunction.

∆quantity(q)

Figure 2: Propagation network of the rule condition

∆cnd_monitor_items(cmi)

∆consume_freq(cf)
∆delivery_time(dt) ∆supplies(s

∆min_stock(ms)

∆cmi/
∆+q

∆cmi/
∆+s∆cmi/

∆+cf ∆cmi/
∆+dt

∆cmi/
∆+ms

where Rold = (R ∪ ∆-R) - ∆+R and where Qold is
defined likewise.

These can be calculated by a logical rollback (fig. 3) or
by materialization.

Let DBold consist of the stored relations (facts)q(1, 1) ,
r(1, 2) , r(2, 3) , from p defined above we can now
derivep(1, 2) . A transaction performs the updates:

assert q(1, 2), assert r(1, 4),
retract r(1, 2), retract r(2, 3)

DBnew is nowq(1, 1) , q(1, 2) , r(1, 4) , and we can
derivep(1, 4) . The updates give the∆-sets,

∆q = <{(1,2)},{}>
∆r = <{(1,4)},{(1,2),(2,3)}> .
Then∆p(X, Z)/ ∆+q = <{},{}> ,
∆p(X, Z)/ ∆+r = <{(1,4)},{}> ,
∆p(X, Z)/ ∆- r = <{},{(1,2)}> ,
and joining with∪∆ gives
∆p = <{(1,4)},{(1,2)}> .

Note that if we did not use the old state ofq (qold) in
∆p(X,Z)/ ∆- r we would get
∆p = <{(1,4)},{(1,2),(1,3)}> , which is clearly
wrong.

4.5 The Calculus of Partial Differentials
Let ∆+P be the set of additions (positive changes) to a

view P and∆-P the set of deletions (negative changes) from
P. As before, the∆-set of P,∆P, is a pair of the positive and
the negative changes of P:

∆P = <∆+P,∆-P>

As for base relations, we formally define thedelta-union,
∪∆, over differentials as:

∆P1 ∪∆ ∆P2 = <(∆+P1 - ∆-P2) ∪ (∆+P2 - ∆-P1),
 (∆-P1 - ∆+P2) ∪ (∆-P2 - ∆+P1) >

Next we define thepartial differential, ∆P/∆X, that
incrementally monitors changes to P from changes of each
influent X. Partial differencing of a relation is defined as
generating partial differentials for all the influents of the
relation. The net changes of the partial differentials are

accumulated (using∪∆) into ∆P.
Let Ip be the set of all relations that P depends on. The

∆-set of P,∆P, is then defined by:

∆P = ∪∆
∆P = ∪∆ <∆P , ∆P > , ∀X ∈ Ip∆X ∆+X ∆-X

For example, if P depends on the relations Q and R then:

∆P =∆P ∪∆
∆P = <∆P , ∆P > ∪∆ <∆P , ∆P

∆Q ∆R ∆+Q ∆-Q ∆+R ∆ -R
>

To detect changes of derived relations we define intersec-
tion (conjunction), union (disjunction), and complement
(negation) in terms of their differentials as:

∆(Q ∩ R) = <(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>
 ∪∆

<{} , (∆-Q ∩ Rold) ∪ (Qold ∩ ∆-R>

∆(Q ∪ R) = <(∆+Q - Rold) ∪ (∆+R - Qold), {}>
 ∪∆
<{}, (∆−Q − R) ∪ (∆−R − Q)>

∆(~Q) = <∆-Q, ∆+Q>

From the expressions above we can easily generate the sim-
pler expressions in the case of, e.g. insertions only. For
example, when only considering insertions, changes to
intersections is defined as:

∆+(Q ∩ R) = <(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>

4.6 Partial Differencing of the Relational Opera-
tors

The calculus of partial differencing can easily be
applied to the relational algebra to incrementally evaluate its
operators. This is illustrated by the table in fig. 4. This was
generated by separating the expressions above for insertions
and deletions and by using the definitions of the relational
operators in terms of set operations. See [23] for more
details.

propagation

Rold R (Rnew)

assert (∆+R)

evaluate insertions in the new state

evaluate deletions in the old state

logical rollback

propagation

Figure 3: Calculating the old state by a logical rollback

retract (∆−R)

∆−R ∆−R∆−R

∆−R∆−R

∆+R ∆+R

∆+R

∆+R

∆+R

P
∆P
∆+Q

∆P
∆+R

∆P
∆−Q

∆P
∆−R

σcondQ σcond∆+Q σcond∆-Q

πattrQ πattr∆+Q πattr∆-Q

Q ∪ R ∆+Q - Rold ∆+R - Qold ∆-Q - R ∆-R - Q

Q - R* ∆+Q - R Q∩ ∆-R ∆-Q - Rold Qold ∩ ∆+R

Q × R ∆+Q × R Q× ∆+R ∆-Q × Rold Qold × ∆-R

Q R∆+Q R Q ∆+R ∆-Q Rold Qold ∆-R

Q ∩ R ∆+Q ∩ R Q∩ ∆+R ∆-Q ∩ Rold Qold ∩ ∆-R

Figure 4: Partial differencing of the Relational Operators
*) Q - R = Q∩ ~R

5 The Propagation Algorithm
A breadth-first, bottom-up propagation algorithm has

been implemented to support the partial differencing
calculus. In the implementation∆-sets are represented as
temporary materializations done in the propagation
algorithm and are discarded as the propagation proceeds
upwards. Changes, i.e.∆-sets, which are not referenced by
any partial differentials further up in the network are
discarded. This assumes that there are no loops in the
network, which is not so withrecursive relations1. The
algorithm propagates changes breadth-first by first
executing all affected partial differentials of an edge and
then by accumulating the changes in the nodes above (fig.
5). Here is an outline of thequite simple algorithm (see [23]
for more details):

for each level (starting with the lowest level)
for each changed node (a non-empty ∆-set)

for each edge to an above node
execute the partial differential(s)
and accumulate the result in the
∆-set of the node above using ∪∆

The ∆-sets of each node are cleared after the node has
been processed, i.e. after the partial differentials that
reference the∆-sets have been executed.

6 Performance Measurements
A performance measurement was performed using two

implementations of rule condition evaluation, one based on
naive evaluation and another based on partial differencing.
The benchmarks were based on monitoring the
monitor_items rule defined previously and with full
expansion of rule conditions. Several benchmarks were run2

1. The algorithm can be extended to handle linear recursion
by revisiting nodes below and using fixed point tech-
niques. Work on recursion can be found in [12].

and with encouraging results[23]. We present results from
the two most significant of them here. The first one
considers few changes per transaction to one partial
differential. This is considered the normal case and is shown
to be very efficient to monitor using partial differencing. The
second one considers many changes to several partial
differentials. This is considered a worst case situation,
which is more efficient to monitor naively, but which is still
monitored with an acceptable efficiency using partial
differencing.

6.1 Few Changes to One Partial Differential
In transactions where few updates were performed to

monitored conditions, the cost of evaluating conditions
using incremental change monitoring was shown to be
independent of the size of the database in most cases (fig. 6).
In the case of naive change monitoring the cost is linear to
the size of the database. In the measurements 100
transactions were run where each transaction only changed
the quantity of one item. The test runs were done by using
databases populated with between 1 and 10000 items. This
causes change to only one partial differential in each
transaction in the incremental change monitoring. The
reason for this can be seen in fig. 2 where changes to
quantities (∆quantity) will be propagated by executing
only the partial differential ∆cnd_monitor_items/

∆+quantity . By contrast, the naive method goes through
all the quantities of all the items in the database.

6.2 Massive Changes to Several Partial Differen-
tials

In this benchmark each transaction changed the
quantity, the delivery time, and the consume frequency of all

2. All measurements were made on a HP9000/710 with 64
Mbyte of main memory and running HP/UX.

Changes to rule conditions

Changes to stored relations

Figure 5: Breadth-first, bottom-up propagation

∆
∆

∆ ∆ ∆

∆
control flow

data flow

Figure 6: 100 transactions with 1 change to 1
partial differential

items. This caused changes to three out of the five partial
differentials in each transaction in the incremental change
monitoring. As shown in fig. 2 the partial differentials
∆cnd_monitor_items/ ∆+quantity ,
∆cnd_monitor_items/ ∆+delivery_time , and
∆cnd_monitor_items/ ∆+consume_freq will all need to
be executed, which results in overlapping execution. In the
naive version these overlaps in the execution do not appear.
As shown in fig. 6 massive changes to several partial
differentials perform worse than naive change monitoring
but only with a constant factor of about 1.6.

7 Refinements
There are many refinements that can be done to the

implementation.

7.1 Optimizations and Node Sharing
Optimizations such as reusing sub-expressions are

possible by restricting the way AMOSQL functions are
expanded when being compiled into ObjectLog. There is a
trade-off between expansion for better query optimization
and node sharing for more efficient change propagation.
This is an area for further research.

To get a propagation network analogous to that in fig. 1
we could choose to definecnd_monitor_items in
terms of two differentials instead:
∆cnd_monitor_items item (I)/ ∆+quantity ←

∆+quantity item,integer (I, _G1) ∧
threshold item,integer (I, _G2) ∧
_G1 < _G2

∆cnd_monitor_items item (I)/ ∆+threshold ←
quantity item,integer (I, _G1) ∧
∆+threshold item,integer (I, _G2) ∧
_G1 < _G2

The∆threshold function would then be defined in

terms of four partial differentials and become an
intermediate node in the network. This would be
beneficial if the threshold function is referenced in other
rule conditions as well since this would enable node
sharing.

7.2 Strict and Set-oriented Semantics
Partial differentials that contain selections might

produce∆-sets that are too large. This is acceptable for
positive changes and nervous semantics. For strict semantics
these tuples have to be removed by checking the old state of
the selection. Negative partial differentials might also
produce a∆-set that is too large, i.e. deletions of tuples that
are still present in the new state of the database. Unlike for
positive changes, this is more serious as it might cause rules
not to trigger on positive changes since these have been
cancelled by incorrectly propagated negative changes. To
avoid this, for negative changes we have to check if the tuple
is still present in the new state of the database. If this is not
done, the rules might under-react, which is unacceptable.

Note that we assume set-oriented semantics since this is
the most natural semantics for rule conditions. Partial dif-
ferencing can be defined forbag-oriented semantics as
well, but this is outside the scope of this paper. Partial dif-
ferencing of the relational operators for bag-oriented
semantics is not as straight forward as for set-oriented
semantics. Some work on differencing where bag-oriented
semantics is assumed can be found in [13].

With set-oriented semantics, when there are changes to
more than one influent the definitions in fig. 4 might give a
set of changes that are too large, i.e. containing duplicates.
These will, however, be removed by∪∆. Since∪∆ is not
commutative for set-oriented semantics,∪∆ has to be
performed in the same order as the changes originally
occurred in the transaction. For strict semantics of unions a
check is made that positive/negative changes are propa-
gated only if the other part of the union was/is not present.

8 Conclusions
The paper presented adifference calculus for

incremental evaluation of queries, based on database
updates. The calculus defines partial differentials of rule
conditions as separate queries that each considers changes to
a single relation that influences a monitored rule condition.
The benefits of using partial differencing include
optimization for both time and space, and explainability.
The advantage of incremental evaluation in general is the
efficiency that comes from the assumption that most
transactions only perform small changes to rule conditions.
Partial differencing has the additional advantages that only a
few (or just one) partial differentials are normally executed
in each transaction. The partial differentials are much

Figure 7: 1 transaction with n changes to 3 par-
tial differentials

simpler and more efficient than the combined full
differentials, in particular when combining partial
differentials for both positive (insertions) and negative
(deletions) changes. The calculus also defines how to
calculate the old database state without materializing. This is
important for saving space when differencing negative
changes since the intermediate results can sometimes be
very large.

Partial differentials can also be used to discriminate
between different reasons why a rule was triggered, i.e. the
influents of a rule condition can be traced and different
actions can be taken in the rules depending on why they were
triggered. In systems based on ECA-rules this is accom-
plished by defining separate rules for each situation with dif-
ferent event parts, but with the same conditions. This causes
code duplication. By giving access to the results of partial dif-
ferentials in the action part of a CA-rule it is possible perform
different actions depending on what has happened.

As was shown in the performance measurements, the
partial differencing is not always optimal. For transactions
with many updates affecting monitored relations naive
evaluation can be more efficient, but only with a constant
factor. Further research is needed on detecting situations
where naive evaluation should be chosen and how to mix
naive and incremental evaluation into the same execution
mechanism in ahybrid evaluation method. Another inter-
esting research area is the possibility of incremental evalua-
tion of foreign functions through user defined differentials.
Other future work includes extending the calculus to handle
aggregates and recursion.

9 References
[1] Baralis E., Widom J.: Using Delta Relations to Optimize

Condition Evaluation in Active Databases,RIDS’95(Rules
in Database Systems), Springer Lecture Notes in Computer
Science, pp. 292-308, Athens, Greece, Sept., 1995

[2] Bernstein P.A., Blaustein B.T., and Clarke E.M.: Fast Mainte-
nance of Semantic Integrity Assertions Using Redundant
Aggregate Data,VLDB 6, Oct.1980, pp.126-136.

[3] Blakeley J.A., Larson P-Å., Tompa F.W.: Efficiently Updating
Materializing Views,ACM SIGMOD conf., Washington
D.C., 1986, pp. 61-71.

[4] Dayal U., McCarthy D., The architecture of an Active Data-
base Management System,ACM SIGMOD conf., 1989, pp.
215-224

[5] Dewan H. M., Ohsie D., Stolfo S. J., Wolfson O., Da Silva
S.: Incremental Database Rule Processing in PARADISER,
Journal of Intelligent Information Systems, 1:2, 1992

[6] Dong G., Su J.: First-Order Incremental Evaluation of Data-
log Queries,Proc. of the Fourth Int’l Workshop on Data-
base Programming Languages - Object Models and
Languages, Springer-Verlag, Aug. 30, 1993, pp. 295-308

[7] Fabret F., Regnier M., Simon E.: An Adaptive Algorithm
for Incremental Evaluation of Production Rules in Data-

bases,Proc. 19th VLDB conf.,Dublin 1993

[8] Fahl G., Risch T., Sköld M.: AMOS - An Architecture for
Active Mediators,Intl. Workshop on Next Generation Infor-
mation Technologies and Systems (NGITS ’93) Haifa, Israel,
June 1993, pp. 47-53

[9] Fishman D. et. al: Overview of the Iris DBMS,Object-Ori-
ented Concepts, Databases, and Applications, ACM press,
Addison-Wesley Publ. Comp., 1989

[10] Gupta A., Mumick I. S.: Maintenance of Materialized
Views: Problems, Techniques and Applications,IEEE Data
Engineering bulletin, Vol. 18, No. 2, 1995

[11] Hanson E. N.: Rule Condition Testing and Action Execution
in Ariel, ACM SIGMOD conf., 1992, pp. 49-58

[12] Harrison J. V., Dietrich S. W.: Condition Monitoring in an
Active Deductive Database, Arizona State University,ASU
Technical Report TR-91-022 (Revised), Dec. 1991

[13] Katiyar A. G. D., Mumick I. S.: Maintaining Views Incre-
mentally,AT&T Bell Laboratories, Technical Report
921214-19-TM, Dec. 1992

[14] Koenig S., Paige R.: A Transformational Framework for the
Automatic Control of Derived Data.Proc. VLDB conf. 1981,
pp. 306-318

[15] Litwin W., Risch T.: Main Memory Oriented Optimization
of OO Queries using Typed Datalog with Foreign Predi-
cates,IEEE Transactions on Knowledge and Data Enginee-
ring Vol. 4, No. 6, December 1992

[16] Miranker D. P.: TREAT: A Better Match Algorithm for AI
Production Systems,AAAI 87 Conference on Artificial Intel-
ligence, Aug. 1987, pp. 42-47

[17] Qian X., Wiederhold G.: Incremental Recomputation of
Active Relational Expressions,IEEE Transactions on
Knowledge and Data Engineering Vol. 3, No. 3 December
1991, pp. 337-341

[18] Risch T.: Monitoring Database Objects,Proc. VLDB conf.
Amsterdam 1989

[19] Risch T., Sköld M.: Active Rules based on Object Oriented
Queries,IEEE Data Engineering bulletin, Vol. 15, No. 1-4,
Dec. 1992, pp. 27-30

[20] Rosenthal A., Chakravarthy S., Blaustein B., Blakely J.: Sit-
uation Monitoring for Active Databases,VLDB conf.
Amsterdam, 1989

[21] Shipman D. W.: The Functional Data Model and the Data
Language DAPLEX,ACM Transactions on Database
Systems, 6(1), March 1981

[22] Selinger P., Astrahan M. M., Chamberlin R.A., Lorie R. A.,
Price T.G.: Access Path Selection in a Relational Database
Management System,ACM SIGMOD conf., Boston, MA,
June 1979, pp. 23-54

[23] Sköld M.: Active Rules based on Object Relational Queries,
- Efficient Change Monitoring Techniques,Lic. Thesis,
Linköping University, LiU-Tek-Lic 1994:38, Sept. 1994

[24] Widom J., Finkelstein S.J.: Set-oriented production rules in
relational database system,ACM SIGMOD conf., Atlantic
City, New Jersey 1990, pp. 259-270

