
Web Service Query Service
Manivasakan Sabesan

Uppsala DataBase Laboratory

Dept. of Information Technology

Uppsala University

Sweden

msabesan@it.uu.se

Tore Risch
Uppsala DataBase Laboratory

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

ABSTRACT
A data providing web service returns a set of objects for a given

set of parameters without any side effects. We demonstrate a

system, WSMED, which provides a web service that can process

SQL queries over any data providing web services. A challenge

addressed by WSMED is to develop methods to speed up such

queries by parallelization. WSMED automatically generates a

distributed execution plan that calls web services in parallel. A

common pattern in queries over web services is that the output of

one web service call is the input for another. To speed-up such

queries, WSMED automatically parallelizes the web service calls

by starting separate query processes, each managing a

parameterized sub-query, a plan function, for different parameters.

To automatically achieve the optimal parallel process tree

WSMED adapts an initial parallel plan locally in each query

process until an optimized performance is achieved. The

demonstration is a web interface to a WSMED server. It allow to

make SQL queries joining any data providing web services, thus

demonstrating that WSMED provides general search of composed

web services.

Keywords
Adaptive parallelization, Web service query service, Search

computing.

1. INTRODUCTION
Web services are often used for search computing [1] where data

is retrieved from servers providing information of different kinds.

Such data providing web services return a set of objects for a

given set of parameters without any side effects. A System, Web

Service MEDiator (WSMED), is built that provides a web service

to compose any data providing web service operations. It

automatically provides relational views of any data providing web

service operation. These views can be queried and joined with

SQL. For a given SQL query, WSMED dynamically composes the

web services, optimizes the web service calls, and adaptively

parallelizes the execution plan.

As an example, consider a query to find information about places

located within 15 km from each city whose name starts with

’Atlanta‘ in all US states. Three different data providing web

services can be used for answering this query, using the

operations GetAllStates from the web service GeoPlaces[2] to

retrieve all the states, GetPlacesWithin from GeoPlaces[2] to get

all the places located within a given distance, and GetPlaceList

from TerraService[8] to provide all the places starts with ’Atlanta’

for a given state.

Queries calling web services often have a similar pattern where

the output of one web service call (e.g. GetAllStates) is the input

for another one (e.g. GetPlacesWithin, i.e. the second call is

dependent on the first one, etc. A challenge here is to develop

methods to speed up queries requiring such dependent data

providing web service calls. In general such speed-ups are based

on some unknown web service properties. Those properties are

not explicitly available and depend on the network and runtime

environments when and where the queries are executed. It is very

difficult to base execution strategies on a static cost model in such

scenarios, as is done in relational databases.

In our approach a web service call is considered as an expensive

function call where the result is a nested data collection. To

improve the response time, WSMED uses an approach to

parallelize the web service calls while keeping the dependencies

among them. With the approach separate query processes are

started in parallel, each calling a parameterized sub query plan,

called a plan function, for given parameters. Each plan function

encapsulates one web service call and makes data transformations

such as flattening nested results, filtering, and data conversions.

The WSMED can import any WSDL file and automatically

generate relational views for each web service operation defined

in the WSDL file. To provide a view query-able with SQL, the

result collections are flattened. Similarly operation arguments are

also flattened but have to be bound in queries and WSMED will

try to decompose the query plan so that this is the case.

The performance is often improved by setting up several web

service calls to the same operation in parallel rather than to call

the operation in sequence for different parameters. The algebra

operator, AFF_APPLYP (Adaptive First Finished Apply in

Parallel), takes a stream of parameter values and, for each

received parameter tuple in the stream, ships a plan function in

parallel to other query processes and then asynchronously receives

the results from the shipped plans in parallel.

Multi-level execution plans are automatically generated with

several layers of parallelism in different query processes. This

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

iiWAS2009, December 14–16, 2009, Kuala Lumpur, Malaysia.

Copyright 2009 ACM 978-1-60558-660-1/09/0012...$10.00.

Proceedings of iiWAS2009 iiWAS 2009 Web Applications Competition

692

forms the process tree for the query. During execution

AFF_APPLYP first initiates the communication with its child

query processes and then ships the plan function to children. Then

AFF_APPLYP starts shipping in parallel to the children the

argument tuples from the input stream. At any point in time every

process in the tree executes one plan function for a specific

parameter. The results from the children are delivered to the

parent in parallel as streams.

WSMED adaptively achieves an optimized process tree by local

run-time monitoring of each plan function call. For the adaptation

AFF_APPLYP dynamically modifies a parallel plan locally and

greedily in each query process.

The functionality of WSMED is demonstrated through a publicly

accessible URL [10]. It enables the user to access any data

provided web service. The schema of the generated views can

inspected and the query can execute general SQL queries over the

views. The demonstration is fully implemented as a JavaScript

calling a WSMED server using SOAP, without any need to

download or install any software.

In summary the contributions of our work are:

1. The WSMED system provides general SQL query capabilities

over data providing web services by reading WSDL meta-data

description.

2. For a given SQL query, the system automatically and

adaptively generates and optimizes a parallel execution plan

calling the web services.

Section 2 explains the WSMED demo. Section 3 overviews the

WSMED system architecture. In Section 4 we present an example

of an SQL query with dependent web service calls, for which

WSMED automatically generates an optimized process tree.

Related work is compared in Section 5. Finally Section 6

concludes our approach

2. The WSMED Demo
Figure 1 illustrates the WSMED demo. It demonstrates all web

service operations provided by WSMED through a user interface

that can be run in any web browser. The JavaScript completely

implementing the user interface can be inspected from the

browser. The communication between the JavaScript program and

WSMED is completely based on SOAP.

A user needs to start a WSMED session by registering any user

name, for example me(1), and click on the Register button(2).

Then she can import the metadata of the web services to query by

selecting a WSDL URL of a web service from the drop-down-

list(3) with WSDL URLs known so far and pressing the

ImportWSDL button(4). Also she can make a new WSDL URL

known by selecting Enter New WSDL option from the drop-down-

list(3) and enter a new WSDL URL in text box(5) and finally

clicking the Enter(6)button. This will add the new WSDL URL to

the drop-down-list(3).

When meta-data of a WSDL URL is imported, the SQL views are

automatically created for all web service operation specified by

the WSDL file. The imported SQL views as shown in the Result

Display(14). The names of the views are based on the names of

imported web service operations. They are displayed in the

format:

Table Name --- Authentication<<< Web Service.

Table Name is the name of a view. Authentication refers the

whether authentication is needed to invoke a web service

operation and it may be required or none or builtin. Web Service

is the name of the web service operation over which the view is

defined. All currently available SQL views are present in the

drop-down-list(7). A user can inspect the schema of a given view

in the Result Display area(14) by selecting a view name from the

drop-down-list(7) and then pressing the Table Info(8) button. This

will display the view name, its authentication status, the web

service hosting the operation encapsulated by the view, the data

types of its attributes, and what attributes are required to be

known to query the view. That information is vital when a user is

expressing an SQL query. To view the authentication status of an

available table, a user selects an available table from the drop-

down-list(7) and then presses the Authentication button(9). A new

authentication value can be entered in the text box(10) and stored

by pressing the Enter button(11). Any SQL query can be

expressed with the available tables in the text box(12) and

executed by clicking the Execute button(13). The result of a query

is showed in result display area(14). A WSMED session quitted

with the Exit button(15).

http://terraservice.net/TerraService2.asmx?WSDL ImportWSDL

http://user.it.uu.se/~msabesan/WSDL/Weather.wsdl Enter

GetAllStates TableInfo Authentication

Register

Enter

select * from GetAllStates

me

Exit

oVhMylJ

Enter User Name

Enter WSDL URL

Enter New WSDL URL

Available Tables

Enter New Authentication Value

Enter New SQL Query Execute

Result Display

Figure 1. WSMED demo

(1) (2)

(3) (4)

(7) (8)

(5) (6)

(9)

(10) (11)

(12) (13)

(14) (15)

iiWAS 2009 Web Applications Competition Proceedings of iiWAS2009

693

3. The WSMED System
Figure 2 illustrates the service oriented architecture of WSMED.

Following the Everything as a Service (XaaS) paradigm [9],

WSMED is providing a web service to query arbitrary data

providing web services.

WSDL file system exports several web service operations[11]:

• For a given a URL the IMPORTWSDL operation

imports WSDL meta-data information and automatically

creates SQL views Viewi for every operation OPj

provided by a web service WSk described by an

imported WSDL document WSDLl.

• The AUTHENTICATION operation provides

authentication information for web service operations

that so require.

• The system accepts SQL queries to the generated views

by the QUERY operation. The results from the operation

is automatically flattened and post processed by

WSMED in order to deliver a proper SQL result.

• The TABLEINFO operation provides information about

the SQL view over a given web service operation. For

example some table attributes must always be known

when querying the service, since they provide the

arguments for the underlying web service operation.

• There INIT operation registers a WSMED user session.

• Finally, the operation EXIT_S terminates a user session.

3.1 Web Service Architecture
Figure 3 shows the processes involved when using the WSMED

web service. The WSMED Web Server is a lightweight standalone

WS1

WS2

WSn

QUERY operation

User WSMED

server

WSMED Web Server

Coordinator

WSMED

Figure 3. Web service query service

WMED server

WS1

OP1WSDL1

OPp

OP1 WSDLn

OPq

WSn

View1 Viewm

SOAP calls Import metadata

QUERY IMPORTWSDL TABLEINFO AUTHENTICATION

WSMED Web Service Interface

Figure 2. Service oriented architecture of WSMED

Proceedings of iiWAS2009 iiWAS 2009 Web Applications Competition

694

SOAP web server using the library, Quick Server [5], to send and

receive SOAP messages using the HTTP protocol.

The coordinator implements the WSMED operations INIT and

EXIT_S described by the document wsmed.wsdl [11] to manage

the user WSMED servers. Each user is assigned a private user

WSMED server to manage the session of the data providing web

services she is querying.

4. Queries over Dependent Web Service Calls
For a given web service WSMED automatically generates

operation wrapper functions (OWFs)[6] based on the WSDL

definitions of the web service operations. An OWF defines an

SQL view of a web service operation. For example, Query1 in

Figure 4 finds information about places located within 15 km

from each city whose name starts with ’Atlanta‘ in all US states.

In the query we utilize the web service operations GetAllStates[2],

GetPlacesWithin[2], and GetPlaceList[8]. In Figure 4 the three

OWFs GetAllStates, GetPlacesWithin, and GetPlaceList define

views encapsulating web service operations with the same names.

The query returns a stream of 360 result tuples. A naïve central

sequential execution plan invokes more than 300 web service

calls.

The OWF GetAllStates presents information of US states as a set

of tuples <Name, Type, State, LatDegrees, LonDegrees,

LatRadians, LonRadians>. However, we are only interested in the

values of the attribute State.

The OWF GetPlacesWithin returns a set of tuples <ToCity,

ToState, GeoPlaceDistance_Distance> for given place

(‘Atlanta’), state (gs.State), distance (15.0), and kind of place type

to find (’City’). The OWF GetPlaceList retrieves a set of places

<placename, state, country, placeLon, placeLat,

availableThemeMask, placeTypeId, population>, given a

specification of a place (concatenation of ToCity+’,’+ToState),

the maximum number result tuples (100), and a flag indicating

whether places having an associated map are returned

4.1 WSMED Process Tree
The web service metadata in a WSDL file describing web service

operations to query is stored in the WSMED’s web service meta-

store by the IMPORTWSDL operation. Figure 5 gives an example

of a process tree generated by the WSMED query optimizer. The

query is processed by the coordinator process q0. Any query

process can be connected with a number of child processes and all

the processes on the same level execute the same plan function

but with different parameters.

The plan function in the coordinator q0 encapsulates the OWF

GetAllStates, while the plan functions of the processes in level

one encapsulate the OWF GetPlacesWithin for different states. On

level two the plan function calls the OWF GetPlaceList for

different place specifications. The coordinator q0 first generates a

central plan containing calls to the OWFs.

It then automatically reformulates the central plan to incorporate

parallel web service calls by inserting an algebra operator

AFF_APPLYP in the execution plan whenever an OWF is

encountered.

q- query process

Level 2

q0

q1

q3 q4

q2 GetPlacesWithin

GetPlaceList
q5 q8q7q6

Coordinator

Level 1

Query1
GetAllStates

Figure 5. Process tree

select gl.placename,gl.state

from GetAllStates gs, GetPlacesWithin gp, GetPlaceList gl

where gs.State=gp.state and gp.distance=15.0 and gp.placeTypeToFind='City' and
 gp.place='Atlanta' and gl.placeName=gp.ToPlace+' ,'+gp.ToState and

 gl.MaxItems=100 and gl.imagePresence='true'

Figure 4. Query1 defined in SQL

iiWAS 2009 Web Applications Competition Proceedings of iiWAS2009

695

For each OWF a plan function is generated that encapsulates a

fragment of the central execution plan embodying the OWF call.

When the algebra operator AFF_APPLYP is executed in process

q0, it first ships in parallel to its children in level one (q1, q2) the

same plan function definition that encapsulates GetPlacesWithin.

Then it ships in parallel a stream of parameter tuples to the

shipped plan function installed in the children processes ready for

execution. Analogously, each AFF_APPLYP executing in the

level one processes send another plan function definition to the

level two processes (q3, q4, q5, q6, q7, q8). Each query process

initially receives its own plan function definition once when

initialized. When the level two processes receive data from the

wrapped web service operation GetPlaceList, the results will be

returned asynchronously as streams to the processes in level one,

and finally the results are streamed to the coordinator process.

4.2 Adaptive First Finished Apply in Parallel
The algebra operator AFF_APPLYP (Adaptive First Finished

Apply in Parallel) [6] automatically achieves an optimized process

tree:

AFF_APPLYP (Function pf, Stream pstream)
 � Stream result

It ships in parallel to child query processes the definition of the

same plan function pf. Then it ships one by one parameter tuples

from pstream to each of the children. The result stream from a call

to pf for a given parameter tuple is sent back to AFF_APPLYP

asynchronously as a stream of tuples, result. AFF_APPLYP adapts

the process plan at run time starting with a binary tree. Each node

locally monitors the execution times of its children to dynamically

modify its sub-trees until it is not expected any more performance

improvement.

We experimented [6] with different values of p (number of query

processes added each time) and different change thresholds, with

and without the dropping query processes when an optimum point

is reached. We concluded (Figure 6) that execution (59.07 sec)

time AFF_APPLYP performed best (4 times faster) when

comparing with the sequence web service invocation (244.394

sec). Further the execution time with p=4 and no drop stage

performed best and execution time with p=2 and no drop stage

also showed closer performance (88%) with the best execution

time. Dropping processes make insignificant changes in the

execution time.

5. Related Work
WSQ/DSQ [4] handles high-latency calls to web search engines

by launching asynchronous materialized dependent joins later

joined in the execution plan using a special operator. In contrast,

WSMED produces non-blocking multi-level parallel plans based

0

50

100

150

200

250

300

Process Selection

E
x
e
c
u

tio
n
 T

im
e

 (
S

e
c
)..

..
..
..
..
..
..
..
.

Naive implementation p=1, no drop stage, fo1=3 fo2=3

p=1, drop stage, fo1=2 fo2=3 p=2, no drop stage, fo1=4 fo2=5

p=2, drop stage, fo1=3 fo2=3 p=3, no drop stage, fo1=5 fo2=3.4

p=3, drop stage, fo1=4 fo2=3.25 p=4, no drop stage, fo1=6 fo2=8.7

p=4, drop stage, fo1=5 fo2=4.2 p=5, no drop stage, fo1=7 fo2=7.5

p=5, drop stage, fo1=6 fo2=7.8

Figure 6. Comparisons of naive and adaptive approaches

Proceedings of iiWAS2009 iiWAS 2009 Web Applications Competition

696

on streams of parameter tuples passed to parallel sub plans

without any materialization.

WSMS [7] proposed an approach for pipelined parallelism among

dependent web services to minimize the query execution time. By

contrast, we parallelize by partitioning parameter tuple streams.

Furthermore, WSMS didn’t propose any adaptive parallelization,

lacked support for code shipping, and couldn’t make parallel calls

to the same web service. In contrast we propose a strategy to

adaptively produce a parallelized plan where AFF_APPLYP

invokes parameterized plans calling web services in parallel.

The plan function and parameter tuple shipping phase of

AFF_APPLYP is similar to the map phase of MAPREDUCE [3].

However, MAPREDUCE is more of a programming model than a

query operator and is not dynamically rearranging query

execution plans as AFF_APPLYP.

6. Conclusion
WSMED provides a general relational query service over any data

providing web services for given WSDL meta-data descriptions.

Queries are expressed in SQL to dynamically compose data

providing web services. WSMED is accessible through a URL

[10] from anywhere without installing any software.
WSMED automatically and adaptively find an optimized parallel

execution plan calling web services. The algebra operator

AFF_APPLYP locally adapts the parallel plan by adding and

removing children until an optimum is reached, based on

monitoring the flow between query processes. The adaptive

method is shown to be efficient.

7. ACKNOWLEDGMENTS
This work is supported by Sida and the Swedish Foundation for

Strategic Research under contract RIT08-0041.

8. REFERENCES
[1] Ceri, S. 2009.Search Computing. In Proceedings of

International Conference on Data Engineering (The

Shanghai, The China, March 29 – April 02, 2009), IEEE

computer society (2009), 1-3.

[2] codeBump- GeoPlaces web service, http://codebump. com

/services /PlaceLookup.asmx

[3] Dean, J., Ghemawat, S. 2008. MAPREDUCE: Simplified

Data Processing on Large Clusters. Communications of the

ACM. 51,1(2008),107- 113.

[4] Goldman, R., Widom, J. 2000. WSQ/DSQ: a practical

approach for combined querying of databases and the Web.

In Proceedings of ACM SIGMOD International Conference

on Management of Data. ACM, New York(2000), 285-296

[5] Quick Server, http://www.quickserver.org/

[6] Sabesan, M., Risch, T. 2009. In Proceedings of First IEEE

Workshop on Information & Software as Services. Adaptive

Parallelization of Queries over Dependent Web Service

Calls. . IEEE computer society (2009), 1725-1732.

[7] Srivastava, U., Widom, J., Munagala, K., Motwani, R. 2006.

In Proceedings of Very Large Database Conference. Query

Optimization over Web Services. VLDB Endowment (2006),

355- 366.

[8] TerraServer, TerraService,

http://terraservice.net/webservices.aspx

[9] The Next Wave: Everything as a Service,

http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.

html

[10] WSQS Demo, http://udbl2.it.uu.se/WSMED/wsmed.html

[11] WSMED WSDL, http://udbl2.it.uu.se/WSMED/wsmed.wsdl

iiWAS 2009 Web Applications Competition Proceedings of iiWAS2009

697

