
19

OODBMS: A Case Study. IEEE Computer Soc. Int. Conf. 35 San Francisco 1990 Digest of
papers/ Compcon spring 90, February 26 - March 2, 1990, 528-537.

18. Cook, R. D.: Concepts and Applications of Finite Element Analysis. 3rd, John Wiley & Sons,
Inc., 1989.

19. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik, S.: The Object-Ori-
ented Database System Manifesto. in Kim, W., Nicolas, J-.M., Nishio, S., eds., Proceedings
of the First International Conference on Deductive and Object-Oriented Databases (DOOD),
Elsevier Science Publishers, Amsterdam, 1989, 40-57.

20. The Committee for Advanced DBMS Function: Third-Generation Database System Manifes-
to. SIGMOD Record,19(3), September 1990, 31-44.

21. Litwin, W., Risch, T.: Main Memory Oriented Optimization of OO Queries using Typed Da-
talog with Foreign Predicates. IEEE Transactions on Knowledge and Data Engineering,4(6),
December 1992, 517-528.

22. Wolniewicz, R., Graefe, G.: Algebraic Optimization of Computations over Scientific Data-
bases. Proceedings of the 19th VLDB Conference, Dublin, Ireland, August 24-27, 1993, 13-
24.

23. Takizawa, M.: Distributed Database System JDDBS. JARECT Computer Science & Tech-
nologies.7, OHMSHA & North Holland (publ.), 1983, 262-283.

24. Catell, R. G. G.: Object Data Management: Object-Oriented and Extended Relational Data-
base Systems. Addison-Wesley Publishing Company, Inc., 1991 (reprinted with corrections
1992).

25. Abiteboul, S., Bonner, A.: Objects and Views. Proceedings of the ACM SIGMOD Confer-
ence, 1991, 238-247.

26. Bancilhon, F., Delobel, C., Kanellakis, P. (eds.): Building an Object-Oriented Database Sys-
tem: The Story of O2. Morgan Kaufmann Publishers, Inc., 1992.

27. Risch, T., Sköld, M.: Active Rules Based on Object-Oriented Queries. LiTH-IDA-R-92-35,
Linköping University, 1992. Also in a special issue on Active Databases of IEEE Data Eng-
ineering,15(1-4), December, 1992.

28. Fishman, D. H., Annevelink, J., Chow, E. Connors, T., Davis, J. W., Hasan, W. Hoch, C. G.,
Kent, W., Leichner, S., Lyngbaek, P., Mahbod, B., Neimat, M.A., Risch, T., Shan, M. C.,
Wilkinson, W. K.: Overview of the Iris DBMS. in Kim, W., Lochovsky, F. H. (eds.): Object-
Oriented Concepts, Databases, and Applications, ACM Press, Addison-Wesley, 1989, 219-
250.

29. Shipman, D. W.: The Functional Data Model and the Data Language DAPLEX. ACM TODS,
6(1), March 1981, 140-173.

30. Karlsson, J., Larsson, S., Risch, T., Sköld, M., Werner, M.: AMOS Users’s Guide., CAELAB
Memo 94-01, Linköping University, March 1994.

18

References

1. French, J. C., Jones, A. K., Pfaltz, J. L.: Summary of the Final Report of the NSF Workshop
on Scientific Database Management. SIGMOD Record,19(4), December 1990, 32-40.

2. IEEE Computer Society, The Bulletin of the Technical Committee on Data Engineering
(TCDE), Special Issue on Scientific Databases,93(2), 1993.

3. DBMS: A New Direction in DBMS. Interview with Michael R. Stonebraker in DBMS, Feb-
ruary 1994, 50-60.

4. Fahl, G., Risch, T., Sköld, M.: AMOS - An Architecture for Active Mediators. The Interna-
tional Workshop on Next Generation Information Technologies and Systems (NGITS’ 93),
Haifa, Israel, June 28-30, 1993, 47-53.

5. Torstenfelt, B.: An Integrated Graphical System for Finite Element Analysis, User’s manual.
Version 2.0, LiTH-IKP-R-737, Linköping University, January 1993.

6. Lyngbaek, P.: OSQL: A Language for Object Databases. HPL-DTD-91-4, Hewlett-Packard
Company, January 1991.

7. Beech, D.: Collections of Objects in SQL3. Proceedings of the 19th VLDB Conference, Dub-
lin, Ireland, August 24-27, 1993, 244-255.

8. Becker, E. B., Carey, G. F., Oden, J. T.: Finite Elements: An Introduction. Prentice-Hall, Inc.,
Vol. 1, Texas Finite Element Series, 1981.

9. Baugh, J. W., Rehak, D. R.: Object-Oriented Design of Finite Element Programs. Computer
Utilization in Structural Engineering Proceedings of the Sessions at Structures Congress ‘89,
San Francisco, CA, USA, May 1-5, 1989, 91-100.

10. Fenves, G. L.: Object-Oriented Programming for Engineering Software Development. Engi-
neering with Computers6, 1990, 1-15.

11. Forde, B. W. R., Foschi, R., Stiemer, S. F.: Object-Oriented Finite Element Analysis. Com-
puters & Structures34(3), 1990, 355-374.

12. Filho, J. S. R. A., Devloo, P. R. B.: Object-Oriented Programming in Scientific Computa-
tions: the Beginning of a New Era. Engineering Computations8, 1991, 81-87.

13. Dubois-Pelerin, Y., Zimmermann, T., Bomme, P.: Object-Oriented Finite Element Program-
ming: II. A Prototype Program in Smalltalk. Computer Methods in Applied and Engineering
98, 1992, 361-397.

14. Williams, J. R., Lim, D., Gupta, A.: Software Design of Object Oriented Discrete Element
Systems. Proceedings of the Third International Conference on Computational Plasticity,
Barcelona, Spain, April 6-10, 1992, 1937-1947.

15. Tworzydlo, W. W., Oden, J. T.: Towards an Automated Environment in Computational Me-
chanics. Computer Methods in Applied and Engineering104, 1993, 87-143.

16. Ahmed, S., Wong, A., Sriram, D., Logcher, R.: Object-Oriented Database Management Sys-
tems for Engineering: A Comparison. Journal of Object-Oriented Programming,5(3), June
1992, 27-44

17. Ketabchi, M. A., Mathur, S., Risch, T., Chen, J.: Comparative Analysis of RDBMS and

17

• Extensibility of a query language, such as AMOSQL, will also make it possible to
make optimizations over the domain model and thereby domain-related operations.

Future work will investigate these issues in greater detail. This also involves an in-
clusion of matrices and matrix procedures for modelling numerical algorithms.

Thus, using next generation OO DBMS and extensible OO query languages can re-
new development, maintenance, and usage of FEA software. The benefits of using do-
main models include easier access through a query language, better data description (as
schemas), and other benefits currently provided only by advanced DBMS, such as
transaction capabilities and ad hoc query processing. We believe that tools like object-
relational database management systems and extensible query languages can provide a
solid base for future scientific and engineering data management.

16

Fig. 9. Performance measures of TRINITAS and FEAMOS. This diagram shows the real access
time for accessing the position of point objects

3 Summary

Results from the initial implementation of the FEA application treated in this paper
show that the use of an OR DBMS including an extensible OO query language is a
promising direction/competitive alternative in designing future FEA software. Both re-
quirements on domain modelling and execution efficiency can be met by this approach.

High-level declarative modelling is supported by the extensible OO query language
which makes development, maintenance, and use of the applications more effective.
Furthermore, initial performance measures show that the overhead of using an embed-
ded database is quite low, in particular if the database can be run in the same address
space as the application. More specifically,

• It is not necessary to re-implement low-level dedicated data structures, such as in-
dices, for each new system. Such re-implementation not only duplicates implemen-
tation efforts but, as our example shows, may prove less efficient than the highly op-
timized data management provided by an embedded DBMS.

• By providing access to other databases, e.g. relational DBMS [4], from the domain
model it is possible to build models and ad hoc queries that combine data from other
databases, e.g. from other components of a CAE system.

• Domain models can provide a generic model, here a FEA model, that can be used
by many applications, providing design re-use and simplifying the combination of
data from several systems.

15

TRINITAS system has acceptable response times and processing efficiency when it is
used. The performance test measured the time for creation of objects including an ini-
tialization (update) of a stored function. In this case this corresponds to point objects
and a position attribute with three coordinates. We also measured the access time for
random access of the same number of objects including the function access. These re-
sults are presented in Fig. 9. The access phase is more critical than the creation phase
since it has a higher frequency in a real application situation.

Fig. 8. A contour plot for the example showing iso-stress curves resulting from a linear static
stress analysis

The improved performance of FEAMOS compared to TRINITAS is explained by
the lack of dedicated storage structures in TRINITAS. TRINITAS performs linear
search over the point object set, whereas FEAMOS takes advantage of built-in storage
structures of AMOS, such as hash tables, for efficient access. These kinds of storage
structures can, of course, also be implemented in TRINITAS, which should result in
similar inclination of the TRINITAS performance curves. At small sets of objects
(about <500), TRINITAS has better performance than FEAMOS which is due to the in-
terface overhead in accessing the database. However, the processing performance is no
real bottle-neck at these object volumes.

The quite encouraging performance measures of FEAMOS are also due to the fact
that the database is embedded (shares the same address space) in the application and
that the database is in main-memory. Disk access and process or network communica-
tion would severely slow down the system.

14

point to a specific position, calculating distances between positions and points, etc. For
this purpose, it would also be interesting to investigate how spatial indexing techniques
could be used to support efficient processing of these types of queries. However, these
operations can also be transferred into the database. These operators are expressed in
AMOSQL as:

create function distance(real x1, real y1, real z1,
 point p2) -> real d as

select d for each real x2, real y2, real z2,
 real t1, real t2, real t3

where
position(p2) = <x2, y2, z2> and
t1 = (x2 - x1) and
t2 = (y2 - y1) and
t3 = (z2 - z1) and
d = sqrt((t1*t1) + (t2*t2) + (t3*t3));

create function find_nearest_point(
real x, real y, real z) -> point p1 as

select p1
where distance(x, y, z, p1) =

minagg((select distance(x, y, z, p2)
for each point p2));

And an application of these functions looks like:

distance(100.0, 100.0, 0.0, :point_3);

<22.3607>

name(find_nearest_point(100.0, 100.0, 0.0));

<“p3”>

As the implementation continues, it will be possible to transfer more and more func-
tionality to the database and large parts of the processing can be kept within the data-
base system. The database model will be further developed to eventually include a com-
plete FEA. This includes modelling of concepts and functionality related to the finite
element mesh, domain properties, boundary conditions, the actual analysis, and result
interpretation. Some simple examples of the concepts and relations that are apparent for
the mesh was illustrated in Sect. 2.3. The analysis step involves the solution of a system
of equations that requires the representation of matrices and matrix operators in the da-
tabase. The processing of numerical calculations can be made by extending the query
language with numerical operators as foreign functions.

The current implementation, FEAMOS, has also been evaluated with respect to its
execution performance. FEAMOS has been compared with TRINITAS, the original
FEA program. Since execution performance is quite critical for these kinds of systems
it is important that new software design principles are able to scale up with the applica-
tion. To traditionalists it might be surprising that the evaluation result showed that the
FEAMOS system scaled up better than TRINITAS. Especially, since the original

13

Theedges function is modelled to store object identifiers internally for generality
and efficiency reasons. However, thename function can also be used on each element
of the vector for name reference. The preceding example would then look like:

select name(elements(edges(:surface_1)));

<“line_1”> <“line_2”> <“line_3”> <“line_4”>

It is also possible to invert functions, i.e. apply the function in the opposite direction
as in the following query that tells which surfaces a specific edge belongs to:

select name(s) for each surface s
where elements(edges(s)) = :line_2;

<“s1”>

In TRINITAS, the modelling of the example results in a geometry model as in
Fig. 7. The geometry model is thereafter used as the basis for the specification and gen-
eration of a finite element mesh. If we specify a mesh with three bilinear elements per
edge of the rectangular the resulting mesh is shown in Fig. 3. Figure 8 presents a view
of the results from a linear static stress analysis of the model where a contour plot of
iso-stress curves is included.

Fig. 7. The geometry model, of the example, with boundary conditions modelled in TRINITAS

The functionality of geometry-related concepts that are related to the user interface
management is currently not modelled in the database. This includes finding the nearest

12

The modelling of a geometry can be illustrated by the example shown earlier in
Fig. 2. The resulting model is built by basic geometric elements, i.e. 4 points, 4 straight
lines, 1 surface, and 1 volume elements, shown in Fig. 6. This can be expressed in
AMOSQL as:

create point(name, position)
:point_1(“p1”, <0.0, 0.0, 0.0>),
:point_2(“p2”, <0.0, 120.0, 0.0>),
:point_3(“p3”, <90.0, 120.0, 0.0>),
:point_4(“p4”, <90.0, 0.0, 0.0>);

create straight_line(name, vertices, division, density)
:line_1(“l1”, {:point_1, :point_2}, 3.0, 0.0),
:line_2(“l2”, {:point_2, :point_3}, 3.0, 0.0),
:line_3(“l3”, {:point_3, :point_4}, 3.0, 0.0),
:line_4(“l4”, {:point_4, :point_1}, 3.0, 0.0);

create surface(name, edges) :surface_1(“s1”,
{:line_1, :line_2, :line_3, :line_4});

create volume(name, faces) :volume_1(“v1”, {:surface_1});

Fig. 6. Basic geometrical model of the structure in Fig. 2 including boundary conditions

This modelling technique then makes it possible to put queries to the model about its
structure and content, i.e. basic geometrical and topological information in this case.

For example the edges of :surface_1 can be extracted by:

select edges(:surface_1);

<{OID[0x0:294], OID[0x0:295], OID[0x0:296], OID[0x0:297]}>

L2

L1

P4 P3

P1 P2

L3

L4 S1, V1

F

11

Fig. 4. Partial type structure for the geometry-related subset of the concept domain. Arrows
denote is-a (subtype to supertype) relations

When a geometry is modelled in TRINITAS, an object structure is then generated
in an AMOS database by means of interface functions defined in AMOSQL providing
encapsulation and data independence. Likewise, a manipulation of an object, as moving
a point on the screen, implies a direct update of the database object. There are, for in-
stance, functions and procedures forconstructing anddestructing objects as well as for
accessing andupdating functions.

Fig. 5. Topological relations between geometry concepts

Geometry obj.

Faces Edges Vertices
Volume Surface Curve Point

Parabola c.s. Bezier c.s. Circular s.

Position
Division

Straight line

Density

Volume

Surface

Curve

Point

Faces

Edges

Vertices

10

Deletion of types, functions, and objects is made through adelete statement as:

delete type element;
delete function nodes;
delete :element_1;

In addition to database population by object creation and attribute assignments it is
possible to usefunction update statementsset , add , and remove , and type update
statementsadd andremove . Examples of update statements for functions are:

set nodes(:element_1) = <:node_1, :node_2, :node_4>;
add nodes(:element_1) = :node_5;
remove nodes(:element_1) = :node_2;

A more complete presentation of data management capabilities in AMOS and
AMOSQL is presented in [30].

2.4 Domain Modeling of Finite Element Analysis in FEAMOS

An initial integration of TRINITAS and AMOS has been implemented. Data structures
and corresponding procedures implemented in TRINITAS (written in FORTRAN) are
incrementally replaced by schemas and operators in AMOS. TRINITAS has originally
been designed in a highly structured, “object-based”, manner with specific sets of pro-
cedures for each concept class, such as point, line, etc. This makes it easier to replace
subsets of the FEA program part by part incrementally, and a demonstrable system ex-
ists at every stage. The programs are linked together and communication is done by
transferring parameters between FORTRAN and C procedures using the AMOS C-in-
terface. Concurrently with the normal TRINITAS interface it is possible to query the
contents in the database through a database monitor that currently is a standard textual
AMOS window.

Currently, the representation of the FEA domain in AMOS mainly covers geometry-
related concepts. The classification of these are presented in Fig. 4. An abstract class
geometry_object holds the basic geometry classes that includevolume, surface,

curve, andpoint . Corresponding subclasses in TRINITAS exists for thecurve class
and includestraight_line, parabola_cubic_section, circular_segment,

andbezier_cubic_segment . All these classes are modelled as types and subtypes in
AMOS.

Topology relationsfaces, edges, andvertices are modelled as stored func-
tions between basic geometry classes as illustrated in Fig. 5. For example, the function
vertices defined by

create function vertices(curve c) -> vector as stored;

provides a relation from a curve instance to its points. In addition, thecurve type cur-
rently has adivision and adensity function implemented. Thedivision function
represents the number of subdivisions a specific curve is divided into and thedensity

function represents a node density along a curve. Thepoint class has a functionpo-

sition that stores the x, y, and z spatial coordinates of a point instance.

9

name(topology(:element_1));
<“e2”> <“e4”> <“e5”>

name(topology(:element_5));
<“e1”> <“e2”> <“e4”> <“e6”> <“e8”> <“e9”> <“e7”> <“e3”>

Querying a database for objects having specified properties is made using aselect

statement. For instance thenodes of :element_1 in the example earlier can be re-
trieved by the following query:

select name(nodes(:element_1));
<“n1”> <“n6”> <“n5”> <“n2”>

Functions are also invertible (not always) and it is therefore possible to use thenodes

function in the opposite direction which can be expressed as:

select name(e) for each element e where nodes(e) = :node_1;

Another example shows how boundary conditions defined on the geometry, as the fixed
edge in Fig. 3, can be identified on the mesh by a connectivity function. All elements
affected by this boundary condition can then be retrieved as follows:

select unique name(e) for each element e, node n, curve c where
name(c) = “l4” and nodes(e) = n
nodal_to_curve_connectivity(n) = c;

<“e1”> <“e4”> <“e7”>

Fig. 3. A simple FE mesh consisting of 9 bilinear elements including node and element numbers.
Rigid boundary conditions are introduced for the left edge and the loading condition is modelled
by a point load. Note that node and element numbers are included only for facilitating
interpretation of the examples and is not required (but optional) by the FEAMOS system

8

Data schemas can be defined, modified, and deleted by means of AMOSQL state-
ments both statically and dynamically. The definition of types, functions, and objects is
made through acreate statement. For example, types may be defined by acreate

type statement as:

create type named_object(name charstring);
create type fea_object subtype of named_object;
create type element subtype of fea_object;
create type node subtype of fea_object;

where a stored function,name, is defined within the parentheses of thenamed_object

type. A new type becomes an immediate subtype of all supertypes provided in thesub-

type clause, or if no supertypes are specified, it becomes an immediate subtype of the
system typeUserTypeObject .

Functions can also be defined separate from the types by acreate function

statement, exemplified by thenodes function that relates elements to nodes:

create function nodes(element e1) -> node n as stored;

A database for the example in Fig. 3 is populated with objects with acreate type
statement with or without initialization of functions, and wheretype stands for the spe-
cific type to be instantiated. The database example can be created by the following
statements:

create node (name) :node_1 (“n1”),
:node_2 (“n2”),
...
:node_16 (“n16”);

create element (name, nodes)
:element_1 (“e1”, <:node_1, :node_2, :node_6, :node_5>),
:element_2 (“e2”, <:node_2, :node_3, :node_7, :node_6>),

...
:element_9 (“e9”, <:node_11, :node_12, :node_16, :node_15>);

Derived functions are defined in a similar manner as stored functions with a single
AMOSQL-query as the function body. An example of a derived function is presented
as thetopology function below:

create function topology(element e1) -> element e2 as
select unique e2

for each element e2
where nodes(e1) = nodes(e2) and

e1 != e2;

The topology can be identified in Fig. 3, and defines how elements are related to each
other. When thetopology function is accessed, it derives the elementse2 that have
some common node with elemente1, i.e. the elements that are connected to a given el-
ement. An example shows the topology for element 1 and 5 respectively.

7

skin panel or wing in an aircraft design, finite elements, geometrical elements, etc. Sys-
tem-specific objects, e.g. types and functions, are also treated as surrogate objects.

Types are used to structure objects according to their functional characteristics, in
other words it is possible to structure objects into types. Types are in themselves related
in a type hierarchy of subtypes and supertypes. Subtypes inherit functions from super-
types and can have multiple supertypes. In addition, functions can be overloaded on dif-
ferent subtypes (i.e. having different implementation for different types).

Functions are defined on types, and are used to represent attributes of, relationships
among, and operations on objects. Examples of functions for these different categories
might be diameter, distance, and move_point. It is possible to define functions as
stored, derived, procedureor foreign. A stored function has its extension explicitly
stored in the database, whereas a derived, procedure, or a foreign function has its exten-
sion defined in an AMOSQL query, an AMOSQL procedure, or a function in an exter-
nal language, respectively. Furthermore, functions can be defined as one- or many-val-
ued and are invertible when possible. Stored and some derived functions can be explic-
itly updated using update semantics but other functions need special treatment for
updates.

Data Management in AMOSQL.AMOSQL provides statement constructs for typical
database tasks, including data definition, population, updates, querying, flow control,
and session and transaction control. Selected parts of these constructs is presented by
means of the example in Fig. 2, which will be used in subsequent sections. The figure
shows a rectangular plate that is fixed on a wall at its left side and is further exposed to
a tension load through a wire connected at the upper right corner. A simple finite ele-
ment model corresponding to this physical device consists of 9 bilinear elements and 16
nodes and is presented in Fig. 3.

Fig. 2. A simple physical structure consisting of a plate that is exposed to a tension load

120

90

6

• Theextensibility of AMOSQL provides powerful means for flexible domain mod-
elling. A user/programmer can use very high level declarative query specifications,
thus letting the DBMS do data access optimization. AMOSQL also provides exten-
sibility of the query optimizer, which permits an introduction of more complex do-
main specific cost models that reflect certain aspects of the application domain. For
example, solution costs for numerical operations, solution accuracy of numerical
calculations, etc., can be included in the cost models. Thus, the query optimization
can influence the choice and tuning of operators in FEA.

• Query languages also makes it possible to make advancedad hoc queries concern-
ing the contents of the database. This might be demanded by advanced users and is
quite useful since it is impossible to foresee the complete information needs.

• Including a rule system in the query language provides a mechanism for constraint
management. Actually, there is an ongoing work aiming at integrating active rules
in the AMOS DBMS [27].

The advantages of these features are, of course, varying for different phases in the sys-
tem or application life-cycle and for different types of application users and system de-
velopers. However, the methodology supports an incremental and iterative develop-
ment, maintenance and evolution of domain models as well as domain modelling sys-
tems. It facilitates reuse and evolution of design, including domain conceptualizations
and knowledge, by its ability of application and data independent representation.

2.3 Data Modelling and Management in AMOS

AMOS (Active Mediators Object System) [4] is a research prototype of an OR DBMS
and a descendant of the WS-IRiS DBMS [21]. WS-IRiS is further a derivative of Iris
[28]. AMOS is a main-memory database, i.e. it assumes that the entire database is con-
tained in main-memory and uses disk for backup only. It includes an object-oriented ex-
tensible query language, AMOSQL, a derivative of OSQL [6], that is used to model and
interface the database. AMOSQL is a functional language, originating from DAPLEX
[29] and is also influenced by SQL3 [7]. The data model consists of the basic constructs
objects, types,and functions.

The AMOSQL language is also extensible by calling external programming lan-
guages like C or LISP, and AMOSQL statements can also be embedded within program
procedures.

Objects, Types, and Functions.Concepts in an application domain are represented as
objects. There are two types of objects in AMOS.Literal objects,such as boolean, char-
acter string, integer, real, etc., are self identifying. The other type is calledsurrogate ob-
ject and has unique object identifiers. Surrogate objects represent physical or abstract
and external or internal concepts, e.g. mechanical components and assemblies such as

5

Important research problems in developing domain models for mechanical design
and analysis, e.g. using FEA, are to investigate:

• How is the domain modelled using an OO query and modelling language?

• Which domain-oriented data structures are required, and how should they be repre-
sented?

• What domain-oriented operators need to be defined?

• How are queries accessing domain-oriented data structures optimized?

• How can AMOS be integrated within a domain-oriented tool, e.g. for FEM analy-
sis?

It is possible to use both programmed procedures and high-level query languages for
accessing domain models. A query language is used to define, manipulate and retrieve
information in a database. For instance, for retrieving some specific result from an anal-
ysis, a query can be formed in the high-level and declarative query language returning
the information that satisfies the specified conditions. Combining general query-lan-
guage constructs with domain-related representations provides a more problem-orient-
ed communication. This approach to data management is more effective compared to
the use of conventional programming languages [23][17]. The combination of program-
ming and query languages and their pros and cons for data management is further dis-
cussed in Catell [24].

Object-oriented techniques, including object-oriented databases and query languag-
es, are well suited to reduce system complexity. Their applicability are especially suit-
able to engineering applications which consist of large amounts of complex data and re-
lationships. Specifically, a main-memory object-relational database, like AMOS, is
combining high-level modelling with high execution efficiency. The use of declarative
object-oriented queries for domain modelling and management offers several advantag-
es over conventional programming:

• Declarative models are easier to describe, inspect and understand than procedural
programs and thus become more transparent and flexible. A declarative modelling
with an object-oriented query-language is compact and (de)composable and makes
the domain modelling very flexible and powerful. This problem-oriented modelling
approach will naturally produce a representation that is isomorphic to the problem
domain.

• Advanced object-oriented query-languages also provideobject views[25] [26] ca-
pabilities. In AMOSQL, views are supported through derived functions, where a
function is uniformly invoked independently of whether it represents stored or de-
rived data. This makes it possible to change the underlying physical object represen-
tation without altering the access queries. Thus, data independence and evolution
are supported.

4

generation, analysis, and result interpretation. It is further designed in a highly struc-
tured, “object-based”, manner with specific sets of procedures for each concept class,
such as point, line, etc. This has made it much simpler to integrate it with the AMOS
DBMS, since subsets of the domain model can be replaced at a time. The initial inte-
gration of TRINITAS and AMOS is described in Sect. 2.4.

2.2 Object-Oriented Databases and Query Languages

Classical DBMS technology concentrated on supporting administrative applications.
However, with the advent of OO DBMS there has recently been much DBMS research
and development for developing database techniques to support also engineering activ-
ities, such as CAD, CAE, and CAM. We distinguish between thefirst and thenext gen-
eration OO DBMS:

The first generation OO DBMS [19] (e.g. ObjectStore, Versant, Gemstone, Ontos)
extend an OO programming language (usually C++) withpersistence, i.e. the possibil-
ity to permanently retain C++ data structures on disk. Thus complex engineering data
structures (e.g. representing a design) can be built within the C++ programming lan-
guage by some tool, and then stored on disk. This allows sharing of design data struc-
tures between engineers and tools. Access to the database is usually by C++ program-
ming (normally within some tool).

The success of today’s RDBMS is largely due to the availability of query languages
that allow non-expert programmers to query and update the database. Query language
capabilities are only supported to a limited extent in first generation OO DBMS. The
next generation OO DBMS [20] or OR DBMS [3] (e.g. OpenODB and Montage) also
include relationally complete OO query languages to search and update object data
structures. The query processors for an OO query language can use most of the tech-
niques developed for relational query processors, but will also need new techniques
[21]. Extensibility of the query language will also make it possible to make optimiza-
tions over the domain model and thereby domain-related operations [22].

Domain Modelling Using Query Languages.The extensibility of AMOSQL allows
the design of domain models that represent application oriented models and operators,
i.e. FEA models in our case. Domain models allow knowledge and data now hidden in
application programs to be extracted from the applications and stored in next generation
object databases with domain-specific models and operators. The benefits of using do-
main models include easier access and management through a query language, better
data description (as schemas), and other benefits currently provided only by advanced
DBMS such as transaction capabilities and ad hoc query processing. The query process-
ing must be about as efficient as customized main-memory data structure representa-
tions to allow the use of local embedded domain models linked into applications with-
out substantial loss of efficiency. Domain models often need to be able to represent spe-
cialized data structures for the intended class of applications.

3

plexity. In the main part of these works, Smalltalk or C++ have been used for imple-
mentation.

Compared to OO programming, OR DBMS techniques can extend software design
further towards high-level declarative modelling. In the FEA field, database support has
so far mainly been used for storage and retrieval of data and results using relational
(R)DBMS. However, OO DBMS have also been acknowledged for the engineering
field [16], and some of their advantages over RDBMS are reported on in [17]. OR
DBMS will probably have an even greater impact on scientific and engineering com-
puting in the future. This paper outlines the opportunities for, and potential impact of,
using an extensible OR DBMS for realisation of FEA software.

Fig. 1. An example of a FEA model of a hook analysed by a linear static stress analysis

The FEA program used in this work, TRINITAS [5], consists of about 2200 subrou-
tines of FORTRAN code and is positioned somewhere between medium- and large-
sized FEA software [18]. It can also be classified as a state-of-the-art FEA program,
since it is completely controlled by an interactive graphical user interface and integrates
the complete analysis process from modelling to evaluation. This process includes ge-
ometry modelling, domain properties definitions, boundary condition definitions, mesh

2

phasize integration and data management whereas flexible and transparent design
might be emphasized by scientific users. The research work is expected to generate in-
sight and experience to both scientific disciplines, i.e. general database technology can
be expanded through generic requirements of the application domain (here computa-
tional mechanics) as well as the generic scientific database models and systems will ex-
tend the field of scientific and engineering computing.

2 Finite Element Analysis Based on Next Generation Object-
Oriented DBMS Technology

2.1 Finite Element Analysis and Software

Thefinite element method (FEM)is a general numerical method for solving differential
equations. It can be applied to problems within several engineering fields, such as me-
chanical, civil, and electrical engineering. Within mechanical engineering FEA is used
for analyses of designs involving different characteristic design criteria, such as
strength, stiffness, stability, resonance, etc. [8]. A typical analysis model includes data
of the domain (geometry, material), boundary conditions (forces, prescribed displace-
ments), and of the solution algorithm. The central part of a FEA is the solution of sys-
tems of equations of different levels of complexity depending on the phenomenon stud-
ied. In the case of a linear static stress analysis, as illustrated in Fig. 1, the central anal-
ysis step consists of a solution of a single system of equations. However, even the most
basic cases of a FEA involves a large set of data with a high level of complexity. For
example the number of unknowns in the equations can range from 100 to several 100
000.

The application of the FEM is mainly achieved by special-purpose programs where
the analysis model can be specified in domain-specific terminology. Modern commer-
cial FEA programs have integrated the complete analysis process from modelling to
evaluation and also take advantage of graphical user interfaces in this process. Howev-
er, the basic structure of commercial FEA software and its development have not gone
through any dramatic change since its origin, in contrast to the exceptional development
in hardware performance during the last 30 years which has been easier to take advan-
tage of by application builders. Conventional FEA software is usually implemented as
monolithic programs with various levels of integration of modelling and evaluation
phases. The relatively low level of structure in these programs introduces large costs for
maintenance, further development, and for communication with other subsystems in the
CAE environment. This is motivating research on new software architectures for scien-
tific and engineering computing.

Modern programming techniques, such as OO programming techniques, have also
started to influence the area of FEA [9] [10] [11] [12] [13] [14] [15], and has been sug-
gested for design and implementation of FEA software in order to reduce program com-

1

1 Introduction

The importance of scientific and engineering data management is more and more em-
phasized in both industrial and scientific communities [1] [2]. This paper describes an
ongoing interdisciplinary research work that covers the fields of scientific and engineer-
ing database management and computational mechanics. More specifically, we use a
next generation object-oriented database management system (OO DBMS), also re-
ferred to asobject-relational (OR) DBMS [3] including arelationally complete andex-
tensible OO query language, to model and managefinite element analysis (FEA). The
discussion in the paper is based on an initial implementation of a system called FEA-
MOS, which is an integration of a main-memory OR DBMS, AMOS [4], with a FEA
program, TRINITAS [5]. AMOSQL, the query language of AMOS, is used to represent
and manage the FEA domain model. AMOSQL is a derivative of OSQL [6] but is also
influenced by SQL3 [7]. TRINITAS, representing the state-of-the-art within the field
of FEA software, completely integrates the entire analysis process and is completely
controlled through a graphical user interface. A typical TRINITAS session includes a
generation of a finite element model from a specification of geometry, domain proper-
ties and boundary conditions, a solution phase, and an evaluation of numerical results.
The data representation and its related operators in TRINITAS are piece by piece re-
placed by a corresponding representation in AMOS. Examples in the paper show typi-
cal needs for data modelling and initial performance measures comparing the original
FEA software with FEAMOS. Main ideas included are the modelling and management
of both structure and process of finite element methodology by the use of an extensible
OO query language.

Our idea is to increase the conceptual level in the design of FEA software by using
an OO query language to builddomain models which represent application-oriented
conceptual models of data and operators. Class structures and operators are defined to
represent finite element (FE) methodology, i.e. FE models and solution algorithms. The
extensible query language allows domain-specific FE operators to be included in the
system. The user can define queries in terms of the FE model, and the queries may con-
tain FE specific operators. The query optimizer thus needs to understand how to choose
among several FE domain-specific operators to answer a query as efficient and as nu-
merically stable as possible. The software developer can take advantage of general and
predefined facilities of the OR DBMS for data modelling and management and does not
need to write dedicated data structures and access procedures for FEA. Thus, by using
declarative modelling techniques through the query language, the complexity of the
system can be decreased together with an increased transparency and flexibility.

A database-based FEA application will further facilitate an integration or commu-
nication with other parts of the globalcomputer aided engineering (CAE) system. It will
then be possible to accomplish a global improvement of the efficiency of FEA software
from the point of view of the developer, the maintainer, and the user. This will result in
an increased life time of the software and an enhanced analysis quality. This has advan-
tages for both industrial and scientific use of the software. Industrial users might em-

Department of Computer and
Information Science

Linköping University
S-581 83 Linköping, Sweden

IDA Technical Report
LiTH-IDA-R-
ISSN-0281-4250

Applying Next Generation Object-Oriented
DBMS to

Finite Element Analysis

KJELL ORSBORN

E-mail: kjeor@ida.liu.se

Abstract

Scientific and engineering database applications put new requirements on database
management systems that is usually not associated with traditional administrative data-
base applications. These new database applications includefinite element analysis
(FEA) for computational mechanics and usually have a high level of complexity of
both data and algorithms, as well as high volume of data and high requirements on ex-
ecution efficiency. This paper shows hownext generation object-oriented database
technology that includes arelationally complete andextensible object-oriented query
language can be used to model and manage FEA. The technology allows the design of
domain models that represent application-oriented conceptual models of data and oper-
ators. An initial integration of amain-memory object-relational database management
system with a state-of-the-art FEA program is presented. The FEA program integrates
the complete FEA process and is controlled completely through a graphical user inter-
face. Examples are included of the conceptual model and its manipulation along with
some initial performance measures. It is shown that the integrated system provides
competitive performance and is a promising alternative for design and implementation
of future FEA software.

This work has been supported by
The Swedish National Board for Industrial and Technical Development

Published in
Witold Litwin, Tore Risch(eds.): Application of Databases,

1st Intl. Conf., ADB-94, Vadstena, Sweden, June 21-23, 1994 (Proceedings),
Lecture Notes in Computer Science, Springer Verlag, ISBN 3-540-58183-9, 1994.

1994
94-16

