
Semantic Web journal
Scalable Long-term Preservation of
Relational Data through SPARQL queries
Editor(s): Christoph Schlieder, University of Bamberg, Germany
Solicited review(s): Günther Görz, University of Erlangen-Nürnberg; Christoph Schlieder, University of Bamberg, Germany; one anonymous
reviewer

Silvia Stefanova* and Tore Risch

Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

Abstract. We present an approach for scalable long-term preservation of data stored in relational databases (RDBs) as RDF,
implemented in the SAQ (Semantic Archive and Query) system. The proposed approach is suitable for archiving scientific data
used in scientific publications where it is desirable to preserve only parts of an RDB, e.g. only data about a specific set of ex-
perimental artefacts in the database. With the approach, long-term preservation as RDF of selected parts of a database is speci-
fied as an archival query in an extended SPARQL dialect, A-SPARQL. The query processing is based on automatically gener-
ating an RDF view of a relational database to archive, called the RD-view. A-SPARQL provides flexible selection of data to be
archived in terms of a SPARQL-like query to the RD-view. The result of an archival query is a data archive file containing the
RDF-triples representing the relational data content to be preserved. The system also generates a schema archive file where
sufficient meta-data are saved to allow the archived database to be fully reconstructed. An archival query usually selects both
properties and their values for sets of subjects, which makes the property p in some triple patterns unknown. We call such que-
ries where properties are unknown unbound-property queries. To achieve scalable data preservation and recreation, we pro-
pose some query transformation strategies suitable for optimizing unbound-property queries. These query rewriting strategies
were implemented and evaluated in a new benchmark for archival queries called ABench. ABench is defined as set of typical
A-SPARQL queries archiving selected parts of databases generated by the Berlin benchmark data generator. In experiments,
the SAQ optimization strategies were evaluated by measuring the performance of A-SPARQL queries selecting triples for
archival in ABench. The performance of equivalent SPARQL queries for related systems was also measured. The results
showed that the proposed optimizations substantially improve the query execution time for archival queries.

Keywords: Database archival, benchmark, SPARQL optimization, SPARQL views of relational databases, unbound-property
queries.

*Corresponding author. E-mail: Silvia.Stefanova@it.uu.se

1. Introduction

The importance of digital preservation research
has been growing for the past ten-fifteen years. Many
papers and books [9][13][33] describing problems,
tools and techniques for digital preservation, have
been written, and standards providing preservation
models have been published [29][36]. However, most
of this work focuses on preservation of file-based
digital objects like documents, images, and web pag-
es [9]. Much less work has focused on the preserva-
tion of databases and scientific data, where there is a

recognized need to preserve scientific data
[12][28][37][38][39]. Furthermore, preserving scien-
tific data together with scientific publications would
contribute to documenting the origin and lineage of
scientific achievements [12]. For this a concept of
‘Scientific Publication Packages (SPPs)’ was intro-
duced in [12]. The SPPs were described as composite
digital objects linking experimental raw data, associ-
ated with metadata, ‘derived information’, and
knowledge, including associated publications.

Scientific data, i.e. experimental and observational
data, as well as data generated by instruments and

mailto:Silvia.Stefanova@it.uu.se

sensors, reside in large datasets that are often stored
in relational databases. During the research process
the scientists need to select subsets of these databases
(i.e. specific tables, rows, columns) to be analysed
and processed in order to create a scientific model.
Once the model is validated the research results are
documented and published. By preserving the select-
ed subsets of both data and publications within one
digital object, future reuse, verification, and heritage
[33] of the published scientific results can be guaran-
teed.

Selective data preservation is needed also for ex-
ample in cases of medical data preservation where, in
order to protect the privacy of patients, sensitive data
like zip code, dates of birth, salaries, etc. should be
excluded from archiving [22]. Other examples are
when selecting representative geospatial data for
preservation [24] or preserving web resources based
on some criteria [13].

For long-term preservation of data, it is desirable
for the contents of a database to be saved in a neutral
format, so that it can be reconstructed and used after
a very long time using current technologies for data
representation, which are continuously evolving. Fur-
thermore, preserved representations must include
sufficient meta-data to retrieve, explain, reproduce,
and disseminate the experiments. We propose RDF
and RDF-Schema (RDFS) based neutral format as a
database technology-independent format for long-
term preservation of data, which provides standard
meta-data representation for describing all kinds of
data, including relational databases [11].

In this paper we present an approach for scalable
long-term preservation of selected data stored in rela-
tional databases (RDBs) as RDF, implemented in the
SAQ (Semantic Archive and Query) system. The
proposed approach is suitable for archiving scientific
data used in scientific publications where it is desira-
ble to preserve only selected parts of an RDB, e.g.
only data about a specific set of artefacts in the data-
base related to some publications. For this SAQ pro-
vides selective archival of user-specified parts of an
RDB using an extended SPARQL query language,
A-SPARQL.

To map a relational database into RDF, SAQ au-
tomatically generates an RDF view of the relational
database to be archived called the RD-view. The RD-
view is defined in terms of anRDFS ontology for
describing RDB schemas in general.

To select the parts of an RDB to archive, a SAQ
user defines an archival query to the RD-view in A-
SPARQL. For example, the classes representing the
tables named product and offer in the RDB Products

of the Berlin Benchmark dataset [3][5] are archived
with the archival query:

ARCHIVE AS ‘data.nt’, ‘schema.nt’
FROM <Products>
TRIPLES {?subject ?property ?value}
WHERE {?subject rdf:type db:product }
 UNION
TRIPLES {?subject ?property ?value}
WHERE {?subject rdf:type db:offer }

In the query the result triples are stored in the data
archive file ‘data.nt’. While executing the archival
query, the system simultaneously produces sufficient
meta-data to enable reconstruction of the selected
parts of the archived RDB. These meta-data are
stored in a schema archive file, ‘schema.nt’.

When an archived RDB content is to be recreated,
SAQ reads the schema archive to automatically rec-
reate the RDB schema in another RDBMS. The RDB
thus created is then populated by reading the data
archive and converting the read data into table rows
according to the schema. This allows migration from
one RDBMS to another, perhaps from different ven-
dors. If only selected parts of the RDB are archived,
a corresponding partial RDB is recreated containing
only the relevant parts of the schema and data. For
migrating data from RDBs to RDF repositories, the
contents of the schema and data archive files can be
directly loaded into an RDF repository system, e.g.
[43][44] [45].

For processing an archival query in A-SPARQL
SAQ internally generates a corresponding SPARQL
query to select the triples of the database to archive.
The archival queries are straight-forward to translate
into CONSTRUCT queries. As in the example, un-
ions of sets of triples are often archived, e.g. for dif-
ferent classes and properties, which makes the gener-
ated SPARQL queries to become UNION CON-
STRUCT queries.

Archival queries typically select sets of attributes
of tables to archive. This corresponds to selecting
sets of RDF properties in the RD-view of the data-
base to be archived. In the example all properties of
the classes representing the tables product and offer
are selected for archival. Therefore, in the generated
queries the property p in one or several triple patterns
(s,p,o) is a variable. We call such triple patterns
(TPs) unbound-property triple patterns (UPTP), and
the queries having such triple patterns unbound-
property queries [30]. To achieve scalable data
preservation and reconstruction, we developed some
special query rewriting optimizations for optimizing
unbound-property queries. Archival queries can also

contain conventional TPs where the properties are
URIs representing RDF properties in the RD-view,
which we call bound-property triple patterns (BPTP).
Queries having only BPTPs are called bound-
property queries, which are processed using known
methods [15][16][18].

To evaluate the performance of typical archival
queries a new benchmark called ABench was devel-
oped. ABench is defined as set of typical archival
queries, specified in A-SPARQL, that archive select-
ed parts of databases generated by the Berlin bench-
mark data generator [4]. A new benchmark was de-
veloped since the archival queries generate CON-
STRUCT unbound-property queries with UNION
clauses, which is not covered by any existing bench-
mark.

In the experiments, the SAQ optimization strate-
gies were evaluated using ABench. The experiments
showed that the proposed query rewriting optimiza-
tions substantially improve the query execution time
for unbound-property queries selecting RDB contents
to archive. We also compared the performance of our
approach with other systems processing SPARQL
queries over views of RDBs and found that the pro-
posed optimizations improve query scalability com-
pared with the approaches used in those systems.

The rest of this paper is organized as follows. Sec-
tion 2 presents a motivating example for selective
preservation of a relational database as RDF, Section
3 presents the SAQ system and the A-SPARQL lan-
guage, and Section 4 the archival benchmark ABench.
Section 5 describes the RD-view and the SAQ query
processing steps, along with the SAQ rewriting opti-
mizations. Section 6 evaluates the performance of the
query optimizations using Abench, Section 7 de-
scribes related work, and Section 8 provides a sum-
mary.

2. Motivating example

A user, who has worked on analysing products
with different properties, wants to preserve together
with the analysis result data about analysed products
having some special properties. In the example, data
about products produced in Sweden and having a
property pNum1 > 348 have to be preserved. Fur-
thermore, to the preserved data it is needed to add
sufficient meta-data in order to allow later recon-
struction of the preserved data [9].

The products data resides in a RDB. Fig. 1 shows
a small RDB called Products, which is part of the

relational Berlin benchmark dataset. The database
has four tables, product, productfeature, productfea-
tureproduct and producer, populated with some data.
The columns pnr, pfnr and prodnr are primary keys
in the tables product, productfeature, and producer.
The column producer in the table product references
the column prodnr in the table producer as foreign
key. The table productfeatureproduct is a many-to-
many link table between the tables product and
productfeature.

Table product

pnr label pNum1 producer
1 cicatrices 100 2
2 emulsifying 450 3

Table productfeature

pfnr publishDate
3 2000-06-22
4 2000-07-08

Table productfeatureproduct Table producer

product productFeature prodnr country
1 3 2 DE
2 3 3 SE
2 4

Fig. 1. RDB Products.

To archive as RDF the selected products along

with their properties and values, we define in SAQ
the following archival query:

ARCHIVE AS ‘productD.nt’, ‘productS.nt’
FROM <Products>
TRIPLES { ?product ?property ?value }
WHERE {
?product rdf:type db:product .
?product db:product_producer ?producer .
?producer db:producer_country ‘SE’ .
?product db:product_pNum1 ?pn1 .
FILTER (?pn1 > 348) }

Execution of the archival query produces two N-

Triples files, ‘productD.nt’ to store the archived
products from the RDB and ‘productS.nt’ to store the
schema archive required for recreating the parts of
the RDB schema representing the archived products.
The RDB reconstructed from the archival query is
shown in Fig. 2. It contains only the tables, attributes
and rows required to reconstruct the data archived by
the query. After the reconstruction, SAQ can process

SPARQL queries to the RD view of the reconstructed
database.

Table R_product

pnr label pNum1 producer
2 emulsifying 450 3

Table R_productfeature Table R_producer

pfnr prodnr
3 3
4

Table R_productfeatureproduct

product productFeature
2 3
2 4

Fig. 2. Reconstructed RDB.

3. The Semantic Archive and Query system

The developed SAQ system for long-term preser-
vation of relational databases follows conceptually
the OAIS reference model [36]. The OAIS model is
composed by four functional units: Ingest, Archival
Storage, Data Management, and Access. The Ingest
unit accepts Submission Information Packages (SIPs)
and generates Archival Information Packages (AIPs)
for storage and management. The Archival Storage
unit receives AIPs from Ingest and adds them to
permanent storage. The Data Management unit pro-
vides functions for populating, maintaining, and ac-
cessing variety of meta-data stored in the repository.
The Access unit provides an interface between the
archive and the consumer.

An OAIS’ AIP contains Content Information, i.e.
the archived data and the representational metadata,
together with a Preservation Description Information
(PDI). The PDI contains reference information, con-
text information, provenance information, etc.

SAQ provides functionality for the Ingest compo-
nent, in particularly on generating the content infor-
mation in the AIPs when preserving relational data-
base contents as RDF.

In order to preserve both schema and data from an
RDB, it is important to represent not only the con-
tents of the RDB as RDF, but also the schema.
Therefore the RD-view is defined as a union of a
schema view (the S-view), representing the RDB
schema, and a data view (the D-view), representing
the RDB contents. To allow for interoperability with
other systems mapping RDBs to RDF, e.g. [7][8][26],
the data view mappings conform to the direct map-
ping recommendations by W3C Recommendation
[23].

The architecture of the SAQ system is presented
in Fig. 3. The source RDB is the underlying RDB,
which can be queried by SPARQL and preserved by
A-SPARQL queries.

The RD-view generator automatically generates
one RD-view over each source RDB by reading the
database schema though a JDBC interface. The RD-
view templates thereby provide general prototypes
for the structure of the RD-view for any relational
database, and the contents of the mapping tables
provide RDB-to-RDF mappings for specific rela-
tional meta-data into RDF. An archival query is pro-
cessed by the archiver and translated into a corre-
sponding generated query in SPARQL, which is sent
to the SAQ query processor. The generated query
retrieves the data to archive from the RDB. Regular

Fig. 3. SAQ.

Generated query

Regular
SPARQL queries

A-SPARQL
queries

RD-view
Generator

SAQ
Query Processor

Meta-data
extractor

RDF
Converter

RD-view
Templates

RD-view
S-view D-view

JDBC Interface

Reloader

Source RDB

Destination RDB Destination Triple store

SAQ

Mapping
tables

Archiver

Archive repository
Schema archive Data archive

schema
query SPARQL

query
results

non-archiving SPARQL queries are sent directly to
the SPARQL query processor.

The SAQ query processor executes the SPARQL
queries to the RD-view by accessing the source RDB
through the JDBC interface.

3.1. Archival queries

Archival queries have the following syntax:

ARCHIVE AS data_archive_file,
 schema_archive_file
FROM URI
archive_specification
[UNION
archive_specification]…

where an archive specification is defined as:

archive_specification :=
TRIPLES {archived_triple_pattern}
[WHERE {archive_restrictions}]

An archival query is specified by an ARCHIVE

statement where a data archive file and the schema
archive file are specified. SAQ will create these files
using the N-triples format [34]. The FROM clause
specifies the URI representing the RDB to archive.
The URI is assigned by the user once for each RDB.

The body of an archival query is specified by a
(union of) archive specifications, which select the
triples to archive. The pattern of the triples to archive
is defined by an archived triple pattern (s, p, o) in a
TRIPLES clause, where s and p can be a constant
URI or a variable, and o can be a constant URI, a
variable, or a literal. An optional archive restriction
in a WHERE clause restricts the triples to archive. It
consists of a graph pattern and may include SPARQL
functions. A union of several archive specifications
can be defined to archive several different sub-graphs
from the RD-view.

The following are examples of some of the
ABench queries:

A1 ARCHIVE AS ‘data1.nt’, ‘schema1.nt’
 FROM <Products>
 TRIPLES {?subject ?property ?value }

A2 ARCHIVE AS ‘data2.nt’, ‘schema2.nt’
 FROM <Products>
 TRIPLES {?subject ?property ?value }
 WHERE{?subject rdf:type db:product .
 db:product rdf:type rdfs:Class }
 UNION
 TRIPLES {?subject ?property ?value }
 WHERE{?subject rdf:type db:offer .
 db:offer rdf:type rdfs:Class }

A3 ARCHIVE AS ‘data3.nt’, ‘schema3.nt’
 FROM <Products>
 TRIPLES {?subject1 db:product_label
 ?value1}
 UNION
 TRIPLES {?subject2 db:offer_price
 ?value2}
 UNION
 TRIPLES {?subject3 db:offer_webpage
 ?value3}

A4 ARCHIVE AS ‘data4.nt’, ‘schema4.nt’
 FROM <Products>
 TRIPLES {?subject1 db:product_pNum1
 ?value1}
 WHERE { FILTER (?value1 > 214)}
 UNION
 TRIPLES {?subject2 db:product_pNum3
 ?value2}
 WHERE {FILTER (?value2 < 348) }
 UNION
 TRIPLES {?subject3 db:review_text ?value3}
 WHERE {
 ?subject3 db:review_rating4 ?value4 .
 FILTER REGEX(?value3, ‘time’) .
 FILTER (?value4 > 8) }

Query A1 archives the entire database and stores it
as a data archive file ‘data1.nt’ and a schema archive
file ‘schema1.nt’. Query A2 archives only the RDFS
classes having the URI <db:product> and
<db:offer>, along with all their properties. Query A3
archives only the RDF properties having URIs
<db:product_label>, <db:offer_price>, and
<db:offer_webapge>. Finally, query A4 archives the
property product_pNum1 for values > 214, the prop-
erty product_pNum3 for values < 348, and the prop-
erty review_text for values matching the string ‘time’
if the property review_rating4 > 8.

An archival query is straight-forward to translate
into a CONSTRUCT SPARQL query. It is usually a
CONSTRUCT-UNION query where unions of sets
of triples are archived. For example, A3 is translated
into the following generated SPARQL query:

Q3: CONSTRUCT
{ ?subject1 db:product_label ?value1 .
 ?subject2 db:product_price ?value2 .
 ?subject3 db:offer_webpage ?value3 }
FROM <Products>
WHERE
{{?subject1 db:product_label ?value1 }
 UNION
 {?subject2 db:offer_price ?value2 }
 UNION
 {?subject3 db:offer_webpage ?value3 } }

Since archival queries always select a sub-graph

from the RDF graph of the RD-view to archive, all
archived triple patterns in a generated query appear
both in the CONSTRUCT clause and the WHERE
clause.

The translation rules from A-SPARQL to the gen-
erated SPARQL are the following:

1) The CONSTRUCT clause of the generated
SPARQL query consists of all unique ar-
chived triple patterns defined in the TRI-
PLES clauses of the archive specifications.

2) The WHERE clause of the generated
SPARQL query is a UNION of one Basic
Graph Patterns (BGP) per archive specifica-
tion, consisting of the archived triple pattern
in the TRIPLES clause and the optional ar-
chive restrictions in the WHERE clause.

3.2. Generating the schema archive

During the execution of the generated SPARQL
query, the property URIs of the triples to be archived
are collected by the meta-data extractor while iterat-
ing over the result stream. When all data to archive
have been processed, the meta-data extractor joins
the collected properties with the S-view by issuing a
schema query.

The archived content retrieved by the generated
query and the corresponding meta-data retrieved by
the schema query are written by the RDF converter
into two N-triple files in the archive repository.

3.3. Restoring a database

Later on, when a preserved database is to be re-
stored, the reloader reads from the archive repository
the two archive files and makes the database live
again by populating it into a destination RDB or al-
ternatively a destination triple store. When an RDB
is restored, the reloader first reads the schema archive
in order to generate the RDB schema and then popu-
lates the destination RDB by reading the data archive.
After the destination RDB is restored, it can be que-
ried or re-archived with A-SPARQL using SAQ.
When the destination DBMS is an RDF triple store
system, both the schema and data archive files are
loaded directly into the triple store and can there be
queried with SPARQL.

4. The archival benchmark ABench

The archival benchmark ABench consists of ar-
chival queries that select subsets of a relational data-
base to archive as RDF, i.e. selecting specific tables,
columns, and rows for archival using A-SPARQL.
The relational database is generated by the Berlin
benchmark dataset generator.

Table 1, Table 2, and Table 3 list the archival que-
ries of ABench, together with the corresponding gen-
erated queries by SAQ. The archival queries are de-
noted Ai and the generated SPARQL queries are de-
noted Qi.

Query A1 archives the entire database. The gener-
ated SPARQL query Q1 is an unbound-property que-
ry.

Query A2 archives the entire classes product and
offer representing the entire RDB tables product and
offer. The generated SPARQL query Q2 is an un-
bound-property UNION query of properties of the
classes to archive.

Query A3 archives all values of some explicitly
specified properties. Here the generated SPARQL
query Q3 is a bound-property UNION query of three
triple patterns, where the properties are known URIs
in the WHERE clause.

Query A4 is similar to A3, i.e. it archives values of
explicitly defined properties, but there are also condi-
tions on the values of these properties. The generated
SPARQL query Q4 becomes a bound-property UN-
ION query of known property triple patterns.

Query A5 is similar to A2, but it constrains the
properties of class product to archive. It retrieves the
rows from table product for all attributes except
those represented by the specified properties. The
generated Q5 is an unbound-property query.

 Query A6 archives all classes whose URIs match
a defined string. The generated query Q6 is an un-
bound-property query. It should be executed by send-
ing to the underlying RDB SQL queries selecting
rows only from the tables represented by URIs
matching the defined string.

 Query A7 archives data for classes having proper-
ties whose URIs match a defined string. The gener-
ated query Q7 is an unbound-property query. It
should be executed by sending to the underlying
RDB SQL queries selecting rows only from the ta-
bles having attributes represented by properties that
match the defined string.

Query A8 archives all properties and their values
of a number of selected subjects. The generated
SPARQL query Q8 is an unbound-property query
with joins.

Query A9 archives all classes whose property val-
ues are literals containing a specific string. The gen-
erated query Q9 is an unbound-property query. It
should be executed by sending SQL LIKE conditions
on only such table attributesclass whose values are
not represented by URIs.

 Query A10 archives all properties of subjects re-
lated through a property to another given subject. The
relationship is represented by a foreign key in the

underlying RDB. The generated query Q10 is an un-
bound-property query. It should be executed by send-
ing SQL queries only to tables owning a foreign key

Table 1. ABench queries

Archival query Generated CONSTRUCT query

Query A1: Archive the entire database Query Q1:

ARCHIVE AS ‘data1.nt’, ‘schema1.nt’
FROM <Products>
TRIPLES {?subject ?property ?value };

CONSTRUCT { ?subject ?property ?value }
FROM <Products>
WHERE {?subject ?property ?value }

Query A2: Archive the entire classes <db:product>
and <db:offer>

Query Q2:

 ARCHIVE AS ‘data2.nt’, ‘schema2.nt’
 FROM <Products>
 TRIPLES {?subject ?property ?value }
 WHERE{?subject rdf:type db:product .
 db:product rdf:type rdfs:Class }
 UNION
 TRIPLES {?subject ?property ?value }
 WHERE{?subject rdf:type db:offer .
 db:offer rdf:type rdfs:Class }

CONSTRUCT { ?subject ?property ?value }
FROM <Products>
WHERE {{ ?subject ?property ?value .
 db:product rdf:type rdfs:Class .
 ?subject rdf:type db:product }
 UNION
 { ?subject ?property ?value .
 db:offer rdf:type rdfs:Class .
 ?subject rdf:type db:offer }}

Query A3: Archive all values of the specific proper-
ties <db:product_label>, <db:offer_price>,
<db:offer_webpage>

Query Q3:

 ARCHIVE AS ‘data3.nt’, ‘schema3.nt’
 FROM <Products>
 TRIPLES
 {?subject1 db:product_label ?value1 }
 UNION
 TRIPLES
 {?subject2 db:offer_price ?value2 }
 UNION
 TRIPLES
 {?subject3 db:offer_webpage ?value3 }

CONSTRUCT
{ ?subject1 db:product_label ?value1 .
 ?subject2 db:product_price ?value2 .
 ?subject3 db:offer_webpage ?value3 }
FROM <Products>
WHERE
{{?subject1 db:product_label ?value1 .}
 UNION
 {?subject2 db:offer_price ?value2 }
 UNION
 {?subject3 db:offer_webpage ?value3 } }

Query A4: Archive products property pNum1for val-
ues > 214 and property pNum3 for values < 348, and
reviews property text for values matching the string
‘time’ if the reviews have rating4 > 8 .

Query Q4:

ARCHIVE AS ‘data4.nt’, ‘schema4.nt’
FROM <Products>
TRIPLES {?subject1 db:product_pNum1 ?value1}
WHERE { FILTER (?value1 > 214)}
UNION
TRIPLES {?subject2 db:product_pNum3 ?value2}
WHERE {FILTER (?value2 < 348) }
UNION
TRIPLES {?subject3 db:review_text ?value3}
WHERE {
 ?subject3 db:review_rating4 ?value4 .
 FILTER REGEX(?value3, ‘time’) .
 FILTER (?value4 > 8) }

CONSTRUCT
{ ?subject1 db:product_pNum1 ?value1 .
 ?subject2 db:product_pNum3 ?value2 .
 ?subject3 db:review_text ?value3 }
FROM <Products>
WHERE
{{?subject1 db:product_pNum1 ?value1 .
 FILTER (?value1 > 214) }
 UNION
 {?subject2 db:product_pNum3 ?value2 .
 FILTER (?value2 < 348) }
 UNION
 {?subject3 db:review_text ?value3 .
 ?subject3 db:review_rating4 ?value4 .
 FILTER REGEX(?value3, ‘time’) .
 FILTER (?value4 > 8) } }

Table 2. ABench queries

Archival query Generated CONSTRUCT query

Query A5: Archive the class <db:product> except
the RDF properties <db:product_label> and
<db:product_pNum1>

Query Q5:

ARCHIVE AS ‘data5.nt’, ‘schema5.nt’
FROM <Products>
TRIPLES { ?subject ?property ?value }
WHERE
 {?subject rdf:type db:product .
 db:product rdf:type rdfs:Class .
 FILTER (?property != db:product_label).
 FILTER (?property != db:product_pNum1) };

CONSTRUCT { ?subject ?property ?value }
FROM <Products>
WHERE
{ ?subject ?property ?value .
 ?subject rdf:type db:product .
 db:product rdf:type rdfs:Class .
 FILTER (?property != db:product_label).
 FILTER (?property != db:product_pNum1) }

Query A6: Archive entire classes whose URIs match
the string ‘product’

Query Q6:

ARCHIVE AS ‘data6.nt’, ‘schema6.nt’
FROM <Products>
TRIPLES {?subject ?property ?value}
WHERE {?class rdf:type rdfs:Class .
 ?subject rdf:type ?class .
FILTER REGEX (str(?class), ‘product’) };

CONSTRUCT { ?subject ?property ?value }
FROM <Products>
WHERE
{ ?subject ?property ?value .
 ?class rdf:type rdfs:Class .
 ?subject rdf:type ?class .
 FILTER REGEX (str(?class), ‘product’) }

Query A7: Archive all subjects having a property
with URI matching the string ‘homepage’.

Query Q7:

ARCHIVE AS ‘data7.nt’, ‘schema7.nt’
FROM <Products>
TRIPLES {?subject ?property ?value }
WHERE {?subject ?property1 ?value1 .
 FILTER REGEX (str(?property1), 'homepage')}

CONSTRUCT {?subject ?property ?value }
 FROM <Products>
 WHERE
{ ?subject ?property ?value .
 ?subject ?property1 ?value1 .
 FILTER REGEX (str(?property1), 'homepage')}

Query A8: Archive all properties of the subjects from
class product having productFeature 3 and 4, and
pNum1 > 348

Query Q8:

ARCHIVE AS ‘data8.nt’, ‘schema8.nt’
FROM <Products>
TRIPLES {?product ?property ?value }
WHERE {
?product rdf:type db:product .
db:product rdf:type rdfs:Class .
?product db:product_label ?label .
?product rdf:type db:product .
?product ldb:productFeature
 db:productFeature/_3 .
?product ldb:productFeature
 db:productFeature/_4 .
?product db:product_pNum1 ?pn1 .
FILTER (?pn1 > 348) }

CONSTRUCT { ?product ?property ?value }
FROM <Products>
WHERE {
?product ?property ?value .
?product rdf:type db:product .
db:product rdf:type rdfs:Class .
?product db:product_label ?label .
?product db:productFeature
 db:productFeature/_3 .
?product db:productFeature
 db:productFeature/_4 .
?product db:product_pNum1 ?pn1 .
FILTER (?pn1 > 348) }

Query A9: Archive all classes whose literal property
values contain the specific string ‘symbols’

Query Q9:

ARCHIVE AS ‘data9.nt’, ‘schema9.nt’
FROM <Products>
TRIPLES {?subject ?property ?value }
WHERE { ?class rdf:type rdfs:Class .
 ?subject rdf:type ?class .
 FILTER REGEX (?value, 'symbols') }

CONSTRUCT {?subject ?property ?value }
FROM <Products>
WHERE {?subject ?property ?value .
 ?class rdf:type rdfs:Class .
 ?subject rdf:type ?class .
 FILTER REGEX (?value, 'symbols')}

 for the table represented by the given subject.

5. Query processing in SAQ

In this section, first the structure of the RD-view is
presented. Then an overview of the query processing
steps in SAQ is presented. Finally the SAQ query
rewrite optimizations are described.

5.1. The RD-view

The RD-view is defined in SAQ in an object-
oriented Datalog dialect [32] since foreign functions
are used to define URIs and typed literals. A special-
ized RD-view for each given RDB is automatically
generated by accessing the RDB catalogue. The RDB
to RDF mapping in SAQ conforms to the direct map-
ping recommended by W3C [23], and more particu-
larly to the augmented direct mapping proposed
in[19], which is proven to guarantee information
preservation.

We define a unique RDFS class for each relational
table, except for link tables representing set-valued
properties as many-to-many relationships. In addition,
RDF properties are defined for each column in a ta-
ble.

The RD-view is defined as a union of an S-view,
representing the schema of the relational database,
and a D-view, representing the data stored in the rela-
tional database.

The S-view represents all mappings between
schema elements of the RDB and the corresponding
RD-view classes and properties. It is defined in terms
of six mapping tables that map relational schema
elements to RDFS concepts. The system automatical-
ly generates default mappings in the mapping tables
by accessing the RDB catalogue. The user can
change the contents of the mapping tables to override
default mappings in order to match some ontology or
to limit data access. In order to guarantee unambigu-

ous preservation the system requires unique URIs for
classes and properties to be preserved.

In the used Datalog notation uppercase letters are
used to denote constants while lowercase letters are
used to denote variables.

The six mapping tables are the following:
• The class table, cMap(T, cid) maps re-

lational table names T to RDFS class
URIs cid.

• The property table, pMap(T, A, pid)
maps relational column names A in ta-
ble T to RDF property URIs pid.

• The foreign key table, fkMap(T, f, T’,
fkid) maps foreign keys f in table T ref-
erencing table T’ to corresponding RDF
property URIs fkid.

• The many-to-many table mmMap(L, T’,
T’’, mmid) maps link tables L between
tables T’ and T’’ to corresponding
property RDF property URIs mmid.

• The type table, typeMap(T, A, xsd)
maps relational data types of relational
attributes A in table T to corresponding
XML Schema data types xsd.

The S-view definition itself is the same for any re-
lational database and only the contents of the map-
ping tables are different. The S-view is defined as a
large union of unions of sub-views representing rela-
tional schema concepts about tables, columns, types,
primary keys, foreign keys, other constraints, and
indexes. Since the S-view is complex but contains
little data and its extent changes only when the data-
base schema is altered, the S-view is materialized in
main memory in SAQ.

Based on the S-view, i.e. on the imported RDB
schema information, the system generates a D-view
for each specific relational database. We opted to
generate a D-view for each concrete database instead
of defining a generic D-view, since this enables sub-
stantial query reduction at run time via specialization
of the view definitions [16].

Table 3. ABench queries

Archival query Generated CONSTRUCT query

Query A10: Archive all subjects related by a property
to another subject identified by the URI
<db:product/_2549 >

Query Q10:

ARCHIVE AS ‘data10.nt’, ‘schema10.nt’
FROM <Products>
TRIPLES {?subject ?property ?value }
WHERE {db:product/_2549 ?relation ?subject}

CONSTRUCT {?subject ?property ?value }
FROM <Products>
WHERE {?subject ?property ?value .
db:product/_2549 ?relation ?subject }

The D-view is defined in terms of source predi-
cates representing the contents of relational tables,
the above mapping tables, URI-construct predicates,
for constructing URIs identifying rows in tables, and
literal-construct predicates for constructing typed
RDF literals. The D-view for an RDB is defined as a
union of sub-views:
• For each non-foreign-key attribute, one column

view CT.A is generated. It represents as typed lit-
erals the values a of a column named A in table
T:

CT,A (s,p,v) :-
RT(a1,.. ak,..,a,..,ar)
cMap(T,cid)
pMap(T,A,p)
rowid(cid,(a1,..,ak),s)
valueid(a,xsd,v)
typeMap(T,A,xsd)

AND
AND
AND
AND
AND

(1)

RT in (1) is the source predicate representing the
relational table T, and (a1, …,ak, …. a, …, ar) is
a tuple representing a row in T. The primary key
of T is represented by the tuple (a1,…,ak). Fur-
thermore, rowid in (1) is the URI-construct
predicate that creates a unique URI s represent-
ing a row identifier in T by concatenating the
class associated with T, i.e. cid, and the primary
key of a row, i.e. (a1,…,ak). Finally valueid is
the literal-construct predicate that creates a
typed literal by concatenating the value a of the
attribute A with the corresponding XML schema
type xsd. Triples are not generated for NULL
values in a RDB as in the direct mappings in
[19].

• One foreign key view FKF is generated for each

foreign key relationship F for table T with for-
eign key attribute values (ai, …aj) that refer-
ences table T’. It represents foreign key values
by URIs constructed by URI-construct predi-
cates:

FKF(s,p,v) :-
RT(a1,..,ak,.ai,..,aj,...,ar)
cMap(T,cid) AND
rowid(cid,(a1,..,ak),s) AND
fkMap(T,(ai,…,aj),T’,p) AND
cMap(T’,cid’) AND
rowid(cid’,(ai,…aj),v)

(2)

• One many-to-many relationship view MML is
generated for each link table L linking two ta-
bles T’ and T’’. It represents the values in link
tables as URIs:

MML(s,p,v) :-
cMap(T’,cid’) AND
RL(a’,a’’) AND

(3)

rowid(cid’,(a’),s) AND
mmMap(L, T’, T’’, p) AND
cMap(T’’,cid’’) AND
rowid(cid’’,(a’’),v)

• One row class view RCT is generated for each
non-link table T to represent the classes of its
row identifiers:

RCT(s,p,v) :-
RT(a1,..,ak,..,ar) AND
cMap(T,cid) AND
rowid(cid,(a1,..,ak),s) AND
p = <rdf:type> AND
v = cid

(4)

A complete generated data view D-view in SAQ

has the following structure:
D-view(s,p,v) :-

v)p,(s,COR T.A
T.A

 OR

F
OR FKF(s,p,v) OR

L
OR MML(s,p,v) OR

T
OR RCT(s,p,v)

(5)

where
T.A
OR denotes a disjunction over all attributes

T.A in all tables T in the database,
F
OR denotes a dis-

junction (union) over all foreign key relationships F
in the database,

L
OR denotes a disjunction over all link

tables L in the database, and
T
OR denotes a disjunction

over all tables T in the database.
The D-view generated by SAQ for the ABench da-

tabase contains the following sub-views:
• 67 column views
• 7 foreign key views
• 2 many-to-many relationship views
• 8 row class views.

5.2. Query processing steps in SAQ

The main steps of the query processing in SAQ are
illustrated in Fig. 4. The SPARQL parser transforms
the SPARQL query into a Datalog expression where
each triple pattern (TP) in the query becomes a refer-
ence to the RD-view. The view expander recursively
expands each RD-view reference in the query into a
disjunctive expanded RD-view. The view specializer
then enables a transformation called view specializa-
tion [16]. It looks up the mapping tables in each sub-
view of the D-view at query processing time to re-
place variables in the expanded RD-view with corre-

sponding URIs or literals. We call such a sub-view in
the D-view, where the mapping tables have been
looked up, a specialized sub-view. Then, since the
RD-view is defined as a union of the S-view and the
D-view, each TP in the query becomes a disjunction
of the materialized S-view and the specialized sub-
views in the D-view.

The view specialization substantially reduces the
disjunction for a TP depending on the TP type based
on the following observations:

i. The disjunction for an expanded bound-
property triple pattern (BPTP) with the
structure (?s Pi ?v) where Pi is unique is
reduced into a single property conjunc-
tion for Pi representing the single sub-
view in the D-view having the property p
= Pi.

ii. The disjunction for an expanded un-
bound-property triple pattern (UPTP)
with the structure (S ?p ?v), where S is a
URI identifying a row in a table T, is re-
duced to a disjunction having those spe-
cialized sub-views in the D-view where
the subject s is associated with T, i.e. s is
mapped by a URI-construct predicate to
rows in T.

iii. The disjunction for an expanded UPTP
structure (?s ?p ?v) cannot be reduced

and remains a disjunction of the material-
ized S-view and the specialized sub-
views in the D-view.

Later on the query is further simplified by elimi-
nating common sub-expressions by unifying terms
[10].

The DNF-normalizer transforms the simplified
Datalog query into a disjunctive normal form (DNF)
predicate. The DNF-normalized query has the fol-
lowing structure:

a) A join between two BPTPs becomes a
conjunction of the property conjunc-
tions of the BPTPs.

b) A join between a BPTP and a UPTP
becomes several disjuncts in the DNF-
predicate. The disjuncts are conjunc-
tions between the property conjunction
of the BPTP and each disjunct of the
expanded UPTP.

c) A join of two UPTPs becomes several
disjuncts that combine the disjuncts of
the two UPTPs.

For UNION queries, after normalization the UN-
ION of its TPs becomes a DNF predicate containing
the disjuncts of its DNF-normalized expanded TPs.

The SPARQL rewriter applies on the DNF-
normalized and simplified query a number of query
transformations that simplify the queries and improve
the execution time. In particular, the GCT rule [30]
transforms the DNF predicate into a more efficient
Datalog representation by grouping those common
terms in different disjuncts of the DNF predicate that
can be translated to SQL. The query transformation
rules are presented and evaluated below using the
ABench benchmark.

 Finally, the SQL generator generates an execution
plan in SAQ that contains operators calling SQL. At
execution time these SQL statements are sent to the
RDB for execution. The generated plan also contains
post-processing of such expressions that are not pro-
cessed by the SQL engine, for example constructing
URI objects, converting data types, and making un-
ion-all of sub-queries. All processing in the system is
streamed so that no large intermediate collections are
generated.

5.3. SAQ query transformations

The query rewriting optimizations for SPARQL
queries selecting database parts to archive for differ-
ent kinds of archival queries are described below.
Since these queries often select sets of properties to

View expander

DNF - normalizer

SAQ rewriter

SQL generator

RDBMS

Fig. 4. SAQ Query processing.

Post-processing

SPARQL parser

SPARQL query

View specializer

archive they are mostly unbound-property queries,
and therefore the query transformation optimizations
for unbound-property queries are elaborated here.
The processing and optimization of regular bound-
property queries to an RD-view uses the techniques
described in [15][16][18] and is outside the scope of
this paper.

 All transformations are made on the DNF normal-
ized SAQ predicate.

To describe the SAQ rewrite transformations, we
use the following terminology:

• In a SPARQL query with a TP
(?s ?p ?o) we call the variable s a sub-
ject variable, p a predicate variable,
and o an object variable.

• In a query, if the same variable is an ob-
ject variable in one TP, e.g. s1 in
(?s ?p ?s1), and a subject variable in
another TP, e.g. s1 in (?s1 ?p1 ?o1), we
call the variable s1 a subject-object join
variable. A subject-object join variable
cannot be a literal, since subjects are
always URIs.

Table 4 shows which of the query transformations
below improve the execution times of queries in
ABench.

5.3.1. The GCT transformation
The group common terms (GCT) query transfor-

mation algorithm optimizes SPARQL queries in such
a way that the RDB is accessed row-by-row instead
of column-by-column. The GCT rule is applicable on
queries selecting several attributes per table, in par-
ticular unbound-property queries. For example, GCT
improves the performance of queries Q1, Q2, Q3, Q5,
Q6, Q7, Q8, and Q10, since they all retrieve several

table attributes with the same selection condition.
The GCT is not applicable on queries Q4 and Q9,
since they retrieve single table attributes with a single
selection condition on each.

The GCT transformation is applied on a SPARQL
query after DNF normalization. It factors out from
the DNF predicate’s disjuncts those conjunctions of
common terms that can be translated to SQL queries.
After GCT, the DNF predicate becomes a disjunction
of conjunctions between terms that can be translated
to SQL and disjunctions of the remaining terms with
the translatable terms removed. The remaining terms
cannot be expressed in SQL and must be post-
processed.

 In general, the steps of the GCT rewrite algorithm
applied on a DNF predicate are the following:
i. In a pre-step, normalize the variable names of

the disjuncts in the DNF predicate so that the
same variable names are used in equivalent
predicate positions.

ii. Allocate a hash table that, for each extracted
conjunction, maintains mappings to the dis-
juncts from which its terms have been extract-
ed.

iii. For each disjunct in the DNF predicate, ex-
tract conjunctions of terms that can be translat-
ed to SQL and put them in the hash table with

the entire extracted conjunction as key along
with a pointer to the rest of the disjunct as val-
ue.

iv. After the entire DNF predicate is scanned, go
through the hash table and form for each key
(extracted conjunction) c a conjunction be-
tween the SQL translatable predicate c and the
post-processed remaining terms in the disjuncts
from where c was extracted. Finally, form a
disjunction of all the formed conjunctions.

Table 4. Rewrite transformations for SPARQL queries generated by ABench queries

Rewrite
Query

GCT Eliminate
S-view

is-literal type-match FKR

Q1 X
Q2 X X
Q3 X
Q4
Q5 X X
Q6 X X
Q7 X X
Q8 X X
Q9 X X
Q10 X X X

The pseudo code of GCT algorithm is the follow-
ing.

Function GCT(P, gf) -> GP
Input: P - a DNF predicate with normalized varia-

ble names
 gf - a function that extracts a conjunction of

specific terms, e.g. RT, SQL comparisons from a
conjunction

Output: GP: P grouped on the common terms
1. Allocate a hash table Ht for the common terms

in disjuncts
2. GP:=null
3. for each disjunct D in P do
4. if D is an atom then GP := orify(GP,D)
5. else if D is not a conjunction then
 GP := orify(D,GP)
6. else if D has only one term then
 GP := orify(D,GP)
7. else CT := gf(D)
 /*CT is a list of common terms)*/
8. if CT=null then GP:=orify(D,GP)
9. else put in Ht(key=CT) :=
 orify((D with CT removed),
 (existing value for CT in Ht))
10. for each (CT and valueCT) in Ht do
11. GP := orify(andify(CT, valueCT),GP)
14. return GP

The function orify(x,y) forms a disjunction be-

tween predicates x and y, and andify(x,y) forms a
conjunction.

Note that the processing is done in one pass and is
therefore O(N), where N is the number of disjuncts in
the DNF predicate.

5.3.2. The is-literal reduction
The is-literal rule reduces SPARQL queries in

such a way that SQL LIKE conditions are not issued
on table attributes whose values are represented by
URIs in the RD-view. This rule is applicable in que-
ries where the type of an object variable in the query
is restricted by some FILTER or other predicate to be
a literal. For example, Q4, Q8, and Q9 restrict object
variables to be literals by FILTER comparison predi-
cates.

If an object variable is restricted to be a literal it
cannot be bound to a URI by a URI-construct predi-
cate. Therefore the is-literal rule eliminates those
disjuncts from the expanded DNF normalized query
where the object variable represents foreign keys or
many-to-many relationships. This eliminates SQL

code to access foreign keys and links, which reduces
the number of generated SQL queries.

5.3.3. The type-match reduction
The type-match rule reduces SPARQL unbound-

property queries so that SQL comparison conditions
are issued only on attributes of correct literal types.
For example, the LIKE predicate must be used on
textual attributes of type (VARCHAR, TEXT, etc.),
and arithmetic comparisons must be over numerical
attributes (INT, DECIMAL, etc.). The rule reduces
queries where the type of an object variable is re-
stricted by some predicate to be of a specific literal
type. For example, in Q9 the object variable value
must be a literal string, which is inferred by the RE-
GEX filter.

If an object variable is inferred to be of a specific
literal type, it cannot be bound to a literal of another
type by the literal-construct predicate. Therefore the
type-match rule eliminates those disjuncts from the
expanded DNF normalized query where the object
variable represents relational column values of non-
matching types. Thus SQL code to access those col-
umns is not generated.

For example, the attribute pNum1 in table product
is a number while in Q9 the variable value must be a
string, and therefore the SQL code generated will not
access pNum1. The generated query for Q9 contains
SQL LIKE conditions only for textual attributes (i.e.
of type VARCHAR, TEXT, etc.). SQL LIKE condi-
tions for other types of attributes are not generated.

5.3.4. Foreign key relationship (FKR) reduction
The FKR rule reduces SPARQL unbound-property

queries where a subject-object join variable is shared
between two UPTPs, which requires a foreign-key
constraint.

The FKR rule eliminates those disjuncts from the
expanded DNF normalized query where a join sub-
ject-object variable represents values that are not
foreign keys in the underlying RDB. This reduces the
number of SQL queries generated. SQL queries are
generated only where there is a foreign key relation-
ship between the tables referenced by the joined UP-
TPs.

 For example, for Q10 FKR restricts the SQL gen-
erator to SQL queries only to the tables producer,
producttype and productfeature, which possess for-
eign keys for the table product represented by prod-
uct:_2549.

5.3.5. Eliminate S-view reduction
The eliminate S-view rule reduces unbound-

property queries so that an S-view subject is never
joined with a subject constructed by the URI-
construct predicate. This rule assumes that user-
overridden URIs in the mapping tables are not pre-
sent in the D-view. This is enforced by the system.

The eliminate S-view is not needed for bound-
property queries, because there all binding patterns
are of form (s, P, o), where P is a URI constant rep-
resenting an attribute of a relational table. This URI
is not allowed to be in the S-view. Therefore the S-
view is always removed from BPTPs by the view
specialization.

In contrast, the S-view will remain in UPTPs after
specialization. In this case the eliminate S-view re-
duction is applicable when the subject variable of S-
view is matched by a URI-construct predicate in a
conjunction of the D-view, in which case the con-
junction is eliminated. This occurs for queries where
an UPTP is joined with another BPTP or UPTP on
the subject or object variables. This rule is applicable
on queries Q2, Q5, Q6, Q7, Q8 and Q10.

For example, Q2 is a SPARQL UNION unbound-
property query where each UNION clause contains a
join between the UPTP (?subject ?property ?value)
and a BPTP on the variable ?subject. Both Q7 and
Q10 are unbound-property queries with a join be-
tween two UPTPs on a subject variable, i.e. the vari-
able ?subject.

6. Performance of archival queries

We evaluated the impact of the SAQ query rewrite
optimizations for the generated SPARQL queries in
ABench. We compared the performance of SAQ with
Virtuoso RDF Views [26] and D2RQ [7], all systems
accessing the same back-end MS SQL Server data-
base. The experiment configuration was the follow-
ing:

a) The measurements were made on a PC In-
tel(R) Core(TM), 2Quad CPU Q9400 with
2.67 GHz and 8 GB RAM running 64-bits
Windows 7 Professional.

b) The DBMS was MS SQL server 2008 R2
running on a separate machine with Intel(R)
Core(TM), i5 CPU 750 with 2.67 GHz and 8
GB RAM running 64-bits Windows 7 Pro-
fessional. The SQL server was configured
with 6 GB for the min and max server
memory.

c) The RDB data sets were generated by the
Berlin benchmark data generator and loaded
into the MS SQL Server. Table 5 summariz-
es the RDB sizes for the experimental data
sets, together with the corresponding num-
ber of triples in the SAQ RD-view and the
number of query result triples for Q1-Q10.

d) Non-clustered, non-unique indexes were put
on the columns propertyNum1 and proper-
tyNum3 in the table product, and on the col-
umn rating4 in the table review to speed up
queries Q4 and Q8.

e) For Virtuoso RDF Views, the RDF view to

the underlying relational database was gen-
erated on the Virtuoso server (ver.
06.04.3132, Windows-64) using the Virtuo-
so Conductor tool. The SPARQL queries to
this RDF view were run from a Java pro-
gram, implementing a Jena Provider [42],
which allows users to query Virtuoso RDF
views from Java. Virtuoso was configured
with the parameter NumberOfBuffers set to
340000 and the Java heap size was set to 4
GB.

f) For D2RQ (v.08.1), the RDF view of the
underlying RDBMS was generated by the
D2RQ auto-generated mapping script [6]. In
the generated script, we inserted the option
‘d2rq:useAllOptimizations true’ to guaran-
tee that full optimization would be used in
D2RQ. The SPARQL queries were run from
a Java program calling the D2RQ Engine
through Jena2 [6]. The Java heap size was
set to 4 GB.

Table 5. RDB sizes and number of result triples
for Q1-Q10 when using SAQ

 RDB1 RDB2 RDB3
Phys.
size

184 MB 1.8 GB 9 GB

Triples 4.28 M 42.48 M 211.4 M
Q1 4.28 M 42.48 M 211.4 M
Q2 2.79 M 27.99 M 139.89 M
Q3 399.83 K 4.002 M 20.01 M
Q4 12.85 K 127.67 K 640.719 K
Q5 373.9 K 3.79 M 18.89 M
Q6 459.31 K 4.29 M 20.48 M
Q7 2.488 K 23.86 K 119.18 K
Q8 3.749 K 31.284 K 129.45 K
Q9 166 1.7 K 8.3 K

Q10 152 159 123

g) The default mappings of the analysed sys-
tems SAQ, Virtuoso RDF Views and D2RQ
were used.

The following notation is used in the performance
diagrams:
• Virtuoso: Virtuoso RDF Views configured with

the system default mappings.
• D2RQ: D2RQ configured with the system default

mappings.
• SAQ-naive: SAQ without any rewrites.
• SAQ-ES: SAQ with the eliminate S-view trans-

formation.
• SAQ-GCT: SAQ with GCT.
• SAQ-isLiteral: SAQ with the is-literal transfor-

mation.
• SAQ-Type: SAQ with the is-literal and type-match

transformations.
• SAQ-FKR: SAQ with FKR.
• SAQ-FKR-ES: SAQ with FKR and eliminate S-

view.
• SAQ-FKR-ES-GCT: SAQ with FKR, eliminate S-

view and GCT.
 In all cases, the time spent in executing the query

by the relational database followed by post-
processing was measured, thus not including the time
for preparing the SPARQL query by the respective
system. The measured times did not include the back-
end DBMS query optimization time by excluding a
first warm-up execution. The actual measurements
were made five times and the mean values plotted.
The standard deviation was less than 10% in all
measurements.

6.1. Discussion of SAQ query performance

The performance of SAQ for the SPARQL que-
ries generated by the archival queries in Abench is
described below. Fig. 5 - Fig. 7 show the execution
times for Q1-Q10 in seconds for different database
sizes, SAQ strategies and other systems compared.

Table 6 summarizes the speed-up of the different
rewrite optimizations in SAQ compared with SAQ-
naive for the queries Q1-Q10. The speed-up is pre-
sented in the table as the improvement factor relative
to the execution time of SAQ-naïve. Table 6 also
shows the number of SQL queries sent to the RDB
for the different approaches.

6.1.1. Impact of GCT
The performance SAQ-GCT for unbound-

property queries was better than that of all other sys-

tems compared. GCT always improves performance
substantially, by 55-70%, for queries scanning whole
RDB tables such as Q1 and Q2. Queries Q5 and Q6
are also unbound-property queries but they scan only
few columns from different RDB tables and the im-
provement of GCT is lower (35-40%). However, for
the very selective unbound-property queries Q7, Q8
and Q10, the improvement of GCT is much better,
100-200% for Q7 and Q8, and almost 300% for Q10.
The reason is that without GCT, more SQL queries
are sent to the RDB and the communication overhead
dominates when the server time is insignificant.

The GCT optimization also somewhat improves
bound-property queries selecting RDF properties that
represent attributes in the same table, such as Q3.
With GCT the properties are retrieved by a single
SQL query per table, rather than one query per prop-
erty without GCT. Thus for Q3 the number of SQL
queries is reduced from 3 to 2.

6.1.2. Impact of eliminate S-view
The eliminate S-view reduction (SAQ-ES) slight-

ly improves (by 1-3%) the performance for unbound-
property queries with one UPTP, i.e. Q2, Q5, Q6 and
Q8, by reducing the number SQL queries. In contrast,
eliminate S-view significantly improves the perfor-
mance for unbound-property queries with more than
one UPTP, where other reductions are not applicable.
Thus, it improves the performance for Q7 very sub-
stantially, by 970-1400%, and the performance for
Q10 substantially, by 70%.

6.1.3. Impact of is-literal, type-match, and FKR
The improvement by the is-literal reduction

(SAQ-isLiteral) for Q9 is 100-200%. The reason is
that without is-literal, an additional nine SQL queries
selecting foreign key values are generated.

The type-match reduction (SAQ-Type) further
improves the performance for Q9 by 200-300%. The
improvement is because without type-match, 40 un-
necessary SQL queries selecting relational columns
of type different than VARCHAR are generated and
sent to the RDB.

The FKR reduction (SAQ-FKR) enormously im-
proves the performance of Q10, by 60770-580900%,
by eliminating 1344 SQL queries not joining on for-
eign keys.

a) b)

Fig. 5. Query Performance for Q1 – Q10, RDB1=184 MB.

0

10

20

30

40

50

60

70

80

90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q9

SAQ-naive D2RQ Virtuoso SAQ-ES

SAQ-GCT SAQ-isLiteral SAQ-Type

Ex
ec

ut
io

n
Ti

m
e

, s
ec

0.001

0.01

0.1

1

10

100

1000

10000

SAQ-naive Virtuoso
D2RQ SAQ-ES
SAQ-GCT SAQ-FKR
SAQ-FKR-ES SAQ-FKR-ES-GCT

Ex
ec

ut
io

n
Ti

m
e.

 s
ec

0

100

200

300

400

500

600

700

800

Q1 Q2 Q3 Q4 Q5 Q6 Q9

SAQ-naive D2RQ Virtuoso
SAQ-ES SAQ-GCT SAQ-isLiteral
SAQ-Type

Ex
ec

ut
io

n
Ti

m
e

, s
ec

0.001

0.01

0.1

1

10

100

1000

10000

100000
SAQ-naive
Virtuoso
D2RQ
SAQ-ES
SAQ-GCT
SAQ-FKR
SAQ-FKR-ES
SAQ-FKR-ES-GCT

Ex
ec

ut
io

n
Ti

m
e

, s
ec

a) b)

Fig. 6. Query Performance for Q1 – Q10, RDB2=1.8 GB.

0

500

1000

1500

2000

2500

3000

3500

4000

Q1 Q2 Q3 Q4 Q5 Q6 Q9

SAQ-naive d2rq Virtuoso SAQ-ES

SAQ-GCT SAQ-isLiteral SAQ-Type

Ex
ec

ut
io

n
Ti

m
e

, s
ec

0.001

0.01

0.1

1

10

100

1000

10000

100000 SAQ-naive
Virtuoso
D2RQ
SAQ-ES
SAQ-GCT
SAQ-FKR
SAQ-FKR-ES
SAQ-FKR-ES-GCT

Ex
ec

ut
io

n
Ti

m
e

, s
ec

a) b)

Fig. 7. Query Performance for Q1 – Q10, RDB3=9 GB.

6.1.1. Bound-property queries

The bound-property queries Q3 and Q4 are pro-

cessed by SAQ-naive by specializing all the BPTPs
in a conjunction into a single SQL query. Thus both
Q3 and Q4 are processed by sending three SQL que-
ries, each selecting a single relational attribute in a
union.

6.2. Query performance of other systems

To analyse how the other systems process
ABench queries, we measured their performance and,
in addition, inspected what SQL queries were sent to
the relational database.

For D2RQ, some measurements caused Java ex-
ception GC overhead limit exceeded and they are
therefore not presented in Fig. 6 and Fig. 7. Similarly,
Virtuoso failed in Fig. 5 with the exception message
“Query too large, more than 65000 variables in
state” for query Q2 and Q8 with the 184 MB dataset.

Since both D2RQ and Virtuoso don’t generate for
their default mapping a triple with the form (subject
rdf:type rdfs:Class), this triple was excluded from the
definitions of queries Q2, Q5 and Q6 for these sys-
tems. However, in SAQ neither the query processing
nor the query result is influenced by the existence of

the optional triple (subject rdf:type rdfs:Class),
which is included in the queries for a complete defi-
nition.

6.2.1. Query performance of D2RQ
For D2RQ we used the profiling tool of MS SQL

Server 2008 R2 to obtain the SQL queries sent to the
DBMS.

Normally for bound-property queries such as Q3
and Q4, and for the unbound-property queries with
one UPTP and no filter such as Q2, Q5 and Q8,
D2RQ extracts RDB data column-wise as SAQ-naive.
Thus, an optimization similar to GCT is not used by
D2RQ, which explains why SAQ-GCT is faster than
D2RQ for unbound-property queries.

For Q2, Q5 and Q8, despite D2RQ sending to the
RDB the same number of SQL queries as SAQ-naive,
it scales somewhat worse because of the view spe-
cialization of SAQ.

For Q4, D2RQ sends to the RDB three SQL que-
ries without comparisons, while SAQ-naive sends

three queries each including a comparison. Therefore
D2RQ selects a much larger result set than needed
and its performance is much worse than that of SAQ,
since it does not utilize any index. Furthermore, Q4
could not be successfully processed by D2RQ for the
largest data set of 9 GB, since the Java exception GC

Table 6. Speed-up (in times) for the SAQ rewrite optimizations and number of SQL queries sent to the RDB compared with SAQ-naive

Rewrite
Query

SAQ-naive GCT ES is-literal type-match FKR

Q1- speed up 1 1.63-1.72
Q1-SQLqueries 84 10
Q2- speed up 1 1.55 1.01 - 1.03
Q2-SQLqueries 35 4 33
Q3- speed up 1 1.15
Q3-SQLqueries 3 2
Q4 - speed up 1
Q4-SQLqueries 3
Q5- speed up 1 1.35 - 1.37 1.01 - 1.02
Q5-SQLqueries 20 3 19
Q6- speed up 1.37 – 1.39 1.015
Q6-SQLqueries 37 5 34
Q7- speed up 1 2-2.4 974 - 1450
Q7-SQLqueries 102 2 16
Q8- speed up 1 2-3 1.04 - 1.05
Q8-SQLqueries 22 3 21
Q9- speed up 1 2 - 3 3 - 4
Q9-SQLqueries 76 67 27
Q10- speed up 1 3.8 1.7

 60775-

580912
Q10-SQLqueries 1385 4

(SAQ-FKR-
ES-GCT)

22
(SAQ-FKR-
ES)

 41
(SAQ-FKR)

overhead limit exceeded was triggered. The reason is
that the system tried to materialize in the Java heap
entire columns retrieved from the RDB.

For Q1, which selects all RDB tables, D2RQ
makes a special optimization and sends fewer queries
to the RDB and therefore outperforms SAQ-naive.
However, SAQ-GCT still outperforms D2RQ for Q1
because even fewer SQL queries are generated.

To process Q6, D2RQ sends to the RDB an SQL
query for each column in the RDB and does the fil-
tering as post-processing, which does not scale well.
SAQ-naïve scales much better for Q6, since the view
specialization reduces the query substantially. The
only SQL queries evaluated are those that select col-
umns from tables fulfilling the filter condition, i.e.
the tables product, productfeature, and producttype.

For Q7, D2RQ sends to the RDB around 1000
SQL queries accessing all RDB tables. The view spe-
cialization of SAQ-naïve outperforms D2RQ here by
sending to the RDB much fewer SQL queries, i.e.
107 queries accessing only the tables whose attrib-
utes fulfil the filter condition, i.e. the producer and
vendor tables.

Q9 is processed by D2RQ by sending to the RDB
17 SQL queries selecting values from all tables row-
wise. All filtering is done by post-processing the ex-
tracted RDB values, which does not scale. In contrast,
SAQ utilizes is-literal and type-match to send SQL
queries with LIKE predicates to the DBMS, which
utilizes indexes.

D2RQ uses an optimization similar to the FKR
optimization of SAQ for processing Q10. Here
D2RQ sends to the RDB 21 SQL queries selecting
column-wise values from the tables producer,
producttype and productfeature as SAQ-FKR-ES.
GCT further improves the performance of SAQ-
FKR-ES-GCT.

6.2.2. Query performance of Virtuoso
The debug logging of Virtuoso was used to inves-

tigate how it translates the SPARQL queries and
what SQL queries were sent to the RDB.

The bound-property UNION query Q3 with no
filters is processed by Virtuoso by sending to the
RDB the same SQL queries as SAQ-naïve. Here,
Virtuoso performs worse than SAQ-naive since it
tries to materialize in main memory the large result
set, while SAQ streams the result.

For the bound-property UNION query Q4, which
has a filter on each selected property, Virtuoso sends
two SQL queries with arithmetic comparisons exact-
ly as SAQ-naive and additionally one or many pa-

rameterized SQL queries that do not contribute to the
result. The latter is the reason for the worse perfor-
mance.

For the selective unbound-property query Q8,
Virtuoso sends to the RDB SQL queries extracting
product data in a column-wise manner, as SAQ-naïve.
An optimization such as GCT is not used. Despite
that, for Q8 Virtuoso outperforms SAQ-GCT since
the result set is very small and cached on the client
during the first run, while for the next runs it is read
directly from main memory.

Virtuoso processes the non-selective unbound-
property query Q1 by sending to the RDB an SQL
query for each column as SAQ-naïve. It scales much
worse than SAQ-naïve since it does not use GCT and
tries to materialize in memory the very large result
set.

For the unbound-property queries Q2, Q5 and Q6,
Virtuoso sends to the RDB an SQL query for each
selected column as SAQ-naive and in addition a large
number of parameterized queries. For the larger da-
tabase more than 1000 queries are sent to the RDB.
Therefore it performs very badly.

Query Q7 could not be processed by Virtuoso.
The following message was received: The SPARQL
optimizer has failed to process the query with rea-
sonable quality.

The text matching query Q9 is processed by Vir-
tuoso by sending to the RDB SQL queries selecting
column-wise attribute values from all tables followed
by filtering as post-processing, which does not scale.
Optimizations similar to is-literal and type-match are
not used.

Finally, for Q10 Virtuoso sends to the RDB a
number of SQL queries accessing all tables in the
RDB. It does not use an optimization similar to FKR
but nevertheless outperforms SAQ-naïve, since much
fewer SQL queries are sent to the RDB. SAQ-FKR-
ES-GCT is still faster.

7. Related work

The related work on preservation of relational da-
tabases, mapping relational databases to RDF, and
query processing of unbound-property queries is re-
viewed.

7.1. Long-term preservation of relational databases

Testbed [40], SIARD [41] and RODA [20] are
projects that have developed strategies for long-term

preservation of relational databases based on XML.
In both Testbed and RODA the data and metadata of
relational databases are preserved as XML. SIARD
has an own format for preservation which is based on
XML and SQL1999, and the industry standard ZIP.
In contrast, in SAQ we use RDF to represent the rela-
tional database to archive. Both XML and RDF are
neutral data formats that don’t rely on current DBMS
technology and provide hardware and software inde-
pendence. These make both of them suitable for
long-term preservation of databases. However, RDF
has the following advantages comparing to XML. In
RDF the identifiers are URIs which are universal
global unique identifiers that allow identifiers from
one database or table to be linked with identifiers
from other data. Data can be represented as XML in
many different ways depending on a defined DTD or
XML schema [21] while the RDF-Schema (RDFS) in
RDF provides standard meta-data representation for
describing all kinds of data, including relational da-
tabases [11]. Furthermore, representing relational
data as RDF allows migration from RDBs to RDF
repositories which are gaining increasing popularity
compared to XML native repositories.

In the above mentioned related approaches the en-
tire relational database, both the data and schema are
migrated into XML or XML based format and stored
in a file. By contrast, in SAQ we provide selective
archival of user-specified parts of a relational data-
base as RDF using an extended SPARQL query lan-
guage, A-SPARQL.

CSV is a recommended data format for long-term
preservation of structured data in Florida Digital Ar-
chive [46] and Library Archives Canada [47]. We
have not considered CSV format since the CSV
dumps provided for archiving relational databases do
not include meta-data, which is important to recon-
struct archived databases.

7.2. Mapping and querying relational databases as
RDF

Virtuoso RDF Views [26][27], D2RQ [7][8], and
SquirrelRDF [18] are other systems that allow map-
ping of relational tables and views into RDF to make
them queriable by SPARQL. These systems imple-
ment compilers that translate SPARQL directly to
SQL. In contrast, SAQ first generates Datalog que-
ries to a declarative RD-view of the relational data-
base, and then transforms the SPARQL queries to
SQL, based on logical transformations. We have
shown that query transformations on this representa-

tion significantly improve performance for SPARQL
unbound-property queries selecting RDB contents to
archive.

The system closest to SAQ is Ultrawrap [17][18]
where, like in SAQ, an RDF view over a relational
database is generated as a union of sub-views. While
the RDF view in Ultrawrap is defined in SQL in a
specific SQL dialiect, in SAQ the view is defined in
an object-oriented Datalog dialect and thus it is inde-
pendent on the RDBMS. Furthermore, since the view
in Ultrawrap is defined in a concrete RDBMS the
query optimizations are also dependent on the
RDBMS, and thus the performance measurements in
[18] show different results in different systems. By
contrast, in SAQ the proposed optimizations are
made in the SAQ query processor and are not de-
pendent on the back-end RDBMS.

Unlike SAQ, neither D2RQ, nor Virtuoso, nor Ul-
trawrap includes the schema view in the RDF view of
RDBs. The inclusion of the S-view is very important
when archiving relational databases, since the data-
base schema is needed to reconstruct an archived
database. The logical rewrites of SAQ enable scala-
ble processing over full RDF views, including the
schema part.

7.3. Optimizing unbound-property queries and
disjunctive queries

 We did not find any published data on how D2RQ
compiles SPARQL queries into SQL. The documen-
tation on Virtuoso is very limited. However, by using
the profiling tool of the DBMS and the debug log-
ging of Virtuoso, we were able to analyse what que-
ries were actually sent to the underlying RDB. This
showed that neither D2RQ nor Virtuoso uses optimi-
zation for unbound-property queries similar to the
SAQ rewrite optimizations GCT, is-literal and type-
match. D2RQ uses an optimization similar to FKR to
process queries with a join variable shared between
two UPTPs, such as Q10.

SquirrelRDF also allows SPARQL queries to rela-
tional tables, but it does not support unbound-
property SPARQL queries.

Ultrawrap tries to completely translate SPARQL
to semantically equivalent SQL, without any pre- or
post-processing. This is problematic for unbound-
property queries, and in [18] the authors state that a
SPARQL unbound-property query “doesn’t have a
concise, semantically equivalent SQL query”. In con-
trast, SAQ generates an execution plan where SQL
queries are submitted to an RDB, and then streamed

post-processing constructs URIs, RDF literals, and
triples. We could not find any published data on how
Ultrawrap translates SPARQL unbound-property
queries to SQL. Nevertheless, there are experimental
results with Ultrawrap on unbound-property queries
in [18] and it can be concluded from these that Ul-
trawrap has no special optimizations. It is shown in
[18] that an Ultrawrap query for unbound-property
query performs worse than a “Native SQL” query, i.e.
a translated SQL query did not exploit the relational
model as well as a native query.

Rather than semantic transformations directly on
the original SPARQL code, SAQ makes all query
transformations on Datalog expressions. The ad-
vantage with this approach is that it is a very general,
well understood, and easy to extend with new trans-
formation rules, if so needed. We have shown that
the approach is possible without loss of efficiency.

Work on optimizing disjunctive database queries
in general is described in [1][14][25]. The closest
work to GCT is the combinatorial algorithm [25],
which merges disjuncts with common sub-
expressions in general disjunctive logical expression
in order to avoid repeated evaluation of the same
predicate on the same tuple. In contrast, the purpose
of GCT is to group in a DNF predicate query frag-
ments that can be translated to SQL, and GCT is
therefore a simpler linear algorithm. The idea of by-
pass evaluation of disjunctive queries in [1][14] is
based on implementing specialized operators that
produce two output streams: the true-stream of the
tuples that fulfil the operator’s predicate and the
false-stream of the tuples that do not match. The
main benefit of the technique of bypass evaluation is
in eliminating duplicates by avoiding unnecessary
join operators. The purpose of GCT is not duplicate
elimination, but to rewrite complex disjunctive que-
ries for faster execution.

8. Conclusions and future work

An approach was presented for selective scalable
long-term archival of RDBs as RDF in terms of
SPARQL queries, implemented in the SAQ system.
The proposed approach is suitable for archiving re-
search data used in scientific publications where it is
desirable to preserve only selected parts of an RDB.
The archival of user-specified parts of a RDB is spec-
ified using an extension of SPARQL, A-SPARQL,
having an archival statement for selective archival.

The SAQ system for long-term preservation of re-
lational databases follows conceptually the OAIS
reference model. In particular, this work concentrates
on the functionality of the Ingest component in the
OAIS model on generating the content information
when preserving relational database content as RDF.

To evaluate the performance of typical archival
queries, the ABench was defined that archives select-
ed parts of databases generated by the Berlin bench-
mark data generator. In experiments, the SAQ opti-
mization strategies were evaluated by measuring the
performance of A-SPARQL queries selecting triples
for archival queries in ABench.

SAQ automatically generates an RDF view of an
RDB called the RD-view. The RD-view can be que-
ried and archived with A-SPARQL queries that are
translated into SQL queries sent to the RDB. An ar-
chival query internally generates a corresponding
CONSTRUCT SPARQL query. Since the archival
query usually selects sets of attributes of tables to
archive, the generated CONSTRUCT SPARQL que-
ry is typically an unbound-property or UNION query.
To achieve scalable data preservation and recreation
for such queries, SAQ uses some special query re-
writing optimizations presented in this paper.

Using ABench queries and data generated by the
Berlin benchmark generator, the rewriting optimiza-
tions were experimentally shown to improve query
execution time compared with naïve processing.
Compared with not using the optimizations, they
reduce the number of SQL queries to execute and
retrieve data in relational row order rather than in
column order. The performance of SAQ was com-
pared with that of other systems that support
SPARQL queries to views of existing relational data-
bases. It was shown experimentally that SAQ with
the rewrite optimizations performs better than those
systems for all queries returning large results. In gen-
eral, the SAQ optimizations are useful not only for
archival queries, but also for unbound-property and
UNION queries.

Future work will include defining and evaluating
new query rewrites for further improving the perfor-
mance, for example for free text searches of RDB
when data are archived based on LIKE. Another ex-
tension would be to perform the archiving based on
what is reachable from a set of root data nodes, i.e.
based on SPARQL queries with path expressions[31].

References

[1] A. Kemper, G. Moerkotte, K. Pethner, and M. Steinbrunn,
Optimizing Disjunctive Queries with Expensive Predicates, in
Proceedings. ACM SIGMOD ‘94, Iinternational conference on
Management of data, ACM New York 1994, Vol. 23 Issue 2,
pp. 336-347 (1994)

[2] A. Seaborne, D. Steer, and S. Williams, authors. SQL-RDF,
Copyright © 2007 Hewlett-Packard Development Company.
Available at
 http://www.w3.org/2007/03/RdfRDB/papers/seaborne.html
(2007)

[3] C. Bizer and A. Schultz, editors. Berlin SPARQL Benchmark
(BSBM) Specification–V3.1. Available at http://wifo5-
03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/spec/ (2011).

[4] C. Bizer and A. Schultz, editors. Berlin SPARQL Bench-
mark (BSBM). Available at http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/spec/Benchmark
Rules/ (2010)

[5] C. Bizer and A. Schulz, The Berlin SPARQL Benchmark,
Journal of Semantic Web and Information Systems, special is-
sue on scalability and performance of semantic web systems,
Vol. 5, Issue 2, pp 1-24 (2009)

[6] L. E. T. Neto, H. Mühleisen, A. Iqbal, J. Geluk, D. Venable. C.
Becker, O. Hartig, A. Langegger, H. Leimer, I. Surguy, O.
Maresch and J. Garbers, editors. D2RQ, Accessing Relational
Databases as Virtual RDF Graphs. Available at
http://d2rq.org/

[7] C. Bizer, and A. Seaborne, D2RQ-Treating Non-RDF Data-
bases as Virtual RDF Graphs. Poster session, 3rd International
Semantic Web Conference (ISWC2004), Hiroshima, Japan,
November 2004. Available at
http://iswc2004.semanticweb.org/posters/PID-SMCVRKBT-
1089637165.pdf (2004)

[8] C. Bizer and R. Cyganiak, D2R Server-Publishing Relational
Databases on the Semantic Web, Poster session, 5th Interna-
tional Semantic Web Conference (ISWC2006), Athens, 2006
(2006)

[9] D. Giaretta, Advanced Digital Preservation, Springer, ISBN:
978-3-642-16808-6, pp. 31-39, (2011)

[10] G. Fahl and T. Risch, Query Processing over Object Views of
Relational Data, The VLDB Journal , Vol. 6, No. 4, pp 261-
281 (1997)

[11] H. Stuckenschmidt and F. Harmelen, Information Sharing on
the Semantic Web, Springer, ISBN 3-540-20594-2, pp. 3-23
(2005)

[12] J. Hunter, Scientific Publication Packages – A Selective Ap-
proach to the Communication and Archival of Scientific Out-
put, The International Journal of Digital Curation, issue 1, vol.
1, pp. 33-52, (2006)

[13] J. Masanès, (ed.) Web Archiving, Springer, ISBN 978-3-540-
46332-0, pp.1-46, 71-90 (2006)

[14] J. Claussen, A. Kemper, K. Peithner and M. Steinbrunn, Op-
timization and Evaluation of Disjunctive Queries, IEEE
Transactions on Knowledge and Data Engineering, Vol. 12,
No 12, pp. 238-260, March/April (2000)

[15] J. Petrini and T. Risch, Processing queries over RDF views of
wrapped relational databases, in Proceedings of the 1st Inter-
national Workshop on Wrapper Techniques for Legacy Sys-
tems, WRAP 2004, Delft, Holland, November, 2004, pp. 16-
29 (2004)

[16] J. Petrini, Querying RDF Schema Views of Relational Data-
bases, PhD Thesis, Uppsala University, Department of IT,
ISSN1104-2516,

http://www.it.uu.se/research/group/udbl/Theses/JohanPetriniP
hD.pdf (2008)

[17] J. F. Sequeda and D. Miranker, SPARQL Execution as Fast as
SQL Execution on Relational Data, Poster session, 10th Inter-
national Semantic Web Conference (ISWC2011), Bonn, Ger-
many, October. Available at
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Poste
rsDemos/iswc11pd_submission_94.pdf. (2011)

[18] J. F. Sequeda and D. Miranker, Ultrawrap: SPARQL Execu-
tion on Relational Data, Journal of Web Semantics. Vol. 22,
October, 2013, Elsevier, pp. 19-39 (2013)

[19] J.F. Sequeda, M. Arenas and D. P. Miranker, On Directly
Mapping Relational Databases to RDF and OWL, Proceedings.
WWW 2012, 21-st International Word Wide Web Conference,
April, 2012, Lyon, France. pp- 649-658 (2012)

[20] J. C. Ramalho, M. Ferreira, L. Faria, and Rui Castro. Relation-
al Database Preservation through XML modelling. Proceed-
ings. International Workshop on Markup of Ovelapping
Strustures, Extreme Markup Languages 2007, Montréal,
Canadá, 2007, Available at
http://conferences.idealliance.org/extreme/html/2007/Ramalho
01/EML2007Ramalho01.html (2007)

[21] J. Tauberer, editor. What is RDF and what is it good for?
Available at
http://www.rdfabout.com/intro/#Comparing%20RDF%20with
%20XML, (2008)

[22] L. Sweeney, k -Anonymity: A Model for Protecting Privacy,
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10 (5), pp. 557-570, (2002)

[23] M. Arenas, A. Bertails, E. Prud'hommeaux, and J. Sequeda, A
Direct Mapping of Relational Data to RDF, W3C Recommen-
dation 27 September 2012, http://www.w3.org/TR/rdb-direct-
mapping/ (2012)

[24] M. Jobst, Preservation in Digital Cartography, ISBN 978-3-
642-12733-5, pp. 101-123, Springer (2011)

[25] M. Muralikrishna and David J. DeWitt:, Optimization of Mul-
tiple-Relation Multiple-Disjunct Queries, Proceedings.
PODS’88. 7th seventh ACM SIGACT-SIGMOD-SIGART
March, 1988, Austin, Texas, pp. 263-275, (1988)

[26] O. Erling, Declaring RDF views of SQL Data, Proceedings.
W3C Workshop on RDF Access to Relational Databases, Oc-
tober, Cambridge, MA, USA. Avaialbale at
http://www.w3.org/2007/03/RdfRDB/papers/erling.html
(2007)

[27] O. Erling and I. Mikhailov, RDF Support in the Virtuoso
DBMS. Springer, Studies in Computational Intelligence Vol.
221, 2009, pp 7-24 (2009)

[28] P. Buneman, S. Khanna, K. Tajima and W. Tan, Archiving
Scientific Data, ACM Transactions on Database Systems, Vol.
29, No. 1, pp. 2-42, (2004)

[29] S. Higgins, The DCC Curation Lifecycle Model, International
Journal of Digital Curation, Vol. 3, No. 1, pp. 134-140 (2008)

[30] S. Stefanova and T. Risch, Optimizing Unbound-property
Queries to RDF Views of Relational Databases. Proceedings.
7th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2011), Bonn, Germany, Oc-
tober 2011, pp. 43-58. Available at
http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/Work
shops/SSWS/Stefanova-etl-all-SSWS2011.pdf. (2011)

[31] St. Harris St and A. Seaborne, editors. SPARQL 1.1 Query
Language, W3C Recommendation 21 March 2013. Available
at http://www.w3.org/TR/sparql11-query/ (2013)

[32] W. Litwin, and T. Risch, Main Memory Oriented Optimiza-
tion of OO Queries Using Typed Datalog with Foreign Predi-
cates, IEEE Transactions on Knowledge and Data Engineering,
Vol. 4, No. 6 (1992)

[33] U. Borghoff, P. Rodig, J. Scheffczyk, and L. Schmitz,
Long-Term Preservation of Digital Documents. Principles and
Practices, Springer 2010, ISBN: 9783642070174, pp. 3-20.
(2010)

[34] N-triples, W3C RDF Core WG Internal Working Draft. Avail-
able at http://www.w3.org/2001/sw/RDFCore/ntriples/

[35] SqirrelRDF, Available at
http://jena.sourceforge.net/SquirrelRDF/

[36] Reference Model for an Open Archival Information System
(OAIS). Recommended Practice CCSDS 650.0-M-2, Magen-
ta Book, Consultative Committee for Space Data Systems.
Available at
http://public.ccsds.org/publications/archive/650x0m2.pdf.
(2012)

[37] H. Tjalsma and J. Rombouts, authors. Selection of Research
Data; Guidelines for appraising and selecting research data; A
report by DANS and 3TU Datacentrum. Available at
http://www.surf.nl/nl/themas/openonderzoek/cris/Documents/
SURF-
share_Collectioneren_Selection%20of%20Research%20Data_
DANS_3TU_DEFtt.pdf

[38] Ad hoc Strategic Committee on Information and Data, Final
Report to the ICSU Committee on Scientific Planning and Re-
view. Available at http://www.icsu.org/publications/reports-
and-reviews/scid-report/scid-report.pdf, (2008)

[39] National Science Board: Long-Lived Digital Data Collections:
Enabling Research and Education in the 21st Century, NSB
05-40. Available at
http://www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf (2005)

[40] Digital Preservation Testbed. From Digital Volatility to Digi-
tal Permanence: Preserving Databases. Technical report,
Dutch National Archives and the Dutch Ministry of the Interi-
or and Kingdom Relations. Available at
http://www.ltu.se/cms_fs/1.83816!/file/Preserving%20Databas
es.pdf (2003)

[41] Swiss Federal Archives (SFA) Archiving of Databases:
SIARD Suite Available at
http://www.bar.admin.ch/dienstleistungen/00823/01911/index.
html?lang=en

[42] Virtuoso Jena Provider, OpenLink Virtuoso Universal Server:
Documentation. Available at
http://docs.openlinksw.com/virtuoso/rdfnativestorageproviders
.html#Rdfnativestorageprovidersjena

[43] Allegro Graph. Available at
http://www.franz.com/agraph/allegrograph/

[44] Sesame Java Framework, Available at http://rdf4j.org/
[45] Virtuoso Universal Server, Available at
http://virtuoso.openlinksw.com/
[46] Recommended Data Formats for Preservation Purposes in the
Florida Digital Archive, 2012. Available at
https://fclaweb.fcla.edu/uploads/recFormats.pdf
[47] Library and Archives Canada, Version 1.0. Available at
http://www.collectionscanada.gc.ca/obj/012018/f2/012018-2200-
e.pdf

	1. Introduction
	2. Motivating example
	3. The Semantic Archive and Query system
	3.1. Archival queries
	3.2. Generating the schema archive
	3.3. Restoring a database

	4. The archival benchmark ABench
	5. Query processing in SAQ
	5.1. The RD-view
	5.2. Query processing steps in SAQ
	5.3. SAQ query transformations
	5.3.1. The GCT transformation
	5.3.2. The is-literal reduction
	5.3.3. The type-match reduction
	5.3.4. Foreign key relationship (FKR) reduction
	5.3.5. Eliminate S-view reduction

	6. Performance of archival queries
	6.1. Discussion of SAQ query performance
	6.1.1. Impact of GCT
	6.1.2. Impact of eliminate S-view
	6.1.3. Impact of is-literal, type-match, and FKR
	6.1.1. Bound-property queries

	6.2. Query performance of other systems
	6.2.1. Query performance of D2RQ
	6.2.2. Query performance of Virtuoso

	7. Related work
	7.1. Long-term preservation of relational databases
	7.2. Mapping and querying relational databases as RDF
	7.3. Optimizing unbound-property queries and disjunctive queries

	8. Conclusions and future work
	References

