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Abstract. We present an approach for scalable long-term preservation of data stored in relational databases (RDBs) as RDF, 
implemented in the SAQ (Semantic Archive and Query) system. The proposed approach is suitable for archiving scientific data 
used in scientific publications where it is desirable to preserve only parts of an RDB, e.g. only data about a specific set of ex-
perimental artefacts in the database. With the approach, long-term preservation as RDF of selected parts of a database is speci-
fied as an archival query in an extended SPARQL dialect, A-SPARQL. The query processing is based on automatically gener-
ating an RDF view of a relational database to archive, called the RD-view. A-SPARQL provides flexible selection of data to be 
archived in terms of a SPARQL-like query to the RD-view. The result of an archival query is a data archive file containing the 
RDF-triples representing the relational data content to be preserved. The system also generates a schema archive file where 
sufficient meta-data are saved to allow the archived database to be fully reconstructed. An archival query usually selects both 
properties and their values for sets of subjects, which makes the property p in some triple patterns unknown. We call such que-
ries where properties are unknown unbound-property queries. To achieve scalable data preservation and recreation, we pro-
pose some query transformation strategies suitable for optimizing unbound-property queries. These query rewriting strategies 
were implemented and evaluated in a new benchmark for archival queries called ABench. ABench is defined as set of typical 
A-SPARQL queries archiving selected parts of databases generated by the Berlin benchmark data generator. In experiments, 
the SAQ optimization strategies were evaluated by measuring the performance of A-SPARQL queries selecting triples for 
archival in ABench. The performance of equivalent SPARQL queries for related systems was also measured. The results 
showed that the proposed optimizations substantially improve the query execution time for archival queries. 
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1.  Introduction 

The importance of digital preservation research 
has been growing for the past ten-fifteen years. Many 
papers and books [9][13][33] describing problems, 
tools and techniques for digital preservation, have 
been written, and standards providing preservation 
models have been published [29][36]. However, most 
of this work focuses on preservation of file-based 
digital objects like documents, images, and web pag-
es [9]. Much less work has focused on the preserva-
tion of databases and scientific data, where there is a 

recognized need to preserve scientific data 
[12][28][37][38][39]. Furthermore, preserving scien-
tific data together with scientific publications would 
contribute to documenting the origin and lineage of 
scientific achievements [12]. For this a concept of 
‘Scientific Publication Packages (SPPs)’ was intro-
duced in [12]. The SPPs were described as composite 
digital objects linking experimental raw data, associ-
ated with metadata, ‘derived information’, and 
knowledge, including associated publications.  

Scientific data, i.e. experimental and observational 
data, as well as data generated by instruments and 
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sensors, reside in large datasets that are often stored 
in relational databases. During the research process 
the scientists need to select subsets of these databases 
(i.e. specific tables, rows, columns) to be analysed 
and processed in order to create a scientific model. 
Once the model is validated the research results are 
documented and published. By preserving the select-
ed subsets of both data and publications within one 
digital object, future reuse, verification, and heritage 
[33] of the published scientific results can be guaran-
teed.  

Selective data preservation is needed also for ex-
ample in cases of medical data preservation where, in 
order to protect the privacy of patients, sensitive data 
like zip code, dates of birth, salaries, etc. should be 
excluded from archiving [22]. Other examples are 
when selecting representative geospatial data for 
preservation [24] or preserving web resources based 
on some criteria [13]. 

For long-term preservation of data, it is desirable 
for the contents of a database to be saved in a neutral 
format, so that it can be reconstructed and used after 
a very long time using current technologies for data 
representation, which are continuously evolving. Fur-
thermore, preserved representations must include 
sufficient meta-data to retrieve, explain, reproduce, 
and disseminate the experiments. We propose RDF 
and RDF-Schema (RDFS) based neutral format as a 
database technology-independent format for long-
term preservation of data, which provides standard 
meta-data representation for describing all kinds of 
data, including relational databases [11]. 

In this paper we present an approach for scalable 
long-term preservation of selected data stored in rela-
tional databases (RDBs) as RDF, implemented in the 
SAQ (Semantic Archive and Query) system. The 
proposed approach is suitable for archiving scientific 
data used in scientific publications where it is desira-
ble to preserve only selected parts of an RDB, e.g. 
only data about a specific set of artefacts in the data-
base related to some publications. For this SAQ pro-
vides selective archival of user-specified parts of an 
RDB using an extended SPARQL query language, 
A-SPARQL.  

To map a relational database into RDF, SAQ au-
tomatically generates an RDF view of the relational 
database to be archived called the RD-view. The RD-
view is defined in terms of anRDFS ontology for 
describing RDB schemas in general.  

To select the parts of an RDB to archive, a SAQ 
user defines an archival query to the RD-view in A-
SPARQL. For example, the classes representing the 
tables named product and offer in the RDB Products 

of the Berlin Benchmark dataset [3][5] are archived 
with the archival query: 
 
ARCHIVE AS ‘data.nt’, ‘schema.nt’ 
FROM <Products> 
TRIPLES {?subject ?property ?value} 
WHERE   {?subject rdf:type  db:product } 
 UNION 
TRIPLES {?subject ?property ?value} 
WHERE   {?subject rdf:type  db:offer  } 
 

In the query the result triples are stored in the data 
archive file ‘data.nt’. While executing the archival 
query, the system simultaneously produces sufficient 
meta-data to enable reconstruction of the selected 
parts of the archived RDB. These meta-data are 
stored in a schema archive file, ‘schema.nt’.  

When an archived RDB content is to be recreated, 
SAQ reads the schema archive to automatically rec-
reate the RDB schema in another RDBMS. The RDB 
thus created is then populated by reading the data 
archive and converting the read data into table rows 
according to the schema. This allows migration from 
one RDBMS to another, perhaps from different ven-
dors. If only selected parts of the RDB are archived, 
a corresponding partial RDB is recreated containing 
only the relevant parts of the schema and data. For 
migrating data from RDBs to RDF repositories, the 
contents of the schema and data archive files can be 
directly loaded into an RDF repository system, e.g. 
[43][44] [45]. 

For processing an archival query in A-SPARQL 
SAQ internally generates a corresponding SPARQL 
query to select the triples of the database to archive. 
The archival queries are straight-forward to translate 
into CONSTRUCT queries. As in the example, un-
ions of sets of triples are often archived, e.g. for dif-
ferent classes and properties, which makes the gener-
ated SPARQL queries to become UNION CON-
STRUCT queries.  

Archival queries typically select sets of attributes 
of tables to archive. This corresponds to selecting 
sets of RDF properties in the RD-view of the data-
base to be archived. In the example all properties of 
the classes representing the tables product and offer 
are selected for archival. Therefore, in the generated 
queries the property p in one or several triple patterns 
(s,p,o) is a variable. We call such triple patterns 
(TPs) unbound-property triple patterns (UPTP), and 
the queries having such triple patterns unbound-
property queries [30]. To achieve scalable data 
preservation and reconstruction, we developed some 
special query rewriting optimizations for optimizing 
unbound-property queries. Archival queries can also 



contain conventional TPs where the properties are 
URIs representing RDF properties in the RD-view, 
which we call bound-property triple patterns (BPTP). 
Queries having only BPTPs are called bound-
property queries, which are processed using known 
methods [15][16][18].  

To evaluate the performance of typical archival 
queries a new benchmark called ABench was devel-
oped. ABench is defined as set of typical archival 
queries, specified in A-SPARQL, that archive select-
ed parts of databases generated by the Berlin bench-
mark data generator [4]. A new benchmark was de-
veloped since the archival queries generate CON-
STRUCT unbound-property queries with UNION 
clauses, which is not covered by any existing bench-
mark.  

In the experiments, the SAQ optimization strate-
gies were evaluated using ABench. The experiments 
showed that the proposed query rewriting optimiza-
tions substantially improve the query execution time 
for unbound-property queries selecting RDB contents 
to archive. We also compared the performance of our 
approach with other systems processing SPARQL 
queries over views of RDBs and found that the pro-
posed optimizations improve query scalability com-
pared with the approaches used in those systems. 

The rest of this paper is organized as follows. Sec-
tion 2 presents a motivating example for selective 
preservation of a relational database as RDF, Section 
3 presents the SAQ system and the A-SPARQL lan-
guage, and Section 4 the archival benchmark ABench. 
Section 5 describes the RD-view and the SAQ query 
processing steps, along with the SAQ rewriting opti-
mizations. Section 6 evaluates the performance of the 
query optimizations using Abench, Section 7 de-
scribes related work, and Section 8 provides a sum-
mary.  

2. Motivating example 

A user, who has worked on analysing products 
with different properties, wants to preserve together 
with the analysis result data about analysed products 
having some special properties. In the example, data 
about products produced in Sweden and having a 
property pNum1 > 348 have to be preserved. Fur-
thermore, to the preserved data it is needed to add 
sufficient meta-data in order to allow later recon-
struction of the preserved data [9]. 

The products data resides in a RDB. Fig. 1 shows 
a small RDB called Products, which is part of the 

relational Berlin benchmark dataset. The database 
has four tables, product, productfeature, productfea-
tureproduct and producer, populated with some data. 
The columns pnr, pfnr and prodnr are primary keys 
in the tables product, productfeature, and producer. 
The column producer in the table product references 
the column prodnr in the table producer as foreign 
key. The table productfeatureproduct is a many-to-
many link table between the tables product and 
productfeature.  

 
Table product 

pnr label pNum1 producer 
1 cicatrices 100 2 
2 emulsifying 450 3 

 
Table productfeature 

pfnr publishDate 
3 2000-06-22 
4 2000-07-08 

 

Table productfeatureproduct          Table producer 

product productFeature  prodnr country 
1 3  2 DE 
2 3  3 SE 
2 4    

 

Fig. 1. RDB Products. 

 
To archive as RDF the selected products along 

with their properties and values, we define in SAQ 
the following archival query:   
 
ARCHIVE AS ‘productD.nt’, ‘productS.nt’ 
FROM <Products> 
TRIPLES { ?product ?property ?value }  
WHERE {  
?product rdf:type  db:product . 
?product   db:product_producer  ?producer . 
?producer  db:producer_country  ‘SE’ .  
?product db:product_pNum1     ?pn1 . 
FILTER (?pn1 > 348)                        } 

 
Execution of the archival query produces two N-

Triples files, ‘productD.nt’ to store the archived 
products from the RDB and ‘productS.nt’ to store the 
schema archive required for recreating the parts of 
the RDB schema representing the archived products. 
The RDB reconstructed from the archival query is 
shown in Fig. 2. It contains only the tables, attributes 
and rows required to reconstruct the data archived by 
the query. After the reconstruction, SAQ can process 



SPARQL queries to the RD view of the reconstructed 
database. 

 
Table R_product 

pnr label pNum1 producer 
2 emulsifying 450 3 

 

 
Table R_productfeature  Table R_producer 

pfnr  prodnr 
3  3 
4  

 

Table R_productfeatureproduct 

product productFeature 
2 3 
2 4 

 

Fig. 2.  Reconstructed RDB. 

3. The Semantic Archive and Query system 

The developed SAQ system for long-term preser-
vation of relational databases follows conceptually 
the OAIS reference model [36]. The OAIS model is 
composed by four functional units: Ingest, Archival 
Storage, Data Management, and Access. The Ingest 
unit accepts Submission Information Packages (SIPs) 
and generates Archival Information Packages (AIPs) 
for storage and management. The Archival Storage 
unit receives AIPs from Ingest and adds them to 
permanent storage. The Data Management unit pro-
vides functions for populating, maintaining, and ac-
cessing variety of meta-data stored in the repository.  
The Access unit provides an interface between the 
archive and the consumer.   

An OAIS’ AIP contains Content Information, i.e. 
the archived data and the representational metadata, 
together with a Preservation Description Information 
(PDI). The PDI contains reference information, con-
text information, provenance information, etc.  

SAQ provides functionality for the Ingest compo-
nent, in particularly on generating the content infor-
mation in the AIPs when preserving relational data-
base contents as RDF. 

In order to preserve both schema and data from an 
RDB, it is important to represent not only the con-
tents of the RDB as RDF, but also the schema. 
Therefore the RD-view is defined as a union of a 
schema view (the S-view), representing the RDB 
schema, and a data view (the D-view), representing 
the RDB contents. To allow for interoperability with 
other systems mapping RDBs to RDF, e.g. [7][8][26], 
the data view mappings conform to the direct map-
ping recommendations by W3C Recommendation 
[23]. 

The architecture of the SAQ system is presented 
in Fig. 3. The source RDB is the underlying RDB, 
which can be queried by SPARQL and preserved by 
A-SPARQL queries.  

The RD-view generator automatically generates 
one RD-view over each source RDB by reading the 
database schema though a JDBC interface. The RD-
view templates thereby provide general prototypes 
for the structure of the RD-view for any relational 
database, and the contents of the mapping tables 
provide RDB-to-RDF mappings for specific rela-
tional meta-data into RDF. An archival query is pro-
cessed by the archiver and translated into a corre-
sponding generated query in SPARQL, which is sent 
to the SAQ query processor. The generated query 
retrieves the data to archive from the RDB. Regular 

Fig. 3. SAQ.    
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non-archiving SPARQL queries are sent directly to 
the SPARQL query processor. 

The SAQ query processor executes the SPARQL 
queries to the RD-view by accessing the source RDB 
through the JDBC interface.  

3.1. Archival queries 

Archival queries have the following syntax: 
 
ARCHIVE AS data_archive_file,  
           schema_archive_file  
FROM URI 
archive_specification 
[UNION  
archive_specification]… 
 

where an archive specification is defined as: 
 
archive_specification := 
TRIPLES {archived_triple_pattern} 
[WHERE {archive_restrictions}] 

                                 
An archival query is specified by an ARCHIVE 

statement where a data archive file and the schema 
archive file are specified. SAQ will create these files 
using the N-triples format [34]. The FROM clause 
specifies the URI representing the RDB to archive. 
The URI is assigned by the user once for each RDB.   

The body of an archival query is specified by a 
(union of) archive specifications, which select the 
triples to archive. The pattern of the triples to archive 
is defined by an archived triple pattern (s, p, o) in a 
TRIPLES clause, where s and p can be a constant 
URI or a variable, and o can be a constant URI, a 
variable, or a literal. An optional archive restriction 
in a WHERE clause restricts the triples to archive. It 
consists of a graph pattern and may include SPARQL 
functions. A union of several archive specifications 
can be defined to archive several different sub-graphs 
from the RD-view.    

The following are examples of some of the 
ABench queries: 

 
A1 ARCHIVE AS ‘data1.nt’, ‘schema1.nt’ 
 FROM <Products> 
 TRIPLES {?subject ?property ?value } 
 
A2 ARCHIVE AS ‘data2.nt’, ‘schema2.nt’ 
 FROM <Products> 
   TRIPLES {?subject ?property ?value   } 
 WHERE{?subject   rdf:type  db:product . 
         db:product rdf:type  rdfs:Class   }  
  UNION 
   TRIPLES {?subject ?property ?value   } 
 WHERE{?subject    rdf:type  db:offer . 
         db:offer    rdf:type  rdfs:Class   }    
 

A3 ARCHIVE AS ‘data3.nt’, ‘schema3.nt’ 
 FROM <Products> 
   TRIPLES {?subject1 db:product_label  
                                     ?value1} 
   UNION 
   TRIPLES {?subject2 db:offer_price  
                                     ?value2} 
   UNION 
 TRIPLES {?subject3 db:offer_webpage  
                                     ?value3} 
 
A4 ARCHIVE AS ‘data4.nt’, ‘schema4.nt’ 
 FROM <Products> 
 TRIPLES {?subject1 db:product_pNum1  
                                     ?value1} 
 WHERE { FILTER (?value1 > 214 )}               
  UNION 
 TRIPLES {?subject2 db:product_pNum3  
                                     ?value2} 
 WHERE {FILTER (?value2 < 348 ) } 
  UNION 
 TRIPLES {?subject3 db:review_text ?value3} 
 WHERE { 
    ?subject3 db:review_rating4 ?value4 . 
    FILTER REGEX(?value3, ‘time’ ) . 
    FILTER (?value4 > 8 )                } 
 

Query A1 archives the entire database and stores it 
as a data archive file ‘data1.nt’ and a schema archive 
file ‘schema1.nt’. Query A2 archives only the RDFS 
classes having the URI <db:product> and 
<db:offer>, along with all their properties. Query A3 
archives only the RDF properties having URIs 
<db:product_label>, <db:offer_price>, and 
<db:offer_webapge>. Finally, query A4 archives the 
property product_pNum1 for values > 214, the prop-
erty product_pNum3 for values < 348, and the prop-
erty review_text for values matching the string ‘time’ 
if the property review_rating4  > 8. 

An archival query is straight-forward to translate 
into a CONSTRUCT SPARQL query. It is usually a 
CONSTRUCT-UNION query where unions of sets 
of triples are archived. For example, A3 is translated 
into the following generated SPARQL query: 

Q3: CONSTRUCT  
{ ?subject1 db:product_label ?value1 . 
  ?subject2 db:product_price ?value2 . 
  ?subject3 db:offer_webpage ?value3  } 
FROM <Products> 
WHERE  
{{?subject1 db:product_label ?value1 } 
  UNION 
 {?subject2 db:offer_price ?value2 }  
  UNION 
 {?subject3 db:offer_webpage ?value3 } } 
 
Since archival queries always select a sub-graph 

from the RDF graph of the RD-view to archive, all 
archived triple patterns in a generated query appear 
both in the CONSTRUCT clause and the WHERE 
clause. 



The translation rules from A-SPARQL to the gen-
erated SPARQL are the following: 

1) The CONSTRUCT clause of the generated 
SPARQL query consists of all unique ar-
chived triple patterns defined in the TRI-
PLES clauses of the archive specifications. 

2) The WHERE clause of the generated 
SPARQL query is a UNION of one Basic 
Graph Patterns (BGP) per archive specifica-
tion, consisting of the  archived triple pattern 
in the TRIPLES clause and the optional ar-
chive restrictions in the WHERE clause. 

3.2. Generating the schema archive 

During the execution of the generated SPARQL 
query, the property URIs of the triples to be archived 
are collected by the meta-data extractor while iterat-
ing over the result stream. When all data to archive 
have been processed, the meta-data extractor joins 
the collected properties with the S-view by issuing a 
schema query. 

The archived content retrieved by the generated 
query and the corresponding meta-data retrieved by 
the schema query are written by the RDF converter 
into two N-triple files in the archive repository.  

3.3. Restoring a database 

Later on, when a preserved database is to be re-
stored, the reloader reads from the archive repository 
the two archive files and makes the database live 
again by populating it into a destination RDB or al-
ternatively a destination triple store. When an RDB 
is restored, the reloader first reads the schema archive 
in order to generate the RDB schema and then popu-
lates the destination RDB by reading the data archive. 
After the destination RDB is restored, it can be que-
ried or re-archived with A-SPARQL using SAQ. 
When the destination DBMS is an RDF triple store 
system, both the schema and data archive files are 
loaded directly into the triple store and can there be 
queried with SPARQL. 

4. The archival benchmark ABench 

The archival benchmark ABench consists of ar-
chival queries that select subsets of a relational data-
base to archive as RDF, i.e. selecting specific tables, 
columns, and rows for archival using A-SPARQL. 
The relational database is generated by the Berlin 
benchmark dataset generator.   

Table 1, Table 2, and Table 3 list the archival que-
ries of ABench, together with the corresponding gen-
erated queries by SAQ. The archival queries are de-
noted Ai and the generated SPARQL queries are de-
noted Qi. 

Query A1 archives the entire database. The gener-
ated SPARQL query Q1 is an unbound-property que-
ry.  

Query A2 archives the entire classes product and 
offer representing the entire RDB tables product and 
offer. The generated SPARQL query Q2 is an un-
bound-property UNION query of properties of the 
classes to archive. 

Query A3 archives all values of some explicitly 
specified properties. Here the generated SPARQL 
query Q3 is a bound-property UNION query of three 
triple patterns, where the properties are known URIs 
in the WHERE clause.  

Query A4 is similar to A3, i.e. it archives values of 
explicitly defined properties, but there are also condi-
tions on the values of these properties. The generated 
SPARQL query Q4 becomes a bound-property UN-
ION query of known property triple patterns.  

Query A5 is similar to A2, but it constrains the 
properties of class product to archive. It retrieves the 
rows from table product for all attributes except 
those represented by the specified properties. The 
generated Q5 is an unbound-property query. 

 Query A6 archives all classes whose URIs match 
a defined string. The generated query Q6 is an un-
bound-property query. It should be executed by send-
ing to the underlying RDB SQL queries selecting 
rows only from the tables represented by URIs 
matching the defined string. 

 Query A7 archives data for classes having proper-
ties whose URIs match a defined string.  The gener-
ated query Q7 is an unbound-property query. It 
should be executed by sending to the underlying 
RDB SQL queries selecting rows only from the ta-
bles having attributes represented by properties that 
match the defined string.  

Query A8 archives all properties and their values 
of a number of selected subjects. The generated 
SPARQL query Q8 is an unbound-property query 
with joins.  

Query A9 archives all classes whose property val-
ues are literals containing a specific string. The gen-
erated query Q9 is an unbound-property query. It 
should be executed by sending SQL LIKE conditions 
on only such table attributesclass whose values are 
not represented by URIs.  



 Query A10 archives all properties of subjects re-
lated through a property to another given subject. The 
relationship is represented by a foreign key in the 

underlying RDB. The generated query Q10 is an un-
bound-property query. It should be executed by send-
ing SQL queries only to tables owning a foreign key  

Table 1. ABench queries  

Archival query Generated CONSTRUCT query 
 

Query A1: Archive the entire database                               Query Q1: 
 

ARCHIVE AS ‘data1.nt’, ‘schema1.nt’ 
FROM <Products>  
TRIPLES {?subject ?property ?value }; 
 

 
CONSTRUCT { ?subject ?property ?value }  
FROM <Products> 
WHERE {?subject ?property ?value } 

Query A2: Archive the entire classes <db:product>  
and <db:offer>                     

Query Q2: 

 
   ARCHIVE AS ‘data2.nt’, ‘schema2.nt’ 
 FROM <Products> 
   TRIPLES {?subject ?property ?value   } 
 WHERE{?subject    rdf:type  db:product . 
         db:product  rdf:type  rdfs:Class   }  
     UNION 
   TRIPLES {?subject ?property ?value   } 
 WHERE{?subject     rdf:type  db:offer . 
         db:offer    rdf:type  rdfs:Class   }  
  

 
CONSTRUCT { ?subject ?property ?value } 
FROM <Products> 
WHERE {{ ?subject   ?property ?value . 
         db:product rdf:type  rdfs:Class . 
         ?subject   rdf:type  db:product } 
       UNION 
       { ?subject   ?property ?value . 
         db:offer   rdf:type  rdfs:Class . 
         ?subject   rdf:type  db:offer  }} 

Query A3: Archive all values of the specific proper-
ties  <db:product_label>, <db:offer_price>, 
<db:offer_webpage> 

Query Q3: 
 

 
   ARCHIVE AS ‘data3.nt’, ‘schema3.nt’ 
 FROM <Products> 
   TRIPLES  
   {?subject1 db:product_label ?value1 } 
   UNION 
   TRIPLES  
   {?subject2 db:offer_price ?value2 } 
   UNION 
 TRIPLES  
   {?subject3 db:offer_webpage ?value3 } 
 

 
CONSTRUCT  
{ ?subject1 db:product_label ?value1 . 
  ?subject2 db:product_price ?value2 . 
  ?subject3 db:offer_webpage ?value3  } 
FROM <Products> 
WHERE  
{{?subject1 db:product_label ?value1 .} 
  UNION 
 {?subject2 db:offer_price ?value2 }  
  UNION 
 {?subject3 db:offer_webpage ?value3 } } 

Query A4: Archive products property pNum1for val-
ues > 214 and property pNum3 for values < 348, and 
reviews property text for values matching the string 
‘time’ if the reviews have rating4  > 8 . 

Query Q4: 

 
ARCHIVE AS ‘data4.nt’, ‘schema4.nt’ 
FROM <Products> 
TRIPLES {?subject1 db:product_pNum1 ?value1} 
WHERE { FILTER (?value1 > 214 )}               
UNION 
TRIPLES {?subject2 db:product_pNum3 ?value2} 
WHERE {FILTER (?value2 < 348 ) } 
UNION 
TRIPLES {?subject3 db:review_text ?value3} 
WHERE { 
  ?subject3 db:review_rating4 ?value4 . 
  FILTER REGEX(?value3, ‘time’ ) . 
  FILTER (?value4 > 8 ) } 
 
 
 

 
CONSTRUCT  
{ ?subject1 db:product_pNum1 ?value1 . 
  ?subject2 db:product_pNum3 ?value2 . 
  ?subject3 db:review_text   ?value3  } 
FROM <Products> 
WHERE  
{{?subject1 db:product_pNum1 ?value1 . 
  FILTER (?value1 > 214 )              } 
  UNION 
 {?subject2 db:product_pNum3 ?value2 . 
  FILTER (?value2 < 348 )              }  
  UNION 
 {?subject3 db:review_text ?value3 . 
  ?subject3 db:review_rating4 ?value4 . 
  FILTER REGEX(?value3, ‘time’ ) . 
  FILTER (?value4 > 8 ) }               } 



Table 2. ABench queries 

Archival query Generated CONSTRUCT query 
 

Query A5:  Archive the class <db:product> except 
the  RDF properties <db:product_label> and 
<db:product_pNum1> 

Query Q5: 

 
ARCHIVE AS ‘data5.nt’, ‘schema5.nt’ 
FROM <Products> 
TRIPLES { ?subject ?property ?value } 
WHERE  
 {?subject   rdf:type  db:product . 
  db:product rdf:type  rdfs:Class . 
  FILTER (?property != db:product_label ). 
  FILTER (?property != db:product_pNum1 ) }; 
 

 
CONSTRUCT { ?subject ?property ?value } 
FROM <Products> 
WHERE  
{ ?subject     ?property  ?value . 
  ?subject     rdf:type   db:product . 
   db:product   rdf:type   rdfs:Class . 
  FILTER (?property != db:product_label ). 
  FILTER (?property != db:product_pNum1 ) } 

Query A6:  Archive entire classes whose URIs match 
the string ‘product’ 

Query Q6: 

 
ARCHIVE AS ‘data6.nt’, ‘schema6.nt’ 
FROM <Products> 
TRIPLES {?subject ?property ?value} 
WHERE {?class   rdf:type  rdfs:Class . 
       ?subject rdf:type  ?class . 
FILTER REGEX (str(?class), ‘product’ ) }; 
 

 
CONSTRUCT { ?subject ?property ?value } 
FROM <Products> 
WHERE  
{ ?subject ?property ?value . 
  ?class   rdf:type  rdfs:Class . 
  ?subject rdf:type  ?class . 
  FILTER REGEX (str(?class), ‘product’ ) } 
 

Query A7:  Archive all subjects having a property 
with URI matching the string ‘homepage’. 

Query Q7: 

 
ARCHIVE AS ‘data7.nt’, ‘schema7.nt’ 
FROM <Products> 
TRIPLES {?subject ?property  ?value } 
WHERE   {?subject ?property1 ?value1 . 
 FILTER REGEX (str(?property1), 'homepage')} 
 

 
CONSTRUCT {?subject ?property ?value } 
 FROM <Products> 
 WHERE  
{ ?subject ?property  ?value . 
  ?subject ?property1 ?value1 . 
  FILTER REGEX (str(?property1), 'homepage')} 
 

Query A8: Archive all properties of the subjects from 
class product having productFeature 3 and 4, and 
pNum1 > 348 

Query Q8: 

 
ARCHIVE AS ‘data8.nt’, ‘schema8.nt’ 
FROM <Products> 
TRIPLES {?product ?property ?value } 
WHERE { 
?product    rdf:type            db:product . 
db:product rdf:type            rdfs:Class . 
?product  db:product_label   ?label . 
?product    rdf:type            db:product . 
?product  ldb:productFeature   
            db:productFeature/_3 . 
?product  ldb:productFeature   
            db:productFeature/_4 .  
?product  db:product_pNum1  ?pn1 . 
FILTER (?pn1 > 348)                        } 
 

 
CONSTRUCT { ?product ?property ?value }  
FROM <Products> 
WHERE {  
?product    ?property  ?value .  
?product    rdf:type           db:product . 
db:product rdf:type           rdfs:Class .  
?product  db:product_label  ?label . 
?product  db:productFeature   
            db:productFeature/_3 . 
?product  db:productFeature   
            db:productFeature/_4 .  
?product  db:product_pNum1    ?pn1 . 
FILTER (?pn1 > 348)                       } 
 

Query A9:  Archive all classes whose literal property 
values contain the specific string ‘symbols’     

Query Q9: 

 
ARCHIVE AS ‘data9.nt’, ‘schema9.nt’ 
FROM <Products> 
TRIPLES {?subject ?property ?value } 
WHERE { ?class   rdf:type  rdfs:Class . 
        ?subject rdf:type  ?class . 
        FILTER REGEX (?value, 'symbols') } 
 

 
CONSTRUCT {?subject ?property ?value } 
FROM <Products> 
WHERE {?subject ?property ?value . 
       ?class   rdf:type  rdfs:Class . 
       ?subject rdf:type  ?class . 
      FILTER REGEX (?value, 'symbols')} 
 



 for the table represented by the given subject. 

5. Query processing in SAQ 

In this section, first the structure of the RD-view is 
presented. Then an overview of the query processing 
steps in SAQ is presented. Finally the SAQ query 
rewrite optimizations are described. 

5.1. The RD-view 

The RD-view is defined in SAQ in an object-
oriented Datalog dialect [32] since foreign functions 
are used to define URIs and typed literals. A special-
ized RD-view for each given RDB is automatically 
generated by accessing the RDB catalogue. The RDB 
to RDF mapping in SAQ conforms to the direct map-
ping recommended by W3C [23], and more particu-
larly to the augmented direct mapping proposed 
in[19], which is proven to guarantee information 
preservation. 

We define a unique RDFS class for each relational 
table, except for link tables representing set-valued 
properties as many-to-many relationships. In addition, 
RDF properties are defined for each column in a ta-
ble. 

The RD-view is defined as a union of an S-view, 
representing the schema of the relational database, 
and a D-view, representing the data stored in the rela-
tional database. 

The S-view represents all mappings between 
schema elements of the RDB and the corresponding 
RD-view classes and properties. It is defined in terms 
of six mapping tables that map relational schema 
elements to RDFS concepts. The system automatical-
ly generates default mappings in the mapping tables 
by accessing the RDB catalogue. The user can 
change the contents of the mapping tables to override 
default mappings in order to match some ontology or 
to limit data access. In order to guarantee unambigu-

ous preservation the system requires unique URIs for 
classes and properties to be preserved.  

In the used Datalog notation uppercase letters are 
used to denote constants while lowercase letters are 
used to denote variables. 

The six mapping tables are the following:  
• The class table, cMap(T, cid) maps re-

lational table names T to RDFS class 
URIs cid. 

• The property table, pMap(T, A, pid) 
maps relational column names A in ta-
ble T to RDF property URIs pid. 

• The foreign key table, fkMap(T, f, T’, 
fkid) maps foreign keys f in table T ref-
erencing table T’ to corresponding RDF 
property URIs fkid.  

• The many-to-many table mmMap(L, T’, 
T’’, mmid) maps link tables L between 
tables T’ and T’’ to corresponding 
property RDF property URIs mmid. 

• The type table, typeMap(T, A, xsd) 
maps relational data types of relational 
attributes A in table T to corresponding 
XML Schema data types xsd. 

The S-view definition itself is the same for any re-
lational database and only the contents of the map-
ping tables are different. The S-view is defined as a 
large union of unions of sub-views representing rela-
tional schema concepts about tables, columns, types, 
primary keys, foreign keys, other constraints, and 
indexes. Since the S-view is complex but contains 
little data and its extent changes only when the data-
base schema is altered, the S-view is materialized in 
main memory in SAQ. 

Based on the S-view, i.e. on the imported RDB 
schema information, the system generates a D-view 
for each specific relational database. We opted to 
generate a D-view for each concrete database instead 
of defining a generic D-view, since this enables sub-
stantial query reduction at run time via specialization 
of the view definitions [16].  

Table 3. ABench queries 

Archival query Generated CONSTRUCT query 
 

Query A10: Archive all subjects related by a property 
to another subject identified by the URI  
<db:product/_2549 >  

Query Q10: 

 
ARCHIVE AS ‘data10.nt’, ‘schema10.nt’ 
FROM <Products> 
TRIPLES {?subject       ?property  ?value  }    
WHERE {db:product/_2549 ?relation  ?subject}  

 
CONSTRUCT {?subject ?property ?value } 
FROM <Products> 
WHERE {?subject    ?property   ?value . 
db:product/_2549   ?relation   ?subject }  



The D-view is defined in terms of source predi-
cates representing the contents of relational tables, 
the above mapping tables, URI-construct predicates, 
for constructing URIs identifying rows in tables, and 
literal-construct predicates for constructing typed 
RDF literals. The D-view for an RDB is defined as a 
union of sub-views: 
• For each non-foreign-key attribute, one column 

view CT.A is generated. It represents as typed lit-
erals the values a of a column named A in table 
T: 

CT,A (s,p,v) :-  
RT(a1,.. ak,..,a,..,ar)  
cMap(T,cid)           
pMap(T,A,p)          
rowid(cid,(a1,..,ak),s) 
valueid(a,xsd,v) 
typeMap(T,A,xsd) 

 
AND 
AND 
AND 
AND 
AND 

(1) 

 
RT in (1) is the source predicate representing the 
relational table T, and (a1, …,ak, …. a, …, ar) is 
a tuple representing a row in T. The primary key 
of T is represented by the tuple (a1,…,ak). Fur-
thermore, rowid in (1) is the URI-construct 
predicate that creates a unique URI s represent-
ing a row identifier in T by concatenating the 
class associated with T, i.e. cid, and the primary 
key of a row, i.e. (a1,…,ak). Finally valueid is 
the literal-construct predicate that creates a 
typed literal by concatenating the value a of the 
attribute A with the corresponding XML schema 
type xsd. Triples are not generated for NULL 
values in a RDB as in the direct mappings in 
[19].  

 
• One foreign key view FKF is generated for each 

foreign key relationship F for table T with for-
eign key attribute values (ai, …aj) that refer-
ences table T’. It represents foreign key values 
by URIs constructed by URI-construct predi-
cates: 

FKF(s,p,v) :- 
RT(a1,..,ak,.ai,..,aj,...,ar)   
cMap(T,cid) AND            
rowid(cid,(a1,..,ak),s)      AND  
fkMap(T,(ai,…,aj),T’,p)    AND 
cMap(T’,cid’)          AND 
rowid(cid’,(ai,…aj),v)     

(2) 

• One many-to-many relationship view MML is 
generated for each link table L linking two ta-
bles T’ and T’’. It represents the values in link 
tables as URIs: 

MML(s,p,v) :-     
cMap(T’,cid’) AND 
RL(a’,a’’) AND             

(3) 

rowid(cid’,(a’),s)  AND  
mmMap(L, T’, T’’, p) AND 
cMap(T’’,cid’’)         AND 
rowid(cid’’,(a’’),v)      

• One row class view RCT is generated for each 
non-link table T to represent the classes of its 
row identifiers: 

RCT(s,p,v) :-    
RT(a1,..,ak,..,ar)   AND 
cMap(T,cid)  AND  
rowid(cid,(a1,..,ak),s)   AND  
p = <rdf:type>              AND 
v = cid 

(4) 

 
A complete generated data view D-view in SAQ 

has the following structure: 
D-view(s,p,v) :- 

v)p,(s,COR T.A
T.A

 OR 

F
OR FKF(s,p,v)   OR  

L
OR  MML(s,p,v)              OR 

T
OR  RCT(s,p,v) 

(5) 

 
  

where
T.A
OR  denotes a disjunction over all attributes 

T.A in all tables T in the database, 
F
OR denotes a dis-

junction (union) over all foreign key relationships F 
in the database, 

L
OR denotes a disjunction over all link 

tables L in the database, and 
T
OR denotes a disjunction 

over all tables T in the database.  
The D-view generated by SAQ for the ABench da-

tabase contains the following sub-views: 
• 67 column views 
• 7 foreign key views 
• 2 many-to-many relationship views 
• 8 row class views. 

5.2. Query processing steps in SAQ 

The main steps of the query processing in SAQ are 
illustrated in Fig. 4. The SPARQL parser transforms 
the SPARQL query into a Datalog expression where 
each triple pattern (TP) in the query becomes a refer-
ence to the RD-view. The view expander recursively 
expands each RD-view reference in the query into a 
disjunctive expanded RD-view. The view specializer 
then enables a transformation called view specializa-
tion [16]. It looks up the mapping tables in each sub-
view of the D-view at query processing time to re-
place variables in the expanded RD-view with corre-



sponding URIs or literals. We call such a sub-view in 
the D-view, where the mapping tables have been 
looked up, a specialized sub-view. Then, since the 
RD-view is defined as a union of the S-view and the 
D-view, each TP in the query becomes a disjunction 
of the materialized S-view and the specialized sub-
views in the D-view.  

The view specialization substantially reduces the 
disjunction for a TP depending on the TP type based 
on the following observations:   

i. The disjunction for an expanded bound-
property triple pattern (BPTP) with the 
structure (?s Pi ?v) where Pi is unique is 
reduced into a single property conjunc-
tion for Pi representing the single sub-
view in the D-view having the property p 
= Pi.  

ii. The disjunction for an expanded un-
bound-property triple pattern (UPTP) 
with the structure (S ?p ?v), where S is a 
URI identifying a row in a table T, is re-
duced to a disjunction having those spe-
cialized sub-views in the D-view where 
the subject s is associated with T, i.e. s is 
mapped by a URI-construct predicate to 
rows in T. 

iii. The disjunction for an expanded UPTP 
structure (?s ?p ?v) cannot be reduced 

and remains a disjunction of the material-
ized S-view and the specialized sub-
views in the D-view.  

Later on the query is further simplified by elimi-
nating common sub-expressions by unifying terms 
[10].  

The DNF-normalizer transforms the simplified 
Datalog query into a disjunctive normal form (DNF) 
predicate. The DNF-normalized query has the fol-
lowing structure: 

a) A join between two BPTPs becomes a 
conjunction of the property conjunc-
tions of the BPTPs.  

b) A join between a BPTP and a UPTP 
becomes several disjuncts in the DNF-
predicate. The disjuncts are conjunc-
tions between the property conjunction 
of the BPTP and each disjunct of the 
expanded UPTP.  

c) A join of two UPTPs becomes several 
disjuncts that combine the disjuncts of 
the two UPTPs. 

For UNION queries, after normalization the UN-
ION of its TPs becomes a DNF predicate containing 
the disjuncts of its DNF-normalized expanded TPs.  

The SPARQL rewriter applies on the DNF-
normalized and simplified query a number of query 
transformations that simplify the queries and improve 
the execution time. In particular, the GCT rule [30] 
transforms the DNF predicate into a more efficient 
Datalog representation by grouping those common 
terms in different disjuncts of the DNF predicate that 
can be translated to SQL. The query transformation 
rules are presented and evaluated below using the 
ABench benchmark. 

 Finally, the SQL generator generates an execution 
plan in SAQ that contains operators calling SQL. At 
execution time these SQL statements are sent to the 
RDB for execution. The generated plan also contains 
post-processing of such expressions that are not pro-
cessed by the SQL engine, for example constructing 
URI objects, converting data types, and making un-
ion-all of sub-queries. All processing in the system is 
streamed so that no large intermediate collections are 
generated. 

5.3. SAQ query transformations 

The query rewriting optimizations for SPARQL 
queries selecting database parts to archive for differ-
ent kinds of archival queries are described below. 
Since these queries often select sets of properties to 
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Post-processing 

SPARQL parser 

SPARQL query 
 

View specializer 



archive they are mostly unbound-property queries, 
and therefore the query transformation optimizations 
for unbound-property queries are elaborated here. 
The processing and optimization of regular bound-
property queries to an RD-view uses the techniques 
described in [15][16][18] and is outside the scope of 
this paper. 

 All transformations are made on the DNF normal-
ized SAQ predicate.   

To describe the SAQ rewrite transformations, we 
use the following terminology: 

• In a SPARQL query with a TP 
(?s ?p ?o) we call the variable s a sub-
ject variable, p a predicate variable, 
and o an object variable. 

• In a query, if the same variable is an ob-
ject variable in one TP, e.g. s1 in 
(?s ?p ?s1), and a subject variable in 
another TP, e.g. s1 in (?s1 ?p1 ?o1), we 
call the variable s1 a subject-object join 
variable. A subject-object join variable 
cannot be a literal, since subjects are 
always URIs. 

Table 4 shows which of the query transformations 
below improve the execution times of queries in 
ABench. 

5.3.1. The GCT transformation 
The group common terms (GCT) query transfor-

mation algorithm optimizes SPARQL queries in such 
a way that the RDB is accessed row-by-row instead 
of column-by-column. The GCT rule is applicable on 
queries selecting several attributes per table, in par-
ticular unbound-property queries. For example, GCT 
improves the performance of queries Q1, Q2, Q3, Q5, 
Q6, Q7, Q8, and Q10, since they all retrieve several 

table attributes with the same selection condition. 
The GCT is not applicable on queries Q4 and Q9, 
since they retrieve single table attributes with a single 
selection condition on each.  

The GCT transformation is applied on a SPARQL 
query after DNF normalization. It factors out from 
the DNF predicate’s disjuncts those conjunctions of 
common terms that can be translated to SQL queries. 
After GCT, the DNF predicate becomes a disjunction 
of conjunctions between terms that can be translated 
to SQL and disjunctions of the remaining terms with 
the translatable terms removed. The remaining terms 
cannot be expressed in SQL and must be post-
processed. 

 In general, the steps of the GCT rewrite algorithm 
applied on a DNF predicate are the following: 
i.  In a pre-step, normalize the variable names of 

the disjuncts in the DNF predicate so that the 
same variable names are used in equivalent 
predicate positions. 

ii. Allocate a hash table that, for each extracted 
conjunction, maintains mappings to the dis-
juncts from which its terms have been extract-
ed. 

iii. For each disjunct in the DNF predicate, ex-
tract conjunctions of terms that can be translat-
ed to SQL and put them in the hash table with 

the entire extracted conjunction as key along 
with a pointer to the rest of the disjunct as val-
ue.  

iv. After the entire DNF predicate is scanned, go 
through the hash table and form for each key 
(extracted conjunction) c a conjunction be-
tween the SQL translatable predicate c and the 
post-processed remaining terms in the disjuncts 
from where c was extracted. Finally, form a 
disjunction of all the formed conjunctions.  

Table 4. Rewrite transformations for SPARQL queries generated by ABench queries 

Rewrite 
Query 

GCT Eliminate 
S-view 

is-literal type-match FKR 

Q1 X     
Q2 X X    
Q3 X     
Q4       
Q5 X X    
Q6 X X    
Q7 X X    
Q8 X X    
Q9   X X  
Q10 X X   X 

 



The pseudo code of GCT algorithm is the follow-
ing. 

Function GCT(P, gf) -> GP 
Input: P - a DNF predicate with normalized varia-

ble names 
       gf - a function that extracts a conjunction of 

specific terms, e.g. RT, SQL comparisons from a 
conjunction 

Output: GP: P grouped on the common terms  
1. Allocate a hash table Ht for the common terms 

in disjuncts  
2. GP:=null 
3. for each disjunct D in P do 
4.   if D is an atom then GP := orify(GP,D)  
5.   else if D is not a conjunction then  
           GP := orify(D,GP) 
6.   else if D has only one term then  
           GP := orify(D,GP) 
7.   else CT := gf(D)  
    /*CT is a list of common terms)*/ 
8.        if CT=null then GP:=orify(D,GP) 
9.        else put in Ht(key=CT) :=  
     orify((D with CT removed), 
               (existing value for CT in Ht )) 
10. for each (CT and valueCT) in Ht do 
11.    GP := orify(andify(CT, valueCT),GP) 
14. return GP 
 
The function orify(x,y) forms a disjunction be-

tween predicates x and y, and andify(x,y) forms a 
conjunction.  

Note that the processing is done in one pass and is 
therefore O(N), where N is the number of disjuncts in 
the DNF predicate. 

5.3.2. The is-literal reduction 
The is-literal rule reduces SPARQL queries in 

such a way that SQL LIKE conditions are not issued 
on table attributes whose values are represented by 
URIs in the RD-view.  This rule is applicable in que-
ries where the type of an object variable in the query 
is restricted by some FILTER or other predicate to be 
a literal. For example, Q4, Q8, and Q9 restrict object 
variables to be literals by FILTER comparison predi-
cates.  

If an object variable is restricted to be a literal it 
cannot be bound to a URI by a URI-construct predi-
cate. Therefore the is-literal rule eliminates those 
disjuncts from the expanded DNF normalized query 
where the object variable represents foreign keys or 
many-to-many relationships. This eliminates SQL 

code to access foreign keys and links, which reduces 
the number of generated SQL queries.  

5.3.3. The type-match reduction  
The type-match rule reduces SPARQL unbound-

property queries so that SQL comparison conditions 
are issued only on attributes of correct literal types. 
For example, the LIKE predicate must be used on 
textual attributes of type (VARCHAR, TEXT, etc.), 
and arithmetic comparisons must be over numerical 
attributes (INT, DECIMAL, etc.). The rule reduces 
queries where the type of an object variable is re-
stricted by some predicate to be of a specific literal 
type. For example, in Q9 the object variable value 
must be a literal string, which is inferred by the RE-
GEX filter.  

If an object variable is inferred to be of a specific 
literal type, it cannot be bound to a literal of another 
type by the literal-construct predicate. Therefore the 
type-match rule eliminates those disjuncts from the 
expanded DNF normalized query where the object 
variable represents relational column values of non-
matching types. Thus SQL code to access those col-
umns is not generated. 

For example, the attribute pNum1 in table product 
is a number while in Q9 the variable value must be a 
string, and therefore the SQL code generated will not 
access pNum1. The generated query for Q9 contains 
SQL LIKE conditions only for textual attributes (i.e. 
of type VARCHAR, TEXT, etc.). SQL LIKE condi-
tions for other types of attributes are not generated.  

5.3.4. Foreign key relationship (FKR) reduction 
The FKR rule reduces SPARQL unbound-property 

queries where a subject-object join variable is shared 
between two UPTPs, which requires a foreign-key 
constraint.  

The FKR rule eliminates those disjuncts from the 
expanded DNF normalized query where a join sub-
ject-object variable represents values that are not 
foreign keys in the underlying RDB. This reduces the 
number of SQL queries generated. SQL queries are 
generated only where there is a foreign key relation-
ship between the tables referenced by the joined UP-
TPs. 

 For example, for Q10 FKR restricts the SQL gen-
erator to SQL queries only to the tables producer, 
producttype and productfeature, which possess for-
eign keys for the table product represented by prod-
uct:_2549.  



5.3.5. Eliminate S-view reduction 
The eliminate S-view rule reduces unbound-

property queries so that an S-view subject is never 
joined with a subject constructed by the URI-
construct predicate. This rule assumes that user-
overridden URIs in the mapping tables are not pre-
sent in the D-view. This is enforced by the system. 

The eliminate S-view is not needed for bound- 
property queries, because there all binding patterns 
are of form (s, P, o), where P is a URI constant rep-
resenting an attribute of a relational table. This URI 
is not allowed to be in the S-view. Therefore the S-
view is always removed from BPTPs by the view 
specialization. 

In contrast, the S-view will remain in UPTPs after 
specialization. In this case the eliminate S-view re-
duction is applicable when the subject variable of S-
view is matched by a URI-construct predicate in a 
conjunction of the D-view, in which case the con-
junction is eliminated. This occurs for queries where 
an UPTP is joined with another BPTP or UPTP on 
the subject or object variables. This rule is applicable 
on queries Q2, Q5, Q6, Q7, Q8 and Q10. 

For example, Q2 is a SPARQL UNION unbound-
property query where each UNION clause contains a 
join between the UPTP (?subject ?property ?value) 
and a BPTP on the variable ?subject. Both Q7 and 
Q10 are unbound-property queries with a join be-
tween two UPTPs on a subject variable, i.e. the vari-
able ?subject.  

6. Performance of archival queries 

We evaluated the impact of the SAQ query rewrite 
optimizations for the generated SPARQL queries in 
ABench. We compared the performance of SAQ with 
Virtuoso RDF Views [26] and D2RQ [7], all systems 
accessing the same back-end MS SQL Server data-
base. The experiment configuration was the follow-
ing: 

a) The measurements were made on a PC In-
tel(R) Core(TM), 2Quad CPU Q9400 with 
2.67 GHz and 8 GB RAM running 64-bits 
Windows 7 Professional.  

b) The DBMS was MS SQL server 2008 R2 
running on a separate machine with Intel(R) 
Core(TM), i5 CPU 750 with 2.67 GHz and 8 
GB RAM running 64-bits Windows 7 Pro-
fessional. The SQL server was configured 
with 6 GB for the min and max server 
memory. 

c) The RDB data sets were generated by the 
Berlin benchmark data generator and loaded 
into the MS SQL Server. Table 5 summariz-
es the RDB sizes for the experimental data 
sets, together with the corresponding num-
ber of triples in the SAQ RD-view and the 
number of query result triples for Q1-Q10.  

d) Non-clustered, non-unique indexes were put 
on the columns propertyNum1 and proper-
tyNum3 in the table product, and on the col-
umn rating4 in the table review to speed up 
queries Q4 and Q8.  

e) For Virtuoso RDF Views, the RDF view to 

the underlying relational database was gen-
erated on the Virtuoso server (ver. 
06.04.3132, Windows-64) using the Virtuo-
so Conductor tool. The SPARQL queries to 
this RDF view were run from a Java pro-
gram, implementing a Jena Provider [42], 
which allows users to query Virtuoso RDF 
views from Java. Virtuoso was configured 
with the parameter NumberOfBuffers set to 
340000 and the Java heap size was set to 4 
GB.  

f) For D2RQ (v.08.1), the RDF view of the 
underlying RDBMS was generated by the 
D2RQ auto-generated mapping script [6]. In 
the generated script, we inserted the option 
‘d2rq:useAllOptimizations true’ to guaran-
tee that full optimization would be used in 
D2RQ. The SPARQL queries were run from 
a Java program calling the D2RQ Engine 
through Jena2 [6]. The Java heap size was 
set to 4 GB. 

Table 5. RDB sizes and number of result triples  
for Q1-Q10 when using SAQ 

 RDB1 RDB2 RDB3 
Phys. 
size 

184 MB 1.8 GB 9 GB 

Triples 4.28 M 42.48 M 211.4 M 
Q1 4.28 M 42.48 M 211.4 M 
Q2 2.79 M 27.99 M 139.89 M 
Q3 399.83 K 4.002 M 20.01 M 
Q4 12.85 K 127.67 K 640.719 K 
Q5 373.9 K 3.79 M 18.89 M 
Q6 459.31 K 4.29 M 20.48 M 
Q7 2.488 K 23.86 K 119.18 K 
Q8 3.749 K 31.284 K 129.45 K 
Q9 166 1.7 K 8.3 K 

Q10 152 159 123 



g) The default mappings of the analysed sys-
tems SAQ, Virtuoso RDF Views and D2RQ 
were used.  

The following notation is used in the performance 
diagrams: 
•  Virtuoso: Virtuoso RDF Views configured with 

the system default mappings. 
• D2RQ: D2RQ configured with the system default 

mappings. 
• SAQ-naive: SAQ without any rewrites.  
• SAQ-ES: SAQ with the eliminate S-view trans-

formation. 
• SAQ-GCT: SAQ with GCT. 
• SAQ-isLiteral: SAQ with the is-literal transfor-

mation. 
• SAQ-Type: SAQ with the is-literal and type-match 

transformations. 
• SAQ-FKR: SAQ with FKR. 
• SAQ-FKR-ES: SAQ with FKR and eliminate S-

view. 
• SAQ-FKR-ES-GCT: SAQ with FKR, eliminate S-

view and GCT. 
 In all cases, the time spent in executing the query 

by the relational database followed by post-
processing was measured, thus not including the time 
for preparing the SPARQL query by the respective 
system. The measured times did not include the back-
end DBMS query optimization time by excluding a 
first warm-up execution. The actual measurements 
were made five times and the mean values plotted. 
The standard deviation was less than 10% in all 
measurements.   

6.1. Discussion of SAQ query performance 

The performance of SAQ for the SPARQL que-
ries generated by the archival queries in Abench is 
described below. Fig. 5 - Fig. 7 show the execution 
times for Q1-Q10 in seconds for different database 
sizes, SAQ strategies and other systems compared. 

Table 6 summarizes the speed-up of the different 
rewrite optimizations in SAQ compared with SAQ-
naive for the queries Q1-Q10. The speed-up is pre-
sented in the table as the improvement factor relative 
to the execution time of SAQ-naïve. Table 6 also 
shows the number of SQL queries sent to the RDB 
for the different approaches. 

6.1.1. Impact of GCT 
The performance SAQ-GCT for unbound-

property queries was better than that of all other sys-

tems compared. GCT always improves performance 
substantially, by 55-70%, for queries scanning whole 
RDB tables such as Q1 and Q2. Queries Q5 and Q6 
are also unbound-property queries but they scan only 
few columns from different RDB tables and the im-
provement of GCT is lower (35-40%). However, for 
the very selective unbound-property queries Q7, Q8 
and Q10, the improvement of GCT is much better, 
100-200% for Q7 and Q8, and almost 300% for Q10. 
The reason is that without GCT, more SQL queries 
are sent to the RDB and the communication overhead 
dominates when the server time is insignificant.  

The GCT optimization also somewhat improves 
bound-property queries selecting RDF properties that 
represent attributes in the same table, such as Q3. 
With GCT the properties are retrieved by a single 
SQL query per table, rather than one query per prop-
erty without GCT. Thus for Q3 the number of SQL 
queries is reduced from 3 to 2.  

6.1.2. Impact of eliminate S-view 
The eliminate S-view reduction (SAQ-ES) slight-

ly improves (by 1-3%) the performance for unbound-
property queries with one UPTP, i.e. Q2, Q5, Q6 and 
Q8, by reducing the number SQL queries. In contrast, 
eliminate S-view significantly improves the perfor-
mance for unbound-property queries with more than 
one UPTP, where other reductions are not applicable.  
Thus, it improves the performance for Q7 very sub-
stantially, by 970-1400%, and the performance for 
Q10 substantially, by 70%.   

6.1.3. Impact of is-literal, type-match, and FKR 
The improvement by the is-literal reduction 

(SAQ-isLiteral) for Q9 is 100-200%. The reason is 
that without is-literal, an additional nine SQL queries 
selecting foreign key values are generated.  

The type-match reduction (SAQ-Type) further 
improves the performance for Q9 by 200-300%. The 
improvement is because without type-match, 40 un-
necessary SQL queries selecting relational columns 
of type different than VARCHAR are generated and 
sent to the RDB. 

The FKR reduction (SAQ-FKR) enormously im-
proves the performance of Q10, by 60770-580900%, 
by eliminating 1344 SQL queries not joining on for-
eign keys.  
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Fig. 5. Query Performance for Q1 – Q10, RDB1=184 MB. 
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Fig. 6. Query Performance for Q1 – Q10, RDB2=1.8 GB. 
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Fig. 7. Query Performance for Q1 – Q10, RDB3=9 GB.  
 



6.1.1. Bound-property queries 
 
The bound-property queries Q3 and Q4 are pro-

cessed by SAQ-naive by specializing all the BPTPs 
in a conjunction into a single SQL query. Thus both 
Q3 and Q4 are processed by sending three SQL que-
ries, each selecting a single relational attribute in a 
union.  

6.2. Query performance of other systems 

To analyse how the other systems process 
ABench queries, we measured their performance and, 
in addition, inspected what SQL queries were sent to 
the relational database. 

For D2RQ, some measurements caused Java ex-
ception GC overhead limit exceeded and they are 
therefore not presented in Fig. 6 and Fig. 7. Similarly, 
Virtuoso failed in Fig. 5 with the exception message 
“Query too large, more than 65000 variables in 
state” for query Q2 and Q8 with the 184 MB dataset. 

Since both D2RQ and Virtuoso don’t generate for 
their default mapping a triple with the form (subject 
rdf:type rdfs:Class), this triple was excluded from the 
definitions of queries Q2, Q5 and Q6 for these sys-
tems. However, in SAQ neither the query processing 
nor the query result is influenced by the existence of 

the optional triple (subject rdf:type rdfs:Class), 
which is included in the queries for a complete defi-
nition.  

6.2.1. Query performance of D2RQ 
For D2RQ we used the profiling tool of MS SQL 

Server 2008 R2 to obtain the SQL queries sent to the 
DBMS.  

Normally for bound-property queries such as Q3 
and Q4, and for the unbound-property queries with 
one UPTP and no filter such as Q2, Q5 and Q8, 
D2RQ extracts RDB data column-wise as SAQ-naive. 
Thus, an optimization similar to GCT is not used by 
D2RQ, which explains why SAQ-GCT is faster than 
D2RQ for unbound-property queries. 

For Q2, Q5 and Q8, despite D2RQ sending to the 
RDB the same number of SQL queries as SAQ-naive, 
it scales somewhat worse because of the view spe-
cialization of SAQ.  

For Q4, D2RQ sends to the RDB three SQL que-
ries without comparisons, while SAQ-naive sends 

three queries each including a comparison. Therefore 
D2RQ selects a much larger result set than needed 
and its performance is much worse than that of SAQ, 
since it does not utilize any index. Furthermore, Q4 
could not be successfully processed by D2RQ for the 
largest data set of 9 GB, since the Java exception GC 

Table 6. Speed-up (in times) for the SAQ rewrite optimizations and number of SQL queries sent to the RDB compared with SAQ-naive 

Rewrite 
Query 

SAQ-naive GCT ES is-literal type-match FKR 

Q1- speed up 1 1.63-1.72     
Q1-SQLqueries 84 10     
Q2- speed up 1 1.55 1.01 - 1.03    
Q2-SQLqueries 35 4 33    
Q3- speed up 1 1.15     
Q3-SQLqueries 3 2     
Q4 - speed up 1      
Q4-SQLqueries 3      
Q5- speed up 1 1.35 - 1.37 1.01 - 1.02    
Q5-SQLqueries 20 3 19    
Q6- speed up  1.37 – 1.39 1.015    
Q6-SQLqueries 37 5 34    
Q7- speed up 1 2-2.4 974 - 1450    
Q7-SQLqueries 102 2 16    
Q8- speed up 1 2-3 1.04 - 1.05    
Q8-SQLqueries 22 3 21    
Q9- speed up 1   2 - 3 3 - 4  
Q9-SQLqueries 76   67  27  
Q10- speed up 1 3.8 1.7 

 
  60775- 

580912 
Q10-SQLqueries 1385 4 

(SAQ-FKR-
ES-GCT) 

22 
(SAQ-FKR-
ES) 

  41 
(SAQ-FKR) 



overhead limit exceeded was triggered. The reason is 
that the system tried to materialize in the Java heap 
entire columns retrieved from the RDB.  

For Q1, which selects all RDB tables, D2RQ 
makes a special optimization and sends fewer queries 
to the RDB and therefore outperforms SAQ-naive. 
However, SAQ-GCT still outperforms D2RQ for Q1 
because even fewer SQL queries are generated.  

To process Q6, D2RQ sends to the RDB an SQL 
query for each column in the RDB and does the fil-
tering as post-processing, which does not scale well. 
SAQ-naïve scales much better for Q6, since the view 
specialization reduces the query substantially. The 
only SQL queries evaluated are those that select col-
umns from tables fulfilling the filter condition, i.e. 
the tables product, productfeature, and producttype.  

For Q7, D2RQ sends to the RDB around 1000 
SQL queries accessing all RDB tables. The view spe-
cialization of SAQ-naïve outperforms D2RQ here by 
sending to the RDB much fewer SQL queries, i.e. 
107 queries accessing only the tables whose attrib-
utes fulfil the filter condition, i.e. the producer and 
vendor tables.  

Q9 is processed by D2RQ by sending to the RDB 
17 SQL queries selecting values from all tables row-
wise. All filtering is done by post-processing the ex-
tracted RDB values, which does not scale. In contrast, 
SAQ utilizes is-literal and type-match to send SQL 
queries with LIKE predicates to the DBMS, which 
utilizes indexes.  

D2RQ uses an optimization similar to the FKR 
optimization of SAQ for processing Q10. Here 
D2RQ sends to the RDB 21 SQL queries selecting 
column-wise values from the tables producer, 
producttype and productfeature as SAQ-FKR-ES. 
GCT further improves the performance of SAQ-
FKR-ES-GCT.  

6.2.2. Query performance of Virtuoso 
The debug logging of Virtuoso was used to inves-

tigate how it translates the SPARQL queries and 
what SQL queries were sent to the RDB.  

The bound-property UNION query Q3 with no 
filters is processed by Virtuoso by sending to the 
RDB the same SQL queries as SAQ-naïve. Here, 
Virtuoso performs worse than SAQ-naive since it 
tries to materialize in main memory the large result 
set, while SAQ streams the result.  

For the bound-property UNION query Q4, which 
has a filter on each selected property, Virtuoso sends 
two SQL queries with arithmetic comparisons exact-
ly as SAQ-naive and additionally one or many pa-

rameterized SQL queries that do not contribute to the 
result. The latter is the reason for the worse perfor-
mance.  

For the selective unbound-property query Q8, 
Virtuoso sends to the RDB SQL queries extracting 
product data in a column-wise manner, as SAQ-naïve. 
An optimization such as GCT is not used. Despite 
that, for Q8 Virtuoso outperforms SAQ-GCT since 
the result set is very small and cached on the client 
during the first run, while for the next runs it is read 
directly from main memory.  

Virtuoso processes the non-selective unbound-
property query Q1 by sending to the RDB an SQL 
query for each column as SAQ-naïve. It scales much 
worse than SAQ-naïve since it does not use GCT and 
tries to materialize in memory the very large result 
set.  

For the unbound-property queries Q2, Q5 and Q6, 
Virtuoso sends to the RDB an SQL query for each 
selected column as SAQ-naive and in addition a large 
number of parameterized queries. For the larger da-
tabase more than 1000 queries are sent to the RDB. 
Therefore it performs very badly.  

Query Q7 could not be processed by Virtuoso. 
The following message was received: The SPARQL 
optimizer has failed to process the query with rea-
sonable quality.  

The text matching query Q9 is processed by Vir-
tuoso by sending to the RDB SQL queries selecting 
column-wise attribute values from all tables followed 
by filtering as post-processing, which does not scale. 
Optimizations similar to is-literal and type-match are 
not used.  

Finally, for Q10 Virtuoso sends to the RDB a 
number of SQL queries accessing all tables in the 
RDB. It does not use an optimization similar to FKR 
but nevertheless outperforms SAQ-naïve, since much 
fewer SQL queries are sent to the RDB. SAQ-FKR-
ES-GCT is still faster. 

7. Related work 

The related work on preservation of relational da-
tabases, mapping relational databases to RDF, and 
query processing of unbound-property queries is re-
viewed. 

7.1. Long-term preservation of relational databases 

Testbed [40], SIARD [41] and RODA [20] are 
projects that have developed strategies for long-term 



preservation of relational databases based on XML. 
In both Testbed and RODA the data and metadata of 
relational databases are preserved as XML. SIARD 
has an own format for preservation which is based on 
XML and SQL1999, and the industry standard ZIP. 
In contrast, in SAQ we use RDF to represent the rela-
tional database to archive. Both XML and RDF are 
neutral data formats that don’t rely on current DBMS 
technology and provide hardware and software inde-
pendence. These make both of them suitable for 
long-term preservation of databases. However, RDF 
has the following advantages comparing to XML. In 
RDF the identifiers are URIs which are universal 
global unique identifiers that allow identifiers from 
one database or table to be linked with identifiers 
from other data. Data can be represented as XML in 
many different ways depending on a defined DTD or 
XML schema [21] while the RDF-Schema (RDFS) in 
RDF provides standard meta-data representation for 
describing all kinds of data, including relational da-
tabases [11]. Furthermore, representing relational 
data as RDF allows migration from RDBs to RDF 
repositories which are gaining increasing popularity 
compared to XML native repositories.    

In the above mentioned related approaches the en-
tire relational database, both the data and schema are 
migrated into XML or XML based format and stored 
in a file. By contrast, in SAQ we provide selective 
archival of user-specified parts of a relational data-
base as RDF using an extended SPARQL query lan-
guage, A-SPARQL. 

CSV is a recommended data format for long-term 
preservation of structured data in Florida Digital Ar-
chive [46] and Library Archives Canada [47]. We 
have not considered CSV format since the CSV 
dumps provided for archiving relational databases do 
not include meta-data, which is important to recon-
struct archived databases. 

7.2. Mapping and querying relational databases as 
RDF 

Virtuoso RDF Views [26][27], D2RQ [7][8], and 
SquirrelRDF [18] are other systems that allow map-
ping of relational tables and views into RDF to make 
them queriable by SPARQL. These systems imple-
ment compilers that translate SPARQL directly to 
SQL. In contrast, SAQ first generates Datalog que-
ries to a declarative RD-view of the relational data-
base, and then transforms the SPARQL queries to 
SQL, based on logical transformations. We have 
shown that query transformations on this representa-

tion significantly improve performance for SPARQL 
unbound-property queries selecting RDB contents to 
archive.  

The system closest to SAQ is Ultrawrap [17][18] 
where, like in SAQ, an RDF view over a relational 
database is generated as a union of sub-views. While 
the RDF view in Ultrawrap is defined in SQL in a 
specific SQL dialiect, in SAQ the view is defined in 
an object-oriented Datalog dialect and thus it is inde-
pendent on the RDBMS. Furthermore, since the view 
in Ultrawrap is defined in a concrete RDBMS the 
query optimizations are also dependent on the 
RDBMS, and thus the performance measurements in 
[18] show different results in different systems. By 
contrast, in SAQ the proposed optimizations are 
made in the SAQ query processor and are not de-
pendent on the back-end RDBMS. 

Unlike SAQ, neither D2RQ, nor Virtuoso, nor Ul-
trawrap includes the schema view in the RDF view of 
RDBs. The inclusion of the S-view is very important 
when archiving relational databases, since the data-
base schema is needed to reconstruct an archived 
database. The logical rewrites of SAQ enable scala-
ble processing over full RDF views, including the 
schema part. 

7.3. Optimizing unbound-property queries and 
disjunctive queries 

 We did not find any published data on how D2RQ 
compiles SPARQL queries into SQL. The documen-
tation on Virtuoso is very limited. However, by using 
the profiling tool of the DBMS and the debug log-
ging of Virtuoso, we were able to analyse what que-
ries were actually sent to the underlying RDB. This 
showed that neither D2RQ nor Virtuoso uses optimi-
zation for unbound-property queries similar to the 
SAQ rewrite optimizations GCT, is-literal and type-
match. D2RQ uses an optimization similar to FKR to 
process queries with a join variable shared between 
two UPTPs, such as Q10. 

SquirrelRDF also allows SPARQL queries to rela-
tional tables, but it does not support unbound-
property SPARQL queries.  

Ultrawrap tries to completely translate SPARQL 
to semantically equivalent SQL, without any pre- or 
post-processing. This is problematic for unbound-
property queries, and in [18] the authors state that a 
SPARQL unbound-property query “doesn’t have a 
concise, semantically equivalent SQL query”. In con-
trast, SAQ generates an execution plan where SQL 
queries are submitted to an RDB, and then streamed 



post-processing constructs URIs, RDF literals, and 
triples. We could not find any published data on how 
Ultrawrap translates SPARQL unbound-property 
queries to SQL. Nevertheless, there are experimental 
results with Ultrawrap on unbound-property queries 
in [18] and it can be concluded from these that Ul-
trawrap has no special optimizations. It is shown in 
[18] that an Ultrawrap query for unbound-property 
query performs worse than a “Native SQL” query, i.e. 
a translated SQL query did not exploit the relational 
model as well as a native query.   

Rather than semantic transformations directly on 
the original SPARQL code, SAQ makes all query 
transformations on Datalog expressions. The ad-
vantage with this approach is that it is a very general, 
well understood, and easy to extend with new trans-
formation rules, if so needed. We have shown that 
the approach is possible without loss of efficiency.  

Work on optimizing disjunctive database queries 
in general is described in [1][14][25]. The closest 
work to GCT is the combinatorial algorithm [25], 
which merges disjuncts with common sub-
expressions in general disjunctive logical expression 
in order to avoid repeated evaluation of the same 
predicate on the same tuple. In contrast, the purpose 
of GCT is to group in a DNF predicate query frag-
ments that can be translated to SQL, and GCT is 
therefore a simpler linear algorithm. The idea of by-
pass evaluation of disjunctive queries in [1][14] is 
based on implementing specialized operators that 
produce two output streams: the true-stream of the 
tuples that fulfil the operator’s predicate and the 
false-stream of the tuples that do not match. The 
main benefit of the technique of bypass evaluation is 
in eliminating duplicates by avoiding unnecessary 
join operators. The purpose of GCT is not duplicate 
elimination, but to rewrite complex disjunctive que-
ries for faster execution. 

8. Conclusions and future work 

An approach was presented for selective scalable 
long-term archival of RDBs as RDF in terms of 
SPARQL queries, implemented in the SAQ system. 
The proposed approach is suitable for archiving re-
search data used in scientific publications where it is 
desirable to preserve only selected parts of an RDB. 
The archival of user-specified parts of a RDB is spec-
ified using an extension of SPARQL, A-SPARQL, 
having an archival statement for selective archival. 

The SAQ system for long-term preservation of re-
lational databases follows conceptually the OAIS 
reference model. In particular, this work concentrates 
on the functionality of the Ingest component in the 
OAIS model on generating the content information 
when preserving relational database content as RDF. 

To evaluate the performance of typical archival 
queries, the ABench was defined that archives select-
ed parts of databases generated by the Berlin bench-
mark data generator. In experiments, the SAQ opti-
mization strategies were evaluated by measuring the 
performance of A-SPARQL queries selecting triples 
for archival queries in ABench. 

SAQ automatically generates an RDF view of an 
RDB called the RD-view. The RD-view can be que-
ried and archived with A-SPARQL queries that are 
translated into SQL queries sent to the RDB. An ar-
chival query internally generates a corresponding 
CONSTRUCT SPARQL query. Since the archival 
query usually selects sets of attributes of tables to 
archive, the generated CONSTRUCT SPARQL que-
ry is typically an unbound-property or UNION query. 
To achieve scalable data preservation and recreation 
for such queries, SAQ uses some special query re-
writing optimizations presented in this paper.  

Using ABench queries and data generated by the 
Berlin benchmark generator, the rewriting optimiza-
tions were experimentally shown to improve query 
execution time compared with naïve processing. 
Compared with not using the optimizations, they 
reduce the number of SQL queries to execute and 
retrieve data in relational row order rather than in 
column order. The performance of SAQ was com-
pared with that of other systems that support 
SPARQL queries to views of existing relational data-
bases. It was shown experimentally that SAQ with 
the rewrite optimizations performs better than those 
systems for all queries returning large results. In gen-
eral, the SAQ optimizations are useful not only for 
archival queries, but also for unbound-property and 
UNION queries.  

Future work will include defining and evaluating 
new query rewrites for further improving the perfor-
mance, for example for free text searches of RDB 
when data are archived based on LIKE. Another ex-
tension would be to perform the archiving based on 
what is reachable from a set of root data nodes, i.e. 
based on SPARQL queries with path expressions[31]. 
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