
OUR FOCUS
The authors have recently experienced difficulties in the
transfer of design knowledge from designer to developer.

The CHILI application in particular is the successor of an
another teleradiology application where the initial design
and specification phase did not guide the implementors
enough, resulting in a system which was different from the
expected one. [2]

The focus of this paper is to informally discuss the design
process and the key design decisions made for the CHILI
application. 

DESIGN PROBLEMS
Image Size
It is well known in the image processing community that
there is too little space vertically on the screen. This is
caused by the fact that most screens have a higher resolution
horizontally which usually makes the resizing of images
limited by vertical space. The images in radiology are nor-
mally 512 x 512 pixels, so the optimal area for images has
the shape of a square, which means that one can resize
images more naturally simply by a scaling factor.

The user’s general wish is to have the image area as large as
possible.

Constraint
The obvious restricting factor is that we may not simply
enlarge the images as much as the screen size allows,
because we still need a system which is possible to use in an
efficient way. E.g. we still need to be able to view patient
data efficiently, search and navigate the patient database,
etc.

Usability Issues
As the case is for most computer applications, the end-user
community is heterogeneous. This is not only caused by dif-
ferent levels of computer experience, but also by the fact
that there will be different categories of users targeted by
the system. These categories range from general practition-
ers to expert radiologists to technical staff.

Constraint
The mixed user community is of more concern than might
first be thought at; designers are limited in the work process
by having to make a system that novice users are able to
use. It is difficult to support efficiency of work for expert
users at the same time. 

A Teleradiology System Design Case
Erik Borälv Bengt Göransson

Uppsala University Uppsala University
Center for Human-Computer Studies Center for Human-Computer Studies

Lägerhyddvägen 18 Lägerhyddvägen 18
S-752 37 Uppsala, Sweden S-752 37 Uppsala, Sweden

Erik.Boralv@it.uu.se Bengt.Goransson@it.uu.se

ABSTRACT
This paper describes the teleradiology application CHILI
from the graphical user interface point of view. We present
the most important design decisions taken during the con-
struction of the system and discuss different methods and
techniques that affected the design process.

Some non-standard design principles are presented, and the
reasons behind them. Several of the basic GUI constructions
used in the CHILI application are somewhat similar to those
seen in Sun’s HotJava Views™ [3]; the application lacks the
traditional connection to the desktop metaphor and has
instead a work task oriented approach.

Keywords
Design criteria, GUI, teleradiology, work task, patterns.

INTRODUCTION
The chili application is intended for teleradiology using
ISDN communication. Its main characteristics is (i) the abil-
ity to transfer images between users of the chili application,
(ii) the on-line viewing and processing of images, and (iii)
the retrieval of images from external image capturing
modalities. One of the most important purposes of the appli-
cation is to (iv) enable the sharing of expensive resources,
such as high quality film printers, rapid image transporta-
tion and image analysis specialists.

The two authors of the paper were given the task to design
the chili application by means of constructing a working
prototype and to emphasize the power usability aspects (see
quote on next page). The final system would be based on
new user interface design techniques to ensure a longer life-
time of the application. [1]

ORGANISATIONAL CONTEXT
The development team, including the designers, have exten-
sive experience developing computer applications for the
medical field. Application developers in the team are all
medical image researchers by profession and have a thor-
ough understanding of the medical staff’s needs in terms of
functionality and working conditions.

© ACM, 1997. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in Pro-
ceedings of the Symposium on Designing Interactive Systems:
Processes, Practices, Methods and Techniques, August 18-20,
1997, Grand Hotel Krasnapolsky, Amsterdam, the Netherlands.
ACM Press, New York, 1997, ISBN 0-89791-863-0 http://
doi.acm.org/10.1145/263552.263569



“Usability concerns of power users (those with significant 
experience, training, or a professional orientation to the 
product) are often neglected in favor of an emphasis on 
success during initial interactions with a product. This is 
partly due to the compressed time scale (hours) of the typical 
usability test compared with a user’s eventual experience with 
a product (often years). There is also a tension between initial 
usability and efficiency of skilled performance. A focus on 
initial usability elevates learnability above efficiency once up 
a learning curve. While this approach is appropriate for some 
products designed for casual users, it neglects usability 
issues of power users and may inhibit innovation in user 
interface design”. [4]

DESIGN PRINCIPLES
When the specification phase started, the need to categorize
different design criteria according to an expected level of
importance was apparent. At this initial stage one could eas-
ily find more opinions and expectations on the future system
than would be possible to take into consideration. We had to
know what needs were common among both end-users and
developers, but at the same time also to know how impor-
tant the needs were.

We knew that image size alone was the single most impor-
tant factor for a successful application. The target audience
have high demands on their working conditions, and the
importance of image size was emphasized at all user levels.
Once this demand was established, everything else was left
second place — a decision which solved many design obsta-
cles.

Figure 1. The list of criteria (or principles) in order of 
importance.

List of Criteria
It was later on considered an important step, to list the main
characteristics of the system according to importance. Mak-
ing a “top list” will definitely keep the development on track
and avoid many future inconsistencies. The design princi-
ples are not derived from a formal survey, nor are they
intended to be so. Instead they reflect the wishes of the
development team — or maybe even marketing reasons. 

Maintaining the same focus and ideas throughout the whole
development cycle can be troublesome, especially in large
groups of developers and designers. We found the process
of agreeing on a criteria list in the development group being
fruitful and rewarding. It helped to bring a clearer image of
the future system, and served as a common goal during the
development.

We made a listing, documented in a form of Design Pat-
terns, to further elaborate on the list of criteria. The patterns
would be reusable and at the same time serve as documenta-
tion for the development process.

Principle (c1): Image size.
Intent: Make the area for images as large as possible.

Principle (c2): Minimal user load.
Intent: Make the handling of the application as easy as 
possible. No extra load should be put on the user. This 
includes short access paths to functions and minimized 
navigation paths within the application.

Principle (c3): Work oriented.
Intent: The application should map (support) the actual 
work situation (work flow) and domain to further minimize 
the mental load.

Principle (c4): Support multiple user levels.
Intent: The same application should allow both novice and 
expert users to gain maximal usability. There should be no 
expert mode needed.

DESIGN DECISIONS
Layout
Because we aimed at a square shaped area for image view-
ing, this automatically lead to the left and right side place-
ment of the application related functions (the Icon Box and
the Work Task Bar).

Figure 2. The general framework of the CHILI application.

The remaining area (the Work Area) then becomes more
like a square, which means that we can maximize images
more naturally by a scaling factor. By having this kind of
layout we fulfilled our most important criteria (c1).

Single Window
Few projects have the power, knowledge and financial capa-
bility to complete an analysis of the full functionality of the
developed application. Therefore, projects are often, at the
end of the implementation stage, faced with a surprisingly
large set of functions that have not yet been fitted into the
application. These “latecomers” often end up in separate
child windows due to lack of space or planning, and result
in a bad design.

The traditional window handling is a resource consuming
task which practically in all cases take too much attention
from the real work [5]. There are many programs which
simply become impossible to use due to the difficult hand-
ling of the window system itself. 

Having seen too many systems not given a proper design
phase and developers leaving the insertion of functionality
as an excuse for popping up a new window, we decided to

c1. Image size
c2. Minimal user load
c3. Work oriented
c4. Support multiple user levels

Icon
Bar

Work 
Task 
Bar

Work 
area



remove all traditional window handling! The single window
decision was supported by principle c2.
No Desktop
In reality, a single window means we don’t use the desktop
metaphor. A running application will occupy the complete
screen and require to be on top of all other windows.

There are many reasons for not depending on a desktop met-
aphor; the classical desktop metaphor results in a separation
of application and application data. This separated view is
of little use for anyone but a systems developer. A typical
user would, at all times, like to see, access and process the
data through the application, never by itself or separated. [3]

Work Tasks
Without a multiple windows solution available, we split the
most significant functionality into work tasks. This classifi-
cation of basic functions is based on an analysis of the user
needs and a study of the application domain. The resulting
work tasks in our case are: image viewing, image sending,
image database browsing, image printing and adjusting sys-
tem settings. The notion and focus on work tasks is sup-
ported by principle c3. [8]

There is a general need to bring the syntax and semantics of
the user’s domain into the application context. Just by
“speaking the language” of the domain there will be less
misunderstandings and fewer errors made by users. Sadly, it
is a non-trivial task to identify the right concepts. [7] [9]

Figure 3. A sample Work Task Bar on the left. 
The View Task has been selected and is shown 
in reverse video with a different background 
colour.

States
Introducing work tasks means there will be a
small, fixed number of states of the applica-
tion. These states could be presented as “vir-
tual rooms”, “modes” or something similar.
We decided to introduce a static work task
bar where the user would navigate between
the different work tasks and to combine this
with switching screens.
Switched Screens
A switched screen solution means that the
complete screen will be dedicated to one sin-
gle task. If the user changes task, then the
complete contents of the screen changes!

A single screen per work task forces the
design to be more complete from the users
point of view; everything needed to complete
a certain work task has to be present in one
screen, and there will (can) be little or no nav-
igation while performing a specific task. 

A simplified set of functions in each task pro-
motes usability aspects in some sense as it focuses attention
on the main functionality of the application.

We are convinced that this decision will lead to a more
coherent design of user interfaces. There will very likely be
an improved speed of use because of the same reasons.

No Menu Bar
Users will navigate the user interface by selecting work
tasks by mouse clicks or short keys. Having reduced the
level of functionality and having the whole screen available
for a single task allowed us to avoid using the traditional
menu bar.

Our belief is that it is possible to make such a compact
design of each work task, where everything needed within
that specific task would fit directly onto one screen layout.

Folded Areas
We didn’t want to split the application into an expert part
and a novice part because of practical and economical rea-
sons, so we had to find a solution to the conflict between
initial usability and power usability.

The solution was the concept of folded areas, a technique
that allows an expert user to hide away (to fold) some of the
functions he or she does not need to find direct support for
in the GUI. These hidden functions are then accessible by
some other technique, for example keyboard short-cuts or
pop-up menus. The folded area may later be unfolded to its
original size.

This decision is a consequence of applying principle c4, and
c1 to some extent.

Figure 4. The CHILI application in its unfolded state.

LESSONS LEARNED
Folded Areas
Using folded areas we managed to achieve an image area of
about 85% of the screen space available. The resulting 15%
is used for application navigation and control. The image
area contains both the image and all the image related func-
tions.

The corresponding ratio for the unfolded state is 70/30.



Figure 5. The CHILI application in its folded state.

Work Tasks
Focusing on the users work tasks and avoiding the tradi-
tional window handling results in an easier to use system
without compromising the expressiveness for power
users.

Documentation of Design Efforts
We found that discussing with developers and users while
simultaneously running a prototype isn’t sufficient for the
transfer of design knowledge. Only in a few cases were
external people (on their own) able to see which details in
the prototype where carefully designed, and which ones
were not. This applied even in those cases when a specific
detail earlier had been discussed and thoroughly exam-
ined. It seems the importance of certain details in the pro-
totype were difficult to comprehend. 

Written Documentation
Compiling a proper documentation of a complete proto-
type requires enormous efforts. We didn’t find the tradi-
tional way of documenting rewarding enough. Especially
the documenting of decisions that were rejected, so that
these alternatives do not (re-)surface later on, was
exhausting and tedious work. This was made extremely
apparent when we anyway had to override such a docu-
mented rejected decision; this override made some of the
other prerequisites in the documentation obsolete, and
absolutely impossible to trace.

We found no obvious way of documenting explanations
of rejected solutions. When a design solution was “back
tracked” and remodelled, this further complicated the
documentation efforts. The Design Rationale technique
would work fine for both the documentation and educa-
tion aspects, but only when combined with a running pro-
totype. [6] 

Prototype
As mentioned earlier, not even a prototype combined with
verbal explanations were always enough to assert design
intentions. It is in addition only possible to test certain
aspects of a user interface with a prototype. It is straight-

forward to test the speed of learning, but impossible to
test power usability aspects.

However, the main advantage of the prototype is that once
a detail is fully built, there is very little left to explain.

We found a true prototyping environment the most fitting,
meaning implementing the prototype using the target plat-
form libraries. Using a mock-up or a fake prototype is not
enough to test some aspects of the GUI design, and there-
fore we need to implement design ideas within the target
platform. It is also necessary to design ideas all the way,
because the intentions of the designer are difficult to
transfer, no matter what transferring or documentation
method is used.

ACKNOWLEDGMENTS
We thank the CHILI development team at the Tranferzen-
trum Mediziniche Informatik (TZMI) in Heidelberg, Ger-
many, and especially project manager Dr. Uwe
Engelmann.

REFERENCES
1. Borälv E, Göransson B, Olssson E, Sandblad B, Usa-

bility and Efficiency - the Helios approach to develop-
ment of user interfaces, Computer methods and
programs in biomedicine, supplement volume 45,
December 1994, pp. 47-64.

2. Engelmann U et al, Teleradiology System Medicus, In:
Lemke (Ed). CAR `96: Computer Assisted Radiology,
10th International Symposium and Exhibition, Paris.
Amsterdam: Elsevier (1996) 537-542. 

3. Gentner D, Ludolph F, Ryan C, Designing the HotJava
Views™ user environment for a network computer,
Sun Microsystems, Inc. <URL: http://www.java-
soft.com/products/hotjavaviews/hjv.white.html>

4. Karn K, Testing for power usability, CHI ‘97 Work-
shop, March 23, 1997, Atlanta, GA, http://
www.acm.org/sigchi/chi97. Usenet News post on
comp.human-factors on 8 Jan. 1997.

5. Lind, M, Effects of sequential and simultaneous pres-
entations of information, Report no. 19, CMD, Upp-
sala University, 1991.

6. MacLean A, Young R.M, Bellotti V.M.E, Moran T.P,
Questions, options, and criteria: elements of design
space analysis, Human-Computer Interaction 6, 1991.

7. Norman, DA, The psychology of everyday things,
Basic Books, 1988.

8. Olsson E, Göransson B, Borälv E, Sandblad B,
Domain Specific Style Guides - Design and Implemen-
tation, Proceedings of the Motif & COSE International
User Conference, Washington D.C. 1993, pp. 133-139.

9. Patel L.V, Kushniruk W.A, Understanding, navigating
and communicating knowledge: issues and challenges,
Conference on Natural Language and Medical Con-
cept Representation, IMIA WG6, January 19-22 1997.


