
Verifiable Agreement: Limits of Non-Repudiation
in Mobile Peer-to-Peer Ad Hoc Networks

Zinaida Benenson1, Felix C. Freiling2, Birgit Pfitzmann3, Christian Rohner1, and
Michael Waidner3

1 Uppsala University, Department of Information Technology
{zina,chrohner}@it.uu.se

2 University of Mannheim, Computer Science Department
freiling@informatik.uni-mannheim.de
3 IBM Research, Zurich Research Lab

{bpf,wmi}@zurich.ibm.com

Abstract. We introduce verifiable agreement as a fundamental service for
securing mobile peer-to-peer ad hoc networks, and investigate its solvability.
Verifiability of a protocol result means that the participants can prove that
the protocol reached a particular result to any third party (the verifier)
which was not present in the network at the time of the protocol execution.

1 Introduction

1.1 Motivation

The envisioned applications of ad hoc networks often follow the scenario where
a group of nodes meets for a short time, conducts some transaction, such as a
collaborative document editing session, a decision to take some coordinated action,
or dissemination of information to all group members, and then breaks apart,
perhaps forever. We call this type of the network mobile peer-to-peer ad hoc network.

In this scenario, there is no centralized logging of the transaction, no transaction
witnesses, apart from the participants themselves. Thus, to make the result of the
transaction binding, it should be made verifiable. That is, after the transaction
is finished, each participant should be able to prove to some third party which
was not present in the network at the time of the transaction that this particular
transaction (1) happened, (2) was conducted by the certain group of participants,
and (3) reached a particular outcome. We call this problem Verifiable Agreement
on the transaction result. Requiring that each participant be able to carry out the
proof without the help of any other participant seems to be the most safe decision,
as there is no guarantee that any other participant would be reachable at the time
when the proof is conducted.

Verifiable Agreement is a crucial problem for securing mobile peer-to-peer ad
hoc networks. Indeed, especially if such networks are set up in emergency situ-
ations, with participants from different organizations or different countries, the
participants may distrust each other. Unfortunately, as we show below, the non-
repudiation of the decisions made in this situation can only be reached if the ma-
jority of participants can be trusted. This puts a strict restriction on the usage of
this network type for trust-critical applications.

1.2 Agreement and Contract Signing

We denote by Agreement a class of problems where a set of n parties P :=
{P1, . . . , Pn} start with initial inputs x1, . . . , xn. Some parties might be dishon-
est and arbitrary deviate from their programs. All honest parties must eventually,
or with some high probability, terminate and agree on a common result, y, which
is “valid”. Validity defines a particular agreement problem:

– In Interactive Consistency [20], the parties must agree on a vector y, where the
ith element must be xi for all honest parties Pi, otherwise it can be any value.

– In Consensus [9], if there is a value x such that xi = x for all honest parties
Pi, then y = x.

Other agreement problems include Byzantine Generals Problem (also called
Byzantine Agreement) [17], Weak Byzantine Agreement [16], Atomic Commitment
[22], Strong Consensus [10], Validated Byzantine Agreement [15].

In contrast to Secure Multi-Party Computation [12], the inputs of the parties
do not need to be secret or independent.

Contract signing [7] can be considered as an agreement problem where the
parties must agree either on a contract text or on a special value failed, which means
that no contract was signed. The signed contract can be an outcome of the contract
signing protocol only if all honest parties want to sign the same contract text.
The signed contract must be verifiable. Informally, verifiability can be described as
follows:

– Each honest party can convince a verifier V , which knows nothing about a
particular protocol run, that this protocol run yielded the result y.

– If some protocol run yielded the result y, no party can convince V that the
protocol yielded some result y′ 6= y.

The result failed is usually left non-verifiable. This reflects the real-world situ-
ation where no proof of the fact that a contract was not signed is required.

1.3 Related Work

Apart from contract signing, which has been an active research area for several
decades, the only approach to make an agreement problem verifiable, as far as we
know, is undertaken in [22]. There, a specification for verifiable atomic commitment
for electronic payment protocols is presented, but no explicit definition of verifiabil-
ity is given. A different notion of verifiable agreement was introduced in [15]: each
honest protocol participant Pi can convince any other honest participant Pj of its
result, but not necessarily any outsider. Multi-party contract signing protocols are
presented, e.g., in [2, 5, 11]. For an overview of recent work, see also [23].

1.4 Outline and Contribution

After presenting the system model in Section 2, we give a unifying definition of
agreement problems which facilitates rigorous proofs, and define verifiable agree-
ment (Section 3).

We show that in case of dishonest majorities, verifiable agreement cannot be
solved (Section 4). This puts a fundamental limit on non-repudiation of transactions
in mobile peer-to-peer ad hoc networks. In contrast, some agreement problems, such
as Interactive Consistency, can be solved for any number of dishonest parties. We
present a verifiable agreement protocol for honest majorities in Section 5.

Finally, in Section 6, we discuss our system assumptions and the applications
of verifiable agreement.

2 System Model and Preliminaries

2.1 System Model

Let P = {P1, ..., Pn} denote the set of participats of an agreement protocol, and V
denote a verifier.

Let |X| ≥ 2 and |Y | ≥ 2 be two finite sets representing the inputs and the
outputs of individual participants Pi. We assume (w.l.o.g.) that Y contains a dis-
tinguished element failed. For a subset of parties H ⊆ P we denote by XH the set
of all |H|-dimensional vectors with elements from X.

The parties Pi can digitally sign messages, and all parties can verify their signa-
tures. The signature on message m associated with party Pi is denoted by signi(m).

The adversary can a priori choose to corrupt a certain subset of parties. It
has full control over the behavior and knowledge of dishonest parties (Byzantine
failures).

We assume that the adversary, as well as all participating parties, are compu-
tationally bounded. In particular, the adversary cannot forge signatures.

We consider both synchronous and asynchronous networks with reliable com-
munication channels.

In synchronous networks, communication proceeds in rounds. In each round, a
party first receives inputs from the user and all messages sent to it in the previous
round (if any), processes them, and may finally send some messages to other parties
or give outputs to the user.

In asynchronous networks, the sent messages can be delivered in any order
and there is no upper bound on the time of message delivery. However, as the
communication channels are reliable, each sent message is guaranteed to arrive
eventually. The control over the message delivery is given to the adversary. A party
Pi may decide to stop waiting for a certain event E. That means the following:
Before Pi starts waiting for E, it sends to itself a unique timeout message timeout
and waits for this message, too. If timeout arrives first, the party stops waiting for
E and proceeds.

We discuss the viability of these assumptions in the ad hoc networks in Section 6.
Every protocol instance has a unique identifier tid. We assume that all honest

parties are willing to participate in a protocol run with a fresh protocol identifier.

2.2 Preliminary Definitions

Honesty structure formalizes for which sets of honest parties the problem should
be solved4.

Definition 1 (Honesty Structure). An honesty structure H for a set of parties
P is a set of subsets of P such that if H ∈ H and H ⊆ H ′ ⊆ P then H ′ ∈ H.

The definition reflects the intuition that any protocol that works given a certain
set H of honest parties should also work in case there are more honest parties.

Definition 2 (conditions Q2 and Q3, from [13]). An honesty structure H sat-
isfies condition Q2 if H1 ∩H2 6= ∅ for all H1,H2 ∈ H, and it satisfies condition Q3

if H1 ∩H2 ∩H3 6= ∅ for all H1,H2,H3 ∈ H.

A threshold honesty structure Ht for a threshold t < n is a set of subsets of P
such that Ht = {H ⊆ P : |H| > n− t}. A threshold honesty structure satisfies Q2

or Q3 if and only if t ≤ n
2 or t ≤ n

3 , respectively. Thus, the condition Q2 generalizes
the notion of honest majority.

We now define validity functions which will be used in the following to describe
validity conditions of agreement problems.

Definition 3 (Validity Function). Let H be an honesty structure. A validity
function for the sets X, Y , and H is a function F that maps pairs (H,x) ∈ H×XH

to subsets of Y , the allowed outputs. It must satisfy the Non-triviality condition:

– ∀y 6= failed ∃x ∈ XP : y 6∈ F (P, x) and
– ∃x ∈ XP : F (P, x) 6= {failed}.

Non-triviality excludes all consensus problems which can be solved by the triv-
ial protocol which always outputs a constant result y, or always fails. We do not
exclude problems that allow the output failed for all initial inputs, because the
result failed is sometimes unavoidable. However, in this case the non-triviality con-
dition guarantees that there exists at least one protocol run which does not output
failed. In the following, we give examples of validity functions for some well-known
problems.

Consensus with Y = X is described by:

FC(H,x) :=
{
{x} if xi = x ∀ Pi ∈ H
X otherwise.

Interactive Consistency with Y = XP is described by:

FIC(H,x) := {y ∈ XP |yi = xi ∀ Pi ∈ H, yi ∈ X otherwise.},

where yi denotes the ith element of the vector y ∈ XP .

4 The corresponding notion from the area of secret sharing is access structure. An ad-
versary structure [13], which consists of all sets of dishonest parties a protocol can
withstand, is the complement of it.

3 Definition of Verifiable Agreement

We first define agreement problems. Here and further in the sequel, the timeout
messages refer only to the asynchronous model.

Definition 4. An agreement problem for a validity function F (for an honesty
structure H and input and output sets X and Y) is to devise a protocol consensus[]
for parties P1, ..., Pn. In order to start the protocol, a party Pi receives the input
(consensus, tid , xi). Here tid is a transaction identifier unique for all executions of
consensus[], and xi ∈ X is Pi’s local input. Upon termination, the protocol produces
an output (tid , yi) with yi ∈ Y for each Pi.

The following requirements must be satisfied for all sets H ∈ H of actually
honest parties and input vectors x ∈ XH :

– Agreement: There is a y ∈ Y such that yi = y for all Pi ∈ H.
– Validity: yi ∈ F (H,x) for all Pi ∈ H.
– Correct Execution: If all parties are honest, and no party receives any timeout

messages, then for all input vectors x ∈ XP with F (P, x) 6= {failed}, the parties
will never agree on y = failed.

– Termination of consensus[]: Eventually each Pi ∈ H terminates and produces
an output yi ∈ Y .

Correct Execution excludes protocols that always output failed.

We now formalize the verifiability of an agreement.

Definition 5. A verifiable agreement problem for a validity function F is to devise,
in addition to the protocol consensus[], the protocol verify[] which involves only one
party Pi and a verifier V which does not have any knowledge about the execution
of consensus[] or about possible previous runs of verify[].

Party Pi starts verify[] with input (show, V, tid , y) where tid is the transaction
identifier of an execution of consensus[] and y is the result obtained from this execu-
tion. The verifier receives the input (verify, Pi, tid) and eventually obtains an output
(tid , dV) where dV ∈ {(y, accepted), verify failed}. The following requirements must
be satisfied in addition to those from Definition 4 for an honest verifier V and all
sets H ∈ H of actually honest parties:

– Verifiability of Correct Result: If Pi ∈ H obtained the output (tid , y) for
y 6= failed from consensus[] and later receives the input (show, V, tid , y), and
if V receives the input (verify, Pi, tid), then V will obtain the result dV =
(y, accepted), provided no timeout messages are received during the protocol.

– Non-verifiability of failed: The verifier V never decides (failed, accepted) on any
input.

– No Surprises: If some Pi ∈ H obtained (tid , y) from consensus[], then V never
obtains the result dV = (y′, accepted) on input (verify, Pj , tid) for any party Pj

and y′ 6= y.
– Termination of verify[]: Each V and each Pi ∈ H eventually terminate.

♦

No Surprises says, in particular, that if some honest party Pi never started or
not yet finished consensus[] for some tid, then the verifier cannot accept any result
y for tid from some party Pj , honest or dishonest, unless Pi is guaranteed to obtain
y for tid.

We now show how to define the contract signing problem within our framework.

Definition 6. Contract signing is a verifiable consensus problem described by the
following validity function:
X := C ∪ {reject}, where C is a finite set of contract texts that can be signed,
Y := C ∪ {failed}, and H is the power set of P . Then:

FCS (H, x) :=
{
{contr, failed} if ∃ contr ∈ C such that xi = contr ∀ Pi ∈ H
{failed} otherwise.

♦

It is possible to show that the above definition of contract signing and the
“usual” definition from, e.g., [2] are equivalent. We omit this proof due to space
limit.

4 Impossibility of Verifiable Agreement for Dishonest
Majorities

We show that if Q2 (which generalizes the notion of honest majority) is not satis-
fied, then the Verifiable Agreement problem cannot be solved even in synchronous
networks. In contrast, some agreement problems, e.g., Interactive Consistency, can
be solved deterministically in this setting for any honesty structure [20]. As the
synchronous network is the most strong network model, this result implies non-
solvability for all other network classes.

In section 4.1 we show that no deterministic protocol can solve verifiable agree-
ment for dishonest majorities. In section 4.2 we show that any probabilistic verifi-
able agreement protocol in case Q2 is not satisfied has the error probability at least
inversely linear in the number of protocol rounds. This means that in order to make
the error probability of the protocol exponentially small, an exponential number
of rounds is needed, which is unacceptable due to the computationally bounded
protocol participants.

4.1 No Deterministic Verifiable Agreement for Dishonest Majorities

Theorem 1. No synchronous deterministic protocol can solve Verifiable Agree-
ment if condition Q2 is not satisfied.

Proof. Let H be an honesty structure which does not satisfy Q2, F be a validity
function for H and input and output sets X and Y . Assume that there is some
protocol π which solves the verifiable agreement problem specified by F determin-
istically in r rounds.

If H does not satisfy Q2, then there are sets H1,H2 ∈ H such that H1∩H2 = ∅.
We assume, w.l.o.g., that H1 ∪H2 = P , i.e., H1 = H̄2.

In this case, it is possible to collapse all parties in H1 into one (new) party
P̃1, and all parties in H2 into a new party P̃2. The new resulting protocol π̃ runs
exactly as the protocol π, but all messages sent in π between the parties in the
set H1 (H2, respectively) now belong to the internal state of party P̃1 (P̃2) in the
corresponding protocol run of π̃. Therefore, it is sufficient to consider only the
two-party case P = {P1, P2} in our impossibility proof.

First note that the non-triviality of validity function F implies that there are
at least two different results for π in the all-honest case. One of them must be
verifiable (i.e. unequal to failed). Furthermore, if some result y is allowed in the all-
honest case, then that y must be an allowed result in case only one of the parties
is honest, as the dishonest party might behave like honest in a protocol run.

We now show that party P1 cannot obtain any verifiable result without com-
munication with party P2. Assume that it can be done, i.e., P1 can obtain some
verifiable result y1 from some protocol run. Then the non-triviality of F implies
that there is some result y 6= y1, verifiable or non-verifiable, which can be obtained
in the all-honest case. Assume that P1 is dishonest, P2 is honest. If the parties run
π for some tid and party P1 behaves like honest, then they can obtain the result y.
At the same time, party P1 can execute π for the same tid without party P2 and
receive the verifiable result y1, which contradicts No Surprises (Definition 5).

The remaining case is the one where P1 and P2 must be able to obtain some
verifiable result from the protocol and need to communicate with each other in
order to do so. We assume, w.l.o.g., that the parties send messages to each other in
each round, as we can always force them to send dummy messages. Consider some
protocol run run1 where both parties P1 and P2 are honest and obtain a verifiable
result y after r rounds, see Figure 1. Honest parties are drawn as circles, messages
sent in each round from P1 to P2 and vice versa are shown as diagonal lines. The
round where the party Pi gains the result y from the protocol run is indicated as
a black point.

r!1

P1 P2 P1 P2P2 P1

run3

r

y

run1

r

1

2

y

run2

2

y

r
yy

y

11

r!1r!1

r!2

Fig. 1. No deterministic verifiable consensus for dishonest majorities. In run1, both par-
ties are honest. In run2, party P1 is dishonest. In run3, party P2 is dishonest.

Now we consider the protocol run run2 where party P1 is dishonest. It does not
send any protocol messages in the last round, but all other messages are sent as in
run1. As the honest party P2, however, send its messages in the last round, party
P1 gets all messages it needs to obtain the verifiable result y in round r. Then, as
π must satisfy No Surprises (Definition 5), party P2 must obtain the output y as
well. As P2 does not receive any messages after Round r − 1, it obtains y in this
round.

Thus, party P2 can obtain y after it received all messages up to round r − 1.
Consider yet another protocol run, where P2 is dishonest, but P1 is honest. Until
round r− 2 both P1 and P2 send their messages exactly as in run1. In round r− 1,
however, P2 stops sending messages. It receives the messages from P1 in round
r− 1 and therefore, obtains y. However, party P1 must obtain y, too, as explained
above. Thus P1 can obtain y after round r − 2.

We continue to construct the chain of protocol runs starting from run1 where
the parties need less and less messages to obtain y. In this manner, we will arrive
at the the protocol run where parties P1 and P2 do not need to communicate at
all to obtain y, which contradicts the initial assumption. Therefore, the protocol π
does not exist.

�

4.2 Error Probability of Probabilistic Verifiable Agreement for
Dishonest Majorities

Theorem 2. The error probability of any probabilistic synchronous verifiable agree-
ment protocol in case Q2 is not satisfied is unacceptable large, i.e., at least inversely
linear in the number of protocol rounds.

Proof. We first note that any n-party verifiable agreement in case Q2 is not satisfied
can be transformed into a 2-party verifiable agreement problem, see Section 4.1.
We then describe an adversary which makes the error probability of any 2-party
verifiable agreement protocol which terminates in expected r number of rounds at
least 1

3r only by causing the corrupted party to stop sending messages in some
round i.

Let P = {P1, P2} and H = {{P1}, {P2}, {P1, P2}}, and let F be a validity
function for H. Let π be a probabilistic synchronous 2-party verifiable agreement
protocol for F which terminates in an expected finite number of rounds.

We assume, w.l.o.g., that in a synchronous probabilistic protocol π between P1

and P2 the parties alternate in sending messages. Further, we assume that each
party can get some result accepted without communication with the other party
with probability at most 1

3 and that there is a finite number of rounds r such that
the result is accepted with probability at least 2

3 after that round.
We complete the protocol such that it always runs at least r rounds. If it would

terminate already in round s < r we just let the parties wait till round r.
We consider only a very weak adversary: it can select the initial inputs for P1

and P2 and a number i ∈ {1, ..., r} such that the protocol is interrupted in round i.
The interruption is done by the party which should be sending in this round. The
interrupting party accepts the message sent by the honest party in round i − 1,

but sends nothing in round i and ceases to participate in the protocol run. The
corresponding honest party then gets its result in round r.

The adversary is successful if No Surprises or Verifiability of Correct Result
(Definition 5) are violated, i.e. if the dishonest party is able to convince the verifier
V of a certain value, but the honest party is not able to do this.

Let F ({P1, P2}, (x1, x2)) 6= {failed}. Consider adversaries which select (x1, x2)
as input vector. Let Ai be the adversary which interrupts the protocol run on input
(x1, x2) in round i ≤ r.

After the protocol is interrupted in round i, the uncorrupted party obtains some
result in round r. The corrupted party obtains some result from the protocol run in
round r, too, as it can pretend to be honest and to have not received any protocol
messages after round i.

Let Ei denote the event that an honest verifier V accepts the output the dishon-
est party obtained after interrupting the protocol run in round i. The probability
that it happens is denoted as P (Ei). Then V accepts the output of the honest party
in this protocol run with the probability P (Ei−1). E0 denotes the probability that
the output of the honest party is accepted if the interruption happens before round
1. Then P (E0) = P (E1) ≤ 1

3 , P (Er) = 2
3 , and the error probability of the protocol

run with an adversary Ai is P (Ei ∧ Ei−1), i ≤ r.
Let Amax be the adversary Ai that maximizes the error probability. We first

show the following lemma:

Lemma 1. Let ε be a value such that for all rounds i ≤ r of a protocol P (Ei ∧
Ei−1) ≤ ε. Then ε ≥ (P (Er)− P (E0))/r.

Proof. (of the above lemma) For all i ≤ r we have P (Ei) = P (Ei ∧Ei−1) + P (Ei ∧
Ei−1) ≤ P (Ei−1) + ε, thus P (Ei)− P (Ei−1) ≤ ε. From that we can conclude that
P (Er) − P (E0) = (P (Er) − P (Er−1)) + (P (Er−1) − P (Er−2)) + ... + (P (E2) −
P (E1)) + (P (E1)− P (E0)) ≤ rε and thus, ε ≥ (P (Er)− P (E0))/r.

�

Proof of Theorem 2 (continued):
Amax’s probability of success is

δmax := max{P (E1 ∧ E0), ..., P (Er ∧ Er−1)}

Thus we know that P (Ei ∧Ei−1) ≤ δmax. Applying Lemma 1 with ε := δmax yields
δmax ≥ 1

3r , as P (Er)− P (E0) ≥ 2
3 −

1
3 = 1

3 .
�

Remark 1.
A weaker version of Theorem 2 has been already proven in [6]: Their Theorem 1
shows that if a contract signing protocol terminates in r rounds, and if for some
values δ, ε for all rounds i

P (Ei) > δ ⇒ P (Ei−1|Ei) < ε (1)

then

r ≥ log(δ)
log(1− ε)

+ 2

which is approximately equal to ε−1 log(δ−1).
Equation 1 implies P (Ei−1 ∧ Ei) ≤ max{δ, ε}, and applying Lemma 1 yields

max{δ, ε} ≥ 1/r, which is basically Theorem 1 of [6].
The fact that Equation 1 implies our condition (but not vice versa) was already

observed in [6]. Since we want to prove that there is no 2-party protocol which
succeeds with high probability, the weakest possible definition of success is the
most preferable one.

�

5 Verifiable Agreement for Honest Majorities

We first show how to extend any agreement protocol for honesty structures satis-
fying the condition Q2 to a verifiable agreement protocol (Section 5.1). We present
a combined protocol for synchronous and asynchronous networks.

In Section 5.2, we present a contract signing protocol for honest majorities. Note
that usually contract signing should be able to withstand any number of dishonest
parties as long as at least one honest party participates in the protocol. In this case,
there is no chance to sign a contract in an ad hoc peer-to-peer group. However,
in case the majority of parties can be trusted, our protocol is the first one which
enables contract signing in this setting.

5.1 A Verifiable Agreement Protocol for Honest Majorities

Protocol 1. Let π be an agreement protocol (Definition 4) for an honesty struc-
ture H, input and output sets X and Y and a validity function F .

– consensus[]:
1. The parties first run the protocol π on their inputs xi for the identifier tid.

As soon as a party Pi obtains output yi 6= failed, it sends mi := signi(tid , yi)
to all participants.

2. We call any set M = {signj1(tid , y), . . . , signjk
(tid , y)} where {Pj1 , ..., Pjk

} ∈
H a proof set for (tid , y). Pi waits until it has received a proof set for
(tid , yi).

– verify[]: The verifier V accepts the result y for some tid if and only if it receives
a proof set for (tid, y) where y 6= failed.

♦

Theorem 3. Protocol 1 solves Verifiable Agreement under the condition Q2 in both
synchronous and asynchronous networks.

Proof. (sketch)
We only show the less obvious requirements.
Termination of consensus[] (Definition 4): Let H ∈ H be the actual set of honest

parties. Then all honest parties Pi ∈ H start π, terminate with the agreement on
some result y and send the signed result (message mi) to all parties (we assume
that Pi sends mi to itself as well). Thus, eventually each honest party Pi receives
a proof set and terminates, as we assume reliable communication.

No Surprises (Definition 5): Let H be the actual set of honest parties, and
assume that the verifier V receives a proof set for some y ∈ Y with H ′ ∈ H as
the set of all signatories of y. Since H ∩H ′ 6= ∅, there is at least one honest party
Ph ∈ H ′, and as Ph signed y, it must be the correct result.

ut

Remark 2. If a protocol solves some agreement problem in asynchronous net-
works, the corresponding honesty structure must satisfy Q3 [8]. If Q3 is satisfied,
then Q2 is also satisfied. Therefore, in asynchronous networks, any agreement prob-
lem can be solved with verifiability, if it can be solved at all.

�

5.2 Contract Signing for Honest Majorities

Applying the construction of Protocol 1 to the binary Consensus problem with X =
Y = {0, 1} (see Section 2.2), we construct contract signing for honest majorities.

Protocol 2. Let π be a protocol that solves binary Consensus, and let (sign, tid , xi)
be the input of the party Pi for the contract signing protocol. As previously, we
present a combined protocol for synchronous and asynchronous networks.

(1) If Pi ∈ H wants to sign the contract (xi = contr), then it sets c :=
(tid, contr) and sends the promise to sign contr for tid to all parties: m1,i :=
signi(c, sign). We call M := {sign1(c, sign), ..., signn(c, sign)} a minor proof set for
c.

Pi tries to collect such a minor proof set for c. On asynchronous networks, Pi

can stop the collection process any time, on synchronous networks Pi waits until the
next round. If Pi succeeded in collecting a minor proof set, then it sets vi := true,
otherwise it sets vi := false.

If Pi does not want to sign the contract (xi = reject), then it sets vi := false.

(2) Protocol π is executed with input vi. Let di be the result Pi obtains from
this protocol run.

(3) If Pi decides di = true then it sends signi(c) to all parties.
We call any set Mtid = {signj1(c), ..., signjk

(c)} with {Pj1 , ..., Pjk
} ∈ H major

proof set for contr. Pi waits until it receives such a major proof set and then
stops.

The verifier V decides (tid, contr, accepted) if and only if V receives a major
proof set for contr.

Theorem 4. Protocol 2 solves contract signing under condition Q2.

Proof. (sketch) We have to show that the protocol achieves verifiable consensus for
the specific validity function FCS (Def. 6). As previously, we present only the more
important parts of the proof.

Validity (Def. 4): If not all honest parties wish to sign the same contract, or no
contract at all, then no party will receive a minor proof set. Thus, all honest parties
will start π with the input false, and π will yield the result false according to the

definition of Byzantine Agreement. Therefore, all honest parties output failed, as
required.

In case all honest parties wish to sign the same contract contr both outputs
contr and failed are allowed.

No Surprises (Def. 5): Assume that the verifier V obtained the result (tid, contr, accepted)
from some party Pj . Then, Pj must have shown to V a major proof set for contr
with the set of signatories H ′. The condition Q2 implies that there is some honest
party Ph in H ′. Then Ph received the minor proof set for contr, which means that
all honest parties received the input contr. Besides, Ph must have received true
from π, and therefore, all honest parties received or will receive the output true
from π and therefore, the result contr.

ut

6 Discussion

6.1 System Assumptions

Most debatable assumption in our system model is reliable communication. In
fact, many cryptographic protocols for peer-to-peer ad hoc networks, most notably,
group key agreement protocols [3, 4, 21], also make this assumption. This can be
justified by relying on reliable group communication services, such as [18,19].

Another assumption is the ability of the parties to digitally sign their messages.
This requires a public-key infrastructure, such as described, e.g., in [14]. For an
overview of authentication mechanisms in ad hoc networks, including issues related
to the public key infrastructure, see [1].

6.2 Applications

Verifiable Agreement applies to situations where the result of a transaction should
be used in the future. One class of such situations arises when a distributed database
is implemented in the ad hoc network and is replicated across some specified nodes,
the servers. In this case, transactions conducted in the absence of the servers,
should be communicated to them as soon as possible. Consider, for example, the
distributed public-key infrastructure in [24]. Using verifiable agreement of the client
nodes on the exclusion of “bad” nodes form the network, each agreement partici-
pant can submit the exclusion decision to the service for the purpose of certificate
revocation.

Another important scenario arises when the transaction conducted by the node
in the peer-to-peer group should be used in another context. Consider a meeting
which is set up in ad hoc manner, perhaps in an emergency situation, where several
organizations from different organizations or countries do not trust each other.
They collaboratively edit an important document which they should present in
their organizations after the meeting. This document may be, e.g., the minutes of
the meeting. It is important to fix the current document state, such that no single
party is able to change the local copy of the document undetected. Usually, this can
be done using a transaction logging by a trusted site. In the absence of a trusted
site, the participants may sign the commitments to the document using a contract

signing protocol. To do this, however, as we showed earlier, more than the half of
the participants should be trusted not to cheat. In the full version of this paper,
we present a contract signing protocol for honest majorities which can be used in
the above situations.

6.3 Conclusion

We introduced the notion of Verifiable Agreement, and showed its applicability in
mobile peer-to-peer ad hoc networks. Limits on the solvability of Verifiable Agree-
ment show that the non-repudiation of any action without relying on an infrastruc-
ture requires placing trust into the majority of the participants.

References

1. N. Aboudagga, M. T. Refaei, M. Eltoweissy, L. A. DaSilva, and J.-J. Quisquater.
Authentication protocols for ad hoc networks: taxonomy and research issues. In
Q2SWinet ’05: Proceedings of the 1st ACM international workshop on Quality of
service & security in wireless and mobile networks, pages 96–104, New York, NY,
USA, 2005. ACM Press.

2. N. Asokan, B. Baum-Waidner, M. Schunter, and M. Waidner. Optimistic synchronous
multi-party contract signing. Technical Report Research Report RZ 3089, IBM Zurich
Research Laboratory, 1998.

3. N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc networks. Computer Com-
munications, 23(17):1627–1637, 2000.

4. D. Augot, R. Bhaskar, V. Issarny, and D. Sacchetti. An efficient group key agreement
protocol for ad hoc networks. In First International IEEE WoWMoM Workshop on
Trust, Security and Privacy for Ubiquitous Computing, 2005.

5. B. Baum-Waidner and M. Waidner. Round-optimal and abuse-free multi-party con-
tract signing. In International Colloquium on Automata, Languages and Program-
ming, LNCS 1853, 2000.

6. M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol for signing
contracts. IEEE Transactions on Information Theory, 36(1), 1990.

7. M. Blum. Three applications of the oblivious transfer. Technical report, Department
of EECS, University of California, Berkeley, CA, 1981.

8. G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4), 1985.

9. M. J. Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In Proceedings of the 1983 International FCT-Conference on Fundamentals
of Computation Theory, pages 127–140, London, UK, 1983. Springer-Verlag.

10. M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differential
consensus. In PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 211–220, New York, NY, USA, 2003. ACM
Press.

11. J. A. Garay and P. D. MacKenzie. Abuse-free multi-party contract signing. In Proceed-
ings of the 13th International Symposium on Distributed Computing, pages 151–165,
London, UK, 1999. Springer-Verlag.

12. S. Goldwasser. Multi party computations: past and present. In PODC ’97: Proceedings
of the sixteenth annual ACM symposium on Principles of distributed computing, pages
1–6, New York, NY, USA, 1997. ACM Press.

13. M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure
multi-party computation (extended abstract). In PODC ’97: Proceedings of the six-
teenth annual ACM symposium on Principles of distributed computing, pages 25–34,
New York, NY, USA, 1997. ACM Press.

14. J.-P. Hubaux, L. Buttyan, and S. Capkun. The quest for security in mobile ad hoc
networks. In MobiHoc ’01: Proceedings of the 2nd ACM international symposium on
Mobile ad hoc networking & computing, pages 146–155, New York, NY, USA, 2001.
ACM Press.

15. K. Kursawe. Distributed Trust. PhD thesis, Department of Computer Science, Saar-
land University, 2001.

16. L. Lamport. The weak byzantine generals problem. J. ACM, 30(3):668–676, 1983.
17. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans.

Program. Lang. Syst., 4(3):382–401, 1982.
18. J. Liu, D. Sacchetti, F. Sailhan, and V. Issarny. Group management for mobile ad hoc

networks: design, implementation and experiment. In MDM ’05: Proceedings of the
6th international conference on Mobile data management, pages 192–199, New York,
NY, USA, 2005. ACM Press.

19. J. Luo, P. T. Eugster, and J.-P. Hubaux. Pilot: Probabilistic lightweight group com-
munication system for ad hoc networks. IEEE Transactions on Mobile Computing,
3(2):164–179, 2004.

20. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in presense of faults.
Journal of the ACM, 27(2):228–234, April 1980.

21. M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.
IEEE Trans. Parallel Distrib. Syst., 11(8):769–780, 2000.

22. L. Tang. Verifiable transaction atomicity for electronic payment protocols. In ICDCS
’96: Proceedings of the 16th International Conference on Distributed Computing Sys-
tems (ICDCS ’96), Washington, DC, USA, 1996. IEEE Computer Society.

23. J. Zhou, J. Onieva, and J. Lopez. A synchronous multi-party contract signing protocol
improving lower bound of steps. In SEC 2006: 21st IFIP International Information
Security Conference, May 2006.

24. L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network, 13(6):24–30, 1999.

